FORM – 1

WITH

BASIC INFORMATION FOR OBTAINING ENVIRONMENTAL CLEARANCE

OF

PROPOSED PROJECT

M/s. Hexane Pharmachem Industries

Project Location

Plot No.4, Block No.253, Village: Nananpur, Taluka: Prantij, District: Sabarkantha, Gujarat.

Project Proponent

Navneet Patel

[Partner]

Contact No.: 9426186095

Email: hexane2016@gmail.com

Prepared By

T. R. Associates

C-605/A, Ganesh Meridian, Opp. Kargil Petrol Pump, S. G. Highway, Ahmedabad.

Contact No.: 98253 71099

Email: adm.trassociates@gmail.com

MAY 2017

LIST OF ANNEXURES

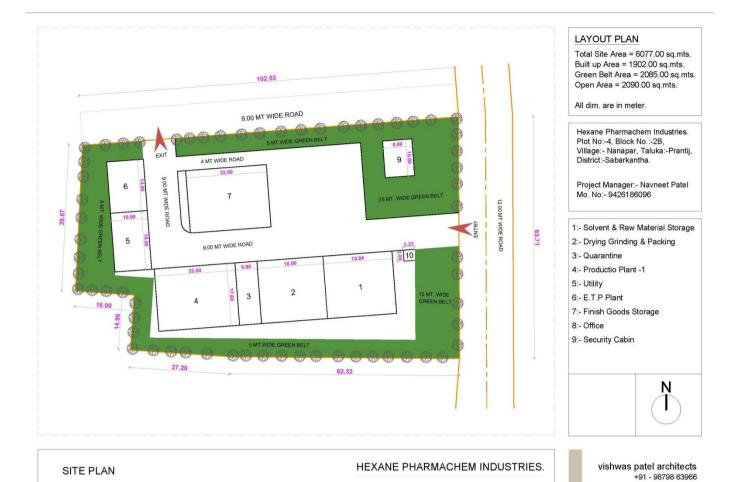
Sr. No.	Description	Page No.
Annexure – 1	List of Products and Raw Materials	2
Annexure – 2	Plant Layout	7
Annexure – 3	Details of Manufacturing Process	8
Annexure – 4	Water Balance Diagram	9
Annexure – 5	Details of Effluent Treatment Plant	10
Annexure – 6	Detail of Solid/Hazardous Wastes	11
Annexure – 7	Details of stacks & Vents	12
Annexure – 8	Details of Hazardous chemicals storage & handling	13

ANNEXURE - 1 : LIST OF PRODUCTS & RAW MATERIALS LIST OF PRODUCTS

Sr. No.	Products List	Quantity (MT/Month)
1	Benzyl Triphenyl Phosphonium Choride	1
2	Cetramide	1
3	Cetramide Strong Solution 40 %	1
4	Cetyl Pyridinium Choride	1
5	Cetyl Trimethyl Ammonium Bromide	1
6	Cetyl Trimethyl Ammonium Chloride 30 %	1
7	Ethyl Triphenyl Phosphonium Bromide	1
8	Lauryl Pyridinium Chloride	1
9	Methyl Tributyl Ammonium Chloride 75 %	5
10	Methyl Trioctyl Ammonium Chloride 95 %	1
11	Methyl Triphenyl Phosphonium Bromide	3
12	Phenyl Trimethyl Ammonium Chloride	2
13A	Tetra Butyl Ammonium Bromide (Powder)	10
13B	Tetra Butyl Ammonium Bromide (Solution)	25
14	Tetra Butyl Ammonium Chloride	2
15	Tetra Butyl Ammonium Hydrogen Sulphate	2
16	Tetra Butyl Ammonium Iodide	1
17	Tetra Methyl Ammonium Chloride	2
18	Tetra Octyl Ammonium Bromide	2
19	Tetra Ethyl Ammonium Bromide	5
20	Tri Ethyl Benzyl Ammonium Chloride	5
21	Benzalkonium Chloride 50 %	1
22	Benzyl Tri Butyl Ammonium Bromide	1
23	Benzyl Tri Butyl Ammonium Chloride	1
24	Butyl Triphenyl Phosphonium Bromide	2
25	Butyl Triphenyl Phosphonium Chloride	1
26	Cetyl Dimethyl Benzyl Ammonium Bromide	1
27	Cetyl Dimethyl Benzyl Ammonium Chloride	1
28	Dodecyl Trimethyl Ammonium Chloride	1
29	Mesetronium Ethosulphate	1
30	Methyl Triphenyl Phosphonium Chloride	2
31	Methyl Triphenyl Phosphonium Iodide	1
32	Tetra Phenyl Phosphonium Bromide	1
33	Tri Ethyl Methyl Ammonium Chloride	1
34	Tri Ethyl Butyl Ammonium Bromide	1
	Benzyl Tri Methyl Ammonium Chloride	
35	(Powder)	16
	Total	105

LIST OF RAW MATERIALS

Product	Batches Product (Nos./Mo		Requirement		
	nth)		Kg/batch	MT/Month	
		Tri phenyl phosphine	700	0.70	
 Benzyl Triphenyl Phosphonium Choride 	1	Benzyl chloride	340	0.34	
Phospholium Chonde		toluene	420	0.42	
		myristyl dimethylamine	830	0.83	
		dimethyl sulphate	500	0.50	
2. Cetramide	1	sodium bromide 40 %	1000	1.00	
		iso propanol	80	0.08	
		ethyl acetate	420	0.42	
		myristyl dimethylamine	180.00	0.18	
		lauryl dimethylamine	130.00	0.13	
		dimethyl sulphate	200.00	0.20	
3. Cetramide Strong Solution	1	sodium bromide 40 %	500.00	0.50	
40 %	1	iso propanol	80.00	0.08	
		epitol	70.00	0.07	
		ethanol	80.00	0.08	
		water	420.00	0.42	
		pyridine	250.00	0.25	
1 Catul Duridinium Charida	1.00	cetyl chloride	850.00	0.85	
4. Cetyl Pyridinium Choride	1.00	acetone	1000.00	1.00	
		water	200.00	0.20	
		cetyl dimethyl amine	830.00	0.83	
5. Cetyl Trimethyl Ammonium		dimethyl sulphate	500.00	0.50	
Cetyl Trimethyl Ammonium Bromide	1	sodium bromide 40 %	1000.00	1.00	
Bronnac		ethyl acetate	420.00	0.42	
		iso propanol	80.00	0.08	
		cetyl dimethyl amine	250.00	0.25	
6. Cetyl Trimethyl Ammonium		methyl chloride	68.00	0.07	
Chloride 30 %	1	iso propanol	100.00	0.10	
Gineriae 30 /0		epitol	10.00	0.01	
		water	580.00	0.58	
7. Ethyl Triphenyl		Tri phenyl phosphine	720.00	0.72	
Phosphonium Bromide	1	ethyl bromide	330.00	0.33	
. Hospitolitati Bronitae		acetonitrile	1100.00	1.10	
		pyridine	315.00	0.32	
8. Lauryl Pyridinium Chloride	1	lauryl chloride	700.00	0.70	
5. Ladiyi i yildinidiri Ciriofide		water	50.00	0.05	
		acetone	1000.00	1.00	
		tri butyl amine	600.00	3.00	
9. Methyl Tributyl Ammonium	5	methyl chloride	155.00	0.78	
Chloride 75 %)	acetonitrile	350.00	1.75	
		charcoal	10.00	0.05	


		water	250.00	1.25
		tri octylamine	770	0.77
		methyl chloride	150	0.15
		iso propanol	230	0.23
10. Methyl Trioctyl Ammonium	1	glycerine	10	0.01
Chloride 95 %	-	octyl alcohol	10	0.01
		soda ash	10	0.01
		acetonitrile	230	0.23
		tri phenyl phosphine	800	2.40
		dimethyl sulphate	400	1.20
11. Methyl Triphenyl	3	sodium bromide 40 %	400	1.20
Phosphonium Bromide	-	soln	800	2.40
		toluene	600	1.80
		N N - dimethyl aniline	690.00	1.38
		methyl chloride	310.00	0.62
12. Phenyl Trimethyl Ammonium Chloride	2	methanol	750.00	1.50
Ammonium Chioride		sodium hydro sulphide	750.00	0.20
		(Cat)	100.00	
	11	tri n- butylamine	550.00	6.05
13. A. Tetra Butyl Ammonium Bromide (Powder)		butyl bromide	450.00	4.95
		acetonitrile	300.00	3.30
		ethyl acetate	400.00	4.40
13. B. Tetra Butyl Ammonium	13	tetra butyl ammonium bromide (powder)	950	12.35
Bromide (Solution)		water	940	12.22
		tetra butyl ammonium		2.40
		bromide	1200.00	
14. Tetra Butyl Ammonium	2	potassium hydroxide	320.00	0.64
Chloride	2	toluene	2240.00	4.48
		hydrochloric acid (35 %)	480.00	0.96
		methanol	2640.00	5.28
		tetra butyl ammonium		1.92
		bromide	960.00	
		butanol	1200.00	2.40
15. Tetra Butyl Ammonium		sulphuric acid	400.00	0.80
Hydrogen Sulphate	2	sodium hydrogen	120.00	0.24
		sulphate	120.00	0.24
		soda ash	120.00	
		methyl isobutyl ketone	800.00	1.60
		methylene dichloride	800.00	1.60
46.7.		tetra butyl ammonium bromide	1000.00	1.00
16. Tetra Butyl Ammonium	1	potassium iodide	500.00	0.50
lodide		ethyl acetate	1000.00	1.00
		methanol	2000.00	2.00
47 Takina Marili I.A		tri methyl amine	540.00	1.08
17. Tetra Methyl Ammonium	2	methyl chloride	460.00	0.92
Chloride		iso propanol	500.00	1.00

		tri octylamine	610.00	1.22
		octyl bromine	350.00	0.70
18. Tetra Octyl Ammonium Bromide	2	acetonitrile	460.00	0.92
Bromide		ethyl acetate	460.00	0.92
		iso propanol	40.00	0.08
		tri ethyl amine	460.00	2.30
19. Tetra Ethyl Ammonium	_	ethyl bromide	530.00	2.65
Bromide	5	toluene	300.00	1.50
		iso propanol	60.00	0.30
		tri ethylamine	440.00	2.20
		benzyl chloride	520.00	2.60
20. Tri Ethyl Benzyl Ammonium	5	toluene	290.00	1.45
Chloride		iso propanol	60.00	0.30
		dimethyl formamide	20.00	0.10
		myristyl dimethylamine	170.00	0.17
		lauryl dimethylamine	160.00	0.16
21. Benzalkonium Chloride 50 %	1	benzyl chloride	260.00	0.26
		water	410.00	0.41
		Tri Butyl benzyl	110.00	
		Ammonium Chloride	1000.00	1.00
22. Benzyl Tri Butyl Ammonium	1	potassium hydroxide	330.00	0.33
Bromide		methanol	2000.00	2.00
		Hydro bromic acid	830	0.00
		toluene	2000	0.00
		tri n-butylamine	540.00	0.54
23. Benzyl Tri Butyl Ammonium	1	Benzyl chloride	380.00	0.38
Chloride	1	toluene	1850.00	1.85
		tri phenyl phosphine	630.00	1.26
24. Butyl Triphenyl	2	butyl bromide	320.00	0.64
Phosphonium Bromide	_	toluene	1260.00	2.52
			750.00	0.75
25. Butyl Triphenyl	1	tri phenyl phosphine butyl chloride	250.00	0.73
Phosphonium Chloride	T	toluene	980.00	0.23
			300.00	0.30
		cetyl dimethyl benzyl ammonium chloride	1000	1.00
26. Cetyl Dimethyl Benzyl	1	potassium hydroxide	167	0.17
Ammonium Bromide	1			2.00
		methanol	2000	0.50
		hydro bromic acid	500	
27. Cetyl Dimethyl Benzyl	1	cetyl dimethyamine	670.00	0.67
Ammonium Chloride	1	benzyl chloride	330.00	0.33
		ethyl acetate	1500.00	1.50
28. Dodecyl Trimethyl	4	dodecyl dimethylamine	830.00	0.83
Ammonium Chloride	1	methyl chloride	160.00	0.16
		acetone	1500.00	1.50
29. Mesetronium Ethosulphate	1	cetyl dimethylamine	670.00	0.67
•		diethyl sulphate	330.00	0.33

		ethyl acetate	1500.00	1.50
20 Martin I Trialiana I		tri phenyl phosphine	830.00	1.66
30. Methyl Triphenyl Phosphonium Chloride	2	methyl chloride	170.00	0.34
r nosphomum emonde		toluene	1330.00	2.66
24 Marth I Titalian I		tri phenyl phosphine	670.00	0.67
31. Methyl Triphenyl Phosphonium Iodide	1	methyl iodide	330.00	0.33
Filospilotilutti lodide		toluene	1670.00	1.67
22 Tatus Dhamil Dhambasing	1	tri phenyl phosphine	670.00	0.67
32. Tetra Phenyl Phosphonium Bromide		bromo benzene	330.00	0.33
Bronnice		ethyl cellosolve	1250.00	1.25
22 Tri Ethyd Mathyd Americanium	1	tri ethyl amine	670.00	0.67
33. Tri Ethyl Methyl Ammonium Chloride		methyl chloride	330.00	0.33
Chloride		acetonitrile	1250.00	1.25
24 Tri Ethod Dotted Americanicum		tri ethyl amine	430.00	0.43
34. Tri Ethyl Butyl Ammonium Bromide	1	butyl bromide	570.00	0.57
Biofilide		methyl ethyl ketone	1140.00	1.14
35. Benzyl Tri Methyl		tri methyl amine	330.00	5.28
Ammonium Chloride	16	benzyl chloride	670.00	10.72
(Powder)		iso propanol	1330.00	21.28

ANNEXURE - 2

PLANT LAY-OUT

ANNEXURE - 3

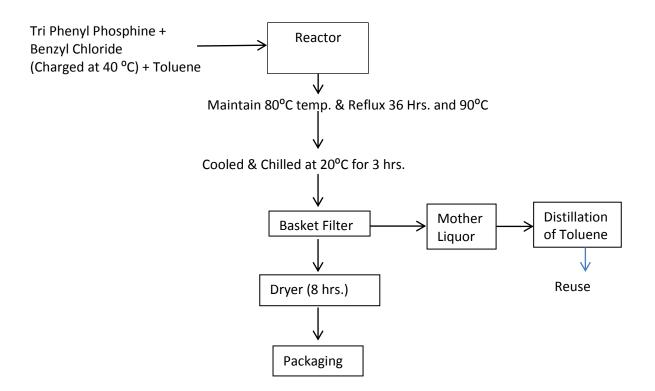
MANUFACTURING PROCESS WITH MASS BALANCE, CHEMICAL REACTION & PROCESS FLOW DIAGRAM

1. Benzyl Triphenyl Phosphonium Chloride

Manufacturing Process:

Toluene and Tri phenyl phosphine will be taken in the reactor. At 40 °C and Benzyl chloride will be charged in to it. That mixture will be stirred well for about 1 hr. Temperature will be maintained 80 °C in the reactor. Now reflux will be done at 90 °C for 36 hrs. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs at 20 °C. The final mass filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C than packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:


Toluene
Tri phenyl phosphine + Benzyl Chloride
$$\longrightarrow$$
 Benzyl Triphenyl Phosphonium Chloride

Toluene
 $C_{18}H_{15}P$ + C_7H_7CI \longrightarrow $C_{25}H_{22}PCI$

(262) + (126.5) (388.5)

Input	kg/batch	Output	kg/batch	Remark
Tri phenyl phosphine	700.00	Benzyl triphenyl phosphonium	1000	
Benzyl chloride	340.00	chloride		
toluene	420.00	drying loss	40	
		Solvent recovered	403.00	Reuse after distillation
		distillation residue	10	for common incineration
		handling loss	7	
TOTAL	1460.00	TOTAL	1460.00	

Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery
toluene	420.00	403.00	17	96.0%

2. Cetramide

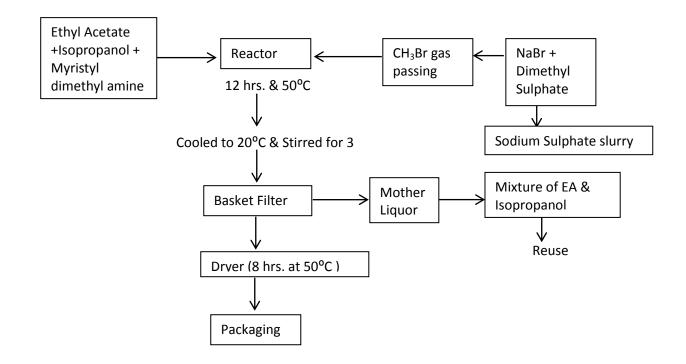
Manufacturing Process:

First of all sodium bromide & dimethyl sulphate will be taken in other reactor at 30 °C to generate Methyl bromide gas, at the end of reaction sodium sulphate slurry will be generated & it will be disposed to common incinerator.

In main reactor Iso propanol, Myristyl dimethyl amine and Ethyl acetate mixture will be taken. Methyl bromide gas will be passed into the reaction mixture. Thus mixture will be stirred well for about 12 hr. temperature will be maintained 50 °C in the reactor. Now reflux will be done at 70 °C for 6 hrs. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs at 20 °C. The final mass filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C and packed it in the drum. The Mother liquor from the filter will be collected & reuse in next batch and Distillation residue will be sent to incinerator.

Chemical reaction:

First stage:


Sodium Bromide + Di Methyl Sulphate
$$\longrightarrow$$
 Methyl Bromide + Sodium Sulphate
2NaBr + CH₃SO₄CH₃ \longrightarrow 2CH₃Br + Na₂SO₄
(206) + (126) \longrightarrow 2(95) + 142.06

Second stage:

Myristyl dimethyl amine + Methyl Bromide
$$\longrightarrow$$
 Cetramide \subset Cetramide \subset Capable Capa

Mass Balance:

Input	kg/batch	Output	kg/batch	Remark
myristyl dimethylamine	830	cetramide	1000	
dimethyl sulphate	500			
sodium bromide 40 %	1000	sodium sulphate	1330	common incinerati on
iso propanol	80	recovered solvent	450	Reuse in next batch
ethyl acetate	420	distillation residue	35	common incinerati on
		handling loss	15.00	
TOTAL	2830.00	TOTAL	2830.00	
Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery
iso propanol	500.00	450.00	50	90.0%

3. Cetramide strong solution 40 %

Manufacturing Process:

First of all sodium bromide & dimethyl sulphate will be taken in other reactor at 30 °C to generate Methyl bromide gas, at the end of reaction sodium sulphate slurry will be generated & it will be disposed to common incinerator.

In main reactor, Iso Propanol, myristyl dimethyl amine and Lauryl dimethyl amine mixture will be taken. Methyl Bromide gas will be passed into reaction mixture. That mixture will be stirred well for about 10 hrs. Temperature will be maintained 50 °C in the reactor. Now reflux will be done at 70 °C for 12 hrs. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs. at 20 °C. And Make solution with water, Epitol and Ethanol up to 40% solution & packed it in the drum.

Chemical reaction:

First stage :

Sodium Bromide + Di Methyl Sulphate
$$\longrightarrow$$
 Methyl Bromide + Sodium Sulphate
2NaBr + CH₃SO₄CH₃ \longrightarrow 2CH₃Br + Na₂SO₄
(206) + (126) \longrightarrow 2(95) + 142.06

Second stage:

Myristyl dimethyl amine + Methyl Bromide
$$\xrightarrow{\text{Epitol + Isopropanol + Ethanol}}$$
 $\xrightarrow{\text{Cetramide}}$ $C_{16}H_{35}N$ + $C_{17}H_{38}N$ Br $\xrightarrow{\text{Catality}}$ $C_{17}H_{38}N$ Br

Mass Balance:

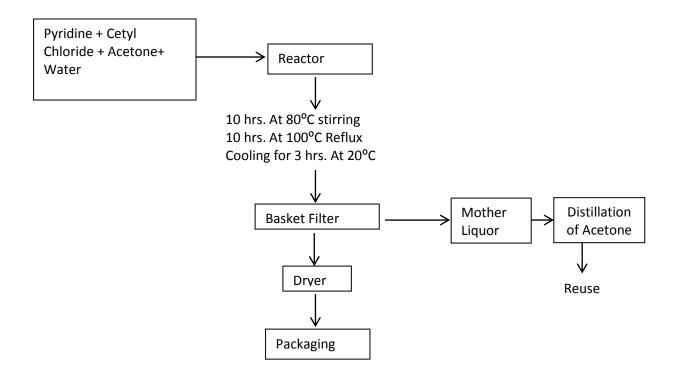
Input	kg/batch	Output	kg/batch	Remark	
myristyl dimethylamine	180.00	cetrimide strong solution 40 %	cetrimide strong	1075	
lauryl dimethylamine	130.00		1073		
dimethyl sulphate	200.00	sodium sulphate	585.00	To common incineration	
sodium bromide 40 %	500.00				
iso propanol	80.00				
epitol	70.00				
ethanol	80.00				
water	420.00				
TOTAL	1660.00	TOTAL	1660.00		

Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery	
all solvents will remain in the product					

4. Cetyl Pyridinium Chloride

Manufacturing Process:

The Water and pyridine will be taken in the reactor. At 40 °C and cetyl chloride will be charged in to it. That mixture will be stirred well for about 10 hr. Temperature will be maintained 80 °C in the reactor. Now reflux will be done at 100 °C for 10 hrs. This mixture will be cooled to 20 °C. Chilled and charge Acetone & stirred for about 3 hrs at 20 °C. The final mass will be filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C than packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.


Chemical reaction:

Pyridine + Cetyl Chloride + Water
$$\longrightarrow$$
 Cetyl Pyridinium Chloride

 $C_5H_5N + C_{16}H_{33}CI + H_2O \longrightarrow C_{21}H_{38}NCI \cdot H_2O$
 $(79) + (260.5) + (18) \longrightarrow (357.5)$

Input	kg/batch	Output	kg/batch	Remark
pyridine	250.00	cetyl pyridinium	1000	
cetyl chloride	850.00	chloride	1000	
acetone	1000.00	process residue	300	for incineration
water	200.00	recovered solvent	960.00	Reuse after distillation
		distillation residue	20.00	for incineration
		handling loss	20.00	
TOTAL	2300.00	TOTAL	2300.00	

Item	Input	Recovery	Loss	%
	(kg/batch)	(kg/batch)	(kg/batch)	Recovery
acetone	1000.00	960.00	40.00	96%

5. Cetyl Trimethyl Ammonium Bromide

Manufacturing Process:

First of all Sodium bromide & Dimethyl sulphate will be taken in other reactor at 30 °C to generate Methyl bromide gas, at the end of reaction sodium sulphate slurry will be generated & it will be disposed to common incinerator.

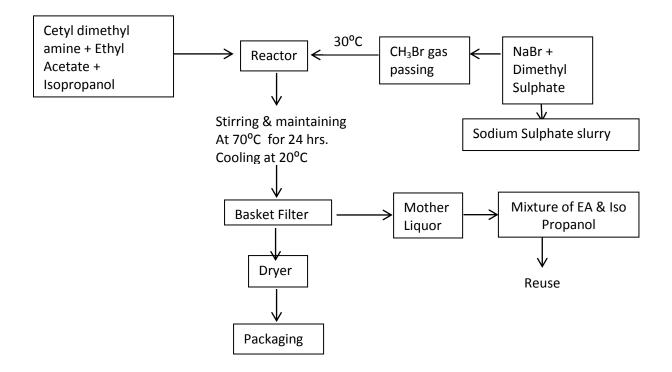
In the main reactor Iso propanol, Ethyl Acetate and Cetyl dimethyl amine will be taken. Methyl Bromide gas will be passed into reaction mixture. That mixture will be stirred well for about 12 hrs. Temperature will be maintained 50 °C in the reactor. Now reflux will be done at 70 °C for 24 hrs. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs at 20 °C. The final mass will be filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C and packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:

First stage:

Sodium Bromide + Di Methyl Sulphate
$$\longrightarrow$$
 Methyl Bromide + Sodium sulphate
2NaBr + CH₃SO₄CH₃ \longrightarrow 2CH₃Br + Na₂SO₄
(206) + (126) \longrightarrow 2(95) + 142.06

Second stage:

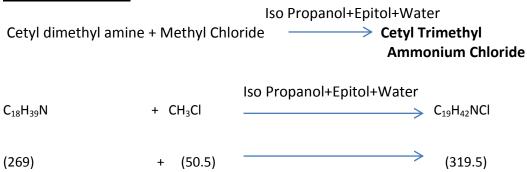

Cetyl dimethyl amine + Methyl Bromide
$$\longrightarrow$$
 Cetyl Trimethyl Ammonium Bromide

 $C_{18}H_{39}N$ + $C_{19}H_{42}NBr$
 $C_{19}H_{42}NBr$
 $C_{19}H_{42}NBr$
 $C_{19}H_{42}NBr$

Mass balance:

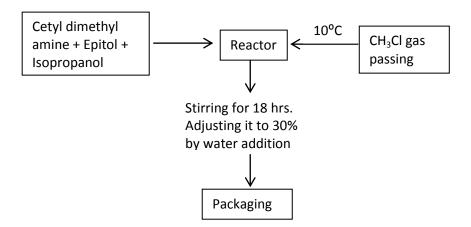
Input	kg/batch	Output	kg/batch	Remark
cetyl dimethyl amine	830.00	cetyl trimethyl ammonium	1000	
dimethyl sulphate	500.00	bromide		
sodium bromide 40 %	1000.00	sodium sulphate	1330.00	for common incineration
ethyl acetate	420.00	recovered solvent	450.00	Reuse in next batch
iso propanol	80.00	distillation residue	35	for common incineration
		handling loss	15.00	
TOTAL	2830.00	TOTAL	2830.00	

Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery
ethyl acetate & iso propanol	500.00	450.00	50	90.0%



6. Cetyl Trimethyl Ammonium Chloride (30% Solution)

Manufacturing Process:


The Water, Isopropanol and Epitol and Cetyl dimethyl amine will be taken in the reactor. At 20 °C methyl chloride gas will be purged in to it. That mixture will be stirred well for about 18 hrs. Temperature will be maintained 20 °C in the reactor. This mixture will be cooled to 15 °C. Chilled and stirred for about 3 hrs at 15 °C. The final solution will be packed in the drum after make-up it 30% solution.

Chemical reaction:

Input	kg/batch	Output	kg/batch	Remark
cetyl dimethyl amine	250.00	cetyl trimethyl		
methyl chloride	68.00	ammonium chloride 30 %	1000	
iso propanol	100.00	handling loss	8.00	
epitol	10.00			
water	580.00			
TOTAL	1008.00	TOTAL	1008.00	

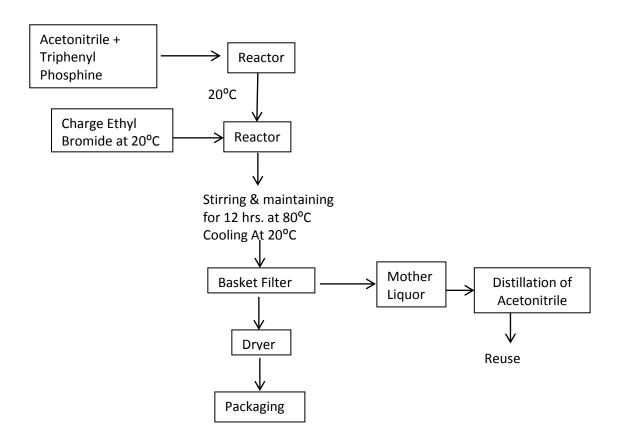
Item	Input	Recovery	Loss	%	
	(kg/batch)	(kg/batch)	(kg/batch)	Recovery	
all solvents will be used in the process					

7. Ethyl Triphenyl Phosphonium Bromide

Manufacturing Process:

The Acetonitrile and Tri phenyl phosphine will be taken in the reactor. At 20 °C ethyl bromide will be charged in to it. That mixture will be stirred well for about 12 hr. temperature will be maintained 80 °C in the reactor. Now reflux will be done at 80 °C for 24 hrs. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs at 20 °C. The final mass filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50°C than packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:


Tri Phenyl Phosphine + Ethyl Bromide
$$\longrightarrow$$
 Ethyl Triphenyl Phosphonium Bromide

$$C_{18}H_{15}P + C_{2}H_{5}Br \longrightarrow C_{20}H_{20}PBr$$

(262) + (109) \longrightarrow (371)

Input	KG/BATCH	Output	KG/BATCH	Remark
Tri phenyl phosphine	720.00	ethyl triphenyl phosphonium	1000	
ethyl bromide	330.00	bromide		
acetonitrile	1100.00	Drying loss	50	
		Solvent recovered	1070.00	Reuse after distillation
		distillation residue	25.00	for incineration
		handling loss	5.00	
TOTAL	2150.00	TOTAL	2150.00	

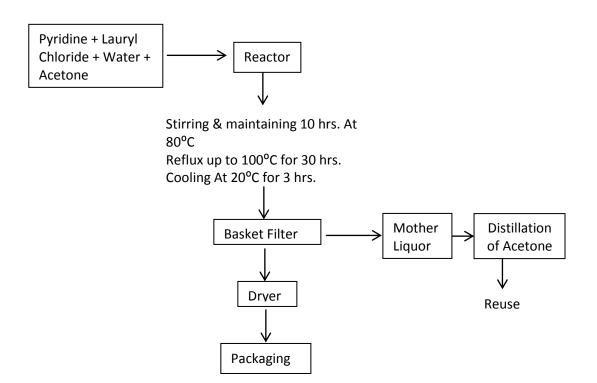
Item	Input (MT)	Recovery (MT)	Loss (MT)	% Recovery
acetonitrile	1100.00	1070.00	30	97.3%

8. Lauryl Pyridinium Chloride

Manufacturing Process:

The Water and pyridine will be taken in the reactor. At 40 °C Lauryl chloride and water will be charged in to it. That mixture will be stirred well for about 10 hr. Temperature will be maintained 80 °C in the reactor. Now reflux will be done at 100°C for 30 hrs. This mixture will be cooled to 20 °C. Chilled and charge Acetone and stirred for about 3 hrs at 20 °C. The final mass filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C than packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:

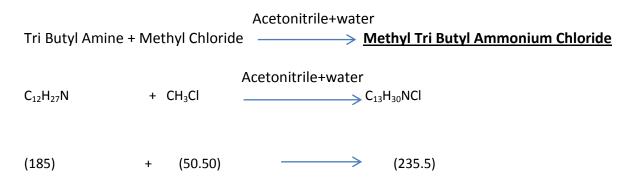

Pyridine + Lauryl Chloride + Water
$$\longrightarrow$$
 Lauryl Pyridinium Chloride

$$C_5H_5N + C_{15}H_{22}CI + H_2O \longrightarrow C_{20}H_{27}NCI . H_2O$$

$$(79) + (237.5) + (18) \longrightarrow (334.5)$$

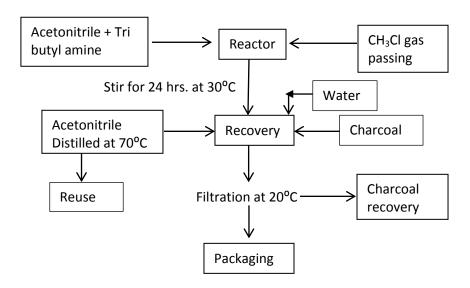
Input	kg/batch	Output	kg/batch	Remark
pyridine	315.00	lauryl pyridinium		
lauryl chloride	700.00	chloride	1000	
water	50.00			
acetone	1000.00	drying loss	50	
		process residue	15.00	
		Solvent recovered	960.00	Reuse after distillation
		distillation residue	15.00	for
				incineration
		handling loss	25.00	
TOTAL	2065.00	TOTAL	2065.00	

Item	Input (kg)	Recovery (kg)	Loss (kg)	% Recovery
acetone	1000.00	960.00	40.00	96.0%



9. Methyl Tri Butyl Ammonium Chloride.75% Solution

Manufacturing Process:


The Acetonitrile and Tri butyl amine will be taken in the reactor. At 30 °C Methyl chloride will be charged in to it. That mixture will be stirred well for about 24 hr. Temperature will be maintained 30 °C in the reactor and distilled out acetonitrile, Distilled then reused it for next batch of reactions. Charge water & this mixture will be cooled to 20 °C. Chilled and stirred for about 1 hr at 20 °C. Apply charcolization and the final mass filtered in cartage filter and packed it in the drum.

Chemical reaction:

Input	kg/batch	Output	kg/batch	Remark
tri butyl amine	600.00	methyl tributyl		
methyl chloride	155.00	ammonium chloride 75 %	1000	
acetonitrile	350.00	recovered solvent	335.00	Reuse after distillation
charcoal	10.00	distillation residue	10.00	for incineration
water	250.00	handling loss	5.00	
		spent charcoal	15.00	for incineration
TOTAL	1365.00	TOTAL	1365.00	

Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery
acetonitrile	350.00	335.00	15	95.7%

10. Methyl Tri Octyl Ammonium Chloride. 85%

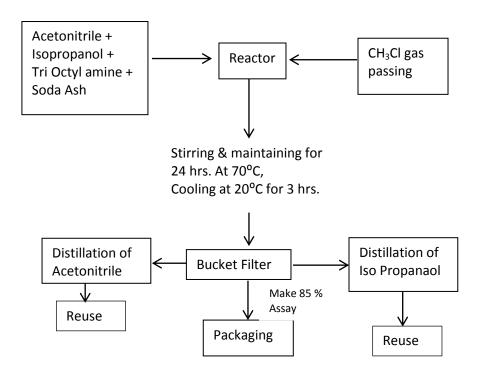
Manufacturing Process:

The Acetonitrile, Iso propanol and Tri octyl amine will be taken in the reactor. At 50 °C Methyl chloride will be charged in to it. That mixture will be stirred well for about 24 hrs. temperature will be maintained 70 °C in the reactor. This mixture will be cooled to 20 °C. Chilled charge Glycerine, Octyl alcohol and stirred for about 3 hrs at 20 °C. The final mass filtered in basket filter. The Recovered soda ash remove and clear Mother liquor will be charge into the same reactor and distilled out Acetonitrile up to final residual mass of MTOACL will be 85 % as per requirement. Final product packed into a drum by filtration.

Chemical reaction:

Acetonitrile+Iso Propanol

Tri Octyl Amine + Methyl Chloride
$$\longrightarrow$$
 Methyl Tri Octyl Ammonium Chloride


Acetonitrile+Iso Propanol

 $C_{24}H_{51}N$ + CH_3CI \longrightarrow $C_{25}H_{54}NCI$

(353) + (50.50) \longrightarrow (403.5)

Input	kg/batch	Output	kg/batch	Remark
tri octylamine	770	methyl trioctyl		
methyl chloride	150	ammonium chloride 95 %	950	
iso propanol	230	recovered solvent	440	Reuse after distillation
glycerine	10	distillation residue	10	for common incineration
octyl alcohol	10	handling loss	10	
soda ash	10			
acetonitrile	230			
TOTAL	1410.00	TOTAL	1410.00	

Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery
iso propanol	230.00	220.00	10.00	96%
acetonitrile	230.00	220.00	10.00	96%

11. Methyl Triphenyl Phosphonium Bromide

Manufacturing Process:

First of all sodium bromide & dimethyl sulphate will be taken in other reactor at 20 °C to generate Methyl bromide gas, at the end of reaction sodium sulphate slurry will be generated & it will be disposed to common incinerator.

In the main reactor Toluene and Tri phenyl phosphine will be taken. Methyl Bromide gas will be passed into reaction mixture. That mixture will be stirred well for about 5 hrs. Temperature will be maintained 40 °C in the reactor. Now reflux will be done at 80 °C for 12 hrs. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs at 20 °C. The final mass filtered in basket filter. The powder will be dried for 8 hrs. in the dryer at 50 °C. Then packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:

First stage:

Sodium Bromide + Di Methyl Sulphate \longrightarrow Methyl Bromide + Sodium Sulphate 2NaBr + CH₃SO₄CH₃ \longrightarrow 2CH₃Br + Na₂SO₄ (206) + (126) \longrightarrow 2(95) + 142.06

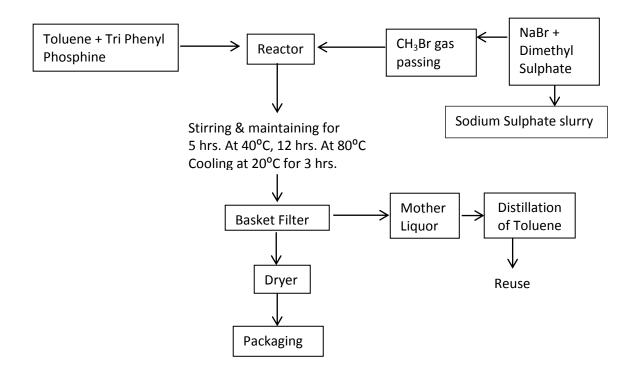
Second stage:

Toluene

Tri phenyl phosphine + Methyl Bromide

Methyl Triphenyl Phosphonium Bromide

Toluene $C_{18}H_{15}P$ + CH_3Br $C_{19}H_{18}PBr$ (262)


+ (95)

(357)

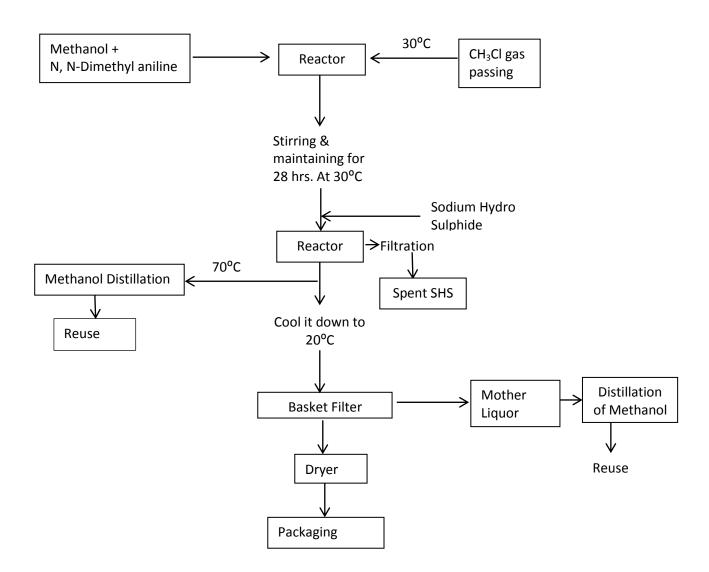
Mass Balance:

Input	kg/batch	Output	kg/batch	Remark
tri phenyl phosphine	800	methyl triphenyl		
dimethyl sulphate	400	phosphonium bromide		
sodium bromide 40 % soln	800	sodium sulphate	1000	for common incineration
toluene	600	recovered solvent	580	Reused after distillation
		distillation residue	15	for common incineration
		handling loss	5	
TOTAL	2600.00	TOTAL	2600.00	

Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery
toluene	600	580	20	96.67

12. Phenyl Trimethyl Ammonium Chloride

Manufacturing Process:


The Methanol and N, N-Dimethyl Aniline are taken in the reactor. At 30 °C Methyl chloride is charged in to it. That mixture will be stirred well for about 28 hrs. Temperature will be maintained 30 °C, distilled out all methanol and Add Sodium Hydro sulphide in the reactor, distilled methanol will be reused it for next batch of reactions. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs. at 20 °C. This mixture will be cooled to 20 °C. Chilled and stirred for about 1 hr at 20 °C. The final mass filtered in cartage filter and packed it in the drum. The powder will be dried for 8 hrs in the dryer at 50 °C and then packed it in the drum.

Chemical reaction:

N N Di methyl aniline + Methyl Chloride
$$\longrightarrow$$
 Phenyl Tri Methyl ammonium chloride $C_8H_{11}N$ + CH_3Cl \longrightarrow $C_9H_{14}NCl$ (121) + (50.50) \longrightarrow (171.50)

Input	kg/batch	Output	kg/batch	Remark
N N - dimethyl aniline	690.00	phenyl trimethyl		
methyl chloride	310.00	ammonium chloride	958	
methanol	750.00	rec. solvent	735.00	Reuse after distillation
sodium hydro sulphide (Cat)	100.00	distillation residue	10	for common incineration
		handling loss	5	
		sodium hydro sulphide (Catalyst waste)	100.00	for common incineration
		process residue	42.00	for common incineration
TOTAL	1850.00	TOTAL	1850.00	

Item		Input (kg)	Recovery (kg)	Loss (kg)	% Recovery
	methanol	750.00	735.00	15.00	98.0%

13A. Tetra Butyl Ammonium Bromide (Powder)

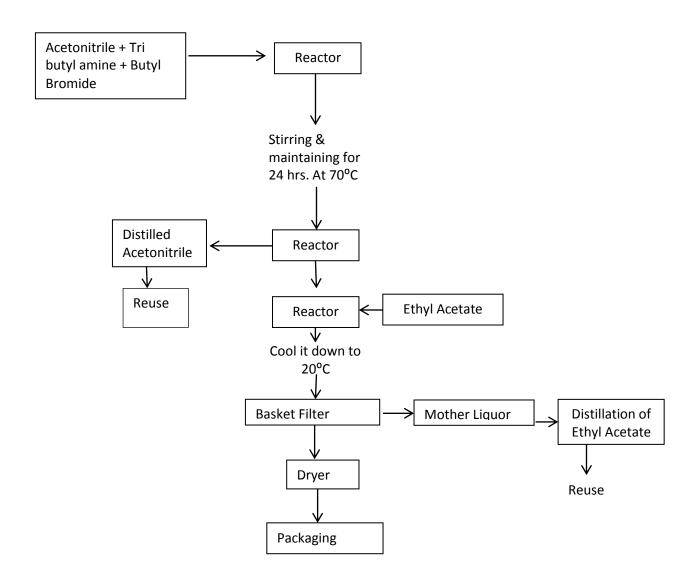
Manufacturing Process:

The Acetonitrile and Tri n butyl amine will be taken in the reactor. At 50 °C Butyl bromide will be charged in to it. That mixture will be stirred well for about 24 hr. Temperature will be maintained 70 °C in the reactor. This mixture will be cooled at 50 °C. Distilled out & distilled Acetonitrile will be reused in next batch. Residual mass mix with ethyl acetate & stirred for about 3 hrs at 20 °C. The final mass filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C and than packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:

Acetonitrile+Ethyl Acetate

Tri n Butyl Amine + Butyl Bromide
$$\longrightarrow$$
 Tetra Butyl Ammonium Bromide

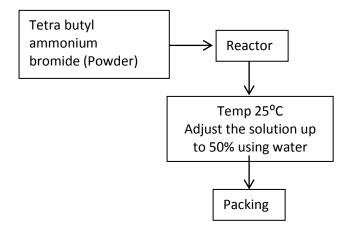

Acetonitrile+Ethyl Acetate

 $C_{12}H_{27}N + C_4H_9Br \longrightarrow C_{16}H_{36}NBr$

(185) + (137) \longrightarrow (322)

Input	kg/batch	Output	kg/batch	Remark
tri n- butylamine	550.00	tetra butyl		
butyl bromide	450.00	ammonium bromide (powder)	950	
acetonitrile	300.00	product drying loss	50.00	
ethyl acetate	400.00	rec. solvent	670.00	Reuse after distillation
		handling loss	10.00	
		distillation residue	20.00	for common incineration
TOTAL	1700.00	TOTAL	1700.00	

Item	Input (kg)	Recovery (MT)	Loss (kg)	% Recovery
acetonitrile	300.00	285	15	95
ethyl acetate	400.00	385	15	96.25


13B. Tetra Butyl Ammonium Bromide (Solution)

Manufacturing Process:

Tetra Butyl Ammonium Bromide (Powder) will be mixed with water to form solution of Tetra Butyl Ammonium Bromide.

Mass balance:

Input	kg/batch	Output	kg/batch	Remark
tetra butyl	950	tetra butyl		
ammonium		ammonium	1880	
bromide (powder)		bromide	1000	
		(solution)		
water	940	handling loss	10	
TOTAL	1890	TOTAL	1890	

14. Tetra Butyl Ammonium Chloride

Manufacturing Process:

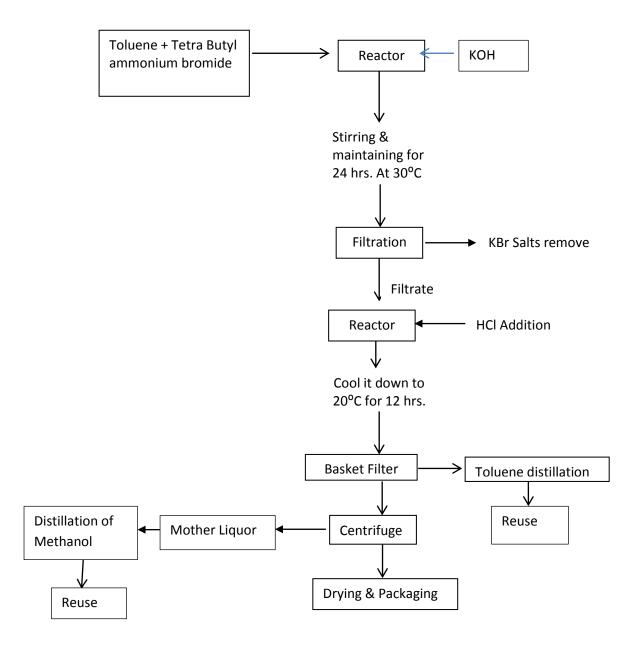
The Toluene, Methanol and Tetra butyl ammonium bromide will be taken in the reactor. At 50 °C potassium hydroxide will be charged in to it. That mixture will be stirred well for about 24 hrs. Temperature will be maintained 30 °C in the reactor. Apply filtration for Potassium Bromide powder removed. Mother Liquor will be cooled to 20 °C and charge Hydrochloric acid. And stirred for about 12 hrs at 20 °C. Distilled out all solvent up to powder formation the final mass filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C and then packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:

Toluene + Methanol

Tetra butyl ammonium bromide +
$$\longrightarrow$$
 Tetra butyl ammonium chloride + Potassium Hydroxide + HCl Potassium Bromide + water

Toluene + Methanol


 $C_{16}H_{36}NBr + KOH + HCl \longrightarrow C_{16}H_{36}NCl + KBr + H_2O$

(321) + (56) + (36.5) \longrightarrow (277.5) + (118) + (18)

Input	kg/batch	Output	kg/batch	Remark
tetra butyl ammonium bromide	1200.00	tetra butyl ammonium	900	
potassium hydroxide	320.00	chloride		
toluene	2240.00	drying loss	50.00	
hydrochloric acid (35 %)	480.00	potassium bromide salt	400	
methanol	2640.00	recovered solvent	4675.00	Reuse after distillation
		distillation residue	15.00	for incineration
		handling loss	190.00	
		process residue	450.00	for incineration

		waste water	200.00	to ETP
TOTAL	6880.00	TOTAL	6880.00	
Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery
Item toluene	_			

Process flow diagram:

15. Tetra Butyl Ammonium Hydrogen Sulphate

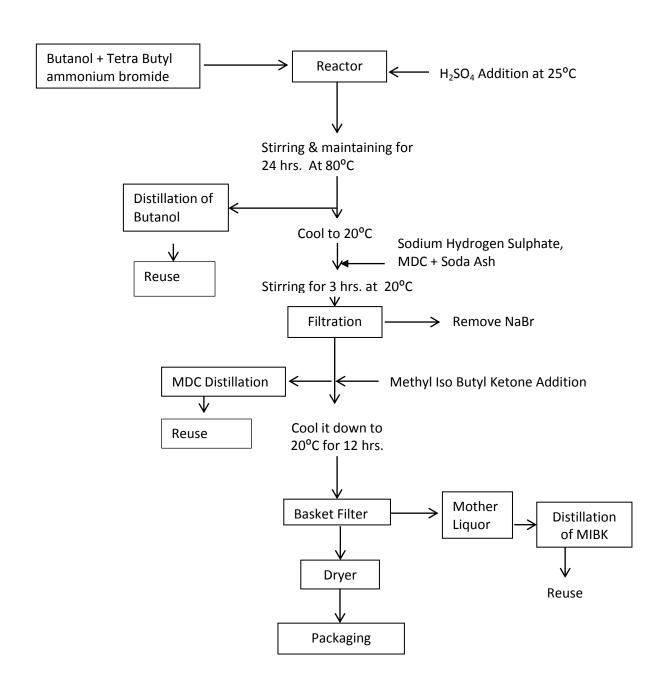
Manufacturing Process:

Butanol and Tetra butyl ammonium bromide will be taken in the reactor. At 25 °C sulphuric acid will be charged in to it. That mixture will be stirred well for about 24 hrs. Temperature will be maintained 80 °C in the reactor. Distilled out Butanol &This mixture will be cooled to 20 °C. Chilled and charge MDC, Soda Ash & Sodium Hydrogen Sulphate and stirred for about 3 hrs at 20 °C. The final mass filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C and then packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions and after distillation collect residual sodium bromide powder as a process residue.

Chemical reaction:

Butanol+MIBK+MDC

$$C_{16}H_{36}NBr$$
 + NaHSO₄ \longrightarrow $C_{16}H_{37}NSO_4 + NaBr$


Butanol+MIBK+MDC

 (322) + (120) \longrightarrow (339) + (103)

Input	kg/batch	Output	kg/batch	Remark
tetra butyl ammonium bromide	960.00	tetra butyl ammonium hydrogen	900	
butanol	1200.00	sulphate		
sulphuric acid	400.00	sodium bromide	300.00	to TSDF
sodium hydrogen sulphate	120.00	recovered solvent	2690.00	Reuse after distillation
soda ash	120.00	distillation residue	100.00	for incineration
methyl isobutyl ketone	800.00	handling loss	10.00	
methylene dichloride	800.00	process residue	400.00	for incineration
TOTAL	4400.00	TOTAL	4400.00	

Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery
butanol	1200.00	1154.00	46.00	96%
methyl isobutyl ketone	800.00	768.00	32.00	96%
methylene dichloride	800.00	768.00	32.00	96%

Process Flow diagram:

16. Tetra Butyl Ammonium Iodide

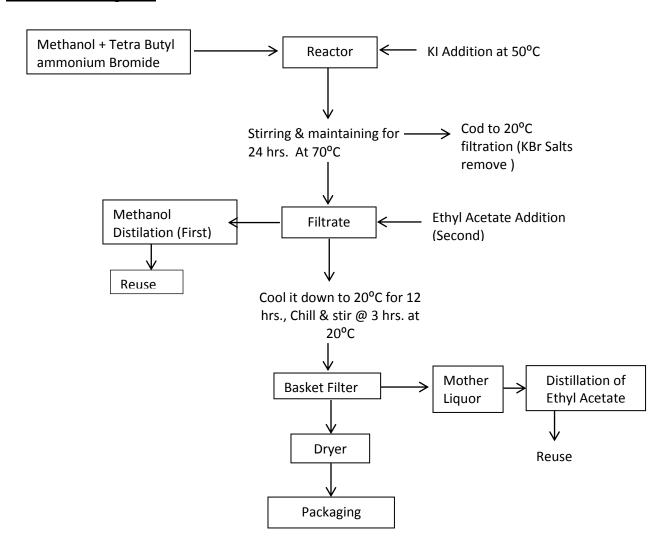
Manufacturing Process

The methanol and Tetra butyl ammonium bromide will be taken in the reactor. At 50 °C potassium iodide will be charged in to it. That mixture will be stirred well for about 24 hr. temperature will be maintained 70 °C in the reactor distilled out methanol & charge ethyl acetate, this mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs at 20 °C. The final mass filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C and then packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions and after distillation collect residual potassium bromide powder.

Chemical reaction:

(Methanol+Ethyl Acetate)

Tetra butyl ammonium bromide + Potassium Iodide
$$\longrightarrow$$
 Tetra Butyl Ammonium iodide + Potassium Bromide


C₁₆H₃₆NBr + KI \longrightarrow C₁₆H₃₆NI + KBr

(322) + (166) \longrightarrow (369) + (119)

Input	KG/BATCH	Output	KG/BATCH	Remark
tetra butyl ammonium bromide	1000.00	tetra butyl ammonium	1000	
potassium iodide	500.00	iodide		
ethyl acetate	1000.00	potassium bromide salt	450.00	for TSDF site
methanol	2000.00	drying loss	50.00	
		recovered solvent	2890.00	Reuse after distillation
		loss of solvent	105.00	
		distillation residue	5.00	for common incineration
TOTAL	4500.00	TOTAL	4500.00	

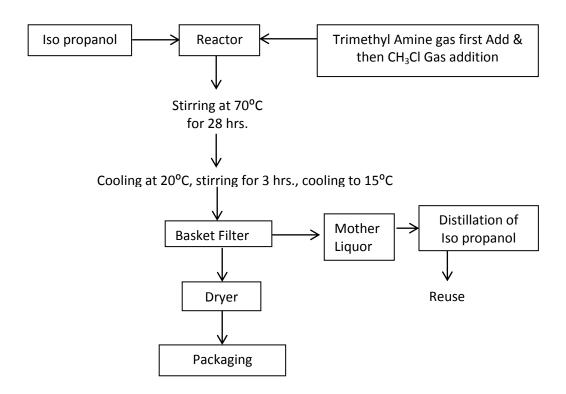
Item	Input (KG/BATCH)	Recovery (KG/BATCH)	Loss (KG/BATCH)	% Recovery
ethyl acetate	1000.00	990	10	99%
methanol	2000.00	1900.00	100.00	95%

Process flow diagram:

17. Tetra Methyl Ammonium Chloride

Manufacturing Process:

Isopropanol will be taken in the reactor. At 30 °C Methyl chloride and Trimethyl amine will be charged in to it. That mixture will be stirred well for about 28 hrs. Temperature will be maintained 70 °C .This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs at 20 °C. This mixture will be cooled to 15 °C. Chilled and stirred for about 1 hr. at 15 °C and filtration through basket filter, the powder will be dried for 8 hrs in the dryer at 50 °C and then packed it in the drum. From mother liquor distilled out solvent and re-use in next batch.


Chemical reaction:

Tri Methyl Amine + Methyl Chloride
$$\longrightarrow$$
 Tetra Methyl Ammonium Chloride C_3H_9N + CH_3CI \longrightarrow $C_4H_{12}NCI$ (59) + (90) \longrightarrow (91)

Input	kg/batch	Output	kg/batch	Remark
tri methyl amine	540.00	tetra methyl		
methyl chloride	460.00	ammonium chloride	950	
iso propanol	500.00	drying loss	50	
		Solvent recovered	485.00	Reuse after distillation
		dist. Residue	8.00	for incineration
		handling loss	7.00	
TOTAL	1500.00	TOTAL	1500.00	

Item	Input	Recovery	Loss	%
	(kg/batch)	(kg/batch)	(kg/batch)	Recovery
iso propanol	500.00	485.00	15.00	97.0%

Process Flow Diagram:

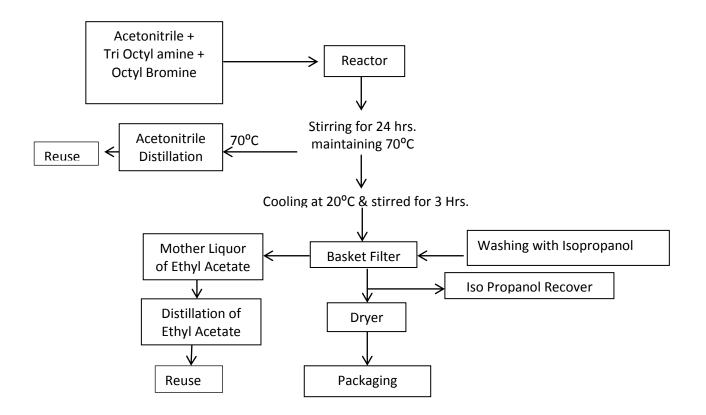
18. Tetra Octyl Ammonium Bromide

Manufacturing Process:

The Acetonitrile, Tri octyl amine and octyl bromide will be taken in the reactor. That mixture will be stirred well for about 24 hrs. Temperature will be maintained 70 °C in the reactor. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs at 20 °C. The final mass will be filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C and then packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:

Acetonitrile+Ethyl Acetate+Iso Propanol
Tri octyl Amine + Octyl bromide
$$\longrightarrow$$
 Tetra Octyl Ammonium Bromide


Acetonitrile+Ethyl Acetate+Iso Propanol

 $C_{24}H_{51}N + C_8H_{17}Br \longrightarrow C_{32}H_{68}NBr$

(353) + (193) \longrightarrow (546)

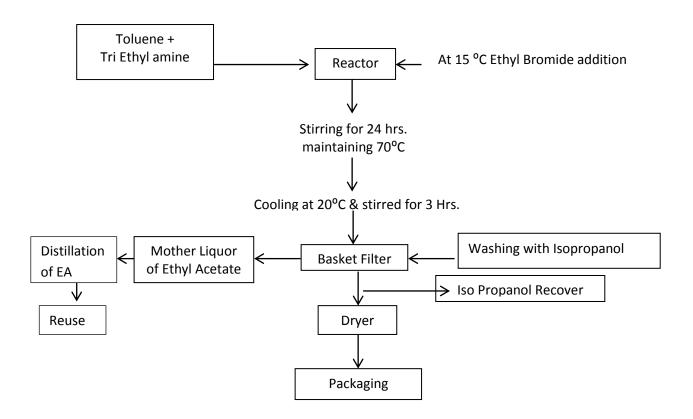
Input	kg/batch	Output	kg/batch	Remark
tri octyl amine	610.00	tetra octyl		
octyl bromine	350.00	ammonium bromide	950	
acetonitrile	460.00	drying loss	10	
ethyl acetate	460.00	recovered solvent	920.00	Reuse after distillation
iso propanol	40.00	dist. Residue	22.00	for incineration
		handling loss	18.00	
TOTAL	1920.00	TOTAL	1920.00	
Item	Input (MT)	Recovery (MT)	Loss (MT)	% Recovery
acetonitrile	460.00	441.00	19.00	95.9%
ethyl acetate	460.00	441.00	19.00	95.9%
iso propanol	40.00	38.00	2.00	95.0%

Process Flow diagram:

19. Tetra Ethyl Ammonium Bromide

Manufacturing Process:

The Toluene and Tri ethyl amine will be taken in the reactor. At 15 °C Ethyl bromide will be charged in to it. That mixture will be stirred well for about 24 hr. Temperature will be maintained 70 °C in the reactor. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs at 20 °C. The final mass filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C and then packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.


Chemical reaction:

Tri ethyl Amine + Ethyl Bromide
$$\longrightarrow$$
 Tetra Ethyl Ammonium Bromide $C_6H_{15}N$ + C_2H_5Br \longrightarrow $C_8H_{20}NBr$ (101) + (109) \longrightarrow (210)

Input	Kg/batch	Output	Kg/batch	Remark
tri ethyl amine	460.00	tetra ethyl		
ethyl bromide	530.00	ammonium	975	
toluene	300.00	bromide		
iso propanol	60.00	drying loss	15.00	
		Solvent recovered	340.00	Reuse after distillation
		distillation residue	10	for common incineration
		handling loss	10	
TOTAL	1350.00	TOTAL	1350.00	

Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery
toluene	300.00	290	10	96.67%
iso propanol	60.00	50.00	10	83.33%

Process Flow Diagram:

20. Benzyl Triethyl Ammonium Chloride

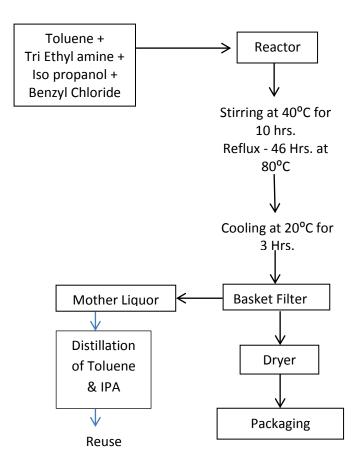
Manufacturing Process:

Toluene, Iso propanol and Triethyl amine are taken in the reactor. At 50 °C and Benzyl chloride will be charged in to it. That mixture will be stirred well for about 10 hr. temperature will be maintained 40 °C in the reactor. Now reflux will be done at 40 °C for 46 hrs. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs at 20 °C. The final mass filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C and then packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:

Toluene + Iso Propanol

Tri ethyl Amine + Benzyl Chloride
$$\longrightarrow$$
 Benzyl Triethyl Ammonium Chloride


$$C_6H_{15}N + C_7H_7CI \xrightarrow{} C_{13}H_{22}NCI$$

(101) + (126.5) \longrightarrow (227.5)

Input	kg/batch	Output	kg/batch	Remark
tri ethylamine	440.00	benzyl tri ethyl		
benzyl chloride	520.00	ammonium chloride	930	
toluene	290.00	drying loss	30	
iso propanol	60.00	process residue	20	for incineration
dimethyl formamide	20.00	recovered solvent	330.00	Reuse after distillation
		distillation residue	10.00	for incineration
		handling loss	10.00	
TOTAL	1330.00	TOTAL	1330.00	

Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery
toluene	290.00	280	10.00	96.55
iso propanol	60.00	50.00	10.00	83.33

Process Flow Diagram:

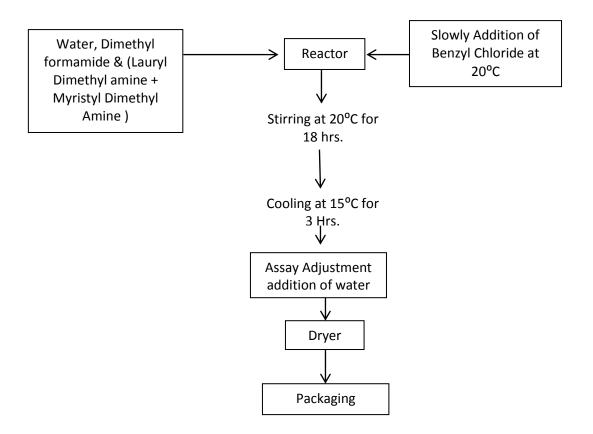
21. Benzalkonium Chloride 50% Solution

Manufacturing Process:

The Water, Dimethyl formamide and Lauryl Dimethyl amine + Myristyl dimethyl amine mixture are taken in the reactor. At 20 °C and Benzyl chloride will be charged in to it. That mixture will be stirred well for about 18 hr. temperature will be maintained 20 °C in the reactor. This mixture will be cooled to 15 °C. Chilled and stirred for about 3 hrs at 15 °C. The final solution filtered and then packed it in the drum after make-up it 50% solution.

Chemical reaction:

(Myristyl Dimethyl Amine + Benzyl Choride
$$\longrightarrow$$
 Benzalkonium Chloride + Lauryl Dimethyl Amine)


DMF+Water

 $C_6H_{35}N$ + C_7H_7Cl \longrightarrow $C_{13}H_{42}NCl$

(121) + (126.5) \longrightarrow (247.5)

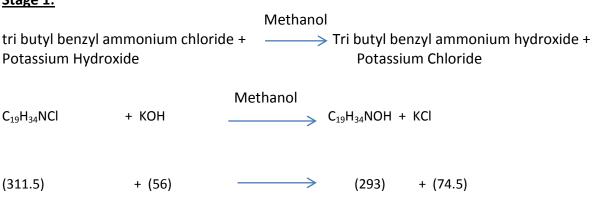
Input	kg/batch	Output	kg/batch	Remark
myristyl dimethylamine	170.00	benzalkonium	1000	
lauryl dimethylamine	160.00	chloride 50 %		
benzyl chloride	260.00			
water	410.00			
TOTAL	1000.00	TOTAL	1000.00	

Process Flow diagram:

22. Tri Butyl Benzyl Ammonium Bromide

Manufacturing Process:

STAGE-1: TRI BUTYL BENZYL AMMONIUM HYDROXIDE 40% IN METHANOL


The Methanol, Tributyl benzyl ammonium chloride & potassium hydroxide will be taken in the reactor. That mixture will be stirred well for about 24 hrs. Temperature will be maintained 50 °C in the reactor. Apply filtration for potassium chloride salts removal. Clear mother liquor will be cooled to 20 °C and transfer into drum. As an intermediate it will be used in next stage-2.

STAGE-2: TRIBUTYL BENZYL AMMONIUM BROMIDE

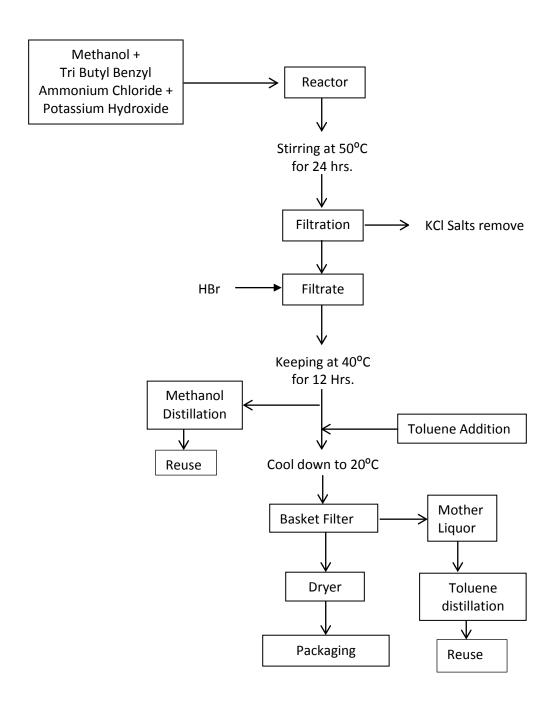
Charge Tri butyl benzyl ammonium hydroxide in methanol solution into reactor. Add Hydro Bromic acid and stirred for about 12 hrs at 40 °C. The final Product will be filtered in basket filter. The powder will be dried for 8 hrs. in the dryer at 50 °C and then packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:

Stage 1:

Stage 2:

Methanol/Toluene Tri butyl benzyl ammonium hydroxide + \longrightarrow Tri Butyl Benzyl Ammonium Bromide+ Hydro bromic acid water $C_{19}H_{34}NOH + HBr \longrightarrow C_{19}H_{34}NBr + H_2O$ $(293) + (81) \qquad (356) + (18)$


STAGE - 1

Input	kg/batch	Output	kg/batch	Remark
Tri Butyl benzyl Ammonium Chloride	1000	tri butyl benzyl ammonium		
potassium hydroxide	330	hydroxide (stage-1 product)		
methanol	2000	potassium chloride	830	To TSDF
TOTAL	3330	TOTAL	3330	

STAGE - 2

Input	kg/batch	Output	kg/batch	Remark
tri butyl benzyl ammonium hydroxide (stage-1 product)	2500	tri butyl benzyl ammonium bromide	1000	
Hydro bromic acid	830	drying loss	50	
toluene	2000	recovered Methanol + water	1900 +280 = 2180	Reuse in next batch
		Recovered Toluene	1950	Reuse in next batch
		distillation residue	25.00	for incineration
		handling loss	125.00	
TOTAL	5330	TOTAL	5330	
Item	Input (MT)	Recovery (MT)	Loss (MT)	% Recovery
methanol	2000.00	1900.00	100.00	95
toluene	2000.00	1950.00	50.00	97.5

Process Flow diagram:

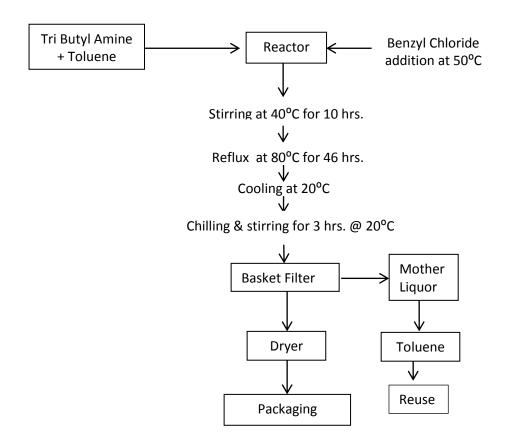
23. Benzyl Tributyl Ammonium Chloride

Manufacturing Process:

The Toluene and Tri Butyl amine will be taken in the reactor. At 50 °C Benzyl chloride will be charged in to it. This mixture will be stirred well for about 10 hr. Temperature will be maintained 40 °C in the reactor. Now reflux will be done at 80 °C for 46 hrs. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs at 20 °C. The final mass will be filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C and then packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:

Tri Butyl Amine + Benzyl Chloride
$$\longrightarrow$$
 Benzyl Tributyl Ammonium Chloride


$$C_{12}H_{27}N + C_7H_7CI \longrightarrow C_{19}H_{34}NCI$$

(185) + (126.5) \longrightarrow (311.5)

Input	kg/batch	Output	kg/batch	Remark
tri n-butylamine	540.00	benzyl tri butyl		
Benzyl chloride	380.00	ammonium chloride	900	
toluene	1850.00	drying loss	20	
		Solvent recovered	1780.00	Reuse after distillation
		distillation residue	50.00	for incineration
		handling loss	20.00	
TOTAL	2770.00	TOTAL	2770.00	

Item	Input	Recovery	Loss	%
	(kg/batch)	(kg/batch)	(kg/batch)	Recovery
toluene	1850.00	1780.00	70.00	96.2%

Process Flow Diagram:

24. Butyl Triphenyl Phosphonium Bromide

Manufacturing Process:

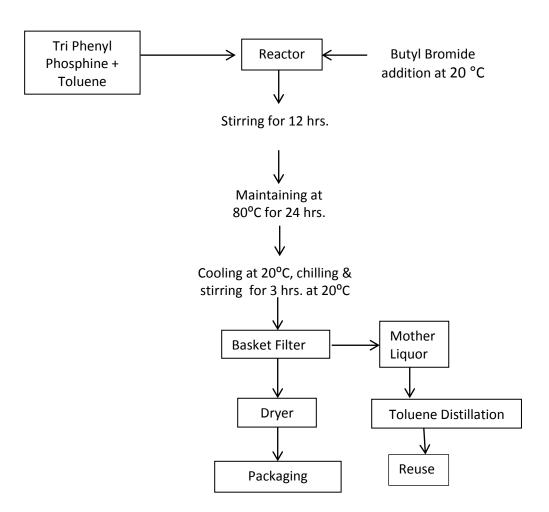
The Toluene and Tri phenyl phosphine will be taken in the reactor. At 20 °C Butyl bromide will be charged in to it. That mixture will be stirred well for about 12 hr. Temperature will be maintained 20 °C in the reactor. Temperature will be maintained 80 °C for 24 hrs. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs at 20 °C. The final mass will be filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C then packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:

Toluene

Tri Phenyl Phosphine + Butyl Bromide
$$\longrightarrow$$
 Butyl Triphenyl Phosphonium Bromide

Toluene


 $C_{18}H_{15}P$ + C_4H_9Br \longrightarrow $C_{22}H_{24}PBr$

(262) + (137) \longrightarrow (399)

Input	kg/batch	Output	kg/batch	Remark
tri phenyl phosphine	630.00	butyl triphenyl		
butyl bromide	320.00	phosphonium bromide	935	
toluene	1260.00	drying loss	15	
		Solvent recovered	1185.00	Reuse after distillation
		dist. Residue	12.00	for incineration
		handling loss	63.00	
TOTAL	2210.00	TOTAL	2210.00	

Item	Input (MT)	Recovery (MT)	Loss (MT)	% Recovery
toluene	1260.00	1185.00	75.00	94.0%

Process Flow Diagram:

25. Butyl Triphenyl Phosphonium Chloride

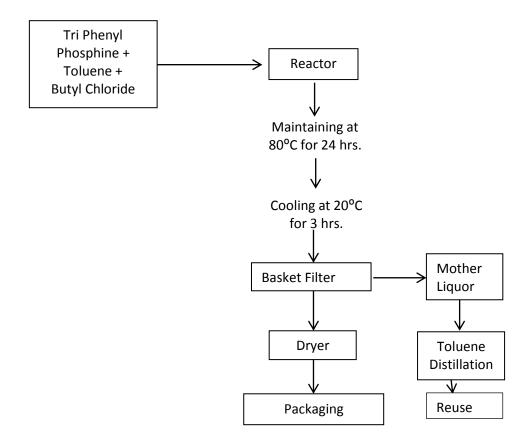
Manufacturing Process:

The Toluene and Tri phenyl phosphine will be taken in the reactor. At 20 °C and Butyl Chloride will be charged in to it. That mixture will be stirred well for about 12 hrs. Temperature will be maintained 50 °C in the reactor. Now reflux will be done at 80 °C for 24 hrs. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs. at 20 °C. The final mass filtered in basket filter. The powder will be dried for 8 hrs. in the dryer at 500C than packed it in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:

Toluene

Tri Phenyl Phosphine + Butyl Chloride
$$\longrightarrow$$
 Butyl Triphenyl Phosphonium Chloride


$$C_{18}H_{15}P + C_4H_9CI \longrightarrow C_{22}H_{24}PCI$$

(262) + (92.5) \longrightarrow (354.5)

Input	kg/batch	Output	kg/batch	Remark
tri phenyl phosphine	750.00	butyl triphenyl		
butyl chloride	250.00	phosphonium chloride		
toluene	980.00	drying loss	60	
		Solvent recovered	960.00	Reuse after distillation
		dist. Residue	11.00	for incineration
		handling loss	9.00	
TOTAL	1980.00	TOTAL	1980.00	

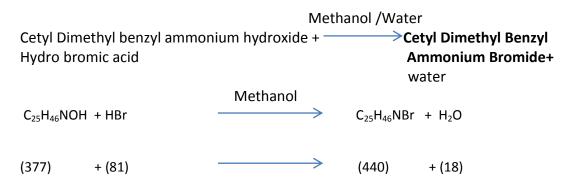
Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery
toluene	980.00	960.00	20.00	98.0%

Process Flow Diagram:

26. Cetyl Dimethyl Benzyl Ammonium Bromide

Manufacturing Process:

Stage-1: Cetyl Dimethyl Benzyl Ammonium Hydroxide 40% In Methanol


The Methanol, Cetyl dimethyl benzyl ammonium chloride and Potassium hydroxide will be taken in the reactor. That mixture will be stirred well for about 24 hr. Temperature will be maintained 50 °C in the reactor. Apply filtration for potassium chloride removal clear mother liquor will be cooled to 30 °C and transfer into drum as an intermediate. It will be used in next stage-02.

Stage-2: Cetyl Dimethyl Benzyl Ammonium Bromide

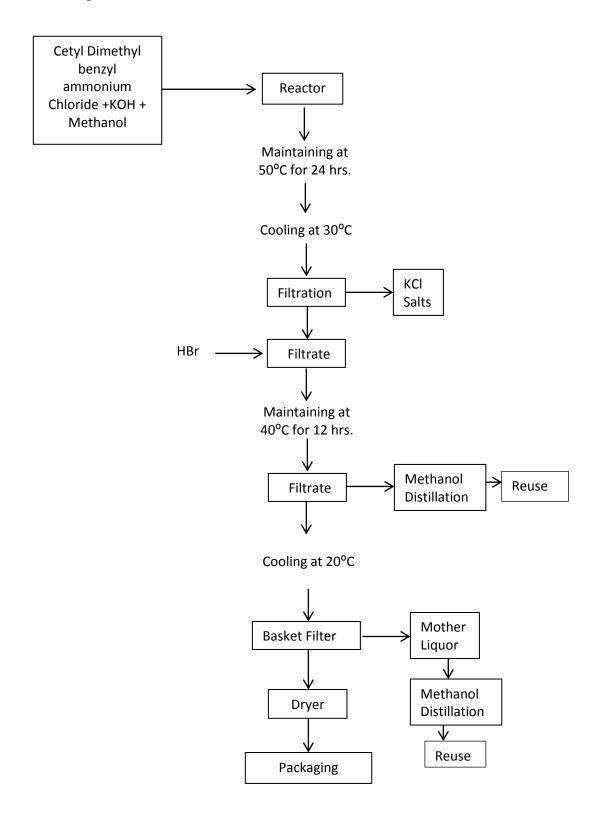
Charge Cetyl dimethyl benzyl ammonium hydroxide in methanol solution into reactor. Add Hydro Bromic acid and stirred for about 12 hrs at 40 °C. The final Product will be filtered in basket filter. Filtrate will be cooled to 20 °C. The powder will be dried for 8 hrs. in the dryer and then packed it in the drum. The Mother liquor from the filter will be collected and Distilled methanol then reused it for next batch of reactions.

Stage 1:

Stage 2:

Mass balance:

STAGE - 1


Input	kg/batch	Output	kg/batch	Remark
cetyl dimethyl benzyl ammonium chloride	1000	cetyl dimethyl benzyl	3500	
potassium hydroxide	167	ammonium hydroxide (stage- 1 product)	2500	
methanol	2000	potassium chloride	667	to TSDF Site
TOTAL	3167	TOTAL	3167	

STAGE - 2

Input	kg/batch	Output	kg/batch	Remark
cetyl dimethyl benzyl ammonium hydroxide (stage-1 product)	2500	cetyl dimethyl benzyl ammonium bromide	1000	
hydro bromic acid	500	recovered solvent	1950	Reuse in next batch
		handling loss	50	
TOTAL	3000	TOTAL	3000	

Item	Input	Recovery	Loss	%
	(kg/batch)	(kg/batch)	(kg/batch)	Recovery
methanol	2000.00	1950.00	50.00	98%

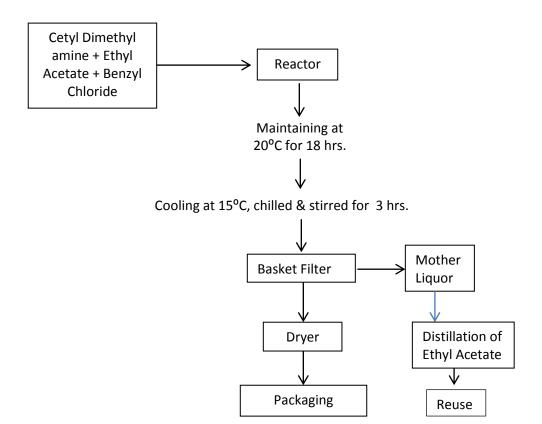
Process Flow Diagram:

27. Cetyl Dimethyl Benzyl Ammonium Chloride

Manufacturing Process:

The Ethyl Acetate, Cetyl dimethyl amine and Benzyl chloride will be taken in the reactor. This mixture will be stirred well for about 18 hrs. Temperature will be maintained 20 °C in the reactor. This mixture will be cooled to 15 °C. Chilled and stirred for about 3 hrs at 15 °C. And then apply centrifuge filtration to collect Cetyl dimethyl benzyl ammonium chloride product. The mother liquor will be distilled out by simple distillation. Collect distilled Ethyl acetate which will be Re-used in next batch.

Chemical reaction:


$$C_{18}H_{39}N + C_{7}H_{7}CI \xrightarrow{\text{Ethyl Acetate}} C_{25}H_{46}NCI$$

$$(269) + (126.5) \xrightarrow{} (395.5)$$

Input	kg/batch	Output	kg/batch	Remark
cetyl dimethyamine	670.00	cetyl dimethyl		
		benzyl	950	
benzyl chloride	330.00	ammonium	930	
		chloride		
ethyl acetate	1500.00	drying loss	50	
		Solvent	1450.00	
		recovered	1430.00	
		distillation	25.00	
		residue	23.00	
		handling loss	25.00	
TOTAL	2500.00	TOTAL	2500.00	

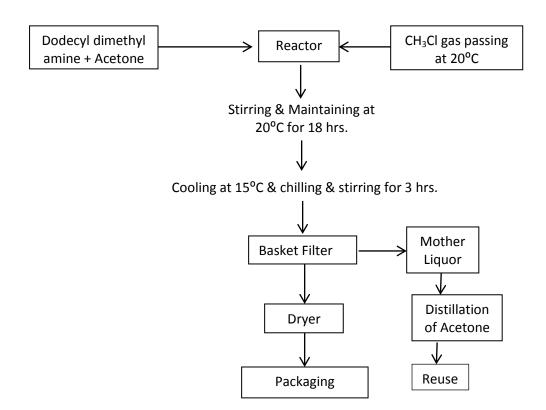
Item	Input (MT)	Recovery (MT)	Loss (MT)	% Recovery
ethyl acetate	1500.00	1450.00	50.00	96.7%

Process flow diagram:

28. Dodecyl Trimethyl Ammonium Chloride

Manufacturing Process:

Dodecyl dimethyl amine & Acetone will be taken in the reactor. At 20 °C methyl chloride gas will be purged in to it. That mixture will be stirred well for about 18 hrs. Temperature will be maintained 20 °C in the reactor. This mixture will be cooled to 15 °C. Chilled and stirred for about 3 hrs at 15 °C. The final solution will be filtered and then packed it in the drum after make-up it 30% solution.


Chemical reaction:

Dodecyl dimethyl amine + Methyl Chloride
$$\longrightarrow$$
 Dodecyl trimethyl ammonium chloride $C_{14}H_{31}N$ + CH_3CI \longrightarrow $C_{15}H_{34}NCI$ (213) + (50.5) \longrightarrow (263.5)

Input	kg/batch	Output	kg/batch	Remark
dodecyl	830.00	dodecyl trimethyl		
dimethylamine	830.00	ammonium	960.00	
methyl chloride	160.00	chloride		
acetone	1500.00	drying loss	40.00	
		Solvent	1440.00	
		recovered		
		distillation	35.00	
		residue	33.00	
		handling loss	15.00	
TOTAL	2490.00	TOTAL	2490.00	

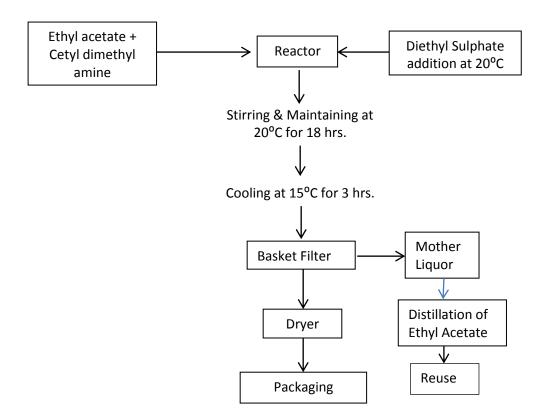
Item	Input	Recovery	Loss	%
	(kg/batch)	(kg/batch)	(kg/batch)	Recovery
acetone	1500.00	1440.00	60.00	96.0%

Process flow diagram:

29. Mesetronium Ethosulphate

Manufacturing Process:

The Ethyl Acetate and Cetyl dimethyl amine will be taken in the reactor. At 20 °C and Diethyl sulphate will be charged in to it. That mixture will be stirred well for about 18 hr. temperature will be maintained 20 °C in the reactor. This mixture will be cooled to 15 °C. Chilled and stirred for about 3 hrs at 15 °C. And then Apply centrifuge filtration to collect Mesetronium ethosulphate product. The mother liquor distilled out by simple distillation. Collect distilled Ethyl acetate which will be Re-use in next batch.


Chemical reaction:

Cetyl dimethyl amine + Diethyl sulphate
$$\longrightarrow$$
 Mesetronium Ethosulphate $C_{18}H_{39}N$ + $C_4H_{10}SO_4$ \longrightarrow $C_{22}H_{49}NSO_4$ (269) + (154) \longrightarrow (423)

Input	kg/batch	Output	kg/batch	Remark
cetyl dimethylamine	670.00	mesetronium	050	
diethyl sulphate	330.00	ethosulphate	950	
ethyl acetate	1500.00	drying loss	50	
		Solvent recovered	1440	Reuse after distillation
		distillation residue	30.00	for incineration
		handling loss	30.00	
TOTAL	2500.00	TOTAL	2500.00	

Item	Input	Recovery	Loss	%
	(kg/batch)	(kg/batch)	(kg/batch)	Recovery
ethyl acetate	1500.00	1440.00	60.00	96.0%

Process flow diagram:

30. Methyl Triphenyl Phosphonium Chloride

Manufacturing Process:

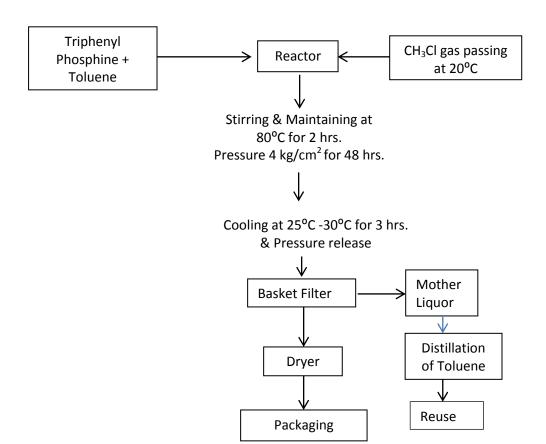
Toluene and Triphenyl phosphine will be charged in the reactor & at 20° C Methyl chloride will be purged in to it. That mixture will be stirred well for about 2 hrs. and then raise temperature up to 80 °C in the reactor. At the time of temperature raise Reactor pressure also increase up to 4 Kg/cm². Maintain Temperature 80 °C and pressure 4 Kg/cm² constantly for 48 hrs. After 48 hrs apply cooling up to 25 to 30 °C. Release pressure and then Apply centrifuge filtration to collect Methyl triphenyl phosphonium Chloride as a product. The mother liquor will be distilled out by simple distillation. Collect distilled Toluene which will be Re-used in next batch. Methyl triphenyl phosphonium Chloride materials transfer in to drum.

Chemical reaction:

Toluene/5 kg/cm²

Tri Phenyl Phosphine + Methyl Chloride
$$\longrightarrow$$
 Methyl tri phenyl Phosphonium 80°C/48 hrs. Chloride

Toluene/5 kg/cm²


C18H15P + CH3Cl \longrightarrow C19H18PCl

(262) + (50.5) \longrightarrow (312.5)

Input	kg/batch	Output	kg/batch	Remark
tri phenyl phosphine	830.00	methyl triphenyl		
methyl chloride	170.00	phosphonium chloride	950	
toluene	1330.00	drying loss	50	
		Solvent recovered	1280.00	Reuse after distillation
		dist. Residue	30.00	for incineration
		handling loss	20.00	
TOTAL	2330.00	TOTAL	2330.00	

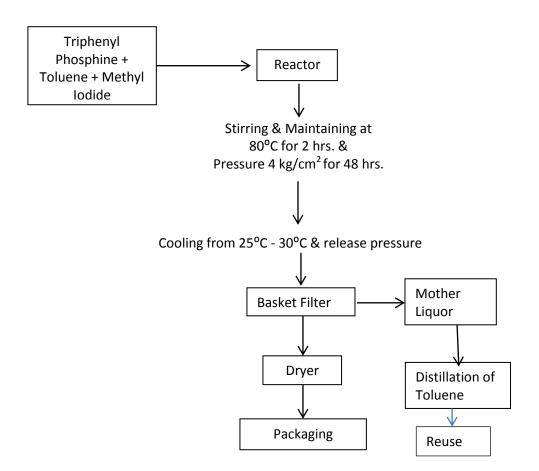
Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery
toluene	1330.00	1280.00	50.00	96.2%

Process flow diagram:

31. Methyl Triphenyl Phosphonium Iodide

Manufacturing Process:

The Toluene, Triphenyl phosphine & Methyl Iodide will be charged in the reactor. That mixture will be stirred well for about 2 hrs. And then raise the temperature up to 80 °C in the reactor. At the time of temperature raise, Reactor pressure will also be increased up to 4 Kg/cm². Maintain Temperature 80 °C and pressure 4 Kg/cm² constantly for 48 hrs. After 48 hrs., Apply cooling up to 25 °C to 30 °C. Release pressure and then Apply centrifuge & filtration to collect Methyl triphenyl phosphonium Iodide as a product. The mother liquor distilled out by simple distillation. Collect distilled Toluene which will be Re-used in next batch. Methyl triphenyl phosphonium Iodide material will be transferred in to drum.


Chemical reaction:

Tri Phenyl Phosphine + Methyl Iodide
$$\longrightarrow$$
 Methyl tri phenyl Phosphonium $80^{\circ}\text{C}/48 \text{ hrs.}$ Iodide \longrightarrow C₁₈H₁₅P + CH₃I \longrightarrow C₁₉H₁₈PI \longrightarrow 80°C/48 hrs. (262) + (142) \longrightarrow (404)

Mass balance:

Input	kg/batch	Output	kg/batch	Remark
tri phenyl phosphine	670.00	methyl triphenyl		
methyl iodide	330.00	phosphonium iodide	950	
toluene	1670.00	drying loss	50	
		Solvent recovered	1610.00	Reuse after distillation
		distillation residue	30.00	for incineration
		handling loss	30.00	
TOTAL	2670.00	TOTAL	2670.00	

Item	Input (MT)	Recovery (MT) Loss (MT)		% Recovery
toluene	1670.00		60.00	96.4%

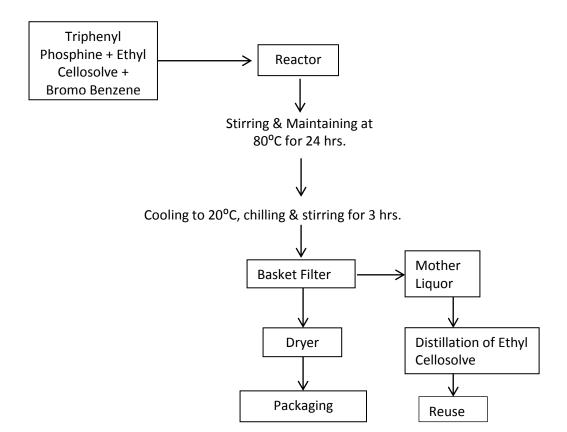
32. Tetra Phenyl Phosphonium Bromide

Manufacturing Process:

The Ethyl Cellosolve, Tri phenyl phosphine and Bromo benzene will be taken in the reactor. At 20 °C will be charged in to it. Temperature will be maintained 80 °C in the reactor. This mixture will be stirred well for about 24 hrs. This mixture will be cooled to 20 °C. Chilled and stirred for about 3 hrs at 20 °C. The final mass will be filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C. Then product will be packed in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:

Tri Phenyl Phosphine + Bromo Benzene
$$\longrightarrow$$
 Tetra Phenyl Phosphonium Bromide


$$C_{18}H_{15}P + C_{6}H_{5}Br \longrightarrow C_{24}H_{20}PBr$$

(262) + (157) \longrightarrow (419)

Mass Balance:

Input	kg/batch	Output	kg/batch	Remark
tri phenyl phosphine	670.00	670.00 tetra phenyl		
bromo benzene	330.00	phosphonium bromide		
ethyl cellosolve	1250.00	drying loss	50	
		Solvent recovered	1200.00	Reuse after distillation
		distillation residue	25.00	for incineration
		handling loss	25.00	
TOTAL	2250.00	TOTAL	2250.00	

Item	Input (kg/batch)	Recovery (kg/batch)	Loss (kg/batch)	% Recovery
ethyl cellosolve	1250.00	1200.00	50.00	96.0%

33. Triethyl Methyl Ammonium Chloride

Manufacturing Process

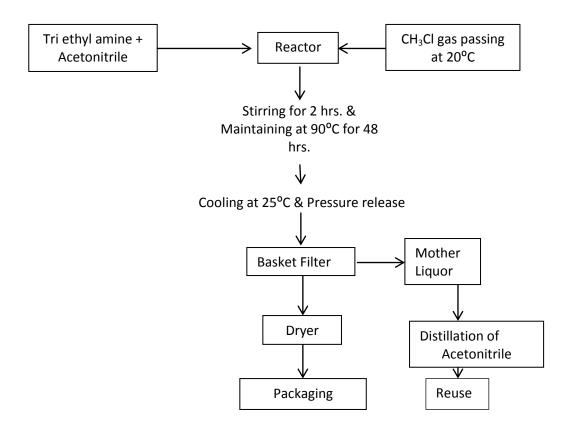
Acetonitrile and Tri Ethyl amine will be charged in the reactor & at 20 °C Methyl chloride will be purged in to it. This mixture will be stirred well for about 2 hrs and then raise temperature up to 90 °C in the reactor. At the time of temperature raise Reactor pressure also increase up to 4 Kg/cm². Maintain Temperature 90 °C and pressure 4 Kg/cm² constantly for 48 hrs. After 48 hrs., apply cooling to 25 °C. Release pressure and then Apply centrifuge & filtration to collect Tri Ethyl methyl Ammonium Chloride product. The mother liquor distilled out by simple distillation. Collect distilled Acetonitrile which will be Re-used in next batch. Tri Ethyl methyl Ammonium Chloride materials will be dried in tray dryer and then transferred in to drum.

Chemical reaction:

Acetonitrile/4 Kg/cm²

Tri Ethyl Amine + Methyl Chloride
$$\longrightarrow$$
 Triethyl Methyl Ammonium Chloride 90 °C / 48 hrs.

Acetonitrile/4 Kg/cm²


C₆H₁₅N + CH₃Cl \longrightarrow C₇H₁₈NCl 90 °C / 48 hrs.

(101) + (50.50) \longrightarrow (151.5)

Mass Balance:

Input	kg/batch	Output	kg/batch	Remark
tri ethyl amine	670.00	tri ethyl methyl		
methyl chloride	330.00	ammonium chloride	950	
acetonitrile	1250.00	drying loss	50	
		Solvent recovered	1200.00	Reuse after distillation
		distillation residue	25.00	for incineration
		handling loss	25.00	
TOTAL	2250.00	TOTAL	2250.00	

Item	Input	Recovery	Loss	%	
	(kg/batch)	(kg/batch)	(kg/batch)	Recovery	
acetonitrile	1250.00	1200.00	50.00	96.0%	

34. Triethyl Butyl Ammonium Bromide

Manufacturing Process:

Methyl ethyl ketone, Tri Ethyl amine and Butyl bromide will be charged in the reactor. That mixture will be stirred well for about 2 hrs. And then raise temperature up to 80 °C in the reactor. At the time of temperature raise Reactor pressure also increase up to 4 Kg/cm². Maintain Temperature 80 °C and pressure 4 Kg/cm² constantly for 48 hrs. After 48 hrs, apply cooling up to 25 °C. Release pressure and then Apply centrifuge filtration to collect Tri Ethyl Butyl Ammonium Bromide product. The mother liquor will be distilled out by simple distillation. Collect distilled Acetonitrile which will be Re-used in next batch. Tri Ethyl Butyl Ammonium Bromide material will be transferred in to drum.

Chemical reaction:

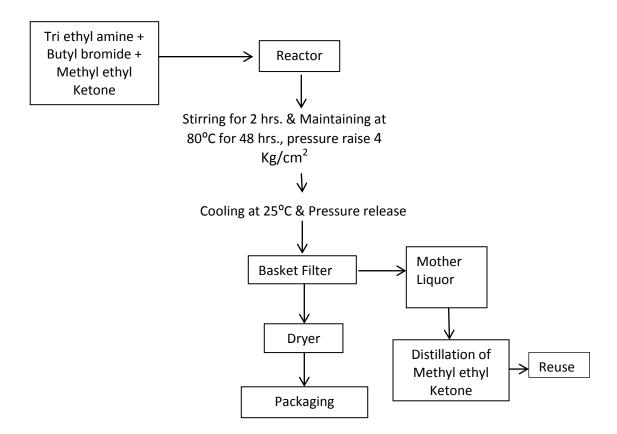
Tri Ethyl Amine + Butyl Bromide

Methyl ethyl ketone/4 Kg/cm²

Triethyl Butyl Ammonium Bromide

80 °C / 48 hrs.

Methyl ethyl ketone /4 Kg/cm²


Methyl ethyl ketone /4 Kg/cm²

$$C_6H_{15}N$$
 $C_{10}H_{24}NCl$
 C_7
 $C_{10}H_{24}NCl$
 $C_{10}H_{24}NCl$

Mass balance:

Input	kg/batch	Output	kg/batch	Remark
tri ethyl amine	430.00	tri ethyl butyl		
butyl bromide	570.00	ammonium bromide	950	
methyl ethyl ketone	1140.00	drying loss	50	
		Solvent recovered	1100.00	Reuse after distillation
		distillation residue	20.00	for incineration
		handling loss	20.00	
TOTAL	2140.00	TOTAL	2140.00	

Item	Input (kg)	Recovery (kg)	Loss (kg)	% Recovery
methyl ethyl ketone	1140.00	1100.00	40.00	96.5%

35. Benzyl Trimethyl Ammonium Chloride

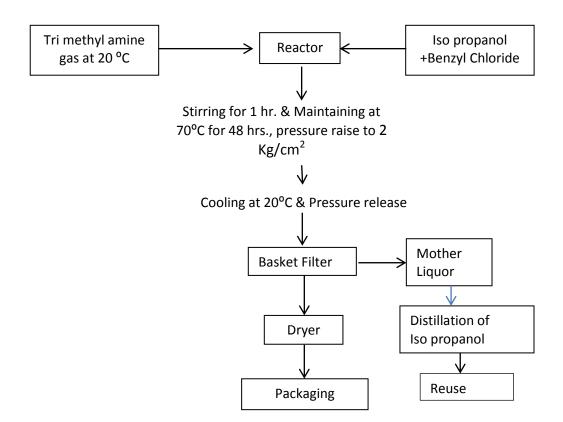
Manufacturing Process:

Iso propanol and Benzyl chloride will be taken in the reactor. At 20 °C Trimethyl amine will be charged in to it. That mixture will be stirred well for about 1 hr. Temperature will be maintained 70 °C & pressure raised to 2 kg/cm² in the reactor & maintaining for 48 hrs. This mixture will be cooled to 20 °C. Then after pressure is released. Chilled and stirred for about 3 hrs at 20 °C. The final mass will be filtered in basket filter. The powder will be dried for 8 hrs in the dryer at 50 °C and then packed in the drum. The Mother liquor from the filter will be collected and Distilled then reused it for next batch of reactions.

Chemical reaction:

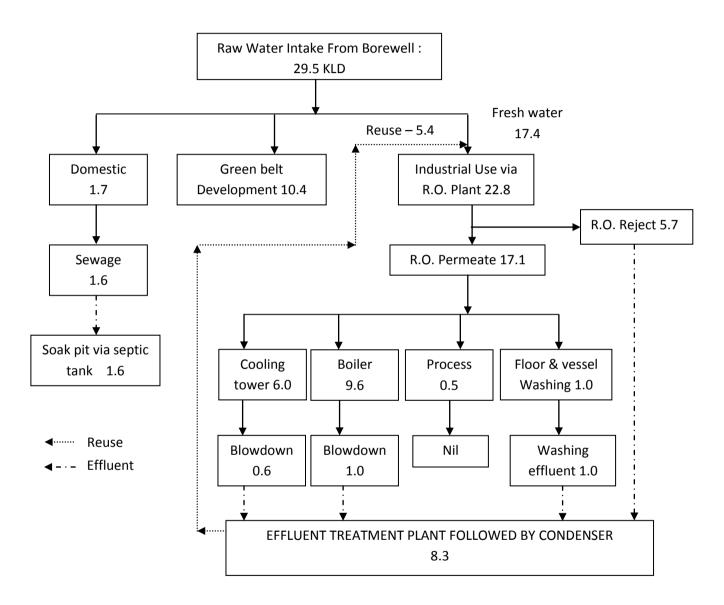
Tri Methyl Amine + Benzyl Chloride
$$\longrightarrow$$
 Benzyl Trimethyl Ammonium Chloride

Iso Propanol

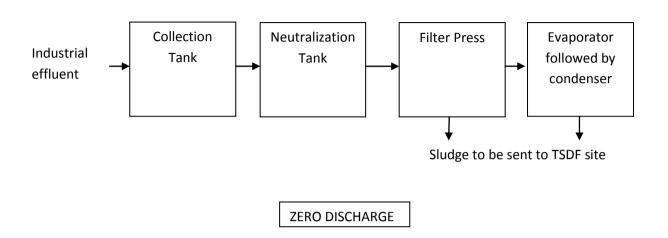

 $C_3H_9N + C_7H_7CI \longrightarrow C_{10}H_{16}NCI$

(59) + (126.5) \longrightarrow (185.5)

Mass balance:


Input	kg/batch	Output	kg/batch	Remark
tri methyl amine	330.00	Benzyl tri methyl		
benzyl chloride	670.00	ammonium chloride	950	
iso propanol	1330.00	drying loss	50	
		Solvent recovered	1280.00	Reuse after distillation
		distillation residue	25.00	for incineration
		handling loss	25.00	
TOTAL	2330.00	TOTAL	2330.00	

Item	Input (kg)	Recovery (kg)	Loss (kg)	% Recovery
methyl ethyl ketone	1330.00	1280.00 0		96.2%



WATER BALANCE DIAGRAM

Note: All quantities are in KLD

DETAILS OF ETP

ETP PROCESS

Industrial wastewater will be generated from boiler blow-down, cooling tower blow-down, washing & RO-1 reject. All effluent will be collected in collection tank. Then wastewater will be given neutralization treatment. After completion of neutralization, wastewater will be taken to Filter Press for chemical sludge separation. Filtrate will be taken to an Evaporator followed by condenser. Condensate from evaporator will be reused in Borewell RO-1.

ETP sludge (from filter press) along with evaporation residue from evaporator will be disposed off at TSDF site. Thus, unit will maintain Zero Effluent Discharge.

DETAILS OF SOLID/HAZARDOUS WASTE

There will be two types of Solid wastes generated from the project.

(a) Non Hazardous Solid waste.

There will be two types of Non hazardous waste generated:

- 1. The Municipal solid waste includes the paper wastes from Office as well as other domestic wastes.
- 2. Paper wastes would be sold to scrap vendors, while other wastes would be disposed off in a proper manner.

(b) Hazardous Solid waste.

The details different Hazardous wastes generated and its disposal is given in the table below.

Sr. No.	Description	Category	Quantity of waste generated (MT/Month)	Mode of Disposal
1	Discarded Bags/Barrels / Drums / Carboys	33.3	1.8	Collected, stored in storage area & Sell to GPCB authorised recyclers / reusers
2	Used Oil	5.1	0.004	Collected, stored in hazardous waste storage area & Sell to GPCB registered reprocessor.
3	Process waste	28.1	8.2	Collected, packed in bags, stored in hazardous waste storage area & Disposed off at CHWIF
4	Distillation residue	20.3	1.64	Collected, packed in bags, stored in hazardous waste storage area & Disposed off at CHWIF
5	Spent Charcoal + Spent carbon	28.2	2.66	Collected, packed in bags, stored in hazardous waste storage area & Disposed off at CHWIF
6	Off specification products	28.3	3.28	Collected, packed in bags, stored in hazardous waste storage area & Disposed off at approved TSDF site
7	ETP Sludge + Evaporation residue	34.3	5.0	Collected, packed, stored in hazardous waste storage area & Disposed off at approved TSDF site

DETAILS OF FLUE GAS STACKS

Sr. No.	Stack attached to	Height of the stack In meter	Fuel	APC System	Expected Pollutant	GPCB Limit
1	BOILER (2 TPH)	30	White coal / Briquettes : 4.4 MT/Day	Bag filter	SPM SO ₂ NO ₂	As per GPCB Norms
2	D. G. SET (60 KVA)	10	Diesel – 12 lit/hr.	N.A.	SPM SO ₂ NO ₂	As per GPCB Norms

DETAILS OF PROCESS GAS STACKS

Sr. No.	Stack attached to	Height of the stack In meter	APC System	Expected Pollutant	GPCB Limit
1	Ducting system attached with Dryer	10	Condenser followed by Activated carbon filter	VOC	As per GPCB Norms

LIST OF HAZARDOUS CHEMICALS

Sr. No.	Name of Hazardous		
	Chemicals		
1	Benzyl chloride		
2	Iso propanol		
3	Toluene		
4	Ethyl acetate		
5	Pyridine		
6	Methyl chloride		
7	Acetonitrile		
8	Methyl alcohol		
9	Potassium hydroxide		
10	Hydrochloric acid		
11	Sulphuric acid		
12	Methyl iso butyl ketone		
13	Tri ethyl amine		
14	Ethyl bromide		
15	Hydro bromic acid		
16	Acetone		
17	Ethyl alcohol		