LIST OF PROPOSED PRODUCTS ALONG WITH PRODUCTION CAPACITY

SR. NO.	NAME OF PRODUCT	QUANTITY (TPA)
1.	Betamethasone Sodium Phosphate	1.5
2.	Betamethasone Dipropionate	1.5
3.	Betamethasone Valerate	1.2
4.	Beclomethasone Dipropionate	1.2
5.	Clobetasol Propionate	1.8
6.	Dexamethasone Sodium Phosphate	1.5
7.	Methyl Prednisolone	1.2
8.	Prednisolone Acetate	0.8
9.	Deflazacort	1.2
10.	Methylcobalamin	1.2
11.	Prednisolone Sodium Phosphate	1.2
12.	Budesonide	0.7
	Total	15

M.K. DRUGS

F-10 INDUSTRIAL FOCAL POINT

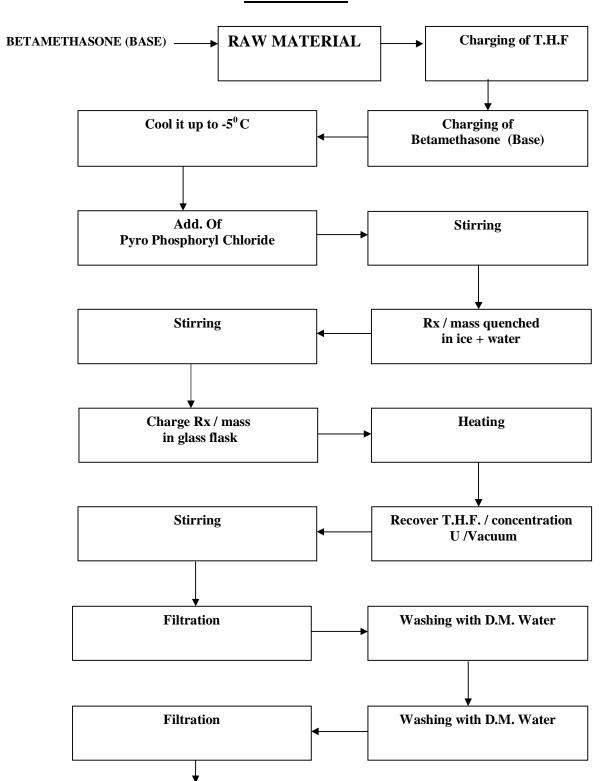
DERABASSI – 140507 DISTRICT MOHALI (PUNJAB)

INDIA

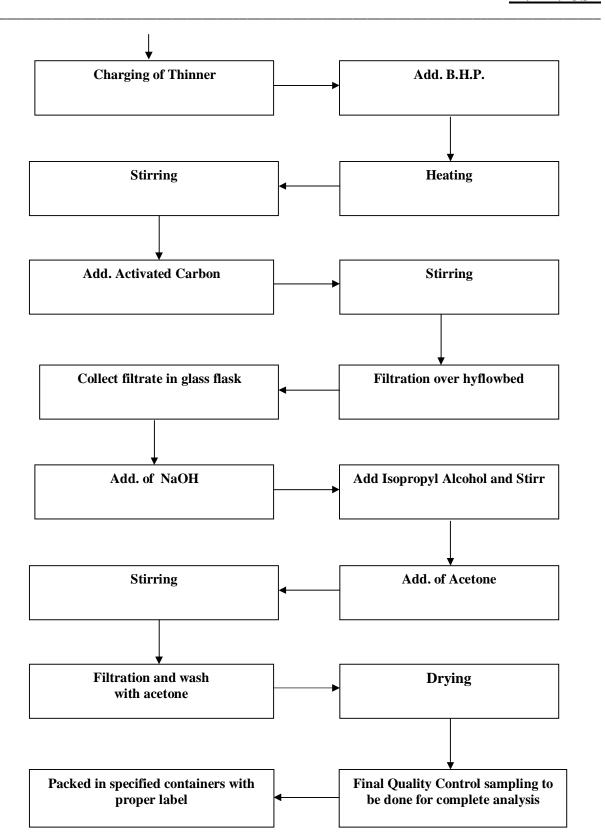
MANUFACTURING PROCESS OF BETAMETHASONE SODIUM PHOSPHATE

IP/ BP/ USP

Raw Material : -


- 1. Betamethasone (Base)
- 2. Pyro Phosphoryl Chloride
- 3. T.H.F.
- 4. Chloroform
- 5. Isopropyl Alcohol
- 6. Acetone
- 7. Caustic Flakes (LR)
- 8. Activated Carbon
- 9. Hyflow Supercell
- 10. D. M. Water

- 1. Clean & check all the machine used for production in all respect before use.
- 2. Charging of T.H.F.
- 3. Charging of Betamethasone (Base)
- 4. Cool it up to -5° C
- 5. Add. Of Pyro Phosphoryl Chloride
- 6. Stirring
- 7. Rx / mass quenched in ice + water
- 8. Stirring
- 9. Charge Rx / mass in glass flask
- 10. Heating
- 11. Recover T.H.F. / concentration U / Vacuum
- 12. Stirring
- 13. Filtration
- 14. Washing with D.M. Water
- 15. Drying
- 16. Cleaning and checking in Glass flask
- 17. Charging of Thinner
- 18. Add. B.H.P.
- 19. Heating
- 20. Stirring


MANUFACTURING PROCESS OF BETAMETHASONE SODIUM PHOSPHATE

- 21. Add. Activated Carbon
- 22. Stirring
- 23. Filtration over hyflowbed
- 24. Collect filtrate in glass flask
- 25. Add. of NaOH
- 26. Stirr and add Isopropyl Alcohol
- 27. Add. of Acetone
- 28. Stirring
- 29. Filtration and wash with acetone
- 30. Drying
- 31. Final Quality Control sampling to be done for complete analysis.
- 32. Packed in specified containers with proper label

FLOW CHART

FLOW CHART OF BETAMETHASONE SODIUM PHOSPHATE

MANUFACTURING PROCESS OF BETAMETHASONE DIPROPIONATE

IP/BP/ USP

Raw Material: -

- 1. Betamethasone (Base)
- 2. Methylene Chloride
- 3. Tri Ethyl Ortho Propionate
- 4. Para Toluene Sulphonic Acid
- 5. Ethyl Acetate
- 6. Acetone
- 7. Orthophosphoric Acid
- 8. Pyridine
- 9. Propionic Anhydride
- 10. Activated Carbon
- 11. Hyflow Supercell
- 12. D. M. Water

- 1. Clean & check all the machine used for production in all respect before use.
- 2. Charging of Methylene Chloride
- 3. Charging of Betamethasone (Base)
- 4. Heat to Reflux and then add Tri Ethyl Ortho Propionate
- 5. Distill out Methylene Chloride
- 6. Addn. of Para Toluene Sulphonic Acid
- 7. Addn. of Ethyl Acetate and Acetone
- 8. Reflux the Rx. Mixture at 55 °C
- 9. Cool the Rx. Mixture at 25 °C
- 10. Then add Orthophosphoric Acid
- 11. And the Rx. Mixture at 25 °C
- 12. Filtration & Washing with
- 13. Charging of Acetone
- 14. Rx / Mass Quinch in D.M. Water
- 15. Filtration and Washing with D.M. Water
- 16. Drying, In process testing (B.M.P.)
- 17. Charging of Pyridine
- 18. Charging of B.M.P. (Dry) & cooling
- 19. Addn. of Propionic Anhydride.

MANUFACTURING PROCESS OF BETAMETHASONE DIPROPIONATE

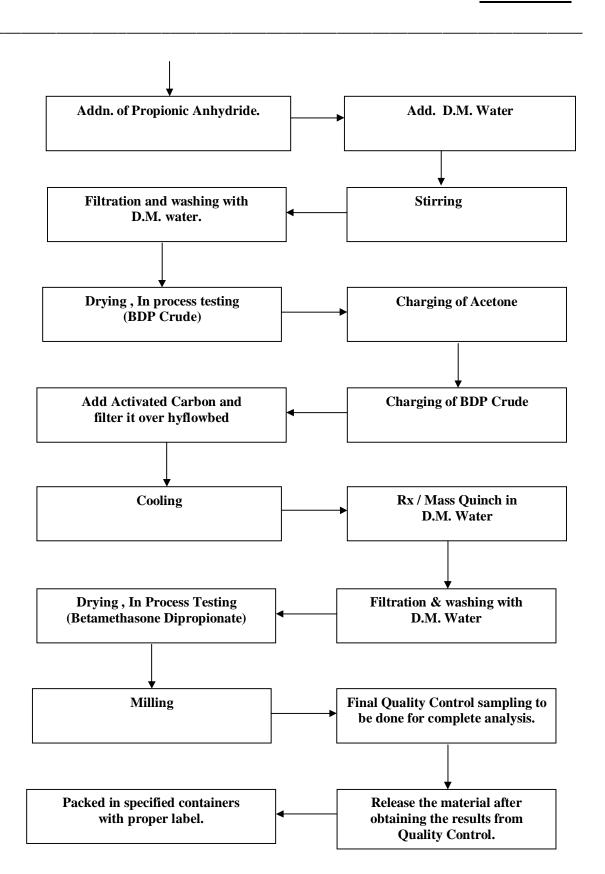
- 20. Add. D.M. Water
- 21. Stirring
- 22. Filtration and washing with DM water.
- 23. Drying, In process testing (BDP Crude)
- 24. Charging of Acetone
- 25. Charging of BDP Crude
- 26. Add Activated Carbon and filter it over hyflowbed
- 27. Cooling
- 28. Rx / Mass Quinch in D.M. Water
- 29. Filtration & washing with D.M. Water
- 30. Drying, In Process Testing (Betamethasone Dipropionate)
- 31. Milling
- 32. Final Quality Control sampling to be done for complete analysis
- 33. Release the material after obtaining the results from Quality Control
- 34. Packed in specified containers with proper label.

Charging of Pyridine

FLOW CHART OF BETAMETHASONE DIPROPIONATE

Charging of B.M.P. (Dry)

& cooling


IP /BP/ USP

Raw Material Charging of Methylene Chloride (Betamethasone Base) Addn. of **Heat to Reflux Tri Ethyl Ortho Prpionate** Addn. of Para Toluene Sulphonic **Distill out Methylene Chloride** Acid (PTSA) Addn. of Ethyl Acetate and **Add Ortho Phosphoric Acid** refluxed **Charging of Wet Cake Charging of Acetone** Rx / Mass Quinch in Addn. of Acetone D.M. Water Filtration and Washing with Drying, In process testing D.M. Water (B.M.P.)

Page 8

FLOW CHART OF BETAMETHASONE DIPROPIONATE

IP /BP/ USP

MANUFACTURING PROCESS OF BETAMETHASONE VALERATE

IP/BP/ USP

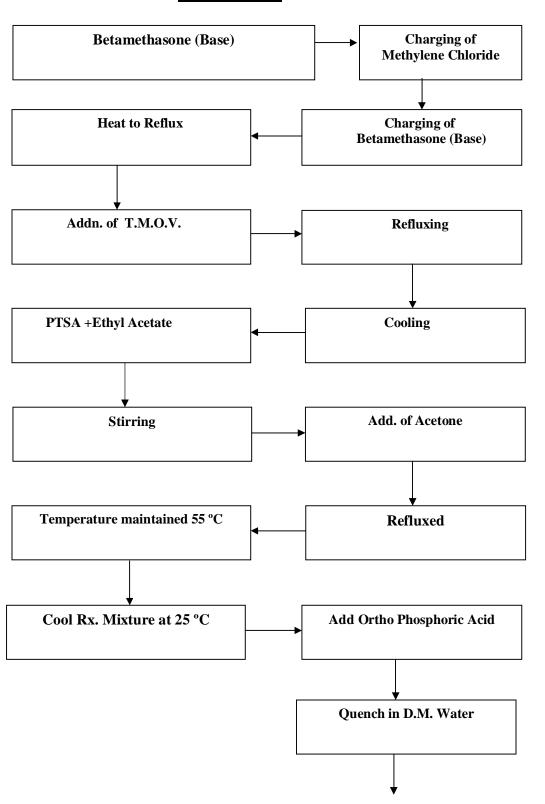
Raw Material: -

- 1. Betamethasone (Base)
- 2. Methylene Chloride
- 3. T.M.O.V.
- 4. Para Toluene Sulphonic Acid
- 5. Ethyl Acetate
- 7. Acetone
- 8. Orthophosphoric Acid
- 9. Activated Carbon
- 10. Hyflow Supercell
- 11. D. M. Water

- 1. Clean & check all the machine used for production in all respect before use.
- 2. Charging of Methylene Chloride
- 3. Charging Of Betamethasone (Base)
- 4. Heat to Reflux
- 5. Addn. of T.M.O.V.
- 6. Refluxing
- 7. Cooling
- 8. Add. PTSA + Ethyl Acetate
- 9. Stirring
- 10. Add. of D.M. Water
- 11. Reflux the Rx. mixture at 55 °C
- 12. Cool the Rx, mixture at 25 °C
- 13. Maintain the temperature at 25 °C
- 14. Add Ortho Phosphoric Acid
- 15. Rx/ Mass Quinch in D.M. Water
- 16. Filtration Process
- 17. Wash with DM Water
- 18. Drying
- 19. Cleaning & Checking of Glass Flask
- 20. Charging of Acetone

MANUFACTURING PROCESS OF BETAMETHASONE VALERATE

IP/BP/ USP



- 21. Add. Of Betamethasone Valerate (Crude)
- 22. Stir for Dissolution
- 23. Add. of Activated Carbon
- 24. Stirring
- 25. Filter through Hyflow bed. (Acetone)
- 26. Wash Hyflow Bed with Acetone
- 27. Collect filtrate & Washing
- 28. Add. D.M. Water
- 29. Stirring
- 30. Filter and wash with D.M. Water
- 31. Drying
- 32. Final Quality Control sampling to be done for complete analysis.
- 33. Release the material after obtaining the results from Quality Control.
- 34. Packed in specified containers with proper label.

FLOW CHART OF BETAMETHASONE VALERATE

IP / BP/USP

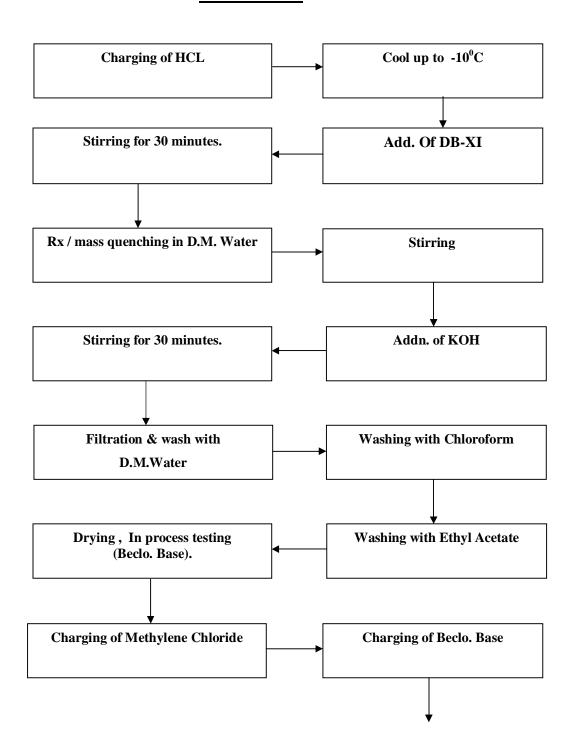
FLOW CHART

IP / BP/USP

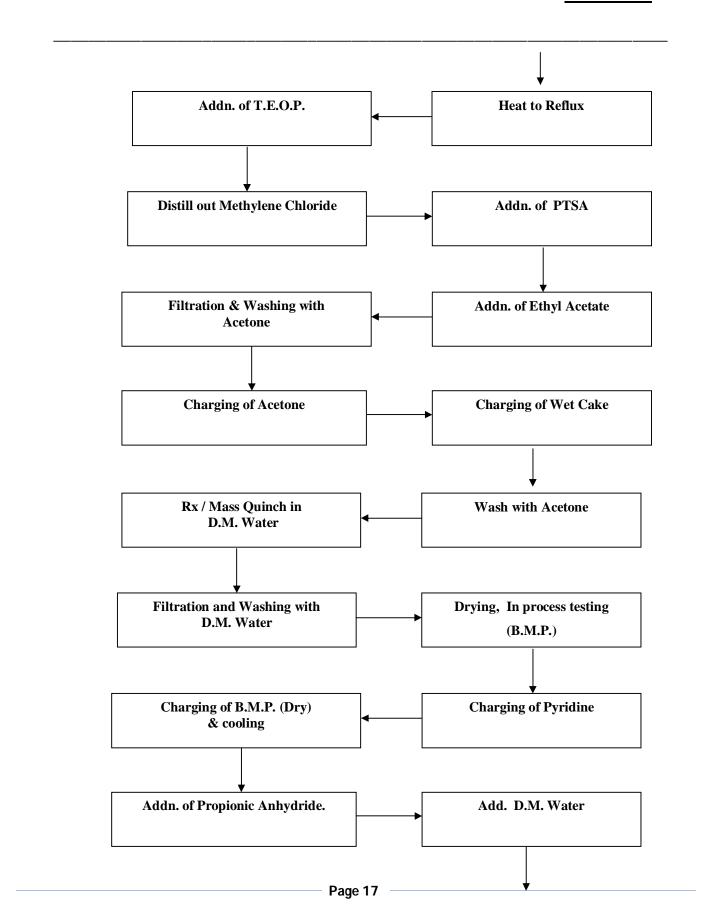
MANUFACTURING PROCESS OF BECLOMETHASONE DIPROPIONATE

IP/BP/ USP

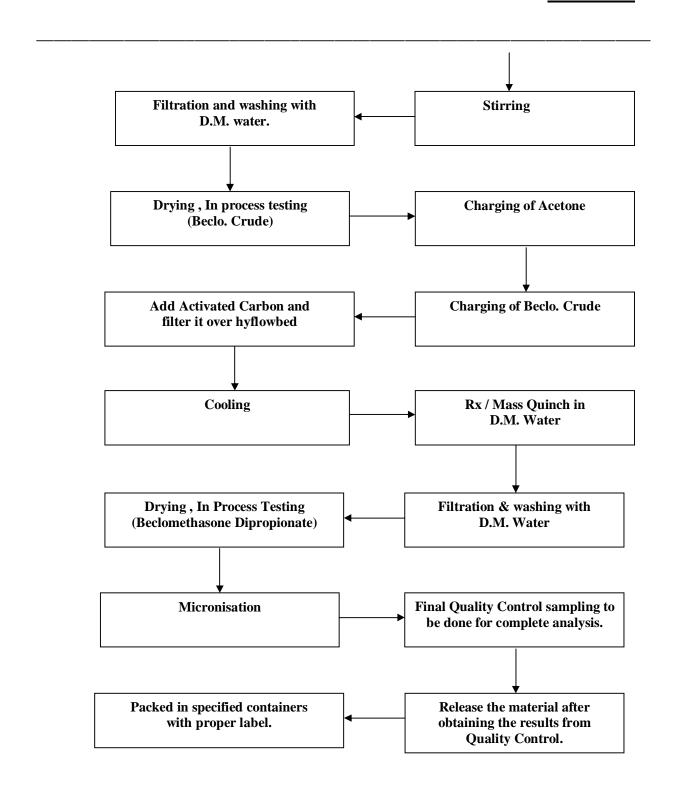
Raw Material: -


- 1. DB XI
- 2. Hydrochloric Acid (HCL)
- 3. Potassium Hydroxide (KOH)
- 4. Chloroform
- 5. Methylene Chloride
- 6. Tri Ethyl Ortho Propionate (TEOP)
- 7. Ethyl Acetate
- 8. Para Toluene Sulphonic Acid (PTSA)
- 9. Acetone
- 10. Ortho Phosphoric Acid
- 11. Pyridine
- 12. Propionic Anhydride
- 13. Activated Carbon
- 14. Hyflow Supercell
- 15. D. M. Water

- 1. Clean & check all the machine used for production in all respect before use.
- 2. Charging of HCL
- 3. Cool up to -10° C
- 4. Addition of DB-XI
- 5. Stirring for 30 minutes.
- 6. Rx / mass quenching in D.M. Water
- 7. Stirring
- 8. Addn. of KOH solution
- 9. Stirring 30 minutes
- 10. Filtration & wash with D. M. Water
- 11. Washing with Chloroform
- 12. Washing with Ethyl Acetate
- 13. Drying, In process testing (Beclo. Base).
- 14. Charging of Methylene Chloride


MANUFACTURING PROCESS OF BECLOMETHASONE DIPROPIONATE

- 15. Charging of Beclomethasone Base
- 16. Heat to Reflux
- 17. Addn. of T.E.O.P.
- 18. Distill out Methylene Chloride
- 19. Addn. of PTSA
- 20. Addn. of Ethyl Acetate
- 21. Reflux the Rx. Mixture at 55 °C
- 22. Cool the Rx. Mixture at 25 °C
- 23. Then add Orthophosphoric Acid
- 24. And the Rx. Mixture at 25 °C
- 25. Filtration & Washing with
- 26. Charging of Acetone
- 27. Filtration & Washing with Acetone
- 28. Charging of Acetone
- 29. Rx / Mass Quinch in D.M. Water
- 30. Filtration and Washing with D.M. Water
- 31. Drying, In process testing (B.M.P.)
- 32. Charging of Pyridine
- 33. Charging of B.M.P. (Dry) & cooling
- 34. Addn. of Propionic Anhydride.
- 35. Add. D.M. Water
- 36. Stirring
- 37. Filtration and washing with DM water.
- 38. Drying, In process testing (Beclo. Crude)
- 39. Charging of Acetone
- 40. Charging of Beclo. Crude
- 41. Add Activated Carbon and filter it over hyflowbed
- 42. Cooling
- 43. Rx / Mass Quench in D.M. Water
- 44. Filtration & washing with D.M. Water
- 45. Drying, In Process Testing (Beclomethasone Dipropionate)
- 46. Final Quality Control sampling to be done for complete analysis.
- 47. Release the material after obtaining the results from Quality Control.
- 48. Packed in specified containers with proper label.


FLOW CHART

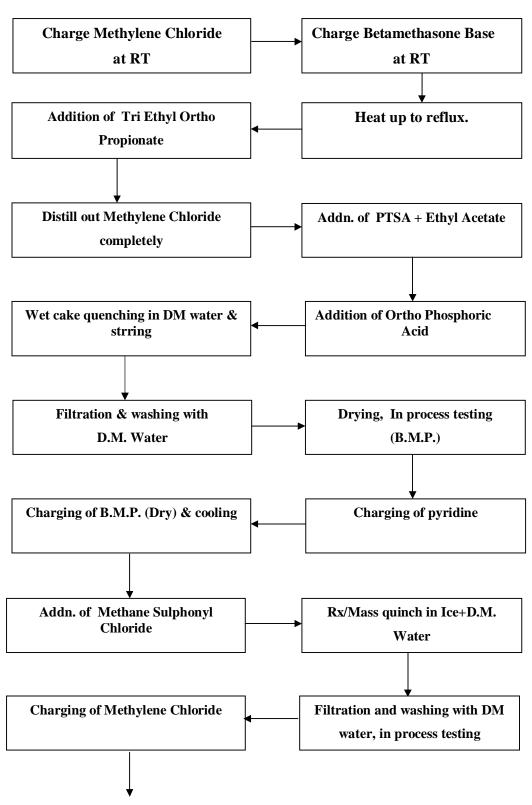
FLOW CHART OF BECLOMETHASONE DIPROPIONATE

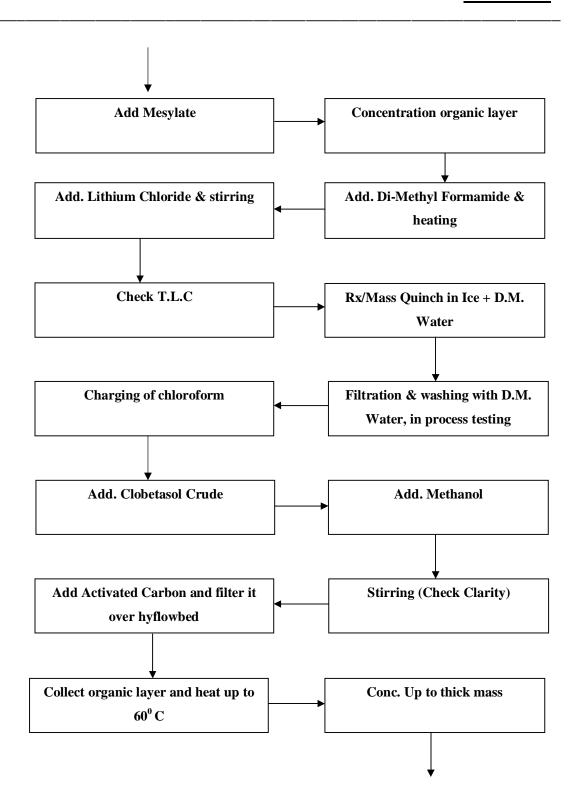
FLOW CHART OF BECLOMETHASONE DIPROPIONATE

MANUFACTURING PROCESS OF CLOBETASOL PROPIONATE

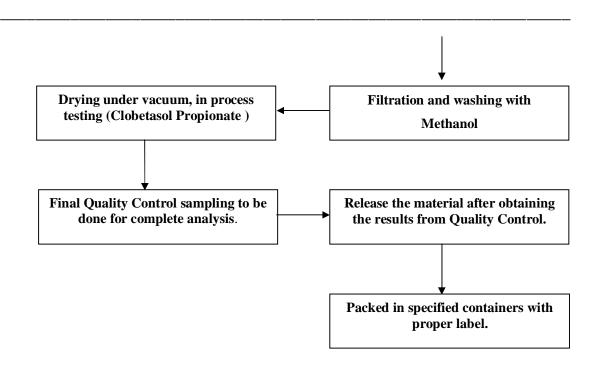
IP/BP/ USP

Raw Material: -


- 1. Betamethasone Base
- 2. Methylene Chloride
- 3. Tri Ethyl Ortho Propionate.
- 4. Para Toluene Sulphonyl Chloride + Ethyl Acetate
- 5. Ortho Phosphoric Acid
- 6. Acetone
- 7. Pyridine
- 8. Methane Sulphonyl Chloride
- 9. Dimethyl Formamide
- 10. Lithium Chloride
- 11. Methanol
- 12. Chloroform
- 13. Activated Carbon
- 14. Hyflow Supercell
- 15. D. M. Water


- 1. Clean & check all the machine used for production in all respect before use.
- 2. Charge Methylene Chloride at RT
- 3. Charge Betamethasone Base at RT
- 4. Heat up to reflux.
- 5. Addition of Tri Ethyl Ortho Propionate
- 6. Addn. of PTSA
- 7. Addn. of Ethyl Acetate
- 8. Reflux the Rx. Mixture at 55 °C
- 9. Cool the Rx. Mixture at 25 °C
- 10. Then add Orthophosphoric Acid
- 11. And the Rx. Mixture at 25 °C
- 12. Filtration & Washing with
- 13. Charging of Acetone
- 14. Filtration & Washing with Acetone
- 15. Charging of Acetone
- 16. Wet cake quenching in DM water & strring.

MANUFACTURING PROCESS OF CLOBETASOL PROPIONATE


- 17. Drying, In process testing (B.M.P.)
- 18. Charging of pyridine.
- 19. Charging of B.M.P. (Dry) & cooling
- 20. Addn. of Methane Sulphonyl Chloride.
- 21. Rx/Mass quinch in Ice+ D.M. Water
- 22. Filtration and washing with DM water, in process testing (Mesylate)
- 23. Charging of Methylene Chloride
- 24. Add Mesylate
- 25. Concentration organic layer
- 26. Add. Di-Methyl Formamide & heating
- 27. Add. Lithium Chloride & stirring
- 28. Check T.L.C.
- 29. Rx/Mass Quinch in Ice + D.M. Water
- 30. Filtration & washing with D.M. Water, in process testing (Clobetasol Crude)
- 31. Charging of chloroform
- 32. Add. Clobetasol Crude
- 33. Add. Methanol
- 34. Stirring (Check Clarity)
- 35. Add Activated Carbon and filter it over hyflowbed
- 36. Collect organic layer and heat up to 60° C
- 37. Conc. Up to thick mass
- 38. Filtration and washing with Methanol
- 39. Drying under vacuum, in process testing (Clobetasol Propionate)
- 40. Final Quality Control sampling to be done for complete analysis.
- 41. Release the material after obtaining test results from Quality Control.
- 42. Packed in specified containers with proper label.

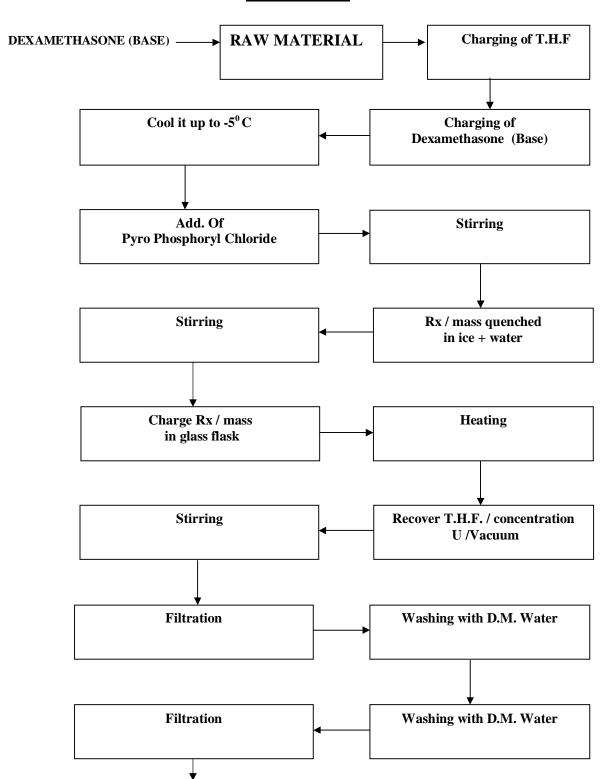
FLOW CHART

FLOW CHART OF CLOBETASOL PROPIONATE

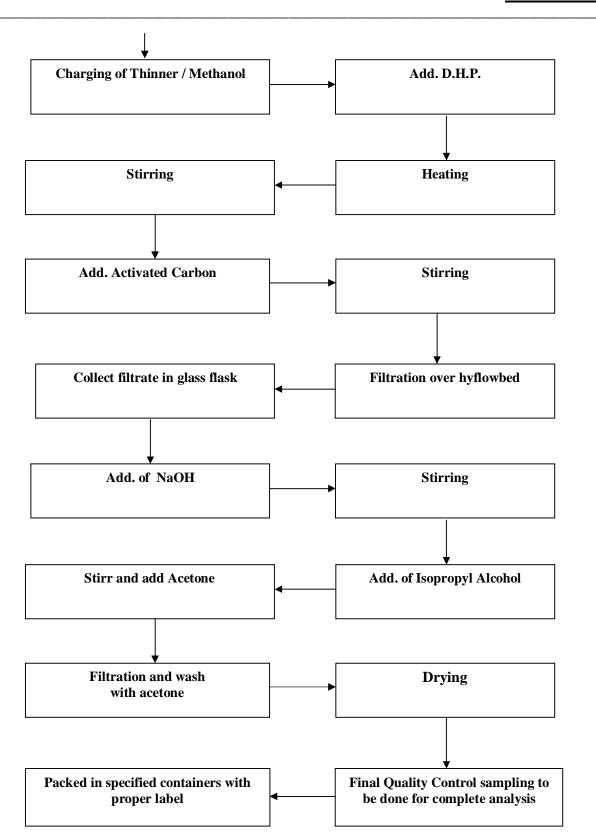
MANUFACTURING PROCESS OF DEXAMETHASONE SODIUM PHOSPHATE

IP/ BP/ USP

Raw Material: -


- 1. Dexamethasone (Base)
- 2. Pyro Phosphoryl Chloride
- 3. Tetra Hydro Furan (T.H.F)
- 4. Thinner / Methanol
- 5. Isopropyl Alcohol
- 6. Acetone
- 7. Caustic Flakes (LR)
- 8. Activated Carbon
- 9. Hyflow Supercell
- 10. D. M. Water

- 1. Clean & check all the machine used for production in all respect before use.
- 2. Charging of T.H.F
- 3. Charging of Dexamethasone (Base)
- 4. Cool it up to -5° C
- 5. Add. Of Pyro Phosphoryl Chloride
- 6. Stirring
- 7. Rx / mass quenched in ice + water
- 8. Stirring
- 9. Charge Rx / mass in glass flask
- 10. Heating
- 11. Recover T.H.F. / concentration U /Vacuum
- 12. Stirring
- 13. Filtration
- 14. Washing with D.M. Water
- 15. Drying
- 16. Cleaning and checking in Glass flask
- 17. Charging of Thinner / Methanol
- 18. Add. D.H.P.
- 19. Heating and Stirring
- 20. Add. Activated Carbon and then stirring


MANUFACTURING PROCESS OF DEXAMETHASONE SODIUM PHOSPHATE

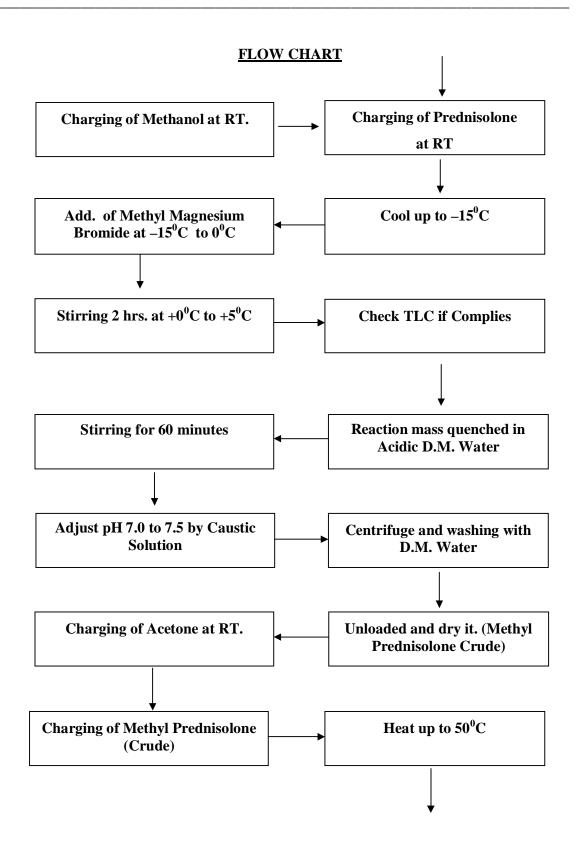
- 21. Filtration over hyflowbed
- 22. Collect filtrate in glass flask
- 23. Add. of NaOH
- 24. Stirring
- 25. Addition of Isopropyl Alcohol
- 26. Add. of Acetone
- 27. Stirring
- 28. Filtration and wash with acetone
- 29. Drying
- 30. Final Quality Control sampling to be done for complete analysis.
- 31. Packed in specified containers with proper label

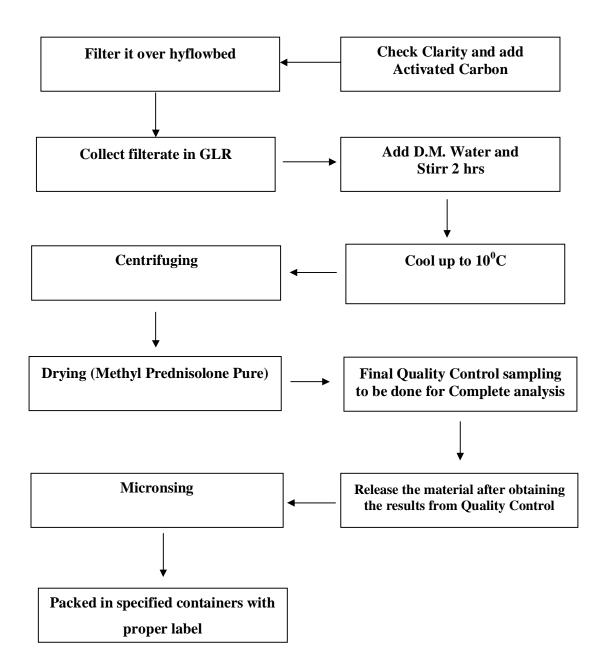
FLOW CHART

FLOW CHART OF DEXAMETHASONE SODIUM PHOSPHATE

MANUFACTURING PROCESS OF METHYL PREDNISOLONE

IP/BP/USP


Raw Material: -


- 1. Prednisolone
- 2. Methanol
- 3. Methyl Magnesium Bromide
- 4. Acetic Acid
- 5. Caustic Soda Flakes
- 6. Acetone
- 7. Activated Carbon
- 8. Hyflow Supercell
- 9. D. M. Water

- 1. Clean & check all the machine used for production in all respect before use.
- 2. Charging of Methanol at RT.
- Charging of Prednisolone at RT
- 4. Cool up to -15° C
- 5. Add. of Methyl Magnesium Bromide at -15° C to 0° C
- 6. Stirring 2 hrs. at $+0^{\circ}$ C to $+5^{\circ}$ C
- 7. Check TLC if Complies
- 8. Reaction mass quenched in Acidic D.M. Water.
- 9. Stirring for 60 minutes.
- 10. Adjust pH 7.0 to 7.5 by Caustic Solution.
- 11. Centrifuge and washing with D.M. Water
- 12. Unloaded and dry it. (Methyl Prednisolone Crude)
- 13. Charging of Acetone at RT.
- 14. Charging of Methyl Prednisolone (Crude)
- 15. Heat up to 50° C
- 16. Check Clarity and add Activated Carbon.

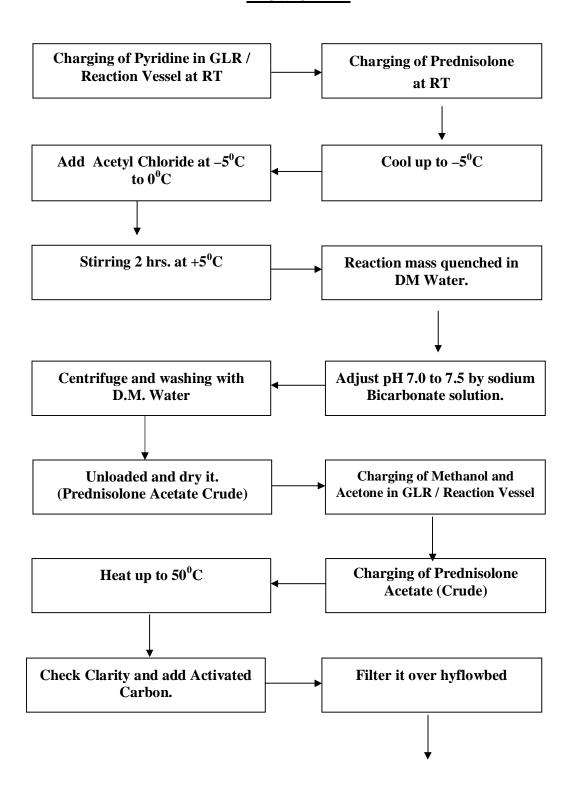
MANUFACTURING PROCESS OF METHYL PREDNISOLONE

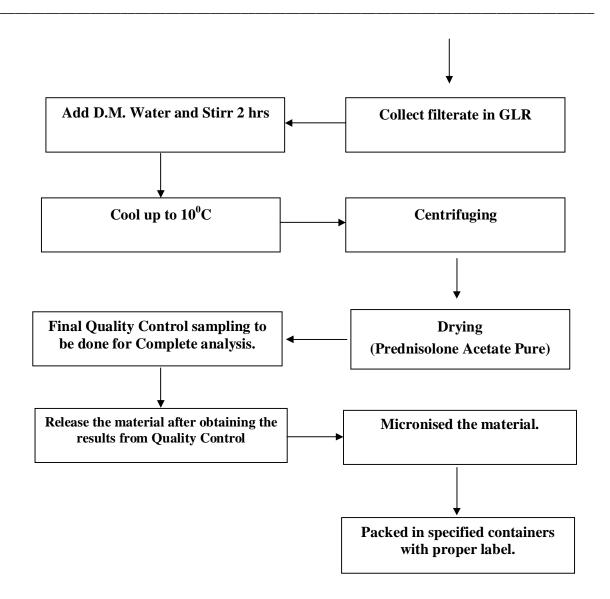
- 17. Filter it over hyflowbed
- 18. Collect filterate in GLR
- 19. Add of D.M. Water and Stirr 2 hrs.
- 20. Cool up to 10^{0} C
- 21. Centrifuging
- 22. Drying (Methyl Prednisolone Pure)
- 23. Final Quality Control sampling to be done for Complete analysis.
- 24. Release the material after obtaining the results from Quality Control
- 25. Micronised the material.
- 26. Packed in specified containers with proper label.

MANUFACTURING PROCESS OF PREDNISOLONE ACETATE

IP/ BP/ USP

Raw Material:


- 1. Prednisolone
- 2. Methanol
- 3. Acetyl Chloride
- 4. Pyridine
- 5. Sodium Bicarbonate
- 6. Acetone
- 7. Activated Carbon
- 8. Hyflow Supercell
- 9. D. M. Water


- 1. Clean & check all the machine used for production in all respect before use.
- 2. Charging of Pyridine in GLR / Reaction Vessel at RT.
- 3. Charging of Prednisolone at RT
- 4. Cool up to -5° C
- 5. Add Acetyl Chloride at -5° C to 0° C
- 6. Stirring 2 hrs. at $+5^{\circ}$ C
- 7. Reaction mass quenched in DM Water.
- 8. Adjust pH 7.0 to 7.5 by sodium Bicarbonate solution
- 9. Centrifuge and washing with D.M. Water
- 10. Unloaded and dry it. (Prednisolone Acetate Crude)
- 11. Charging of Methanol and Acetone in GLR / Reaction Vessel
- 12. Charging of Prednisolone Acetate (Crude)
- 13. Heat up to 50° C
- 14. Check Clarity and add Activated Carbon
- 15. Filter it over hyflowbed

MANUFACTURING PROCESS OF PREDNISOLONE ACETATE

- 16. Collect filterate in GLR
- 17. Add D.M. Water and Stirr 2 hrs.
- 18. Cool up to 10^{0} C
- 19. Centrifuging
- 20. Drying (Prednisolone Acetate Pure)
- 21. Final Quality Control sampling to be done for Complete analysis.
- 22. Release the material after obtaining the results from Quality Control
- 23. Micronised the material.
- 24. Packed in specified containers with proper label

FLOW CHART

MANUFACTURING PROCESS OF DEFLAZACORT

Raw Material: -

- 1. 21 beta methyl ,17 nitro, 3,20- dione, 1,4 pregnadiene
- 2. Methanol.
- 3. Glacial acetic acid
- 4. Acetone
- 5. Potassium acetate
- 6. Activated carbon
- 7. Hyflow
- 8. Nitrogen gas
- 9. DM Water

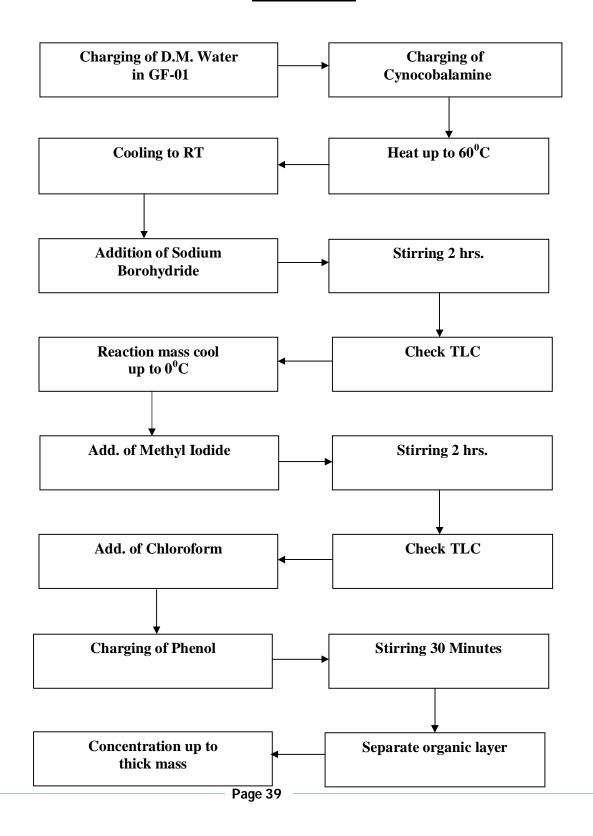
- 1. Charging of Methanol in glass flask at RT
- 2. Heat up to clear solution
- 3. Cleaning of glass flask
- 4. Connecting of nitrogen gas cylinder
- 5. Charging of 21 beta methyl ,17 nitro, 3,20- dione, 1,4 pregnadiene
- 6. Addition of above solution at 5°C to 10°C
- 7. Stirring for 2 hours at 5° C to 10° C
- 8. Check TLC if ok
- 9. Addition of Acidic Water solution
- 10. Stirring for 2 hours 5°C to 10°C
- 11. Filtration and slurry washing with DM Water
- 12. Drying of Deflazacort crude in oven
- 13. Charging of Acetone in glass flask at RT
- 14. Charging of Methanol in glass flask at RT
- 15. Charging of Potassium Acetate in glass flask at RT
- 16. Charging of Glacial acetic acid in glass flask at RT
- 17. Charging of Deflazacort crude
- 18. Heat up to reflux
- 19. Reflux for 3 hours at 65 to 70° C

MANUFACTURING PROCESS OF DEFLAZACORT

- 20. Check TLC if ok
- 21. Addition of Activated carbon
- 22. Stirring for 1 hour
- 23. Filtration over hyflow bed prepaid in Methanol
- 24. Concentration of filtrate up to thick mass
- 25. Cooling up to 10 0 C
- 26. Filtration and washing with Methanol
- 27. Drying in oven
- 28. QC Sampling for complete analysis.

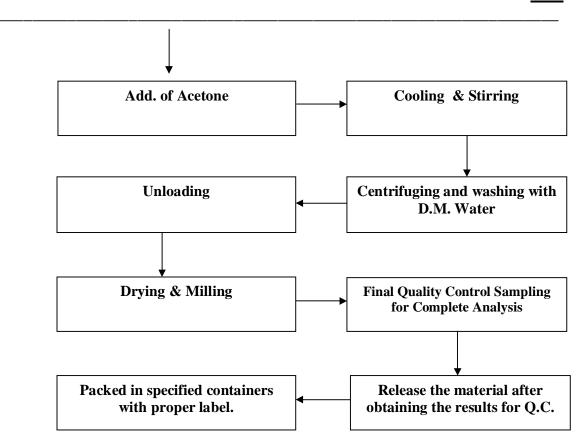
MANUFACTURING PROCESS OF METHYL COBALAMINE / MECOBALAMIN

JP


Raw Material: -

- 1. Cynocobalamine
- 2. Chloroform
- 3. Methyl Iodide
- 4. Sodium Borohydride
- 5. Phenol
- 6. Acetone
- 7. D.M. Water

- 1. Clean & check all the Equipments used for production in all respect before use as per SOP
- 2. Charge D.M. Water in Glass Flask (GF-01) at RT
- 3. Charging of Cynocobalamine in GF-01 at RT
- 3. Heat up to 60° C and Cool up to RT
- 5. Addition of Sodium Borohydride in GF-01 at RT
- 6. Stirring for 2 hrs. at RT
- 7. Check TLC if OK
- 8. Reaction mass cool up to 20° C
- 9. Addition of Methyl Iodide in RT-01 at RT
- 10. Stirring 2 hrs.
- 11. Check TLC
- 12. Add. of Chloroform in RT-01 at RT
- 13. Add. of Phenol in RT-01 at RT
- 14. Stirring for 30 Minutes. at 32-35^oC
- 15. Separate organic layer
- 16. Concentration up to thick mass
- 17. Add. of Acetone in RT-01 at RT
- 18. Cooling up to 10^oC & Stirring for 30 minutes.
- 19. Filtration and slurry making with D.M. Water
- 20. Unloading of wet cake
- 19. Drying in Electric Tray Drier (ETD-01)
- 20. Quality Control sampling to be done for complete analysis.
- 21. Multi milling (MM-01)
- 23. Release the material for Packing after obtaining the results from Q.C.D.
- 24. Packed in specified containers with proper label.


JP

FLOW CHART

FLOW CHART OF METHYL COBALAMINE / MECOBALAMIN

J. P.

