Additional Documents

of

Proposed Project of Dye Intermediates Manufacturing

by

M/s. Jay Ganesh Industries

at

Survey No. 399, Village: Neja, Tal: Khambhat, Dist. Anand, Gujarat-388620

Annexure-I	List of Products with Production Quantity & List of					
	Raw materials with quantity					
Annexure-II	Product wise Manufacturing Process, Chemical					
	Reaction and Flow Diagram					
Annexure-III	Water requirement and waste water generation					
Annexure-IV	Hazardous waste generation and management					
	details					
Annexure-V	Details of Stack					
Annexure-VI	Copy of Index					

Annexure-I

List of Products

Sr. No.	Name of the Product	CAS Nos.	Quantity MT/Month	Type of products
1	4-Nitro Toluene-2-Sulfonic Acid (PNTOSA)	121-03-9	300	Dye Intermediates
2	Para Nitro Chloro Benzene Ortho Sulfonic Acid (PNCBOSA)	96-73-1		Dye Intermediates
3	Ortho Nitro Chloro Benzene Para Sulfonic Acid (ONCBPSA)	121-18-6		Dye Intermediates
4	Sulfo Tobias Acid (2-Naphthyal Amino 1-5 Disulphonic Acid)	117-62-4		Dye Intermediates
5	Armstrong Acid (1,5-Naphthalenedisulfonic acid)	81-04-9		Dye Intermediates
6	Aniline 2.4 Di-sulfonic Acid	24605-36-5		Dye Intermediates
7	Aniline 2.5 Di-sulfonic Acid	24605-36-5		Dye Intermediates
8	Ortho Anisidine 4 Sulfonic Acid (OA4SA)	98-42-0		Dye Intermediates
9	Schaeffer's Acid (6-Hydroxynaphthalene-2- sulphonic acid)	93-01-6		Dye Intermediates
10	Para Toluidine-2,5-Disulfonic Acid (PT2,5DSA)	26585-57-9		Dye Intermediates
11	Chloro Benzene Sulfonic Acid (CBSA)	98-66-8		Dye Intermediates
12	Para Anisidine 2 Sulfonic Acid (PA2SA)	6470-17-3		Dye Intermediates
13	Para Anisidine 3 Sulfonic Acid (PA3SA)	13244-33-2		Dye Intermediates
14	Sulpho OAVS (1-Amino-2- Methoxy-4-Beta Hydroxy Ethyl Sulphone Sulphate Ester)	121-88-0		Dye Intermediates
15	Sulfo VS (3 Sulphonyl-4-Amino Phenyl Beta Hydroxy Ethyl Sulphone Sulphate Ester)	42986-22-1		Dye Intermediates
16	Para Phenylenediamine 2.5 Disulfonic Acid (PPD2,5DSA)	7139-89-1		Dye Intermediates
17	Meta Phenylene Diamine 4.6 Di- sulfonic Acid (MPD4,6DSA)	137-50-8		Dye Intermediates
18	N-Ethyl-N-Benzyl Aniline Sulfonic Acid (EBAMSA)	101-11-1		Dye Intermediates
19	Para Cresidine Ortho Sulfonic Acid (PCOSA)	6471-78-9		Dye Intermediates
20	Para Nitro Aniline Ortho Sulfonic Acid (PNAOSA)	30693-53-9	100	Dye Intermediates
21	Ortho Nitro Aniline Para Sulfonic Acid (ONAPSA)	82324-60-5		Dye Intermediates
22	Para Nitro Aniline (PNA)	100-01-6		Dye

Sr.	Name of the Product	CAS Nos.	Quantity	Type of
No.			MT/Month	products
				Intermediates
23	Ortho Nitro Aniline (ONA)	88-74-4		Dye
				Intermediates
24	4-Amino Azobenzene-4-Sulfonic	104-23-4	100	Dye
	Acid (PAABSA)			Intermediates
25	Sodium Naphthionate (SN)	130-13-2	70	Dye
				Intermediates
26	Alpha Naphthylamine	134-32-7		Dye
				Intermediates
27	Alpha Naphthol	90-15-3		Dye
				Intermediates
28	NW Acid	84-87-7		Dye
				Intermediates
29	C Acid	131-27-1	40	Dye
	(2- Naphthylamine 4,8 Di Sulfonic Acid)			Intermediates
30	Epsilon Acid	117-43-1		Dye
	(1-Naphthol 3,8 Di Sulfonic Acid)	_		Intermediates
31	2-Pyridone	142-08-5	50	Dye
	· · ·			Intermediates
32	Ethyl Cyano Pyridone	28141-13-1		Dye
	(3-Cyano-1-Ethyl-6-Hydroxy-4-			Intermediates
	Methyl-2-Pyridone)			
33	Diethyl Cyano Pyridone	4241-27-4		Dye
	(3-Cyano-6-Methyl-2-Pyridone)			Intermediates
		Total	660	

Sr. no.	Product name	Raw Material Name	Consumption (MT/MT)
1	4-Nitro Toluene-2-Sulfonic Acid	Oleum (23%)	0.150
	(PNTOSA)	PNCB	0.800
		65% Oleum	0.600
2	Para Nitro Chloro Benzene Ortho	Oleum (23%)	1.590
	Sulfonic Acid (PNCBOSA)	PNT	0.670
3	Ortho Nitro Chloro Benzene Para	Oleum (23%)	0.150
	Sulfonic Acid (ONCBPSA)	PNCB	0.800
		Oleum (65%)	0.600
		Salt	0.900
4	Sulfo Tobias Acid	Oleum (23%)	2.400
		Tobias Acid	0.800
5	Armstrong Acid	Oleum (23%)	4.450
	(1,5-Naphthalenedisulfonic acid)	Naphthalene	0.800
6	Aniline 2.4 Di-sulfonic Acid	Sulfanilic Acid	0.740
		Oleum (23%)	2.500
7	Aniline 2.5 Di-sulfonic Acid	Metanilic Acid	0.740
		Oleum (23%)	2.500
		Salt	0.460
8	Ortho Anisidine 4 Sulfonic Acid	Sulphuric Acid 98%	1.100
	(OA4SA)	O-Anisidine	0.700
		Oleum (65%)	0.700
9	Schaeffer's Acid	Sulphuric Acid 98%	1.300
	(6-Hydroxynaphthalene-2-	Oleum (23%)	0.550
	sulphonic acid)	Oleum (65%)	1.300
		Pera Toludene	0.550
		Salt	1.200
10	Para Toluidine-2,5-Disulfonic	Sulphuric Acid 98%	2.500
	Acid (PT2,5DSA)	МСВ	0.600
11	Chloro Benzene Sulfonic Acid	PNTOSA	1.100
	(CBSA)	Iron Powder	1.000
		Caustic Lye	0.100
		HCI	1.000
12	Para Anisidine 2 Sulfonic Acid	PNTOSA	1.100
	(PA2SA)	Iron Powder	1.000
		Caustic Lye	0.100
		HCI	1.000
13	Para Anisidine 3 Sulfonic Acid	Para Anisidine	0.625
	(PA3SA)	Sulphuric Acid	0.812
		ODCB	2.200
		Soda Ash	0.920
14	Sulfo OAVS	OAVS	0.833

Sr. no.	Product name	Raw Material Name	Consumption (MT/MT)
		Oleum (23%)	1.475
		Sulphuric Acid	1.208
		KCI	1.300
15	Sulfo VS	Vinyl Sulphone	0.780
		Oleum Acid (65%)	0.650
		Sulphuric Acid	0.810
		KCI	1.100
16	Para Phenylenediamine 2.5	H ₂ SO ₄ 98%	2.000
	Disulfonic Acid (PPD2,5DSA)	Oleum 65%	1.750
		PPD	0.500
17	Meta Phenylene Diamine 4.6 Di-	H ₂ SO ₄ 98%	1.000
	sulfonic Acid (MPD4,6DSA)	Oleum 23%	0.975
		Oleum 65%	2.300
		MPD	0.675
18	N-Ethyl-N-Benzyl Aniline Sulfonic	H ₂ SO ₄ 98%	1.000
	Acid (EBAMSA)	Oleum 65%	0.900
		EBA	0.835
		Soda Ash	0.500
19	Para Cresidine Ortho Sulfonic	Para Cresidine	0.715
	Acid (PCOSA)	Sulphuric Acid	0.785
		Oleum 23%	1.900
		Salt	0.400
20	Para Nitro Aniline Ortho Sulfonic	PNCBOSA	1.200
	Acid (PNAOSA)	Ammonia	0.450
		Caustic Soda	0.115
		Lime	0.500
		Salt	0.650
21	Ortho Nitro Aniline Para Sulfonic	ONCBPSA	1.100
	Acid (ONAPSA)	Ammonia	0.500
		Caustic Soda	0.400
22	Para Nitro Aniline (PNA)	PNCB	1.300
		Ammonia	1.300
		Water	5.200
		Lime	0.615
		Salt	0.450
23	Ortho Nitro Aniline (ONA)	ONCB	1.300
		Ammonia	1.300
		Lime	0.615
		Salt	0.450
24	4-Amino Azobenzene-4-Sulfonic	Liq. Sodium Bi sulfite	1.550
	Acid (PAABSA)	Aniline Oil	0.500
		Formaldehyde	0.500

Sr. no.	Product name	Raw Material Name	Consumption (MT/MT)
		Salt	1.700
		Sulfanilic acid	0.825
		HCI	0.550
		Sodium Nitrite	0.335
		Sodium Bi carbonate	0.550
		Sulfuric Acid 98 %	0.750
25	Sodium Naphthionate (SN)	Alpha Naphthyl Amine	0.800
		Sulphuric Acid	0.875
		ODCB	2.000
		Soda Ash	1.500
26	Alpha Naphthylamine	Naphthalene	1.100
		Nitric Acid (60%)	2.000
		ODCB	3.500
		Soda Ash	1.000
27	Alpha Naphthol	Alpha naphthyl Amine	1.100
		Sulphuric Acid	0.850
28	NW Acid	Sodium Naphthionate	1.410
		Sodium Bisulphite	1.785
		H ₂ SO ₄ (38%)	1.850
		Caustic Lye	0.910
29	C Acid	Naphthalene	1.250
		Sulphuric Acid(98%)	1.600
		Oleum 65%	1.350
		Nitric Acid	0.375
		Мдо	0.350
		HCI	0.065
		Iron	0.510
30	Epsilon K Acid	Napthalene	1.250
		Oleum (65%)	1.000
		Sulphuric Acid	1.200
		Nitric Acid	0.850
		Lime Stone	1.500
		Soda Ash	0.750
		Iron Powder	1.100
		HCI	0.540
		Sodium Nitrite	0.650
31	2-Pyridone	Ethyl Cyano Acetate	0.750
		Methyl Cyno Acetate	0.800
		Aceto Acetic Methyl Ester	0.735
		H ₂ SO ₄	5.100
32	Ethyl Cyano Pyridone	Ethyl Cyno Acetate	0.750
		Mono Ethyl Amine	0.800

Sr. no.	Product name	Raw Material Name	Consumption (MT/MT)
		Methyl Aceto Acetate Ester	0.750
		H ₂ SO ₄	2.000
33	Diethyl Cyano Pyridone	Diethyl Cyno Acetate	0.750
		Mono Ethyl Amine	0.800
		Methyl Aceto Acetate Ester	0.750
		H ₂ SO ₄	2.000

Annexure-II

Manufacturing Process

1. 4-Nitro Toluene-2-Sulfonic Acid (PNTOSA) Manufacturing Process:

In a Sulfonator take Oleum 23% Charge PNT at 50-55°C temp in 5 to 6 hrs 100°C temp and maintain for 6 hrs cool to 90°C temp and reaction mass is transferred into an isolation vessel containing water. Temp rise to 70°C Cool to 30°C temp it is filtered and centrifuge to get the product PNTOSA.

Chemical Reaction:

C ₇ H ₇ NO ₂		$H_2S_2O_7$		C ₇ H ₇ O₅NS		H_2SO_4
P-Nitro Toluene	+	Oleum	>	PNTOSA	+	Sulfuric Acid
137		178		217		98

		Mass I	palance of PNT	DSA	
INPUT	KG			OUTPUT	KG
Oleum (23%) PNCB 65% Oleum Water	150		Sulphonation 1515 Isolatation	SO2 Scrubber	35
Salt	900 —		5915		
			Filtration 2915	→ Spent Sulphuric Acid	3000
Brine Water	500		Centrifugation	Spent Sulphuric Acid	2106
			Packing	→ Moiture → PNCBOSA	309 1000
Total	6450				6450

2. Para Nitro Chloro Benzene Ortho Sulfonic Acid (PNCBOSA) Manufacturing Process:

In a Sulfonator take OLEUM 23% Charge PNCB at 50-55°C temp in 3 to 4 hrs Charge Oleum 65% at 80-85°C temp in 3 to 4 hrs Then contents are heated to 120°C temp and maintain for 6 hrs cool to 90° c temp and reaction mass is transferred into an isolation vessel containing water & salt. Temp rise to 70°C Cool to 35°C temp it is filtered and centrifuge to get the product PNCBOSA.

Chemical Reaction:

$C_6H_4NO_2CI$		$H_2S_2O_7$	$C_6H_4NO_5SCI$		H_2SO_4
PNCB	+	Oleum	 PNCBOSA	+	Sulfuric Acid
157.5		178	237.5		98

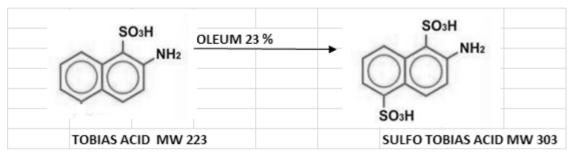
	N	Mass b	alance of PNCB	OSA	
INPUT	KG			OUTPUT	KG
Oleum (23%) PNT	1590 — 670 —		Sulphonation	→ SO2 Scrubber	30
	070		Supronation	SOZ SCIUDDEI	50
			2230		
Water	5000 —	•	Dumping		
			7230		
			Filtration	→ Spent Sulphuric Acid	5542
			1688		
Water	1000 —	•	Centrifugation	──► Effluent	1400
			1288		
			Packing	→Moiture	288
			racking	→ PNCBOSA	1000
Total	8260				8260

3. Ortho Nitro Chloro Benzene Para Sulfonic Acid (ONCBPSA) Manufacturing Process:

In a Sulfonator take Oleum 23% Charge ONCB at 50-55°C temp in 3 to 4 hrs Charge Oleum 65% at 80-85°C temp in 3 to 4 hrs Then contents are heated to 120°C temp and maintain for 6 hrs cool to 90°C temp and reaction mass is transferred into an isolation vessel containing water & salt. Temp rise to 70°C Cool to 35°C temp it is filtered and centrifuge to get the product ONCBPSA.

Chemical Reaction:

C ₆ H ₄ NO ₂ Cl	+	$H_2S_2O_7$	\longrightarrow	C ₆ H ₄ NO ₅ SCl	+	H_2SO_4
ONCB		Oleum		ONCBPSA		Sulfuric Acid
157.5		178		237.5		98

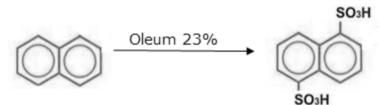

		Mass b	alance of PNCB	OSA	
INPUT	KG			OUTPUT	KG
Oleum (23%) PNCB Oleum (65%)	150 800 600	→	Sulphonation	→ SO2 Scrubber	35
Water Salt	3500 - 900 -	•	Isolatation		
			Filtration 2915	→ Spent Sulphuric Acid	3000
Brine Water	500 -		Centrifugation	→ Spent Sulphuric Acid	2106
			Packing	→ Moiture → PNCBOSA	309 1000
Total	6450				6450

4. Sulfo Tobias Acid

Manufacturing Process:

Oleum & Tobias Acid is charged in Sulphonator vessel. After 12 hrs the reaction completes & the reaction mass is dumped into drowning vessel where ice & salt are added. After drowning, reaction mass is filtered through Nutch filter. The product remains at the top of Nutch filter & the filtrate as spent. The product from the Nutch filter is taken into the centrifuge. After centrifuging, the product is packed & dispatched.

Chemical Reaction:



	Mass B	alance of SULFO TOB	IAS ACID	
INPUT	KG		OUTPUT	KG
Oleum (23%)	2400	→		
TOBIAS ACID	800	→ sulphonation	→ SO2 Scrubber	25
		3175		
Ice	7200	→		
Salt	2000 —	→ Isolation		
		12375		
		◆ Nutch Filteration	Spent Acid	9825
		2550		
		•		
		Centrifugation	→ Spent Acid	1020
		1530		
		◆ Packing	SULFO TOBIAS ACID 65 %	1540
		I dekiig	KGS REAL BASIS-1000	
Total	12400			12410

5. Armstrong Acid (1,5-Naphthalenedisulfonic acid) Manufacturing Process:

Oleum & Naphthalene is charged in Sulphonator vessel. After 6 hrs the reaction completes & the reaction mass is dumped into drowning vessel where ice are added. After drowning, reaction mass is filtered through Nutch filter. The product remains at the top of Nutch filter & the filtrate as spent. The product from the Nutch filter is taken into the centrifuge. After centrifuging, the product is packed & dispatched.

Chemical Reaction:

	Mas	s Balance of Armstron	ng acid	I
INPUT	KG		OUTPUT	KG
Oleum (23%)	4450	→		
Naphthalene	800	→ sulphonation	SO2 Scrubber	38
		5212		
Ice	2550	→		
		Isolation		
		7762		
		Nutch Filteration	Spent Acid	5300
		2462		
		Centrifugation	Spent Acid	1248
		1214		
		↓		214
		Packing	Armstrong acid 85 %	1000
Total	7800			7800

6. Aniline 2.4 Di-sulfonic Acid Manufacturing Process:

Sulfonation of Sulfanilic Acid

Charge Oleum 23% in a Sulfonator then charge Sulfanilic Acid at 50°C temperature. Heat to 100°C temperature in 6 hours and maintain temperature for 15 hours. Then cool to 90°C temperature.

Isolation

Charge Water in Isolation Vessel, then transfer Sulfo Mass in Isolation Vessel. Temperature will rise to 80°C temperature. Then cool to 35°C temperature.

Filtration

Filter thru Filter Press and then Centrifuge to get the product.

Chemical Reaction:

$C_6H_7NO_3S$		Oleum	>	$C_6H_7NO_6S_2$		H2SO4
Sulfanilic acid	+	H2S2O7		Aniline 2-4 DSA	+	H2SO4
173.00		178		253		98

	Mass Balanc	e of ANILINE 2, 4 DI	SULFONIC ACID	
INPUT	KG		OUTPUT	KG
Sulfanilic Acid Oleum (23%)	740 2500	→ sulphonation	SO2 Scrubber	22
Ice	4500			
		7718		
		Isolation		
		7718		
		Nutah	Creat Asid	5000
		Nutch Filteration	→ Spent Acid	5000
		2718		
		Centrifugation	Spent Acid	1268
		1450		
			→ Moiture	450
		Packing	Aniline 2,4 Disulphonic Acid	1000
Total	7740			7740

7. Aniline 2.5 Di-sulfonic Acid Manufacturing Process:

Sulfonation of Metanilic acid

Charge Oleum 23% in a Sulfonator then charge Metanilic acid at 50°C temperature. Heat to 100°C temperature in 6 hours and maintain temperature for 15 hours. Then cool to 90°C temperature.

Isolation

Charge Water in Isolation Vessel, then transfer Sulfo Mass in Isolation Vessel. Temperature will rise to 80°C temperature. Then cool to 35°C temperature.

Filtration

Filter thru Filter Press and then Centrifuge to get the product.

Chemical Reaction:

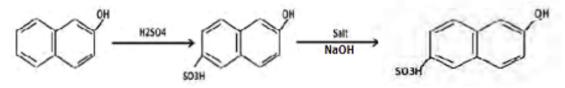
$C_6H_7NO_3S$		Oleum	>	$C_6H_7NO_6S_2$		H2SO4
Metanilic acid	+	H2S2O7		Aniline 2-5 DSA	+	H2SO4
173.00		178		253		98

	Mass Baland	e of ANILINE 2, 5 DISU	ULFONIC ACID	
INPUT	KG		OUTPUT	KG
Metanilic Acid Oleum (23%) Water Salt	740 2500 5500 460	sulphonation	SO2 Scrubber	22
		9178		
		Isolation		
		9178		
		Nutch Filteration	→ Spent Acid	6500
		2678 Centrifugation	> Spent Acid	1225
		1453		
		Packing	 Moiture Aniline 2,5 Disulphonic Acid 	453 1000
Total	9200			9200

8. Ortho Anisidine 4 Sulfonic Acid (OA4SA) Manufacturing Process: Sulfonation of O-Anisidine:

In a Sulfonator take H_2SO_4 98% Charge OA at 50-55°C temp in 3 to 4 hrs Charged Oleum 65% At 55-60 temp and maintain for 6 hrs cool to 90°C temp and reaction mass is transferred into an isolation vessel containing water. Cool to 35°C temp it is filtered and centrifuge to get the product OA4SA.

Chemical Reaction:


C ₇ H ₉ NO	H_2S_2	07 →	$C_7H_9NO_4S$		H_2SO_4
O-Anisidine	+ Oleu	m	OA4SA	+	Sulfuric Acid
123	178	3	203		98

N	1ass Balan	ce of Ortho Anis	idine 4 Sulfonic Acid	
INPUT	KG		OUTPUT	KG
Sulphuric Acid 98% O- Anisidine Oleum (65%)	1100	sulphonatio	n SO2 Scrubber	30
		247	D	
Water	3700 -	→ Isolation		
		617	0	
		Nutch Filteration 197		4200
		Centrifugatio		500
		147	0	
		Packing	Moiture Ortho Anisidine 4 Sulfonic Aci	470 1000
Total	6200			6200

9. Schaeffer's Acid (6-Hydroxynaphthalene-2-sulphonic acid) Manufacturing Process:

In sulphonator take Sulphuric acid. Cool it to required temp. Add Beta Naphthol. Heat it to elevated temp. Maintain for hours. Dump the mass in water. Add activated carbon. Filter it. Collect filtrate add soda ash or caustic lye and make neutral. Cool it and filter it. Collect wet cake as finished product.

Chemical Reaction:

	Mass	Bala	nce of SCHAE	FFER'S	ACID	
INPUT	KG				OUTPUT	KG
H2SO4 98 % B-Naphthol	1100 - 700 -	→	sulphonation 1775		SO2 Scrubber	25
Water Soda Ash	3700 - 360		Isolation 5835			
			Nutch Filteration 2530		Spent Acid	3305
			Centrifugation	►	Spent Acid	530
			2000			
			Packing		Moiture Chaeffer's Acid	750 1250
Total	5860					5860

10. Para Toluidine-2,5-Disulfonic Acid (PT2,5DSA) Manufacturing Process: Sulfonation of PT:

In a Sulfonator take H_2SO_4 98% & Oleum 23% Charge PT at 50-55°C temp in 3 to 4 hrs Charge Oleum 65% at 80-85°C temp in 3 to 4 hrs Then contents are heated to 120°C temp and maintain for 6 hrs cool to 90°C temp and reaction mass is transferred into an isolation vessel containing water & salt. Temp rise to 70°C Cool to 35°C temp it is filtered and centrifuge to get the product PT2-DSA.

Chemical Reaction:

C_7H_9N	$H_2S_2O_7$	H ₂ SO ₄ —	$\rightarrow C_7H_9O_6S_2N$		H_2SO_4		H_2O
PT	+ Oleum	+ Sulfuric Acid	PT2-5DSA	+	Sulfuric Acid	Ŧ	Water
107	178	98	267		98		18

	Mass Bala	nce of Para Toluid	ine-2,5-Disulfonic Acid	
INPUT	KG		OUTPUT	KG
Sulphuric Acid 98%	1300 —			
Oleum (23%)	550 -			
Oleum (65%)	1300 -	sulphonation		
Pera Toludene	550 —	→	→ SO2 Scrubber	32
		3668		
Water	6000	Isolation		
salt	1200 —	-		
		10868		
		•		
		Nutch	→ Spent Acid	8000
		Filteration		
		2868		
		•		
		Centrifugation	──→ Spent Acid	1428
		1440		
		•		
		Packing	──► Moiture	440
		Tucking	→ Para Toluidine-2,5-Disulfonic Acid	1000
Total	10900			10900

11. Chloro Benzene Sulfonic Acid (CBSA) Manufacturing process: Sulfonation of MCB:

In a Sulfonator take H_2SO_4 98% Charge MCB at 50-55°C temp in 3 to 4hrs and maintain for 6 hrs cool to 90°C temp and reaction mass is transferred into an isolation vessel containing water & ice. Cool to 35°C temp it is filtered and centrifuges to get the product MCBSA.

Chemical Reaction:

C_6H_5CI		H_2SO_4	>	$C_6H_5O_3SCI$		H_2O
MCB	+	Sulfuric acid		MCBSA	+	water
112.5		98		192.5		18

	Mass Ba	alance of Chloro Bei	nzene Sulfonic Acid	
INPUT	KG		OUTPUT	KG
Sulphuric Acid 98%	2500 —	→		
МСВ	600 —	sulphonation	SO2 Scrubber	12
		3088		
		+		
Water	1800 —	→ Isolation		
		4888		
		♦ Nutch	→ Spent Acid	3100
		Filteration 1788		
				448
		Centrifugation	→ Spent Acid	440
		1340		
		Packing	Moisture	340
			──► CBSA	1000
Total	4900			4900

12. Para Anisidine 2 Sulfonic Acid (PA2SA) Manufacturing Process: Sulfonation of P-Anisidine:

In a Sulfonator take OLEUM 23% Charge PA at 50-55°C temp in 5 to 6 hrs 120°C temp and maintain for 6 hrs cool to 90°C temp and reaction mass is transferred into an isolation vessel containing water. Temp rise to 70°C Cool to 35°C temp it is filtered and centrifuges to get the product PA2SA.

Chemical Reaction:

C ₇ H ₉ NO		$H_2S_2O_7$	>	$C_7H_9NO_4S$		H_2SO_4
P-Anisidine	+	Oleum		PA2SA	+	Sulfuric Acid
123		178		203		98

	Mass B	alance of Para Anisidi	ne 2 Sulfonic Acid	1
INPUT	KG		OUTPUT	KG
PNTOSA	1100 —	→		
Iron Powder	1000	→ Reduction		
Caustic Lye	100 —	Vessel		
Water	4000			
HCI	1000 —	→		
		7200		
		•		
		Nutch Filteration	→ Iron Sludge	1500
		5700		
		•		
		Isolation	→ Effluent	3700
		2000		
				
		Centrifugation	→ Effluent	650
		1350		
		•		
		Drying & Packing	Drying loss	350
			→ Para Anisidine 2 Sulfonic Acid	1000
Total	7200			7200

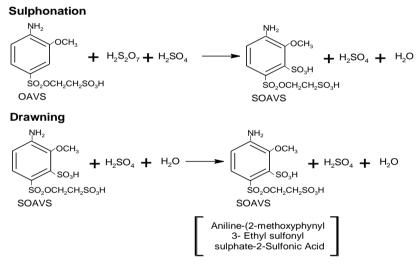
13. Para Anisidine 3 Sulfonic Acid (PA3SA) Manufacturing Process: Sulfonation of P-Anisidine:

In a Sulfonator take Oleum 23% Charge PA at 50-55°C temp in 5 to 6 hrs 120°C temp and maintain for 8 hrs cool to 90°C temp and reaction mass is transferred into an isolation vessel containing water. Temp rise to 70°C Cool to 35°C temp it is filtered and centrifuges to get the product PA2SA.

Chemical Reaction:

C ₇ H ₉ NO		$H_2S_2O_7$	>	$C_7H_9NO_4S$		H_2SO_4
P-Anisidine	+	Oleum		PA2SA	+	Sulfuric Acid
123		178		203		98

	Mass B	alan	ice of Para Anisi	dine 3	3 Sulfonic Acid	
INPUT	KG				OUTPUT	KG
Para Anisidine Sulphuric Acid ODCB Soda Ash	625	* * *	Sulphonation Vessel			
Water	5600		4557 Distillation		ODCB Recovered	2110
			8047			
			Isolation 8047			
			+ Filteration	•	Effluent	6170
			1877 V Drying & Packing		Drying loss Para Anisidine 3 Sulfonic Acid	877 1000
Total	10157					10157

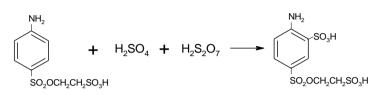

14. Sulfo OAVS

Manufacturing Process:

Sulphonation: The sulphonation is carried out in a C.I. Sulphonator; Ortho anicidine Sulfo VS is heated with Sulfuric Acid and Oleum (65%) at a temperature of 50°C, Sulphonation takes place and Sulpho orthoanicidinevinyl sulphone is formed. Check acidity of S/mass and the sulphonated mass is blown in to the drawning vessel.

Drawning: The drowning is carried out in MSRLTL vessel. Take water and ice in drowning vessel and charge s/mass dumping in at 5 C temperatures the ice and water then charge KCl in it and precipitate the SOAVS and then filtrate it in MSRLTL nutch.

Chemical Reaction:

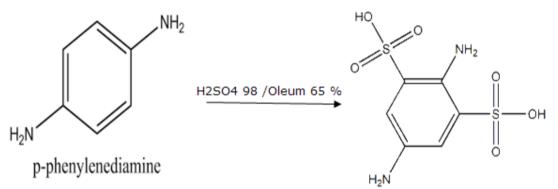

	Mas	s Balance of Sulfo OA	VS	
INPUT	KG		OUTPUT	KG
OAVS Oleum (23%) Sulphuric Acid	833	Sulphonation Vessel		
KCI Ice	1300 6654	Drawing		
Water	1000	→ Filteration & Centrifusing	→ Spent Acid → Effluent	9760 1170
		1540 V Drying & Packing	Drying loss Sulfo OAVS	540 1000
Total	12470			12470

15. Sulfo VS

Manufacturing Process:

Vinyl Sulphone Ester is charged in to sulphuric acid below 30°C. Then charge Oleum 65% in it & dumps this sulpho mass in ice and water & salted out by potassium chloride. Then filter it and centrifuge it. The final product is packed as a Sulpho VS.

Chemical Reaction:

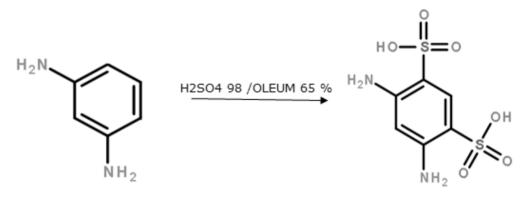


	M	lass	Balance of Sulfo	OAVS	
INPUT	KG			OUTPUT	KG
Vinyl Sulphone Oleum Acid (65%) Sulphuric Acid	780 - 650 - 810 -	* * *	Sulphonation Vessel		
			2240		
KCI Ice	1100 - 2500 -	+ +	Drawing		
			5840		
Water	1000 -	•	Filteration & Centrifusing	→ Spent Acid → Effluent	4300 1000
			1540		
			Drying & Packing	→ Drying loss → Sulfo OAVS	540 1000
Total	6840				6840

16. Para Phenylenediamine 2.5 Disulfonic Acid (PPD2,5DSA) Manufacturing Process:

 H_2SO_4 98% is charged in Sulphonator vessel Charged PPD & Oleum 65. After 8 hrs at temp 130 the reaction completes & the reaction mass is dumped into drowning vessel where water are added. After drowning, after cooling mass is filtered through Nutch filter. The product remains at the top of Nutch filter & the filtrate sent to effulent treatment plant. The product from the Nutch filter is taken into the centrifuge. After centrifuging, the product is packed & dispatched.

Chemical Reaction:

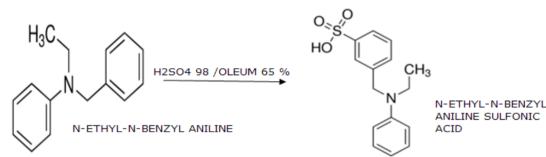


Mass	Balance of	Par	a Phenylenediam	nine 2.5 Disulfonic Acid	
INPUT	KG			OUTPUT	KG
H2SO4 98 % OLEUM 65 % PPD	2000	* * *	Sulphonation Vessel		
			4250		
Water Ice	2000	•	Drawing		
			8250		
Water	1000	-	¥ Filteration & Centrifusing	← Spent Acid ← Effluent	6300 1500
			1450		
			↓ Drying & Packing	→ Drying loss → PPD2,5DSA	450 1000
Total	9250				9250

17. Meta Phenylene Diamine 4.6 Di-sulfonic Acid (MPD4,6DSA) Manufacturing Process:

 H_2SO_4 98% is charged in Sulphonator vessel Charged MPD & Oleum 65%. After 8 hrs AT TEMP 130 the reaction completes & the reaction mass is dumped into drowning vessel where water are added. After drowning, after cooling mass is filtered through Nutch filter. The product remains at the top of Nutch filter & the filtrate sent to effluent treatment plant. The product from the Nutch filter is taken into the centrifuge. After centrifuging, the product is packed & dispatched.

Chemical Reaction:

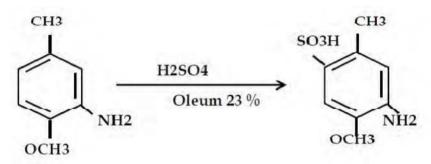


Mass	Balance of M	eta	a Phenylene Diam	nine 4.6 Di-sulfonic Acid	1
INPUT	KG			OUTPUT	KG
H2SO4 98 % OLEUM 23 % OLEUM 65 % MPD	1000	* * *	Sulphonation Vessel 4950		
Water Ice	1000		Drawing		
Water	1000	•	9950 Filteration & Centrifusing	→ Spent Acid → Effluent	8000 1500
			1450		
			Drying & Packing	 Drying loss MPD4,6DSA 	450 1000
Total	10950				10950

18. N-Ethyl-N-Benzyl Aniline Sulfonic Acid (EBAMSA) Manufacturing Process:

 H_2SO_4 98% is charged in Sulphonator vessel Charged EBA [Ethyl Benzyl Aniline] & Oleum 65%. After 12 hrs AT temp 60 the reaction completes & the reaction mass is dumped into drowning vessel where ice are added. After drowning, added caustic lye or soda ash to bring acidity to 15 to 18% after cooling mass is filtered through Nutch filter. The product remains at the top of Nutch filter & the filtrate sent to effluent treatment plant. The product from the Nutch filter is taken into the centrifuge. After centrifuging, the product is packed & dispatched.

Chemical Reaction:



Mass Bala	nce of EBAM	SA(N-Ethyl -N-Benzyl Anilinne Sulphoni	c Acid)
INPUT	KG	Ουτρυτ	KG
H2SO4 98 % OLEUM 65 % EBA	1000 — 900 — 835 —	→ Sulphonation → Vessel	
		2735	
Water Ice Soda Ash	3000	→ Drawing	
		7235	
Water	1000	→ Filteration & → Spent Acid Centrifusing	6435 500
		1300	
		Drying & Packing BBAMSA	300 1000
Total	8235		8235

19. Para Cresidine Ortho Sulfonic Acid (PCOSA) Manufacturing Process:

In a sulphonator charge sulphuric acid and add PCD. Cool the mass and slowly charge Oleum 23% at elevated temp. Stir for a hr. and heat to required temp. Dump the mass in ice water. Free stir and filter the mass. Collect wet cake as finished product.

Chemical Reaction:

Mass Ba	lance of Para	a Cr	esidine Ortho Su	lfonic	Acid(PCOSA)
INPUT	KG				OUTPUT	KG
Para Cresidine Sulphuric Acid OLEUM 23 %	715 — 785 — 1900 —	+ + +	Sulphonation Vessel			
			3400			
Water Ice Salt	1425	* * *	Drawing 9225			
Water	1500 -	•	Filteration & Centrifusing	•	Spent Acid	9370
			1355			
			Drying & Packing		Drying loss PCOSA	355 1000
Total	10725					10725

20. Para Nitro Aniline Ortho Sulfonic Acid (PNAOSA) Manufacturing Process:

Ammonolysis of PNCBOSA

Take Liquor Ammonia in an Autoclave. Then charge PNCBOSA and stir for 1 Hour. Close all valves & vents then heat to 135°C temperature and maintain for 12 hours. Then cool the mass to 100°C temperature and recover excess Ammonia.

Isolation & Filtration

Cool the mass to 35°C temperature and filter thru Nutsche Filter and then Centrifuge to get the product.

Chemical Reaction:

C ₆ H₄NO₅SCI PNCBOSA	2NH ₃ + Ammonia	NaOH - Sodium Hydroxide	→ C ₆ H₅N₂C PNAC	-	NH2 + Ammo Chlo	nium	H2O water
237.5	34.00	40	240)	53.		18
NH₄CI Ammonium Chloride	Cal	OH)₂ — cium oxide	→ 2NH ₃ Ammonia	+	CaCl₂ Calcium Chloride	+	2H ₂ O Water
53.50	-	.00	34		111		36

Mass	Balance of I	PNAOSA(4-	Nitro An	iline-2	2-Sulphonic Acid)	
INPUT	KG				OUTPUT	KG
PNCBOSA	1200 —	→ Ammo	nolysis			
Ammonia	450 —	→ Auto	Clave			
Caustic Soda	115 —	-				
Water	2200		3965			
Lime	500					
Salt	650	→ Filter	Filteration		Effluent	2900
			2215			
			-		Effluent	785
		Cent	rifuse			
			1430			
		Druing 8	Dacking		Drying loss	430
		Drying 8	Packing	•	PNAOSA	1000
Total	5115					5115

21. Ortho Nitro Aniline Para Sulfonic Acid (ONAPSA) Manufacturing Process:

Amidation of ONCBPSA

In an Autoclave take Ammonia liquor Charge ONCBPSA stir for 1 hr close all valves & vents & Then contents are heated to 155°C temp and maintain for 10 hrs cool to 100°C temp and recover excess ammonia.

Isolation

Reaction mass is transferred into an isolation vessel containing water and Alkali. Cool to 35°C temp it is filtered and centrifuge to get the product ONAPSA.

Chemical Reaction:

C ₆ H₄NO₅SCI ONCBPSA		2NH₃ nmonia			₆ H ₆ N₂O₅S DNAPSA	+	Ammo	NH₄C nium (il Chloride
237.5	3	34.00			218			53.50)
NH₄CI		Ca(OH)	2 —	→	$2NH_3$		$CaCl_2$		$2H_2O$
Ammonium Chloride	+ ⁺	Calcium Iydroxic			Ammonia	+	Calcium Chloride	+	Water
53.50 Mass Balan	ce:	74.00			34		111		36

Mass Balance of ONAPSA-(Ortho Nitro Aniline Para Sulfonic Acid) INPUT KG OUTPUT KG ONCBPSA Ammonolvsis 1100 Ammonia 500 Auto Clave Caustic Soda 400 4500 Water 2500 Isolation 4500 Filteration Effluent 2290 2210 Effluent 890 Centrifuse 1320 Drying loss 320 Drying & Packing ONAPSA 1000 Total 4500 4500

22. Para Nitro Aniline (PNA)

Manufacturing Process:

Para Nitro Chloro Benzene, recycled liquor Ammonia & anhydrous Ammonia are taken together in an autoclave for manufacturing of Para Nitro Aniline. Desired temperature and pressure maintain are 15 to 16 hours to complete then reaction. When reaction is over & excess of Ammonia is blown off through vent valve and scrubber in water to from 32% w/w Ammonia solution.

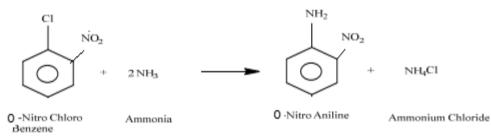
Chemical Reaction:

p-Nitro Chloro Benzene

Ammonia

p-Nitro Aniline

Ammonium Chloride


	Mass Bal	ance	of PNA-(Pa	ara Nit	ro Aniline)	
INPUT	KG				OUTPUT	KG
PNCB Ammonia Water Lime	1300 - 1300 - 5200 - 615 -		Ammonolysis Auto Clave			
Line	015		841	5	► Process Waste	1282
			Filtration			1202
Salt	450 —	•	↓ Isolation			
			758 Filteratior		→ Effluent	5323
			226	0		
			Centrifus		→ Effluent	940
			♦ Drying & Pac	king	→ Drying loss → PNA	320 1000
Total	8865					8865

23. Ortho Nitro Aniline (ONA)

Manufacturing Process:

Ortho Nitro Chloro Benzene, recycled liquor Ammonia & anhydrous Ammonia are taken together in an autoclave for manufacturing of Para Nitro Aniline. Desired temperature and pressure maintain are 15 to 16 hours to complete then reaction. When reaction is over & excess of Ammonia is blown off through vent valve and scrubber in water to from 32% w/w Ammonia solution.

Chemical Reaction:

	Mass Balan	ce of ONA-(Ortho	Nitro Aniline)	
INPUT	KG		OUTPUT	KG
ONCB Ammonia Water Lime	1300 — 1300 — 5200 — 615 —	 Ammonolysis Auto Clave 		
		8415		4000
		Filtration	→ Process Waste	1282
		7133		
Salt	450	→ Isolation		
		7583		
		Filteration	← ► Effluent	5323
		2260		
		Centrifuse	Effluent	940
		1320		
		Drying & Packing	→ Drying loss → ONA	320 1000
Total	8865			8865

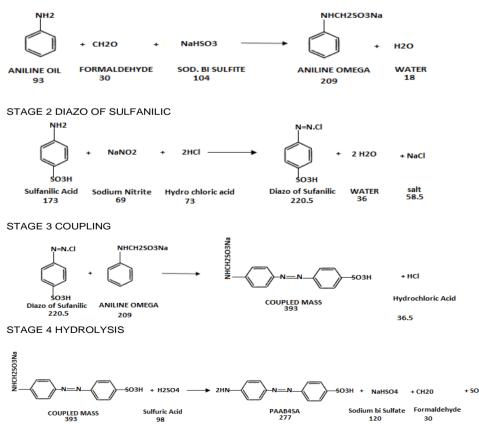
24. 4-Amino Azobenzene-4-Sulfonic Acid (PAABSA) Manufacturing Process:

Aniline OMEGA: Take Sodium Bi Sulfite solution and add Formaldehyde solution in it. Adjust pH 7, stir 1 hour. Charge Aniline oil at RT and raise temp 50c. Maintain temp for 2 hours. Check TLC. Ok. Cool it RT.

Filtration: Filter through Nutch and then Centrifuge to get the material.

Diazotization: Take water + HCl, add sulfanilic acid. Stir 30 min. cool it 0-5C with ice and add sodium nitrite solution in it with maintain temp below 5C. Stir 2 hours with SI and CR +ve.

Coupling: Take water in vessel and dissolve Aniline Omega in it. Cool it below 5C. Add above diazo in it with maintain pH 6.5 with bicarb and temp below 10C. Stir 4-5 hours, check spot and isolate with salt.

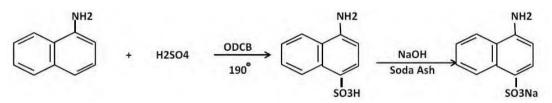

Filtration: Filter through Nutch and then Centrifuge to get the material.

Hydrolysis: Take water and add Sulfuric acid in it. Raise temperature 95°C. Charged coupled mass in it with maintain temperature 95-100C. After charging maintain temp for 4 hours, check TLC. Ok.

Filtration: Filter through Nutch and then Centrifuge to get the material.

Chemical Reaction:

STAGE 1 ANILINE OMEGA


M/s. Jay Ganesh Industries, Khambhat

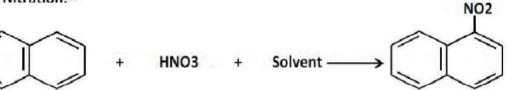
Mass B	alance of	4-AI	mino Azobenzene-4-	-Sulfonic Acid	
INPUT	KG			OUTPUT	KG
Liq. Sodium Bi sulfite	1550 —				
Aniline Oil	500 -				
Formaldehyde	500 -	, ,	Dumping Reactor		
Salt	500 -		Dumping Reactor		
Jail	500		_		
			3050		
			↓ _		1450
			Filteration	→ Effluent	1450
			1600		
Water	450 —				
Sulfanilic acid	825 —				
HCI	550 —	•	Diazotization		
ICE	1500 -				
Sodium Nitrite	335 —	•			
			5260		
			•		
Water	900 -	•			
Sodium Bi carbonate	550 -	•	Coupling		
ICE	1500 -	•	couping		
Salt	1200 -	•			
			9410		
Water	900 —		*		
Sulfuric Acid 98 %	750 -		Hydrolysis		
Steam	500 -	•	i i y ai o i y olo		
			11560		
			Filteration	→ Effluent	9860
			1700		
			Druing & Docking	Drying loss	700
			Drying & Packing	► PAAB4SA	1000

25. Sodium Naphthionate (SN) Manufacturing Process:

Alpha Naphthyl Amine is Sulphonated with Sulphuric Acid in ODCB at higher temp convert Naphthionic acid. Distill ODCB with water as azeotropic mixturs, followed by neutralization with sodium Carbonate (Soda Ash). Collect 1st cut ODCB from bottom and send for Acid treatment (AT). Filter the mass. Collect in isolation vessel and Cool the mass. Filter it in Nutch & CF it gives cold water wash to get Sodium Naphthionate. Collect filtrate take in Naphthionate isolation vessel add dil. Sulphuric acid. Filter the mass and collect W/C as NA. Charge collected NA in a vessel.

Chemical Reaction:

Mass Balance of Sodium Naphthionate(SN)								
INPUT	KG			OUTPUT	KG			
Alpha naphthyl Amine	800 -							
Sulphuric Acid	475 -		Sulphonation					
ODCB	2000 -	•	Supronation					
	2000		3275					
Soda Ash	1100 -	-	+					
Water	4000 -	-	Neutralization					
			8375					
			Sepration	→Water	4500			
			3875					
Sulphuric Acid	400	•	Acid Treatment					
			4275					
			4275					
Soda ash	400 -	•	*					
Water	2000 -	•	Netralization					
			6675					
			★ Isolation					
			6675					
			↓ Sepration	→ Water	3230			
			3445					
			Distillation	→ ODCB	1950			
			1495					
					495			
			Drying & Packing	 Drying loss Sodium Naphthionate 	1000			
			Facking	Socium Napricilonate	1000			
Total	11175				11175			

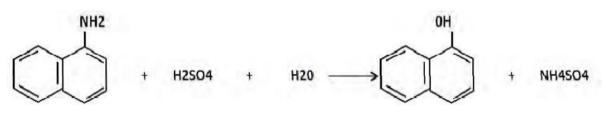

26. Alpha Naphthylamine

Manufacturing Process:

Alpha Naphtyl Amine is synthesis by nitration of Naphthalene in inert solvent with weak Nitric Acid, separate excess Nitric Acid and water. Neutralize Nitromass with alkali and use for further step. Generated weak Nitric Acid concentrated up to required concentration and use for further Nitration by addition of required excess quantity for the further batches.

Chemical Reaction:

A. Nitration:--

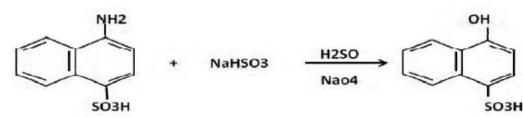

	Mass	Balance of Alpha Naph	nthyl Amine	
INPUT	KG		OUTPUT	KG
Naphthalene	1100	→		
Nitric Acid (60%)	2000 —	→ Nitration		
ODCB	3500 —			
Water	1000 —	→		
		7600		
		Sepration	→ Weak Nitric Acid	3000
		4600		
		•		
Soda Ash Water	1000 — 3000 —	Neutralization		
		8600		
		Sepration	── → Water	3730
		4870		
		Distillation	→ ODCB	3410
		1460		
			→ Drying loss	460
		Drying & Packing	Alpha Naphthyl Amine	1000
Total	11600			11600

27. Alpha Naphthol

Manufacturing Process:

Take ANA in GLR or Lead line vessel melt it. Add Sulphuric acid and slowly add water, heat it at elevated temperature. Maintain temp for several hours. Cool it and Filter it in nutch as finished crude alpha Naphthol. Make vacuum distillation to get pure Alpha Naphthol.

Chemical Reaction:


	Mass	Bala	nce of A	lpha Nap	ohthol	
INPUT	KG				OUTPUT	KG
Alpha naphthyl Amine Sulphuric Acid Water	1100 850 5500	*	Sulpho	nation		
				7450		
Water	1500		Filter &	Washing	→ Effluent	5750
				3200		
			Centi	rifuge	→ Effluent	1650
				1550		
			Drvi	ng &	→ Drying loss	550
				king	Alpha Naphthol	1000
Total	8950					8950

28. NW Acid

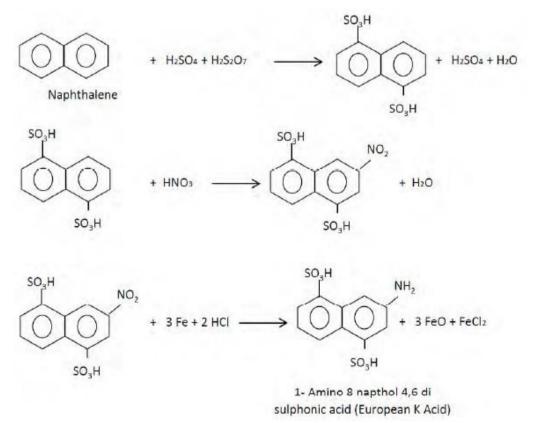
Manufacturing Process:

Sodium Naphthionate is condensed with Sodium Bisulphite at reflux temp for 48 hrs. Followed by Hydrolysis with Sulphuric acid to remove SO₂. SO₂ is scrubbed in soda ash solution and reuse for further batch. Hydrolyzed mass is neutralize and alkaline with Sodium Hydroxide (Caustic Lye) boil for removal of Ammonia. Cool it and remove isolated salt. Than isolate N. W. acid with dil. sulphuric acid/Hydrochloric acid. Filter it. Collect W/C and then dry the mass as N. W. Acid.

Chemical Reaction:

	Mas	s Ba	lance of N W Aci	d	
INPUT	KG			OUTPUT	KG
Codium Nonhthionoto	1410 -				
Sodium Naphthionate	1785 -		SS vessel		
Sodium Bisulphite		-	SS vessel		
Water Recycle	1800 -				
			+		
H ₂ SO ₄ (38%)	1850 -	•	Hydrolysis	→ SO2 gas	465
			Separation SN	SN Reuse	65
Caustic Lye Water Recycle	910 - 1000 -	•	Expel of NH ₃	→ NH3 gas	54
	1000	-			
			+		
			Concentration	→ Water Recycle	1000
			•		
			Filter	Process Sludge	55
			•		
Hydrochloric Acid	955 -	•	Isolation		
			Filter/CF	→ Waste Water	6576
			Drying	Drying loss	495
			,5	► N W Acid	1000
Total	9710				9710

29. C Acid

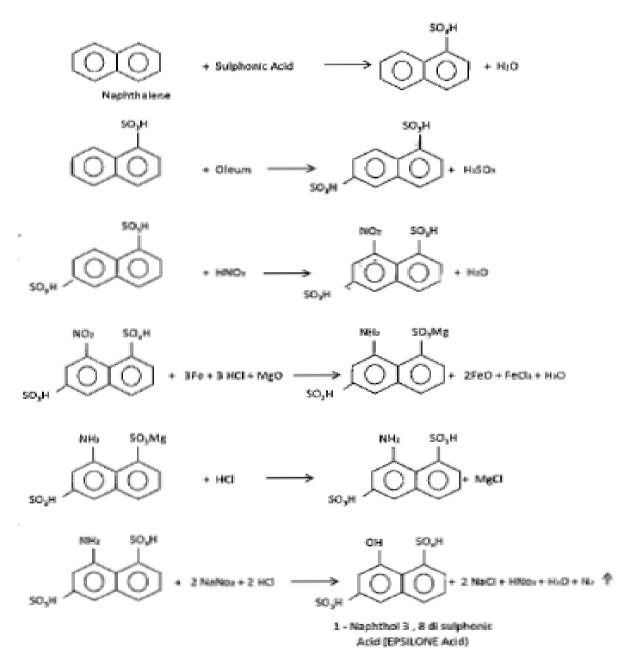

Manufacturing Process:

In this process sulphuric acid will be mixed with Naphthalene and oleum, then added in to Sulphonation reactor. The sulpho mass will be nitrated with nitric acid. This will be an exothermic reaction. It is necessary to keep the temperature maintain using chilling water in to the jacket. At the end of the reaction prepared Nitro mass will be neutralized.

Reduction of nitro solution will be done using iron powder, HCl and Water. Iron powder will be added during the reaction. Gradually nitro solution will be added into the reduction vessel. During the reaction Iron sludge will be generate.

Mass isolated with sulphuric acid. The final mass is filtered in a filter nutch and goes to centrifuge after wet cake is dried by centrifuging to get the product.

Chemical Reaction:

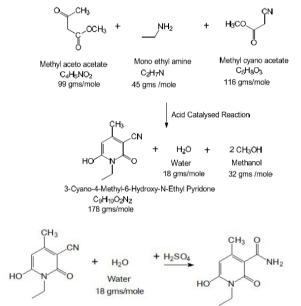

		Mass	Balance of C-A	cid	1	
INPUT	KG				OUTPUT	KG
Naphthalene	1250				SO2 gas	50
Sulphuric Acid(98%)	1250	—	Sulfonation		Jee Jee	
Oleum 65%	1350	•				
			+			
Nitric Acid	375	•	Nitration		NOx Gas	18
Water Mgo	2200 <u>350</u>	→ →	Drowning			
			↓			
			Filter		Spent Acid (50-55%)	4150
			•			
			Centrifuge			
			Ļ			
Water	2200 —					
HCI	65 —	•	Reduction			
Iron	510	→				
			Filtration	•	Iron Sludge	1875
			Ļ			
Sulphuric Acid	350	•	Isolation			
		$- \lceil$	Filtration		Waste Water	2057
			Ļ			
			Centrifuge	•	C Acid (1000 Kg Real)	1750
Total	9900					9900

30. Epsilon Acid

Manufacturing Process:

Sulphonation of Napthalene is carried out in presence of Sulphuric acid and Oleum. Nitric acid is reacted in presence of sulfo mass using Nitration. Nitro mass is reacted in presence of lime stone and Mgo by using neutralization, then filtration, reduction, Isolation, Centrifuge and Diazotization gives Epsilon Acid.

Chemical Reaction:


Mass Balance of Epsilon Acid							
INPUT	KG				OUTPUT	KG	
Napthalene	1250 —			•	SO2 gas	65	
Oleum (65%)	1000		Sulfonation				
Sulphuric Acid	1200 —	>					
			•				
Nitric Acid 850	•	Nitration	•	NOx	15		
			•				
Lime Stone	1500 —						
Soda Ash	750		Neutralization				
Water	1000 —						
			<u> </u>				
Water	1200 —	•	Filter		Gypsum	3000	
Iron Powder	1100 —						
HCI	225 —		Reduction				
Water	1000						
			•				
			Filtration		Iron Sludge	2250	
			¥				
Sodium Nitrite HCI	650 <u>315</u>	*	Diazotization				
			•				
			Filtration	•	Waste Water	5000	
			Centrifuge	•	Epsilon K Acid (1000 Kg Real)	1710	
Total	12040					12040	

31. 2-Pyridone

Manufacturing Process:

In the reactor mono ethyl amine and Methyl Cyano Acetate is added for condensation. Then mass is further condensate by Methyl Aceto Acetate Ester. Mass is sent for hydrolysis where it is hydrolyzed by Sulphuric acid. Then filter is sent into washing and filtration. Waste water is sent into ETP and then product is charged into dryer.

Chemical Reaction:

3-Cyano-4-Methyl-6-Hydroxy-N-Ethyl Pyridone 3-Carbamoyl-4-methyl-6 hydroxy N- ethyl 2 Pyridone

	Mass	balance of 2 Pyridon	ne	
INPUT	KG	-	OUTPUT	KG
Ethyl Cyano Acotato	750			
Ethyl Cyano Acetate Methyl Cyno Acetate	800	Condensation		
Aceto Acetic Methyl Ester	735			
	, 33	1		
H ₂ SO ₄	2550	Isolation		
		Filteration	→ Spent Acid(60-65%)	3385
H ₂ SO ₄	2550	Hydrolysis		
Ice	2200	→ Isolation		
Water	1000	Filtration &	→ Spent Acid(60-65%)	4350
		Centrifuge	→ Waste Water	1165
		↓ Drying &	→ Drying Loss	685
		Packing	→ 2 pyridone	1000
Total	10585			10585

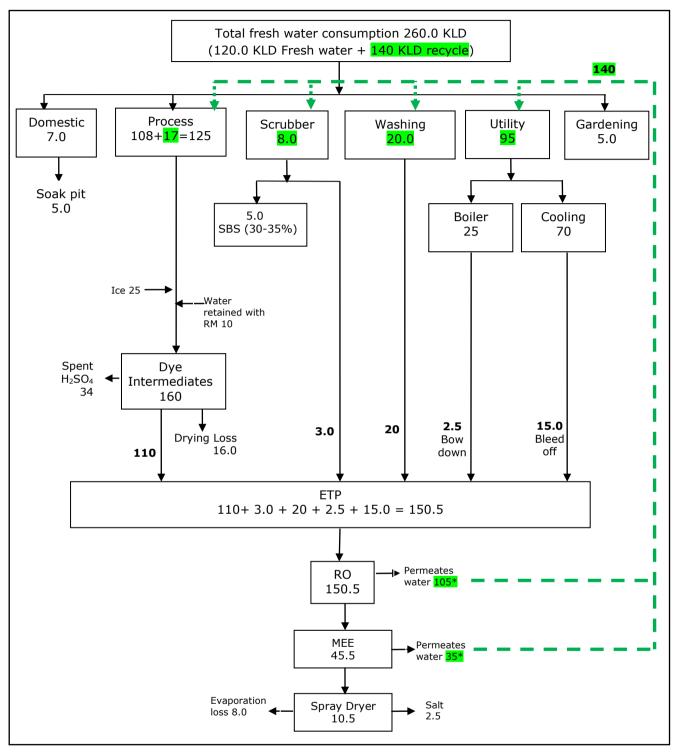
32. Ethyl Cyano Pyridone

Manufacturing Process:

In the reactor Mono Ethyl Amine and Ethyl Cyano Acetate is added for condensation. Then mass is further condensate by Methyl Aceto Acetate Ester. Then mass is sent for hydrolysis where it is hydrolyzed by Sulphuric acid. Then filter is sent into washing and filtration. Waste water is sent into ETP and then product is charged into dryer.

	Mass bala	ince of Ethyl Cyano P	Pyridone	
INPUT	KG		OUTPUT	KG
Ethyl Cyno Acetate	750 — 800 —	► Condensation		
Mono Ethyl Amine	800	Condensation		
		1550		
Methyl Aceto Acetate Ester	750 —	Condensation		
		2300		
H ₂ SO ₄	2000 -	Hydrolysis		
		4 300		
		Filteration	→ Spent Acid(60-65%)	2685
		1615		
Water	1000	Centrifuge	→ Waste Water	1265
		1350		
		Drying &	→ Drying Loss	350
		Packing	► Ethyl Cyano Pyridone	1000
Total	5300			5300

33. Diethyl Cyano Pyridone


Manufacturing Process:

In the reactor Mono Ethyl Amine and Diethyl Cyano Acetate is added for condensation. Then mass is further condensate by Methyl Aceto Acetate Ester. Then mass is sent for hydrolysis where it is hydrolyzed by Sulphuric acid. Then filter is sent into washing and filtration. Waste water is sent into ETP and then product is charged into dryer.

	Mass balar	nce o	f Di ethyl Cyano	Pyridone	
INPUT	KG			OUTPUT	KG
Di-Ethyl Cyno Acetate	910 —	•			
Mono Ethyl Amine	800		Condensation		
			1710		
Methyl Aceto Acetate Ester	750 —	•	Condensation		
			2460		
H ₂ SO ₄	2100	•	Hydrolysis		
			4 560		
			Filteration	Spent Acid(60-65%)	2945
			1615		
Water	1000	•	Centrifuge	→ Waste Water	1265
			1350		
			Drying &	→ Drying Loss	350
			Packing	→ Di ethyl Cyano Pyridone	1000
Total	5560				5560

Annexure-III

Water Balance

Sr. No.	Source	Water Consumption (KLD)	Waste Water generation (KLD)
1.	Domestic	7.0	5.0
2.	Green Belt	5.0	
3.	Industrial		
Α	Process	125	110
В	Scrubber	7.0	3.0
С	Boiler	25	2.5
D	Cooling	70	15.0
E	Washing	20	20.0
	Total Industrial	248	150.5
	Total (1 +2 + 3)	260	155.5
	Less recycle	140	
ł	Actual fresh water consumption	120	155.5

Break up of Water Consumption& Waste Water Generation

Annexure-IV

Sr. No.	Type of Waste	Category No. as per	Quantity	Method of Disposal
		HWM rules, 2016		
1.	ETP Waste	35.3	100 MT/month	Collection, Storage, Transportation, Disposal at TSDF site.
2.	Salt of Spray Dryer	35.3	65 MT/month	Collection, Storage, Transportation, disposal at TSDF site.
3.	Iron Sludge	26.1	350 MT/month	Collection, Storage, Transportation, disposal at TSDF site or to Cement industries for co-processing.
4.	Gypsum Waste	26.1	225 MT/month	Collection, Storage, Transportation, disposal at TSDF site or to Cement industries for co-processing.
5.	Used Oil	5.1	1.0 KL/Year	Collection, Storage, Transportation, sell to registered re-processors or use for lubrication within premises.
6.	Discarded Containers/ Liners/Bag	33.1	10.0 MT/month	Collection, Storage, Transportation, Sell to registered recyclers.
7.	Spent Acid	B-15	885 MT/month	Collection, Storage and partly reuse in-house and partly will be sold to actual users under Rule-9.

Hazardous waste generation and management

Annexure-V Details of stack and APCM

Sr. No.	Stack attached to	Fuel Type	Stack Height, in m	APC measures	Probable emission							
Flue	Gas Stacks											
1.	Steam Boiler-1 (3 TPH)	Imported Coal / Briquette 15 TPD	30	Cyclone separator & Bag Filter	$\begin{array}{l} \text{SPM} < 150 \text{ mg/Nm}^3 \\ \text{SO}_2 < 100 \text{ ppm} \\ \text{NO}_x < 50 \text{ ppm} \end{array}$							
2.	Steam Boiler-2 (3 TPH)	Imported Coal / Briquette 15 TPD	30	Cyclone separator & Bag Filter	$\begin{array}{l} \text{SPM}{<}150 \text{ mg/Nm}^3\\ \text{SO}_2{<}100 \text{ ppm}\\ \text{NO}_x{<}50 \text{ ppm} \end{array}$							
3.	Thermic Fluid Heater 2.5 Lakhs Cal/hr.	Imported Coal / Briquette 2.0 TPD	30	Cyclone separator & Bag Filter	SPM<150 mg/Nm ³ SO ₂ <100 ppm NO _x <50 ppm							
4.	Hot Air Generator-1 (10 Lakhs Kcal/hr.)	Imported Coal / Briquette 7.5 TPD	30	Cyclone separator& Bag Filter	$\begin{array}{l} \text{SPM}{<}150 \text{ mg/Nm}^3\\ \text{SO}_2{<}100 \text{ ppm}\\ \text{NO}_x{<}50 \text{ ppm} \end{array}$							
5.	Hot Air Generator-2 (15 Lakhs Kcal/hr.)	Imported Coal / Briquette 12.0 TPD	30	Cyclone separator& Bag Filter	SPM<150 mg/Nm ³ SO ₂ <100 ppm NO _x <50 ppm							
6.	D G Set (250 kVA)	HSD – 50 lit/hr.	11	Adequate Stack Height	$\begin{array}{l} \text{SPM}{<}150 \text{ mg/Nm}^3\\ \text{SO}_2{<}100 \text{ ppm}\\ \text{NO}_x{<}50 \text{ ppm} \end{array}$							
Proc	cess Gas Stacks											
1.	MPP-1* (Sulphonation)		11	Two stage Alkali Scrubber	SO ₂ <40 mg/Nm ³							
2.	MPP-2* (Sulphonation)		11	Two stage Alkali Scrubber	SO ₂ <40 mg/Nm ³							
3.	MPP-3* (Other Products)		11	Two stage Alkali Scrubber	$SO_2 < 40 mg/Nm^3$ $NO_X < 25 mg/Nm^3$							
4.	Spin Flash Dryer-2 Nos. (300 Kg/hr. each)		21	In built cyclone & bag filter	PM<45 mg/Nm ³							
5.	Spray Dryer For effluent (500 lit/hr.)	White Coal/ Imported Coal 4.0 TPD	21	In built cyclone & bag filter	$\begin{array}{l} SPM{<}150 \ mg/Nm^3\\ SO_2{<}100 \ ppm\\ NO_x{<}50 \ ppm \end{array}$							

*Multipurpose Plant

					$\frac{\sqrt{1}}{\sqrt{1}}$	opy Of Index no-2 Iffice of Sub-Registrar- hambhat			
ગામનુ નામ	દસ્તાવેજનો પ્રકાર અને અવેજ (ભાડા પટાના કિસ્સામાં આકાર પટે આપનાર અથવા પટે રાખનાર આપે છે તે જણાવવું)	સર્વે નંબર પેટા વિભાગ નંબર અને ઘર નંબર (જો કંઈ પણ હોય તો)	ક્ષેત્રફળ	આકાર અથવા જુડી આપવામાં આવે ત્યારે તે.	દસ્તાવેજ કરી આપનાર પક્ષકારનું નામ અથવા દિવાની કોર્ટના હુકમનામા અથવા આદેશના સંબંધમાં પ્રતિવાદીનું નામ	દસ્તાવેજ કરી લેનાર પક્ષકારનું નામ અથવા દિવાની કોર્ટના હુકમનામા અથવા આદેશના સંબંધમાં વાદીનું નામ	સહીની તારીખ નોંધણીની તારીખ	અનુક્રમ, વોલ્યુમ અને પૂષ્ઠ નંબર	શેરો
નેજા	માલિકી ફેરખત/વેચાણ રૂ .1815500.00	જુનો રે જેનો નવે જેનુ કુલ ક્ષે. 3.49 ભોપાભાઇ ગગજીભાઇ હે.આરે.ચો.મી. દર્શ	ભરવાડ વા ોણ પશ્ચીમ તેગીક હેતુ) ૧ ખેતીની જ 99, Total m ² , out c vards We	999 રે.ચો.મી પૈકી ળુ ક્ષે. 0.50.00 . ભાગ તરફનુ ૪મીન Land of which sst side	ભોપાભાઈ ગગજીભાઈ ભરવાડ Sale by: Bhopabhai Gagajibhi Bharvad	જય ગણેશ ઇન્ડસ્ટ્રીઝ ના ભાગીદારોઃ- રવિ જયક્રિષ્ના પટેલ ભરતભાઇ ભોપાભાઇ ભરવાડ પીયુષ રતીલાલ શાહ Buyer : Ravi Jaykrishna Patel on behalf of Jay Ganesh Industries	07/06/2021 07/06/2021	1160	
સ્ટેમ્પ રૂ .	ઝેક્શન ID No. <u>2021060864</u> 300 ૨૦	1456073 Date. 08	3-06-202	<u>1</u> થી મળેલ છે	ના અરજ	RATBHAI BHOPABHAI BH રોજની ગ નંબર : 8012021228221 મ : 08/06/2021	IARVAD ની તાર્ર	ોખ 08706720	21

આ નકલ સીસ્ટમ જનરેટેડ હોવાથી સબરજીસ્ટ્રારની સહીની જરૂરિયાત નથી. કોમ્પ્યુટર જનરેટેડ અનુક્રમણિકા નં :ર ની નકલમાં કોઈ ફેરફાર/ચેડા કરવા કે ખોટી નકલ બનાવવી ફોજદારી ગુન્હો બને છે.

Self attested/સ્વ-પ્રમાણિત :	
------------------------------	--