ANNEXURE

Sr No	Description	Page No
5	Prefeasibility Report	1
6	Location Map	6
7	Layout of Factory Premises	7
8	Aerial Photographs	8
9	Manufacturing Process of Chemicals with material	10
	Balance and flow sheets	
10	Water Budget	28
11	Energy Budget	29
12	10 KM Radius Map	30
13	Environmental Status Report	31
14	Summery	44

6. 1. Project Proponent & Background

Somaiya group is one of the old and well-established industrial houses in India with diversified interests in:

- a. Sugar (white and refined)
- b. Alcohol and Bulk Organic Chemicals
- c. Specialty Chemicals
- d. Printing and Publishing
- e. Education & Social welfare

a. Sugar and its by Products

i) The Godavari Sugar Mills Limited

Sugar Plant

Location:

Sameerwadi, Dist. Bagalkot, State: Karnataka

Capacity: 7,500 TCD and propose to expand to 15,000 TCD

Average Sugar production 1,60,000 MT per annum at present and shall be 3,20,000 MT per annum after expansion.

Co-generation Power plant (Renewable Energy)

Location:

Sameerwadi, Tal Mudhol, Dist. Bagalkot, State: Karnataka

Installed Capacity: 24 MW (1st stage) and 40 MW (IInd Stage). Total capacity after expansion is 64 MW.

ii) K.J. Somaiya Institute of Applied Agricultural Research (KIAAR).

Location: Sameerwadi, Dist. Bagalkot, State: Karnataka.

Established with the objective of doing basic research in promoting early maturing & high yielding sugarcane varieties and propagating modern and scientific agricultural practices.

b. Alcohol and Bulk organic chemicals

i. Somaiya Organo Chemicals.

(A Unit of The Godawari Sugar Mills Ltd.)

Location:

Sakarwadi, Tal Kopargaon, Dist. Ahmednagar, State: Maharashtra

Distillery:

Capacity: Industrial Alcohol 30,000 KL per annum

Organic Chemical Plant

Capacity:

Acetic Acid : 22,000 MT per annum

Ethyl Acetate : 30,000 MT per annum

Crotonaldehyde : 5,000 MT per annum

Paraldehyde : 600 MT per annum

Crotonic Acid : 150 MT per annum

Crotonic Anhydride : 50 MT per annum

Location:

Sameerwadi, Tal Mudhol, Dist. Bagalkot, State: Karnataka

Distillery:

Capacity:

Ethyl Alcohol/Rectified Spirit : 20,000 KL per annum (Existing)

60,000 KL per Annum after expansion

Ethanol (Absolute Alcohol) : 16,500 KL per annum (Existing)

50,000 KL Annum after expansion.

Extra Neutral Alcohol (ENA) : 12,000 KL per annum

Ethyl Lactate : 500 MT per annum

Bhoomi Labh (An organic Manure) : 15,000 MT per annum (Existing)

45,000 MT per annum after expansion

Registered Office:

Somaiya Bhavan, 45-47, M.G. Road, PO Box No. 384, Fort, Mumbai – 400 001.

Phone: (022) 22048272/61702100

d. Printing and Publishing

i) Book Center Ltd.

It has a large, well-equipped printing press in Mumbai to cater services of Graphic Communication under one roof. Being in the industry for last 30 years and with the team of professionals, it has expertise of executing any assignment of clients (Multicolor & B/W) of any size with secrecy and of course integrity of product.

ii) Somaiya Publications Pvt. Ltd.,

Specializes in publication of nob-fictional and educational books of high standard. Also Publishes books on topics which have bearing on economics, philosophy, management, indian culture and heritage.

e. Education & Social welfare

i) Somaiya Vidyavihar

Founded in 1959, Somaiya Vidyavihar has come to encompass the entire educational spectrum from kindergarten to post graduate education, providing education to around 26,000 students every year, and has a faculty strength of over 1500 teachers. It comprises of 34 institutes including Jr. & Sr. Colleges in Arts, Science & Commerce, a polytechnic, Engineering College, Sanskriti peetham, Buddhist Centre, Management Institute and a "Kendriya Sanskrit Vidyapeeth", each having well equipped laboratories, libraries and hostel arrangements.

ii) Somaiya Ayurvihar

Somaiya Ayurvihar is committed to offering an integrated package of general and Specialized health care services. It comprises of a Medical College, a Nursing School, a 550 bed Hospital with a Blood Bank and an HIV Treatment Centre, a Research Centre complex and an Institute of Paramedical Studies –a College of Physiotherapy.

iii) Shri Girivanavasi Pragati Mandal

In order to bring neglected brethren living in the forest and hilly regions to the mainstream of our national life, Shri Girivanavasi Pragati Mandal was formed in 1974. The Mandal held 7 (seven) annual Eye-cum-Medical Camps in different States from 1975 to 1981 and treated 1,85,417 people in these Camps held in the interior far away from the rail head or bus stops to reach out to people living in the remotest part. The Mandal has since established a 40 bed Eye- cum-General Hospital and a permanent Experimental Farm, a Dairy, an Agricultural Training Centre, and a free Boarding School at Nareshwadi, near Dahanu, in Thane District, Maharashtra, about 120 kms away from Mumbai for the welfare of the Tribals right in the midst of the Tribal Area.

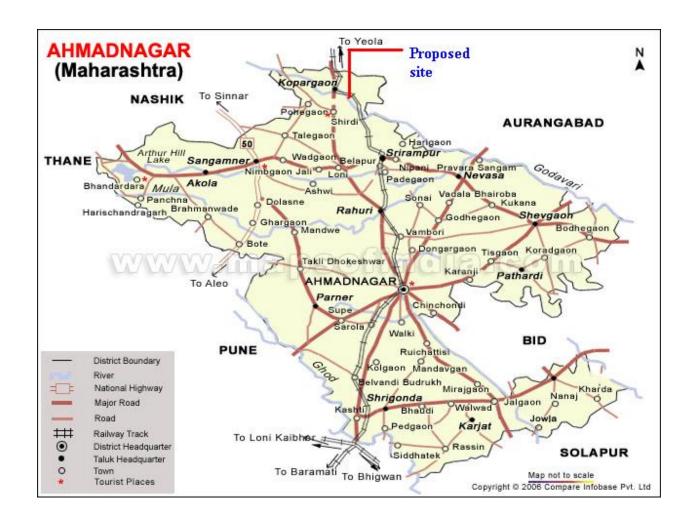


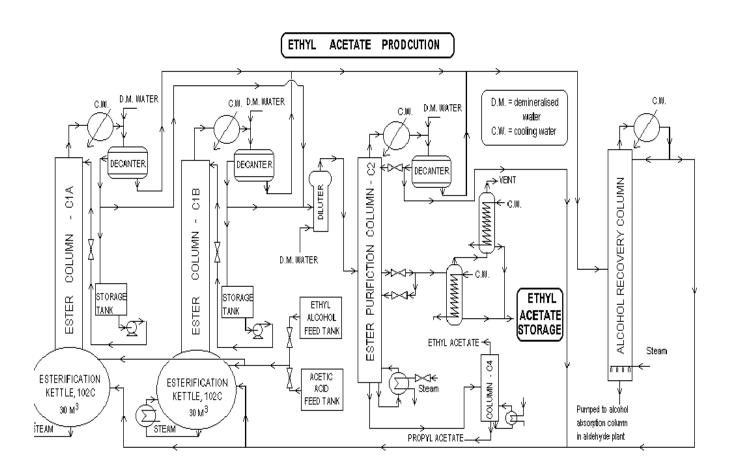
Fig 1: Location map

Layout Map of Factory Premises

Aerial Photographs of the Factory

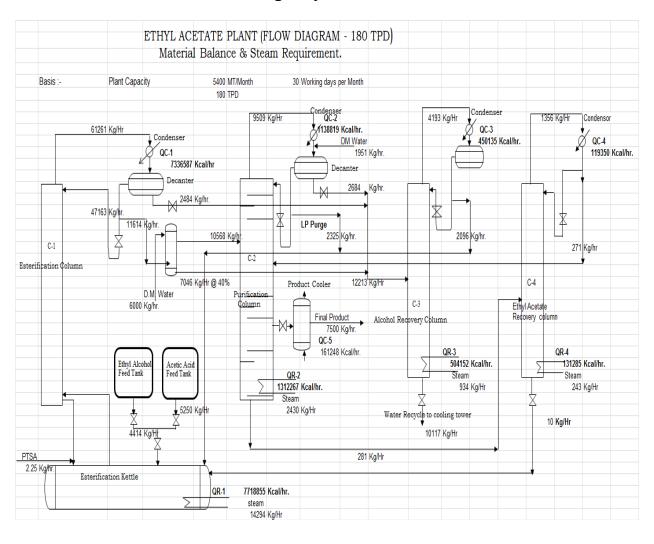
pg. 8

Manufacturing Process

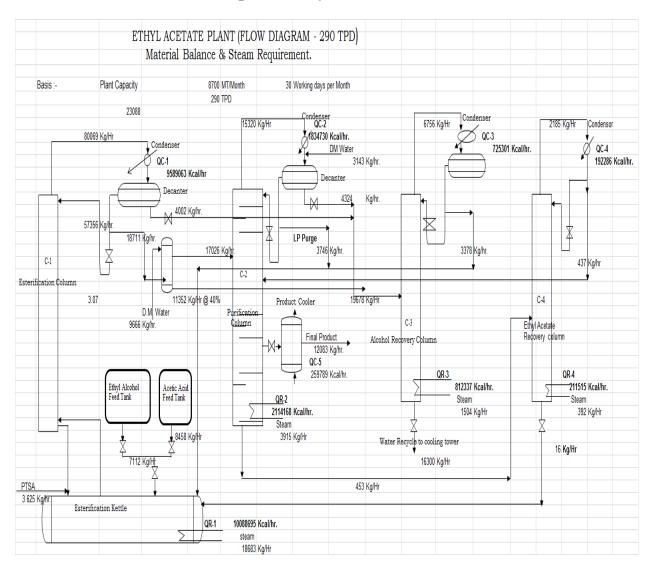

A) Ethyl Acetate Plant:-

a) Process Discreption

Ethyl acetate is produced by esterification of acetic acid and ethanol in presence of Para Toluene Sulphonic Acid as catalyst.


Glacial acetic acid, 95% ethanol and 1% PTSA are mixed and continuously feed into the esterification kettle. Suitable amount of ternary azeotrope is withdrawn from the top of the esterification column, by maintaining optimum top temperature and is then fed into the decanter. Fresh De-mineralized water is also fed in to the decanter to separate 94% ester as upper heterogeneous phase. This ester is fed to the drying (Ester Purification) column where the ternary distillation (water-ethanol-ethyl acetate) occurs. Final pure ethyl acetate is drawn continuously from the middle of the distillation column, cooled in the product cooler and sent to storage tank. The product purity is 99.5% to 99.9% pure. The top vapour outlet is again mixed with excess water is fed to another decanter. Small amount of ester separated is refluxed to the column. The bottom product of the two decanters is sent to the alcohol recovery column. From it the recovered vapor is sent to the reaction kettle.

b) Process Flow sheet


c) Material Balance

Existing Ethyl Acetate Plant

Water Balance (Consumption & g	generation b	reak-up) :-											
	ess Water :-		Kg/Hr										
Reaction water	er generated :-	1575	Kg/Hr										
Water in	R.S. feed :-	353	Kg/Hr										
Total net water effluen	t generated :-	10117	Kg/Hr	(Drain of C-3 co	olumn)								
Total waste water			m3/day	1	,								
(Note :- Water effluent ge	enerated fro	m system is being r	ecycled to	cooling tower a	s cooling t	ower makeup w	ater, hen	ce there is zero	effluent dis	change f	rom the pl	ant.)	
Energy balance :-													
Column	C1	Unit	C2	Unit	C3	Unit	C4	Unit	Total Heat				
									Load				
Total Evaporation Load	61261	Kg/hr.	9509	Kg/hr.	4193	Kg/hr.	1356	Kg/hr.					
Reflux Ratio	4:01		3:01		1:01		4:01						
Avg.Latent Heat	120	Kcal/Kg.	120	Kcal/Kg.	107	Kcal/Kg.	88	Kcal/Kg.					
0.1				11 10 10 5	,== /	14 10 10 5	*****	14 10 10 5					
Condenser/cooler Load QC	7336587	Kcal/hr.(QC-1)	1138819	Kcal/hr.(QC-2)	450135	Kcal/hr.(QC-3)	119350	Kcal/hr.(QC-4)	9206141	Kcal/hr.(1C)		
			161248	Kcal/hr.(QC-5)									
Reboiler load	7336587	Kcal/hr.	1138819	Kcal/hr.	450135	Kcal/hr.	119350	Kcal/hr.					
Excess duty due to Low Feed temp	382268	Kcal/hr.	173448	Kcal/hr.	54016	Kcal/hr.	11935	Kcal/hr.					
Total Reboiler Duty QR	7718855	Kcal/hr.(QR-1)	1312267	Kcal/hr.(QR-2)	504152	Kcal/hr.(QR-3)	131285	Kcal/hr.(QR-4)	9666559	Kcal/hr.(QR)		
Enthalpy of steam	540	Kcal/Kg.	540	Kcal/Kg.	540	Kcal/Kg.	540	Kcal/Kg.	540				
Steam Consumption	14294	Kg/hr.	2430	Kg/hr.	934	Kg/hr.	243	Kg/hr.	17901				
,									2.39	Ton/ Ton	EA		
								Chiller Load	497828	Kcal/hr	16	5 TR	
						Stea	m Consum	ption for Chiller		Ton/ Ton	EA		
										Ton/ Tor			
							Stean	Condensate :-		Kg/Hr		to boiler as	hot water)
Cooling Water requirement :-													
	er Capacity :-	2200	m3/hr.										
	ter drift loss :-		m3/day										
Cooling Tower Blow			m3/day										
Required Cooling Tower ma			m3/day										
Water recycle from pr			m3/day										
Actual Cooling Tower make-up wa			m3/day										
Required make-up wa			m3/day										
	er Required:		m3/day										
Actual Water	Say:		m3/day										
Water Consumption Statement													
Process water		191	m3/day										
Utility water			m3/day										
Othicy water		301											

Proposed Ethyl Acetate Plant

Water Balance (Consumption & g	eneration break	.: lau										
	Process Water :-		Kg/Hr									
	water generated :-		Kg/Hr									
	er in R.S. feed :-		Kg/Hr									
Total net water eff				/ Drain of C 2 or	nlumn\							
	ater Generated :-		Kg/Hr	(Drain of C-3 co	olumnj							
			m3/day									
Total net waste water recycle t	to cooling tower:-	391	m3/day									
(Note :- Water effluent ge	naratad from au	otom is boing room	olod to oooli	na tower on coo	ling tower m	akaun watar h	anaa thara ia z	oro offluent die	ohanaa from	the plant \		
(Note water emuent ge	merateu nom sy	stelli is bellig recy	cieu io cooii	ily tower as coo	illig tower ill	iakeup water, iii	ence mere is z	ero emuem un	change nom	uie piaii.j		
Energy balance :-												
3)												
Column	C1	Unit	C2	Unit	C3	Unit	C4	Unit	Total Heat Load			
Total Evaporation Load	80069	Kg/hr.	15320	Kg/hr.	6756	Kg/hr.	2185	Kg/hr.	Loud			
Reflux Ratio	4:01	- g	3:01	- · · · · · · · · · · · · · · · · · · ·	1:01	1.3	4:01	-g				
Avg.Latent Heat	120	Kcal/Kg.	120	Kcal/Kg.	107	Kcal/Kg.	88	Kcal/Kg.				
r ng.ssaront rivet	IEV	i wairing.	120	rounty.	ivi	rounty.	30	rounty.				
Condenser/cooler Load QC	9589063	Kcal/hr.(QC-1)	1834730	Kcal/hr.(QC-2)	725301	Kcal/hr.(QC-3)	192286	Kcal/hr.(QC-4)	12601170	Kcal/hr.(QC)		
35/105/105/107 E000 40	000000	TOURTH (NOT)	259789	Kcal/hr.(QC-5)	120001	nouni.(wo')	102200	rvaini.(40.4)	12001110	rtourni.(QO)		
			233103	rcairii.(40-3)								
Reboiler load	9589063	Kcal/hr.	1834730	Kcal/hr.	725301	Kcal/hr.	192286	Kcal/hr.				
Excess duty due to Low Feed temp	499631	Kcal/hr.	279439	Kcal/hr.	87036	Kcal/hr.	19229	Kcal/hr.				
Total Reboiler Duty QR	10088695	Kcal/hr.(QR-1)	2114168	Kcal/hr.(QR-2)	812337	Kcal/hr.(QR-3)	211515	Kcal/hr.(QR-4)	13006716	Kcal/hr.(QR)		
Total Nepolici Daty Wit	10000033	rcairii.(\\\x\-1)	2114100	rcairii.(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	012331	rcairii.(Qr-5)	211010	rcairii.(Qr-4)	132207 13	rcairii.(Qr)		
Enthalpy of steam	540	Kcal/Kg.	540	Kcal/Kg.	540	Kcal/Kg.	540	Kcal/Kg.	540			
Steam Consumption	18683	Kg/hr.	3915	Kg/hr.	1504	Kg/hr.		Kg/hr.		Kg/Hr		
Oteani Consumption	10003	rvy/III.	3313	Nyrii.	1304	rtyrii.	JJL	rvy/III.		Ton/ Ton EA		
								Chiller Load		Kcal/hr	225 TR	
										Ton/ Ton EA	220 IK	
							Steam Consum	puon ioi Chiller				
							01	Candanasta		Ton/ Ton EA	/Describe to belleves	ادمادا
							Steam	Condensate :-	20010	Kg/Hr	(Recycle to boiler as	not water)
Caaling Water requirement .												
Cooling Water requirement :-	T 0'h	0500	2/1									
	Tower Capacity :-		m3/hr.									
	water drift loss :-		m3/day									
	low Down water :-		m3/day									
Required Cooling Towe			m3/day									
Water recycle from			m3/day									
	m RO permeate :-		m3/day									
Actual Cooling Tower make-up			m3/day									
Required make-up			m3/day									
Actual v	vater Required:-		m3/day									
	Say :-	150	m3/day									
Water Consumption Statement												
Process water		207	m3/day									
Utility water		150	m3/day									

B) Acetaldehyde Plant

a) Process Description

Acetaldehyde is manufactured by vapour phase oxidation of alcohol with air in presence of silver catalyst. The reaction is presented as follows.

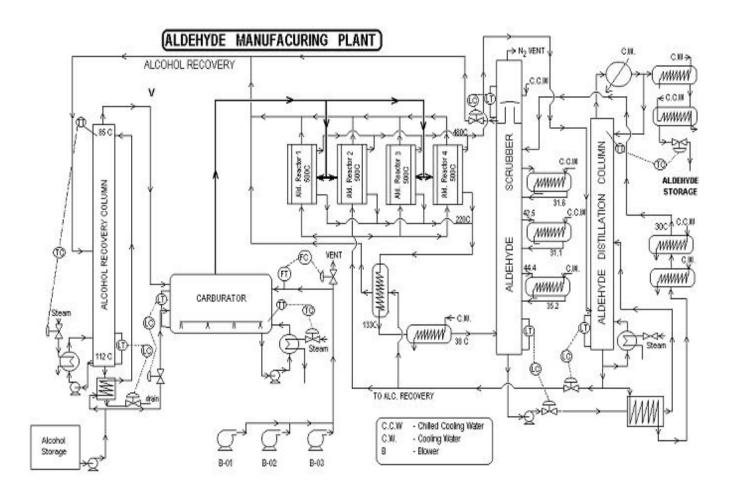
$$C_2H_5OH + \frac{1}{2} O_2 \longrightarrow CH_3CHO + H_2O$$
46 16 44 18

The ethanol vapours from alcohol recovery column are fed into the carburetor filter at a temperature of 68°C. The mixture of alcohol vapours air of required composition coming out from the carburetor is fed to the reactor. The reaction starts in presence of Silver catalyst [the temperature of which is maintained around 500°C]. This reaction is highly exothermic and the reaction heat is recovered and utilized for distillation of Acetaldehyde. This reactor is designed and used as vapour generator.

The reaction mixture coming out from the reactor, mainly consist of unconverted ethanol, water vapour and acetaldehyde formed in the reaction is sent to cooler condenser. The unreacted ethanol and water vapour is mostly condensed and separated in the cooler condenser. The acetaldehyde vapour is scrubbed in Aldehyde scrubber, first with process liquid and subsequently with water before venting into atmosphere. The Scrubber is connected with 3 coolers in process liquid section and one cooler in water section for removing heat of absorption.

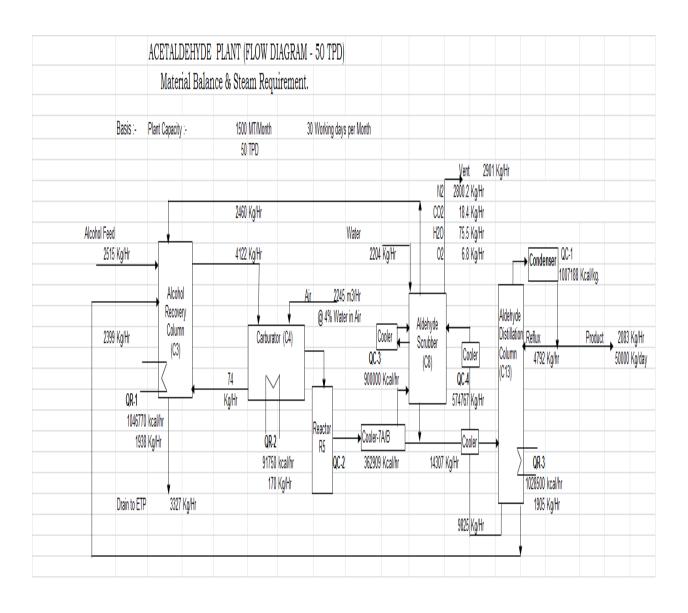
The absorbate from the absorber and the condensate from cooler condensers after preheating in heat exchanger is fed to Aldehyde distillation column. The acetaldehyde is drawn from the top of the column by keeping the top temperature at 55 °C. The extra alcohol, water, mixture at the bottom of the distillation column is fed to the alcohol recovery columns. The distillation is generally done under 65 PSI pressure. Acetaldehyde is cooled and stored in the storage tank under pressure and nitrogen blanket.

Raw Material Consumption For Acetaldehyde:-

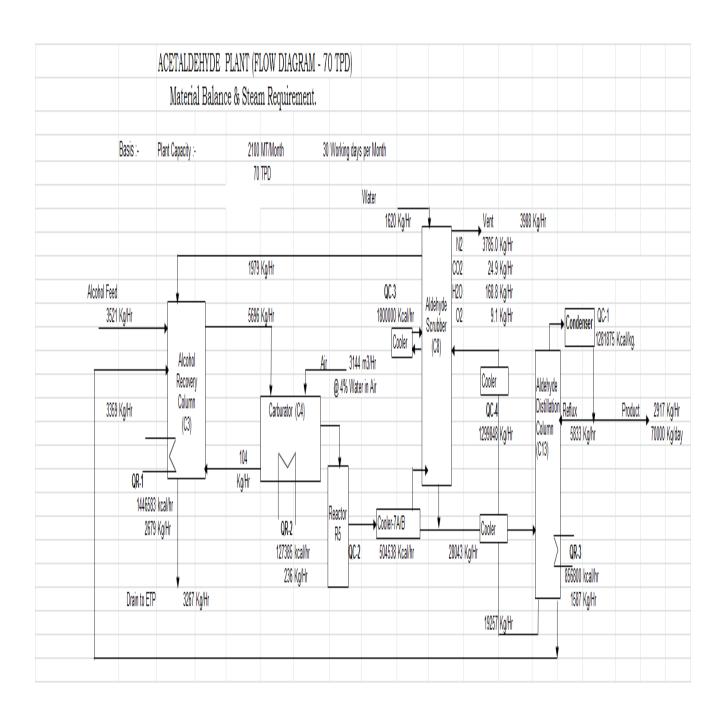

Basis :- 1.0 Ton of Acetaldehyde

Sr.No.	Component	Norms	Unit of Measure
1.	Ethyl Alcohol	1.5	KL

Product :-


Sr.No.	Component	Norms	Unit of Measure
1.	Acetaldehyde	1.0	Ton

b) Process Flow sheet


C)Material Balance

Existing Acetaldehyde Unit

Water Balance (Consumption & g	generation b	reak-up) :-								
	cess Water :-		Kg/Hr							
Reaction water	er generated :-		Kg/Hr							
	R.S. feed :-		Kg/Hr							
Total net water effluer	nt generated :-		Kg/Hr	(Drain of C-3 of	column)					
	Generated :-		m3/day	(@ 2.8% A/A						
	Say		m3/day	(62.0						
Energy balance :-										
Column	Carburator (C4)	Unit	Alcohol Recovery Column (C3)	Unit	Aldehyde Dist. Column (C13)	Unit	Total Heat Load			
Total Evaporation Load		Kg/hr.	4122	Kg/hr.	6875	Kg/hr.				
Reflux Ratio		,	-	3	2.5:01	g				
Avg.Latent Heat	-	Kcal/Kg.	231	Kcal/Kg.	136	Kcal/Kg.				
0 1 1 1 100		17 17 700		17 18	4007400	14 18 400 41	0044000	14 14 400		
Condenser/cooler Load QC	-	Kcal/hr.(QC)	0	Kcal/hr		Kcal/hr.(QC-1)	2844863	Kcal/hr.(QC)		
			362909	Kcal/hr.(QC-2)						
			900000	Kcal/hr.(QC-3)						
			574767	Kcal/hr.(QC-4)						
Reboiler load	70486	Kcal/hr.	951610	Kcal/hr.	935000	Kcal/hr.				
Excess duty due to Low Feed temp		Kcal/hr.	95161	Kcal/hr.	93500	Kcal/hr.				
Total Reboiler Duty QR	91750	Kcal/hr.(QR-2)		Kcal/hr.(QR-1)		Kcal/hr.(QR-3)	2167022	Kcal/hr.(QR)		
		(\				, , , , , , , , , , , , , , , , , , , ,		
Enthalpy of steam	540	Kcal/Kg.	540	Kcal/Kg.	540	Kcal/Kg.	540			
Steam Consumption	170	Kg/hr.	1938	Kg/hr.	1905	Kg/hr.	4013			
·		Ť		Ĭ			1.93	Ton/ Ton Acet	aldehvde	
						Chiller Load		Kcal/hr		TR
				St	eam Consum	ption for Chiller		Ton/ Ton Aceta		
								Ton/ Ton Ace		
					Stean	Condensate :-		Kg/Hr		boiler as hot water)
Cooling Water re										
Cooling Water requirement :-	or Canacity	750	m2/hr							
Cooling Tow	rer Capacity :- ter drift loss :-		m3/hr.							
Cooling Tower Blow			m3/day							
Required Cooling Tower m			m3/day m3/day							
Actual Cooling Tower make-up wa			m3/day							
Required make-up wa			m3/day							
	er Required:-		m3/day							
Actual Wat	er kequireu:- -: Say		m3/day							
Weter Comments - State -										
Water Consumption Statement		E3	m3/day							
Process water			m3/day							
Hility water			m3/day							
Utility water		110	m3/day							

Proposed Acetaldehyde Unit

Water Balance (Consumption & g	eneration brea	k-up) :-									
	rocess Water :-		Kg/Hr								
	vater generated :-		Kg/Hr								
	er in R.S. feed :-		Kg/Hr								
Total net water effl			Kg/Hr	(Drain of C-3	column)						
	ent Generated :-		m3/day	(Dialii di C-3	Columni						
Total Lillu											
	Say	00	m3/day								
Energy balance :-											
Lifety balance											
Column	Carburator (C4)	Unit	Alcohol Recovery Column (C3)	Unit	Aldehyde Dist. Column (C13)	Unit	Total Heat Load				
Total Evaporation Load		Kg/hr.	5696	Kg/hr.	8750	Kg/hr.					
Reflux Ratio				Ĭ	2.0:01						
Avg.Latent Heat		Kcal/Kg.	231	Kcal/Kg.	136	Kcal/Kg.					
Condenser/cooler Load QC	-	Kcal/hr.(QC)	0	Kcal/hr	1281875	Kcal/hr.(QC-1)	4886260	Kcal/hr.(QC)			
		(40)	504538	Kcal/hr.(QC-2)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(42)			
			1800000	Kcal/hr.(QC-3)							
			1299848	Kcal/hr.(QC-4)							
			1200040	rtouirii.(QO +							
Reboiler load	97863	Kcal/hr.	1315075	Kcal/hr.	737800	Kcal/hr.					
Excess duty due to Low Feed temp	29522	Kcal/hr.	131508	Kcal/hr.	119000	Kcal/hr.					
Total Reboiler Duty QR	127385	Kcal/hr.(QR-2)	1446583	Kcal/hr.(QR-1)	856800	Kcal/hr.(QR-3)	2430768	Kcal/hr.(QR)			
Total Robbilot Buty Qit	127000	rouim.(Qrv 2)	1440000	rtouirii. (art i	000000	rtodiim.(direo)	2400100	rtourni.(Qrt)			
Enthalpy of steam	540	Kcal/Kg.	540	Kcal/Kg.	540	Kcal/Kg.	540				
Steam Consumption	236	Kg/hr.	2679	Kg/hr.	1587	Kg/hr.	4501				
Ctourn Concumption	200	rtgrii.	2010	rtg	1001	rtgrii.		Ton/ Ton Acet	aldehyde		
						Chiller Load		Kcal/hr		TR	
					Steam Concum	ption for Chiller		Ton/ Ton Acet		IIX	
				'	Steam Consum	phon for Chiller		Ton/ Ton Ace			
					Ctoon	Condensate :-		Kg/Hr		ooiler as hot wat	00)
					Steam	Condensate	4070	Ng/III	(Recycle to L	oner as not wat	erj
Cooling Water requirement :-											
	Tower Capacity :-	850	m3/hr.								
	water drift loss :-		m3/day								
Cooling Tower BI			m3/day								
Required Cooling Tower			m3/day								
Actual Cooling Tower			m3/day								
Required make-up			m3/day								
	vater Required:-		m3/day								
Actual v	Say :-		m3/day								
	Jay	133	moruay								
Water Consumption Statement :-											
Process water		39	m3/day								
			m3/day								
Utility water			m3/day								
Other water		133	morudy								

C) Acetic Acid

a) Process Discription:-

Here Acetic acid is manufactured by liquid phase oxidation of acetaldehyde with air. The reaction is presented as follows: -

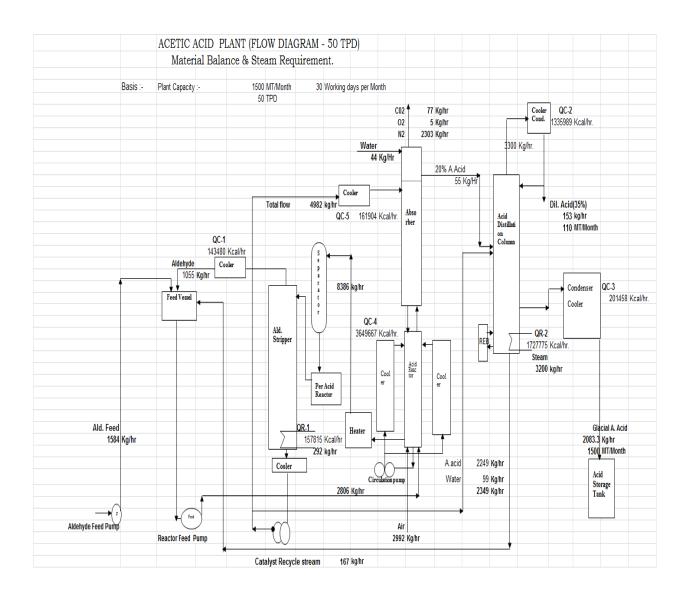
Acetaldehyde is fed to the reactor in which air under 65 PSIpressure. Air is uniformly distributed and dispatched from the bottom. The reaction proceeds in liquid phase and is exothermic. The catalyst Manganese Acetate and Potassium permanganate is present in dissolved form in the ratio of 0.1 % and 0.015 % respectively. The reactor has two coolers attached to remove the reaction heat continuously and maintain reactor temperature around 60 °C. The reactor mixture drawn out from the reactor consists of unreacted Aldehyde, acetic acid. It is put through a Vapour-Liquid Separator. The vapours coming out of the separator is fed directly to the top of Aldehyde stripper. The liquid portion is fed into the middle of the Aldehyde scrubber. The temperature of the scrubber is maintained in such way that all the Aldehyde separate out from the top which is further condensed and cooled and put back into the mixing tank as shown in the P&ID. The residual air mostly N₂ leaving the reactor is scrubbed with Aldehyde free acetic acid and then washed with water to recover traces of acetic acid before venting out to the atmosphere. The reactor and absorber system is maintained under 65 PSI pressure. The absorbate from the Aldehyde Absorber is fed back to the reactor. The bottom product of the Aldehyde scrubber is put into the acid distillation column. In this column, water along with traces of acid and other impurities are separated as a distillate (Dilute acid). The middle temperature of the column is maintained acetic acid in vapour form is removed continuously as bottom product through a condenser cooler and stored at ambient temperature.

Raw Material Consumption For Acetic Acid:

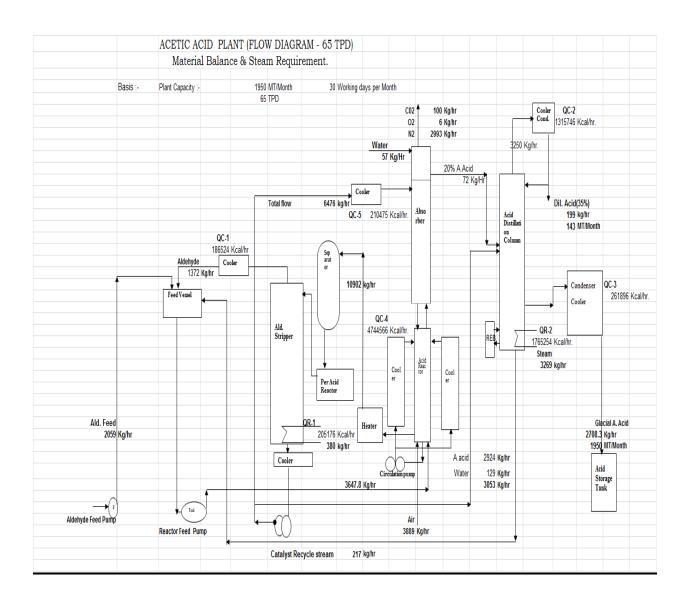

Basis :- 1.0 Ton of Acetic Acid

Sr.No.	Component	Norms	Unit of Measure
1.	Acetaldehyde	0.76	Ton

Product:-


Sr.No.	Component	Norms	Unit of Measure
1.	Acetic Acid	1.0	Ton
2.	Dil. Acid(35%)	0.0734	Ton

b) Process Flow sheet


c) Material Balance

Existing Acetic Acid Plant

Process Water :-	44	Kg/Hr							
(Note :- There is no liquid & soli	d waste efflu	ent generation	from the p	lant)					
Energy balance :-									
Column	Aldehyde Stripper (C36)	Unit	Acetic Acid Dist. C-25	Unit	Total Heat Load				
Total Evaporation Load	1055	Kg/hr.	3300	Kg/hr.					
Reflux Ratio			-						
Avg.Latent Heat	136	Kcal/Kg.	385	Kcal/Kg.					
Condenser/cooler Load QC	143480	Kcal/hr.(QC-1)	1335989	Kcal/hr.(QC-2)	5492498	Kcal/hr.(Q0	C)		
	3649667	Kcal/hr.(QC-4)	201458	Kcal/hr.(QC-3)					
	161904	Kcal/hr.(QC-5)							
Reboiler load	143480	Kcal/hr.	1537447	Kcal/hr.					
Excess duty due to Low Feed tem	14348	Kcal/hr.	190498	Kcal/hr.					
Total Reboiler Duty QR	157828	Kcal/hr.(QR-2)	1727945	Kcal/hr.(QR-1)	1885773	Kcal/hr.(QF	₹)		
Enthalpy of steam	540	Kcal/Kg.	540	Kcal/Kg.	540				
Steam Consumption	292	Kg/hr.	3200	Kg/hr.	3492				
						Ton/ Ton A			
				m Consumption		Kcal/hr	125		
		Ste	am Consum	ption for Chiller		Ton/ Ton A			
			_			Ton/ Ton /			
			Steam	Condensate :-	4148	Kg/Hr	(Recycle t	o boiler as	hot water
Cooling Water requirement :-									
	ver Capacity :-		m3/hr.						
•	ter drift loss :-		m3/day						
Cooling Tower Blow			m3/day						
Required Cooling Tower ma			m3/day						
Required make-up wa			m3/day						
Actual water	er Required:-		m3/day						
	Say :-	240	m3/day						
Water Consumption Statement	:-								
Process water		1.1	m3/day						
			m3/day						

Proposed Acetic Acid Plant

Water Balance (Consumption &	generation bre	ak-up) :-							
Process Water :-		Kg/Hr							
(Note :- There is no liquid & soli	d waste effluen	t generation fro	m the plant						
Energy balance :-									
Column	Aldehyde Stripper (C36)	Unit	Acetic Acid Dist. C-25	Unit	Total Heat Load				
Total Evaporation Load	1372	Kg/hr.	3250	Kg/hr.					
Reflux Ratio				,					
Avg.Latent Heat	136	Kcal/Kg.	385	Kcal/Kg.					
Condenser/cooler Load QC	186524 4744566 210475	Kcal/hr.(QC-1) Kcal/hr.(QC-4) Kcal/hr.(QC-5)	1315746 261896	Kcal/hr.(QC-2) Kcal/hr.(QC-3)	6719208	Kcal/hr.(QC)			
Reboiler load	186524	Kcal/hr.	1577642	Kcal/hr.					
Excess duty due to Low Feed tem	18652	Kcal/hr.		Kcal/hr.					
Total Reboiler Duty QR	205176	Kcal/hr.(QR-2)		Kcal/hr.(QR-1)	1970430	Kcal/hr.(QR)			
Enthalpy of steam	540	Kcal/Kg.	540	Kcal/Kg.	540				
Steam Consumption	380	Kg/hr.	3269	Kg/hr.	3649				
·					1.35	Ton/ Ton Acet	tic Acid		
			Chiller stea	m Consumption	394086	Kcal/hr	130	TR	
		Ste		ption for Chiller		Ton/ Ton Acet	tic Acid		
					1.60	Ton/ Ton Ace	etaldehyd	е	
			Steam	Condensate :-	4334	Kg/Hr	(Recycle t	o boiler as	hot water)
Cooling Water requirement :-									
Cooling 7	Fower Capacity :-	1050	m3/hr.						
-	water drift loss :-		m3/day						
Cooling Tower Bl			m3/day						
Required Cooling Tower			m3/day						
Required make-up			m3/day						
Actual w	rater Required:-		m3/day						
	Say :-	263	m3/day						
Water Consumption Statement	:-								
Process water			m3/day						
Utility water		265	m3/day						

Water Budget

				Exist	ing				Proposed						
Sr.No.	Station	Net Fresh Water Consumption	Actual Water Input	Losses/ Evaporation	Recycling To	Blow down	Effluent	Remark	Net Fresh Water Consumption	Actual Water Input	Losses/ Evaporation	Recycling To cooling Tower	Blow down	Effluent	Remark
1	Process Cons.	245	245	0	243	0	80	78m3 Addition of Raw Material & React.water	348	348	0	391		80	123m3 Addition of Raw Material & React.water
	Total	245	245	0	243		80		348	348	0	391		80	
2	Cooling Tower	592	915 592m3 Fresh Water + 80m3 RO permeate + 243m3 Process drain	871	0	44		80m3 RO permeate + 243m3 Process drain recycled to cooling tower	471	1015 471m3 Fresh Water +153m3 RO permeate +391m3 Process drain	970	0	44	0	153m3 RO permeate & 391m3 Process drain recycled to cooling tower
3	Boiler	65	65	65		0	0		83	83	83	0	0	0	
4	Domestic	93	93	47	0	0	46		93	93	47	0	0	46	Existing workes will be used so there is no increase in man power
	Total	995	1318	983	243	44	126	78m3 Addition of Raw Material & React.water	995	1539	1101	391	44	126	123m3 Addition of Raw Material & React.water
ote :- All water	quantity in m3/day	otherwise specified	1												

Energy Budget

	Existing Plant								
Sr.No.	Plant	Consent Capacity	No.of Working Days	Plant Capacity	Steam Consumption Norms	Net Steam Consumption	F	Power	
		MT/Month	Days	MTD	Ton/Ton	Tons/Day	Unit/Ton	Unit/Day	
1	Acetaldehyde	1500	30	50.0	2.0	100	184	9200	
2	Acetic Acid	1500	30	50		400	242		
3	Dilute Acid	110	30	3.67	2.0	100	343	17150	
4	Ethyl Acetate	5400	30	180	2.50	450	49	8820	
						650		35170	27.1 Tons/hr.
					Steam:Coal ratio	4.38	ton/ton(@ Raw coa	al GCV-4375Kcal/kg)	
					Coal consumption per day	149	Tons	6.19	Tons/hr.
	Proposed Plant								
Sr.No.	Plant	Consent Capacity	No.of Working Days	Plant Capacity	Steam Consumption Norms	Net Steam Consumption	Power		
		MT/Month	Days	MTD	Ton/Ton	Tons/Day	Unit/Ton	Unit/Day	
1	Acetaldehyde	2100	30	70.0	1.60	112	165	11550	
2	Acetic Acid	1950	30	65	4.50				
3	Dilute Acid	143	30	4.77	1.60	104	293	19045	
4	Ethyl Acetate	8700	30	290	2.1	616	45	13050	
						832		43645	34.7 Tons/hr.
					Steam:Coal ratio	5.60	ton/ton(@Importe	ed coal GCV-5600Kcal/kg	()
					Coal consumption per day		Tons		Tons/hr.
					, , ,				

Environment Status of 10 KM Radius

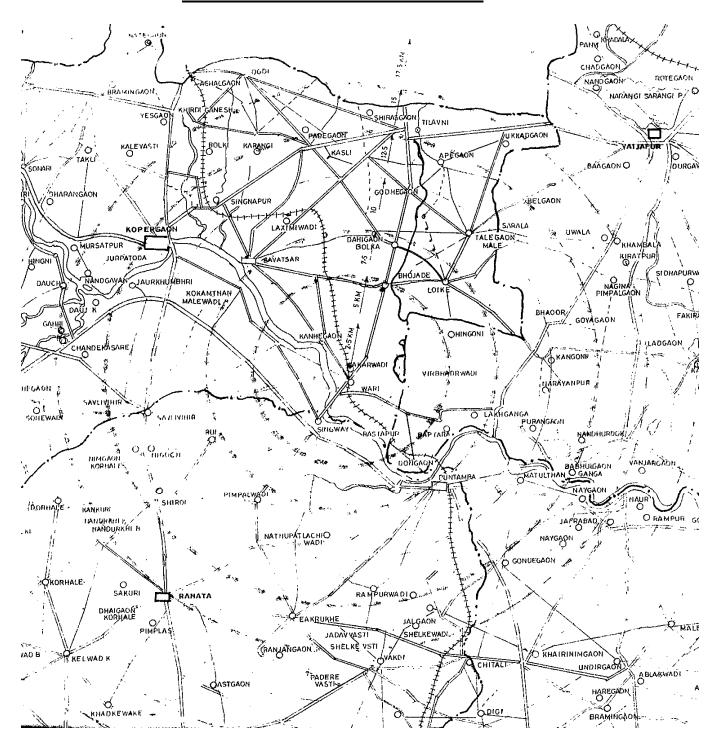


Fig 2: 10 km radius map

ANALYSIS REPORT

MAHARASHTRA POLLUTION CONTROL BOARD REGIONAL LABORATORY, NASHIK

Tel. No. (0253) 2362820 Fax No. (0253) 2365150

Udyog Bhavan 1 ^o Floor Trimbak Road, Satpur, NASHIK - 422007. Date: 17.01.2014

To,

The Sub-Regional Officer, M.P.C. Board, Ahmednagar

Lab. Report No.:-1552

Sample code No :- SRO/ANR/JVS/534/13

Date of Collection: 07.11,2013

Date of receipt : 12.11.2013

ANALYSIS REPORT

Particulars	1552
pΙ Ι	5.63
B.O.D.(3 Days 27 °C)	7.5
con	32.0
Suspended Solids	8.0
Total Dissolved Solids	390.0
Chloride	100.0
Sulphate	10.0
Sample collected by: Shri,	(Field Officer), Scal No. 171/223

Note:

1) All results are expressed in ppm except plL

2) N.A. indicates Not Analysed.

3) N.D. Indicates Not Detectable

4) BDL indicates Below Detectable Level.

(A. P. Kolhe)
Scientific Officer,
Regional Laboratory, Nashik.

Handows 1 1 - The condition of the condi

n)s Godawari Biorefinery

LH,

Alp Kopargaon Tal-Kopargain

Location - R.o. permit

MAHARASITTRA POLLUTION CONTROL BOARD Regional Laboratory, Nashik

1st floor, Udyog Bhavan, Near ITI, Tcimbak Road, Satpur, NASHIK – 7, Tel.0253-2362820 Email : striashiklab@mpcb.gov.in

Date :- 27/08/2013

To.

Sub-Regional Officer, M.P.C. Board, Ahmednagar

Stack (point source) Ernission Report

Ref : Your letter No: -MPCB/ANR/TB/Camop of Nashik/2013 | Dated-13/08/2013

Lab Report No. :- S-145

Date of Collection :- 08 /08/2013

Sample Code No.: -SRO/ANR/JVS/Stack- 448

Date of Receipt:- 13./08/2013

. Type of Industry: -

Seal No. - 171

r.No	Parameters	Stack Details
1	Date of Sampling	08 /08/2013
2	Stack (Identity)	Boiler no.1
_ 3	Strick height mts.	30
4	Stack area Sq.m.	1.884
5	Flue gas temperature "c	137
6	Exit gas velocity m/s,	11.75
7	Fuel Used	coal
8	Gas quantity Nm³/hr	57923.00
9	Particulate matter emission mg/Nm3	63.61
10	SO ₂ (mg/Nm ³)	142,49

mts Godawani Poin refinery at Sakerroundi Tall Kapangas --Ai Nagar

(A. P. Kolhe) Surentific Officer, Regional Laboratory, Nashik

Botter Stauc. 1

MAHARASITTRA POLLUTION CONTROL BOARD Regional Laboratory, Nashik

j^{at} floor, Udyog Bhavan, Near ITI, Trimbak Road, Salpur, NASHIK – 7. Tel.0253-2362820 Email : agwashiklab@mpcb.gov.in

Date - 27/08/2013

To

Sub-Regional Officer,

M.P.C. Board.

Ahmednaga:

Stack (point source) Emission Report

Ref : Your latter No: -MPCB/ANR/TB/Camop of Nasbik/2013 Dated-13/08/2013

Lub Report No. :- S-150

Date of Collection :- 10 /08/2013

Sample Code No.:-SRO/ANR/JVS/Stack- 459

Date of Receipt: 13/08/2013

Type of Industry: -

Seal No. - 171

	Parameters	Stack Details
Br.No	Date of Sampling	10 /08/2013
2	Stack (Identity)	Boiler No. 2 GT 1895
3	Stack height mts.	30
4	Stack area Sq.m.	2.06154
5	Flue gas temperature ⁰ c	101
6	Exit gas velocity m/s.	10.25
7	Fuel Used	Ceal
8	Gas quartity Nm³/hr	60511.0
9	Particulate matter emission mg/Nm ³	73.77
10	SO ₂ (mg/Nm ²)	117.76

m/s Godowani Bre refinany al Salamukersti "Tar- kopanyan Al Masa(A. P. Kolhe)
Scientific Officer,
Regional Laboratory, Nashik

8011en 31erec_ 6 NO -2-Gr.-1895- 501

Cellaborators: International Schools in Environmental Management Studies 311, W. Callo-De-Ca-Ba-LL05, TEMPE, Acades- 85284 ② (001) (602) 6974732 Ernad : bsbhaskar/gyaluo.com

Dt. 15/02/2014

STACK MONITORING REPORT

(Distillery Division)

Name of the Factory: Godawari Biorefinerics Ltd., Sakarwadi

Date of Stack Monitoring: 28/12/2013

S. No	Parameter	Stack -I	Stack - TO
1.	Stack Height (m)	. 30	31
2.	Stack Diameter (m)	1.20	1.6
3.	Boiler Capacity (T/hr.)	18.00	18.00
4.	Boiler	Thermax	ISGEC
5.	Furnace type	Spreader Stoker	1 87
ú.	Fuel Used	Coal. Bin-gas	Coal
7.	Fluc Gas Temp. (°C)	142	J21
8,	Flue Gas Velocity (m/sec.)	8.10	7.98
9.,	P.M. (mg/Nin ³)	118,00	176
10.	NO _X (mg/Nm ²)	79.00	74.00
11.	SO ₂ (mg/Nm ²)	X4.00	88.00

Water And Waste Water Research Centre

Sangli - (6233) 2301857, 2302664

Fax. (0233) 2302664 Mob. 9372109522; 9x50992118
- E-Mail: basubbaaao@yahoo..com, bashara@yahou.com
Pan No.: AAAFW 1498C

STC No.: AAAFW 1498CST001

REGD. OFFICE: "ARUNDHATT" Opp. Sahyogungar, Old Dhanni Ruad, Vishnanbag, Sangli - 416 415

CXILLABORATGRS: International Schools in Environment Management Studies
REGD. OFFICE: 'ARUNDHATI' Opp. Sahayograçar, Old Dhamani Road, Vishrambag, Sangli - 416-415.

Dt. 23/04/2014

ANALYSIS REPORT

Name of the Factory: Godawari Biorefineries Ltd., Sakarwadi. Date of sampling : 28/03/2014. Sample Description: Ground Water Samples.

Sr.Nn.	Parameter	Unit	Well Near Dispensary Well Water	
1.	Color		Colorless	
2.	Odor		Odorloss	
- 3,	рН	-	7.78	
4.	Turbidity	NTU	0.4	
5.	Total Dissulved Solids	mg/l	2312	
6.	Electrical Conductivity	umhos/em	. 2920	
7.	Total Hardness (us CaCO ₁)	mg/l	1590	
8.	Calcium Hordness (as CaCO ₃)	mg/l	1635	
9.	Magnesium Hardness (as CaCO ₃)	mg/l .	262	
10.	Calcium (as Ca)	7mg/l	651	
11.	Magnesium (as Mg)	mg/l	63	
12.	Total Alkatinity (as CaCO ₃)	mg/l	425	
13.	Chlorides (as CI)	mg/l	1051	
14.	Sulphete (as SO ₄)	mg/l	- 68	
15.	Total Nitrate (as NO ₃)	nig/l	1.62	
16.	Total Nitrogen (as N)	lagar	< 0.5	
17.	Total Phosphale (as POc)	mg/l	<0.01	
18.	Ammonical Nitrogen (us N)	ing/l	< 0.01	

Sangti - (0233) 2301857, 2302664, Fax : (0233) 2302664, Mob. 9372109522, 9890992118 E-mail : bssubbarac@yaboc.com, bssharat@yaboc.com Pan No. : AAAFW 1498C, STC No. : AAAFW 1498CST001

COLLABORATORS: International Schools in Environment Management Studies
RECD. OFFICE: "ARUNDHAT!" Opp. Sahayognagar, Old Dhamani Road, Vishrambag, Sangli - 416 415.

Sr.No.	Parameter	Unit	Well Near Dispensary Well Water
19	Copper (as Cu)	тар/І	< 0.01
20.	Manganese (as Mu)	iag/l	< 0.01
21,	Iron (us Fc)	rag/l	0.16
22.	Fluorido (as F)	mg/l	0.53
23.	Cyanide (as CN)	mg/l	
24.	Phanolic Compounds (as C6H5OH)	tng/l	< 0.001
25,	Boron (as B)	mg/l	< 0.05
26.	Zine (as Zn)	mg/l	< 5
27.	Alominium (as Al)	mg/l	<0.03
28.	Cadminutt (us Cd)	nig/l	< 0.002
29.	Lead (cs Pb).	mg/l	< 0.01
30.	Nickel (as Ni)	mg/l	< 0.02
31.	Mercury (as Hg)	1 1/400	< 0.001
32.	Arsenic (us As)	mg/l	< 0.001
33.	Selenium (as Se)	mg/l	< 0.001
34.	Sodium (as Na)	ng/l	196
35.	Polassium (as K)	mg/l	
36.	Chemical Oxygon Demand	mg/l·	788
37.	BOD 3days at 27oC	mg/	27
18.	Dissolved Oxygen	mg/i	
39.	Total Cotrform Organisms	Nos/100 ml	Absent
40.	Faecal Culiform Organisms	Nos/100 m.1	Absent

Sangli - (0233) 2301357, 2302664, Fax : (0233) 2302664, Mob. 9372109522, 9890992118 E-mail : basubbarao@yaboo.com, basharat@yaboo.com Pan No. : AAAFW 1498C, STC No. : AAAFW 1498CST001

COLLABORATORS: International Solocols in Environment Management Studies
REGD, OFFICE: "ARIINDHAIT" One, Sahayogatagar, Old Dhamani Ruad, Vishmunbag, Sangti - 416-415.

Dr. 23/04/2014

ANALYSIS REPORT

Name of the Factory : Godawari Biorefineries Ltd., Sakarwadi.

Date of sampling : 28/03/2014.

Sample Description: Ground Water Samples.

Sr.No.	Parameter	Unit	Kanhegaon Railway Station Well Water
1.	Coln	-	Colorless
2.	Odor	-	Odoriess
3.	рН	1 -	7.78
1.	Turbidity .	NTU	0.6
5.	Total Dissolved Solids	mg/1	1411
6.	Electrical Conductivity	panhos/em	1781
7,	Total Hardness (as Ca(X) ₃)	mg/I	1353
8.	Calcium Hardness (as CaCO ₃)	n:g/l	1070
9.	Magnesium Hardness (as CcCO ₁)-	mg/l	283
10.	Calcium (as Ca)	. mg/l	128
11.	Magnesium (as Mg)	rng/l	68
12.	Total Alkalinity (as CaCO ₃)	mg/l	445
13.	Chlorides (as CI)	mg/i	538
14.	Sulphate (as SO ₄)	. mg/!	57
15.	Total Nitrate (as NO ₃)	mg/l	0.75
16.	Total Nitrogen (as N)	mg/l	< 0.5
17.	Total Phosphate (as PO ₄)	mg/l	<0).01
18.	Ammonicai Nitrogen (as N)	mg/l	< 0.01

Sangli - (0233) 2301857, 2302664, Fax : (0233) 2302664, Mub. 9372109522, 9890992118 B-mail: bambbaran@yahou.com, basharan@yahou.com Pan No. : AAAFW 1498C, STC No. : AAAFW 1498CST001

COLLABORATORS: International Solvools in Environment Management Studies
REGIL OFFICE: "ARUNDHATI" Opp. Salasyognagar, Old Dhamani Road, Vishrambag, Sangli - 416 415.

Dr. 23/04/2014

ANALYSIS REPORT

Name of the Factory: Godawari Riorefineries Ltd., Sakarwadi. Date of sampling: 28/03/2014.

Sample Description: Ground Water Samples.

Sr.No.	Parameter	Unit	Hanumau Gate Arca Handpump Borewell Water
1.	Colcr	- 1	Colorless
2.	Odor '		Odorless
3.	pH .		8.10
4,	Turbidity	NIU	3.0
5.	Total Dissolved Solids	mg/l	356
6.	Electrical Conductivity	pmkos/em	1079
7.	Total Hardness (us CaCO ₃)	mg/l	595
S.	Calcium Hantness (as CoCO;)	mg/l	595
9.	Magnesium Hardness (as CaCO ₁)	mg/l	100
lů.	Calcium (as Ca)	nig/J	238
11,	Magnesium (as Mg)	mg/l	21 —
12.	Total Alkalinity (as CaCO ₃)	mg/l	232
13.	Calorides (us CI)	nig/l	161
14.	Sulphate (as SQ ₂)	mg/l	23
15.	Total Nitrate (as NO:)	nug/1	0.83
16	Total Nitrogen (as N)	mg/	< 0.5
17.	Total Phesphate (as PO ₄)	mg/.	<0.01
18"	Ammonical Nitrogen (as N)	mg/i	< 0.0[

Sangli - (0233) 2301857, 2302664, Fax : (0233) 2302664, Mob. 9372109522, 9890992118
E-mzil : besubbarao(gyaboo.com, basharat@yaboo.com Pan No. : AAAFW 1498C, STC No. : AAAFW 1498CST001

COLLABORATORS: International Schools in Environment Management Studies
REGD. OFFICE: "ARUNDHAT!" Opp. Sahayoguagar, Old Dhanemi Road, Vishrambag, Sangti - 416 415.

ir.No.	Panuacter	Unit	Hanuman Gate Area Handpump Borewell Water
.9.	Copper (as Cu)	fgm	< 0.01
20,	Manganese (as Mn)	mg/l	< 0.01
21.	Iron (as Fe)	ng/l	0.07
22.	Fluoride (as F)	mg/l	0.28
23.	Cyanide (us CN)	Lea	Nil .
24. ,	Phonolic Compounds (as C6H5OH)	mg/l	. < 0.001
25.	Boron (as B)	mgd	< 0.05
. 26.	(nX sk) aniX	ing/l	< 5
27.	Aluminium (as Al)	mg/l	<0.03
28.	Cadmium (as Cd)	Fgm	< 0.002
29.	Lead (as Pb)	mg/l	< 0.01
30.	Nickel (as Ni)	mg/l	< 0.02
35.	Meroury (as Hg)	ng1	< 0.001
32.	Atsenie (as As)	Pgm	< 0.001
33.	Selection (as So)	mg/l	< 0.01
34.	Sodium (as Na)	ngl	75 -
35.	Potassium (as K)	mg/l	0.9
36.	Chemical Oxygou Demand	mg/l	104
37.	BOD 3days at 27oC	mog/l	15
38.	Dissolved Oxygen	l'yar	6.1
39,	Total Coliform Organisms	Nos/100 mt	Absent
40,	Faecal Coliform Oceanisms	Nos/100 mt	Absent

Sangti - (0233) 2301857, 2302664, Fax : (0233) 2302664, Mab. 9372109522, 9890992118 E-mail : hembbarao@yalloo.com, besharao@yalnoo.com Pan No. : AAAFW 1498C, STC No. : AAAFW 1498CST001

COLLABORATORS: International Schools in Environment Management Studies
REGD. OFFICE: "ARUNDHATF" Opp. Safrayognagar, Old Dharnani Road, Vishrambag, Sanghi - 416 415.

Dt. 23/04/2014

AMBIENT AIR QUALITY REPORT

Name of the Factory: Godawari Biorefineries Ltd., Sakarwadi

Date of Ambient Air sampling: 28/03/2014

Sr. Sampling Statio	P.M _{7,5} (μg/m ³)	P.M ₁₁₁ (µg/m ³)	SPM (µg/m³)	NO _X (µg/m³)	SO ₂ (ug/m ³)
1. Main Gate		65	- ₁₉₅ -	27.00	11.00
2. Guest house	14	40	155	12.00	09,00

Sangh - (0233) 2301857, 2302664, Fox : (0233) 2302664, Mob. 9372109522, 9890992118 E-mail : hssubbarao@yahoo.com. bssharat@yahoo.com. Pap No. : AAAFW 1498C, STC No. : AAAFW 1498CS17001

COLLABORATORS: International Schools in Environment Management Studies
REGD, OFFICE: "ARUNDHATI" Opp. Sahayognagar, Old Dhamani Road, Vishrambag, Sangli - 416 415.

Dt. 23/04/2014

NOISE LEVEL MEASUREMENT REPORT (OUTSIDE FACTORY)

Name of the Factory : Godawari Biorefineries Ltd., Sakarwadi.

Date of Noise level measurement : 28/03/2014.

Sr. No.	Location of recording Sound level	dB (A) Leq (Day time)	dB (A) Leq (Night time)
1	Main Gate	51.7	49.0
2	Main Gate (Road Side)	49.9	45.0
3	CD Type Colony	54.3	36.9
4	Survey No. 2	48.3	37.0
5	Back Side of Biogas Plant	49.9	35.0
6	Biogas Plant Gule	54,6	41.0
7	Guest House	36.2	32.9
8	Gandhi Maidan (Back side of Ganesh Singe)	36.6	32.9

Sangli - (0233) 2301857, 2302664, Fax : (0233) 2302664, Mob. 9372109522, 9890992118 E-mail : bssubbarao@yuhon.com, bsaharat@yahon.com Pan No. : AAAFW 1498C, STC No. : AAAFW 1498CST001

COLLABORATORS: International Schools in Environment Management Studies
REGD, OFFICE: "ARUNDHATI" Opp. Sahayognagar, Old Dhamani Road, Vishrambag, Sangli - 416 415.

Dt. 23/04/2014

ANALYSIS REPORT

Name of the Factory: Godawari Biorefineries Ltd., Sakarwadi.

(Distillery Unit)

Date of sampling: 28/03/2014. Sample Description: Soil Sample.

Sr. No	Parameter	Unit	Rupali Sham Jadhav Gat No. 432/1 & 432/5 Wari, Tq.: Kopergaon, Dist: Ahmednagar
1.	pH		7.64
2.	Conductivity	mmhos/cm	0.852
3.	Ava. Nitrogen	kg/hectare	220
4.	Ava. Phosphorus	kg/hectare	68
5.	Ava. Potassium	kg/hectare	982
6.	Org. Carbon	%	1.02
7.	Sodium	%	0.090
8.	Calcium	%	0.460
9.	Magnesium	%	0.084
10	C.E.C	meq/100gm	29.28
11	Grade	les.	B

Water And Waste Water Research Centre

Partner

Sangli - (0233) 2301857, 2302664, Fax : (0233) 2302664, Mob. 9372109522, 9890992118

COLLABORATORS: International Schools in Environment Management Studies REGD. OFFICE: "ARUNDHATI" Opp. Sahayognagar, Old Dhamani Road, Vishrambag, Sangli - 416 415.

Dt. 23/04/2014

ANALYSIS REPORT

Name of the Factory: Godawari Biorefineries Ltd., Sakarwadi.

(Distillery Unit)

Date of sampling: 28/03/2014. Sample Description: Soil Sample.

Sr. No	Parameter	Unit	Subhash Anandrao Teke Gat No. 134/141 Doangoan/ Wari, Tq.: Kopergaon, Dist: Ahmednagar
1.	pH	4122	8.14
2.	Conductivity	mmhos/em	0.356
3.	Ava. Nitrogen	kg/hectare	198
4.	Ava. Phosphorus	kg/hectare	42
5.	Ava. Potassium	kg/hectare	248
6.	Org. Carbon	%	1.05
7.	Sodium	%	0.074
8.	Calcium	%	1.006
9.	Magnesium	9/0	0.116
10	C.E.C	meq/100gm	26.06
11	Grade		В

Water And Waste Water Research Centre

Sangli - (0233) 2301857, 2302664, Fax: (0233) 2302664, Mob. 9372109522, 9890992118

4.SUMMARY

- 1. Godavari Biorefineries Limited is situated at Sakarwadi, Kopargaon (Tq), Ahmednagar (Dist). It has existing chemical units i.e. Acetaldehyde, Acetic Acid, Dilute Acetic Acid and Ethyl Acetate of following capacities i.e. Acetaldehyde= 1500MT/M, Acetic Acid= 1500MT/M, Dilute Acetic Acid = 110MT/M, Ethyl Acetate= 5400MT/M and it is proposed to De-bottle neck the capacity of these units i.e. Acetaldehyde= 2100MT/M, Acetic Acid= 1950MT/M, Dilute Acetic Acid = 143MT/M, Ethyl Acetate= 8700MT/M.
- 2. The industry provided the treatment of effluent of acetaldehyde based on Biomethanation, followed by Reverse Osmosis & bio-composting. There is no effluent generated from Ethyl Acetate and Acetic Acid plants. The Dilute Acetic Acid from Acetic acid is sold in open market. It is proposed to follow the existing treatment plant method of anaerobic digestion followed by RO and Bio-composting even after expansion for the treatment of acetaldehyde effluent.
- 3. The industry has 194.0 hectares of land out of which 7.2 hectors is utilized for all plants.
- 4. The steam requirement for the expansion shall be met from the existing 2 nos. of Boiler of 18TPH each using Coal as fuel. At present 149T/day of indigenous coal is used. It is proposed to use imported coal as fuel for the generation of steam after expansion. The imported coal has calorific value of 5600Kcal/kg whereas the indigenous coal which is at present used has a calorific value of 4375Kacla/kg. **Thus the requirement of coal even after expansion would remain same.** Further, there would not be any increase in stack emissions and in fact the air emission will get reduced as the ash content in imported coal is not more than 12%, whereas in indigenous coal it varies from 30-35%. Thus there is overall improvement of Environment status of surrounding area.
- 5. There will not be any increase in water requirement as it is proposed to have a complete water recycle/arrangement system. The permeate of RO shall be used as make up water for cooling towers.
- 6. The existing effluent treatment plant facilities of anaerobic digester followed by Biocomposting shall be adequate as there is no increase in effluent quantity after expansion.

- 7. The manufacturing process of chemical plants are enclosed.
- 8. The water budget details are given.
- 9. The 10 km radius map of the surrounding villages is given, with the details of Environmental status.
- 10. The total project cost is estimated as 20.99 corers