ANNEXURE-I

PRODUCTION DETAILS

Sr. No.	Name of the Products	CAS no. /CI no.	Quantity	End-use of
			MT/Month	products
1.	Acid Black 194	61931-02-0	300	Printing and
2.	Acid Black 172	61847-77-6		Dyeing in
3.	Reactive Black B	17095-24-8/		Textile Industry
		Reactive Black 5		
4.	Reactive Blac	17095-24-8		
	WNN/NN/NG	Mixed Product		
	Total		300	

ANNEXURE-II

PRODUCT WISE RAW MATERIAL DETAILS

Sr.	Name of the	Raw Material Name	CAS no. /CI	Quantity
No.	Products		no.	MT/Month
1.		6-Nitro	50412-00-5	0.416
		Beta Napthol	135-19-3	0.217
		Salicylic Acid	69-72-7	0.025
	Acid Black 194	BCS	111-76-2	0.205
	Acid Black 194	Caustic Flakes	1310-73-2	0.292
		Ice	124-38-9	0.300
		water	7732-18-5	1.050
		Octanol oil	111-87-5	1.0
2.		6 Nitro	50412-00-5	0.4
		Beta Napthol	135-19-3	0.3
	Acid Black 172	Salicylic Acid	69-72-7	0.045
		BCS	111-76-2	0.275
		Caustic Soda	1310-73-2	0.22
3.		Vinyl Sulphone	42968-22-1	0.46
		H Acid	90-20-0	0.25
		Hydrochloric Acid	7647-01-0	0.198
		Sodium Bicarbonate	144-55-8	0.220
	Reactive Black B	Sodium Nitrate	7631-99-4	0.115
		HCL 30%	7647-03-0	0.198
		Tamol	-	0.006
		Octanol oil	111-87-5	0.003
		Ice	124-38-9	0.650
		water	7732-18-5	1.5
4.		Sulfo V.S.	42986-22-1	0.083
		MPDSA	88-63-1	0.024
		J-Acid	87-02-5	0.026
		V.S.	42968-22-1	0.387
		H-Acid	90-20-0	0.174
	Reactive Black	Savitone V.S.	-	0.008
	WNN/NN/NG	NaNO ₂	7632-00-0	0.113
		Sodium Bicaronate	144-55-8	0.211
		HCL 30%	7647-03-0	0.207
		Ice	124-38-9	1.7
		Octanol oil	111-87-5	0.002
		Water	7732-18-5	0.425

ANNEXURE-III

MANUFRACTURING PROCESS

All the dyes manufactured here are manufactured by same type of processes. The basic difference in the process to achieve different product is addition of raw material according to stoichiometric requirement and the temperature at which the reaction is carried out. The typical process for manufacturing of dyes is as follows:

1. Diazotization:

Primary Diazo chemical like (6, nitro, sulfo V S, Vinyl Sulphone etc) are to be diazotized in acidic medium using HCL and Reducing temperature by Ice and Sodium Nitrite to be added to complete diazo Diazotization. This diazo is then to be used to couple with various coupling components.

2. Coupler solution and Coupling:

Coupler solution are to be prepared by suspending coupling components like (H-Acid/J-Acid/MPDSA, beta napthol etc) are suspended in ice and desired pH is to be adjusted by using Soda Bicarbonate into ready coupler solution. Diazo components are added and stirring is to be done upto completion of coupling. This procedure is to be carried out once or twice as per the product.

3. Metallization (optional):

The ready dye solution obtained from coupling procedure is subject to metallization using Metal Salt like BCS to finish the metallization reaction.

4. Spray Drying:

The concentrated mass produced after all the process is transferred into spray dryer holding tank and then sprayed.

5. Strength Equalization and Standardization:

The said obtained crude due strength into be equalization by adding salt and then to be blended to obtain as per the parties standard requirement.

6. Packing:

The standard dye is to be packed and labeled as per party requirement.

CHEMICAL PROCESSES

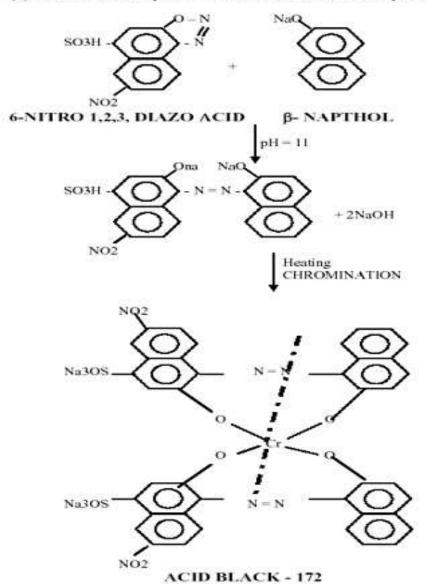
1. Acid Black- 194

Beta Napthol

Stage-I **Beta Napthol Solution**

Beta Napthol Sodium Salt

complex mass


Metalisation of complex mass Stage- III

BCS + Complex mass -

O2NAcid Black-194 (C.I. Name) Acid Black- MSRL (Trade Name)

2. Acid Black- 172

(a) 6-nitro is slurry at 00 C and clear solution of β-Napthol is dump

3. Reactive Black-B

Stage-I V.S. (Vinyle sulfone Ester) Diazo

Stage- II Coupling V.S. Diazo and and H Acid

Reactive Black B

4. Reactive Black-WNN

Part: A (Orange Tonner)

Stage- I S.V.S. (Sulfo vinyle Sulfone) Diazo

Stage- II Coupling of MPDSA(50%) and J-Acid(50%)

Ist Complex mass

Stage- III V.S.(Vinyl Sulfone Ester) Diazo

Stage- IV Coupling of Ist Complex mass and V.S. Doazo

Irange Tonner(50%)

Part: B Reactive Black B

Stage- I V.S. (Vinyle sulfone Ester) Diazo

Stage- II Coupling V.S. Diazo and and H Acid

Reactive Black B

ANNEXURE-IV

WATER BALANCE

Water Consumption Details:

Category	KLD	Remarks
(A) Domestic	4.0	-
(B) Gardening	2.0	-
(C) Industrial		
Process	12.6	-
Washing	5.0	-
Boiler	4.0	-
Cooling	0.0	-
Spray Dryer/	4.0	-
Scrubber		
Industrial Total	25.6	-
Total (A + B + C)	31.6	-

Wastewater Generation Details:

Category	KLD	Remarks
(A) Domestic	3.2	-
(B) Gardening	0.0	-
(C) Industrial		
Process	0.0	-
Washing	5.0	-
Boiler	0.5	-
Cooling	0.0	-
Others	0.0	-
Industrial Total	5.5	3.5 RO Permeate
		to reuse
Total (A + B + C)	8.7	_

FLOW DIAGRAM OF WATER BALANCE

Note: All figures are in KL/Day

ANNEXURE-V DETAILS OF AIR POLLUTION CONTROL SYSTEM

Flue Gas Emission

Sr.	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel MT/Day	Type of emissions i.e. Air Pollutants	Air Pollution Control Measures (APCM)
1	Hot Air Generator 3000 Kcal	17	Imported Coal	17.0 MT/day	PM/SO ₂ / NOx	Cyclone Separator +Bag Filter
2	Boiler 3.0 Ton	13	Imported Coal	2.5 MT/day	PM/SO ₂ / NOx	Cyclone Separator +Bag Filter

Process Gas Emission

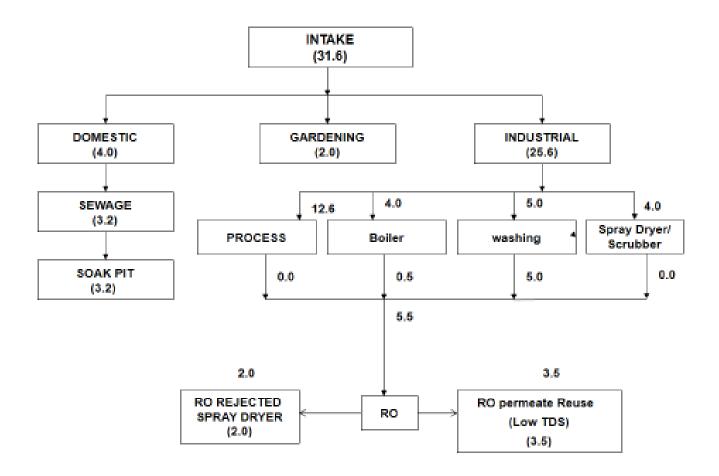
Sr.	Source of emission	Stack/Vent Height (meter)	Air Pollution Control Measures (APCM)	Pollutant
1	Spray Dryer (Proposed)	20	Cyclone Separator + Wet Scrubber + Secondary scrubber	PM/SO ₂ / NOx

ANNEXURE-VI DETAILS OF HAZARDOUS WASTE GENERATION AND DISPOSAL FACILITY

Sr. no.	Type/Name of Hazardous waste	Source of generation	Category and Schedule as per HW Rules.	Quantity (MT/Annu m)	Disposal Method
1	Used oil	D.G.Set / Plant Machineries	5.1	0.05	Collection, storage, Reuse within premises.
2	Discarded Containers	Raw material	33.3	5.0	Used for reuse or returned back to supplier or reuse in premises or sell to actual user.

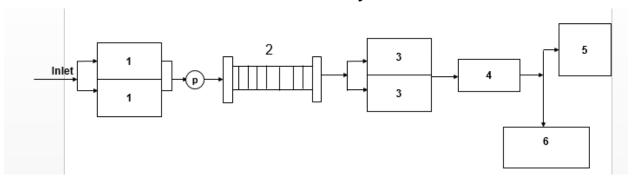
ANNEXURE VII

POWER REQUIREMENT OF THE PLANT


Sr. No.	Total (KW) Proposed	Source of Supply
1. 500		UGVCL

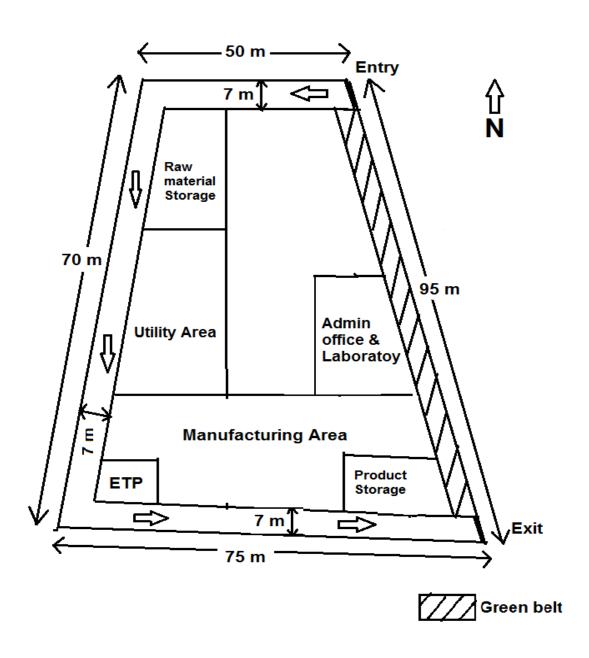
ANNEXURE-VIII

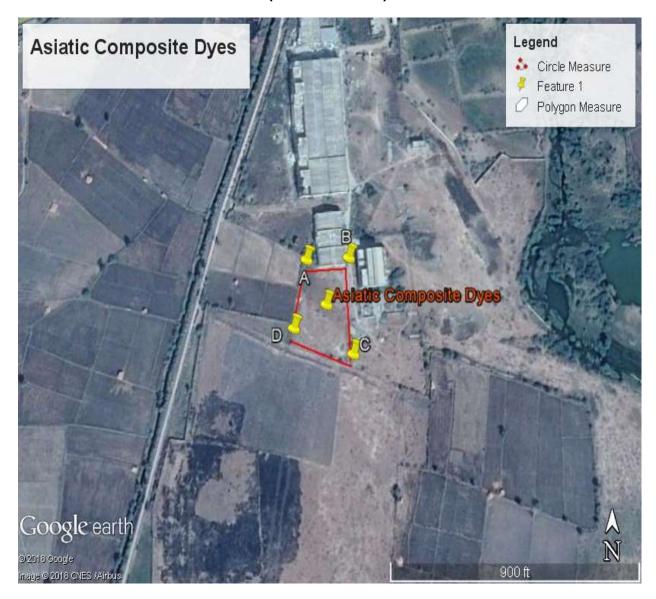
EFFLUENT TREATMENT PLANT


Waste Water generation & Management plan

- ❖ The total waste water generations from Industrial will be 5.5 KLD. The waste water shall generate mainly from process cleaning water. The waste water will be treated in ETP and R.O. from where 3.5 KLD of R.O permeate shall be reused in process again and 2.0 KLD of R.O. rejected shall be evaporated by spray dryer & dyes will be recovered from the wastewater.
- ❖ 3.2 KLD Domestic effluents shall be disposed through septic tank & Soak pit.

Note: All figures are in KL/Day


R.O. Treatment System


Sr. No.	Name of Unit	Size (m)	Capacity (Cu. m)	Detention Time (Hr.)
1	Collection Tank	2.75 x 2.5 x 1 x 2 no.	11.0	48
2	Filter Press	0.7 x 0.7 x 1.0	0.45	7
3	Holding Tank	2.5 x 2.5 x 1.0 x 2 no.	10.0	43
4	R.O.	1 x 1 x 1.5 x 1 no.	12	-
5	Collection tank for Reuse	1 x 1 x 1 x 1	4.0	30
6	Spray Dryer for dyes recovery	0.6 dia x 1.25 m	-	-

ANNEXURE-IX

PLANT LAYOUT

(GOOGLE MAP)

Latitude 22°54'10.02"N
Longitude 72°14'47.54"E