# FORM-1

for

# PROPOSED BULK DRUGS AND BULK DRUG INTERMEDIATES MANUFACTURING UNIT

of

# M/s. SIGMA LIFE SCIENCE

Plot No. 1032/16, Phase II, GIDC Industrial Estate, Panoli, Tal: Ankleshwar, Dist: Bharuch-394116 (Guj.)

# Prepared by:

### Aqua-Air Environmental Engineers Pvt. Ltd. (Pollution Control Consultants & Engineers)

Reg. Office: 403, Centre Point, Nr. Kadiwala School, Ring Road, Surat - 395 002, Gujarat, India Fax: +91 261 2707273 / 3987273 Tel: + 91 261 3048586 / 2460854 / 2461241

E-mail: aquaair\_surat@hotmail.com Visit us at: www.aqua-air.co.in



#### **APPENDIX I**

### (See paragraph - 6)

#### FORM 1

| Sr. | Item                                            | Details                                           |
|-----|-------------------------------------------------|---------------------------------------------------|
| No. |                                                 |                                                   |
| 1.  | Name of the project/s                           | M/s. Sigma Life Science                           |
| 2.  | S. No. in the schedule                          | 5 (f)                                             |
| 3.  | Proposed capacity/area/length/tonnage to        | Proposed Capacity: 35 MT/Month                    |
|     | be handled/command area/lease                   | For detail Please refer <b>Annexure – I</b>       |
|     | area/number of wells to be drilled              |                                                   |
| 4.  | New/Expansion/Modernization                     | New                                               |
| 5.  | Existing Capacity/Area etc.                     | Area: 1,080 m <sup>2</sup>                        |
| 6.  | Category of Project i.e. 'A' or 'B'             | A                                                 |
| 7.  | Does it attract the general condition? If yes,  | Yes. Located within 5 km of critically polluted   |
|     | please specify.                                 | area (Ankleshwar).                                |
| 8.  | Does it attract the specific condition? If yes, | No                                                |
|     | please specify.                                 |                                                   |
| 9.  | Location                                        |                                                   |
| -   | Plot/Survey/Khasra No.                          | Plot No. 1032/16                                  |
| •   | Village                                         | GIDC Industrial Estate, Panoli                    |
| -   | Tehsil                                          | Ankleshwar                                        |
| •   | District                                        | Bharuch                                           |
| •   | State                                           | Gujarat                                           |
| 10. | Nearest railway station/airport along with      | Ankleshwar = 4 Km                                 |
|     | distance in kms.                                | Surat Airport = 60 Km                             |
| 11. | Nearest Town, city, District Headquarters       | Ankleshwar = 4 Km                                 |
|     | along with distance in kms.                     |                                                   |
| 12. | Village Panchayats, Zilla Parishad, Municipal   | Panoli = 2.0 Km                                   |
|     | Corporation, local body (complete postal        |                                                   |
|     | address with telephone nos. to be given)        |                                                   |
| 13. | Name of the applicant                           | M/s. Sigma Life Science                           |
| 14. | Registered Address                              | Plot No. 1032/16, GIDC Industrial Estate, Panoli, |
|     |                                                 | Tal: Ankleshwar, Dist: Bharuch-394116 (Guj.)      |
| 15. | Address for correspondence:                     |                                                   |
| -   | Name                                            | Dr. Rajan Rudalal                                 |
|     | Designation (Owner/Partner/CEO)                 | Partner                                           |
|     | Address                                         | M/s. Sigma Life Science, 16, Wadia Nagar, Near    |
|     |                                                 | Nagardas Hall, Opp. Water Tank, Adajan Road,      |
|     |                                                 | Surat-395009 (Guj.)                               |
|     | Pin Code                                        | 395009                                            |
| -   | E-mail                                          | sigmalifescience@yahoo.com                        |
|     | Telephone No.                                   | +919824179055                                     |
|     | Fax No.                                         |                                                   |
|     | Mobile No.                                      | +919824179055                                     |

| 4.0 | Die II CAI: et die 1 1.15                      | 1  |
|-----|------------------------------------------------|----|
| 16. | Details of Alternative Sites examined, if any. | NA |
|     | Location of these sites should be shown on a   |    |
|     | topo sheet.                                    |    |
| 17. | Interlinked Projects                           | NA |
| 18. | Whether separate application of interlinked    | NA |
|     | project has been submitted?                    |    |
| 19. | If yes, date of submission                     | NA |
| 20. | If no, reason                                  | NA |
| 21. | Whether the proposal involves                  | No |
|     | approval/clearance under: if yes, details of   |    |
|     | the same and their status to be given.         |    |
|     | (a) The Forest (Conservation) Act, 1980?       |    |
|     | (b) The Wildlife (Protection) Act, 1972?       |    |
|     | (c) The C.R.Z. Notification, 1991?             |    |
| 22. | Whether there is any Government                | No |
|     | Order/Policy relevant/relating to the site?    |    |
| 23. | Forest land involved (hectares)                | NA |
| 24. | Whether there is any litigation pending        | NA |
|     | against the project and/or land in which the   |    |
|     | project is propose to be set up?               |    |
|     | (a) Name of the Court                          |    |
|     | (b) Case No.                                   |    |
|     | (c) Orders/directions of the Court, if any and |    |
|     | its relevance with the proposed project.       |    |

• Capacity corresponding to sectoral activity (such as production capacity for manufacturing, mining lease area and production capacity for mineral production, area for mineral exploration, length for linear transport infrastructure, generation capacity for power generation etc.,)

#### (II) Activity

1. Construction, operation or decommissioning of the Project involving actions, which will cause physical changes in the locality (topography, land use, changes in water bodies, etc.)

| Sr.<br>No. | Information/Checklist confirmation                                                                                                                 | Yes/No | Details thereof with approximate quantities frates, wherever possible) with source of information data            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------|
| 1.1        | Permanent or temporary change in land use, land cover or topography including increase intensity of land use (with respect to local land use plan) | No     | Proposed project activity is within the Panoli GIDC Industrial Estate.                                            |
| 1.2        | Clearance of existing land, vegetation and Buildings?                                                                                              | Yes    | Minor site clearance activities shall be carried out to clear shrubs and weed.                                    |
| 1.3        | Creation of new land uses?                                                                                                                         | No     | The project site is located on level ground, which does not require any major land filling for area grading work. |
| 1.4        | Pre-construction investigations e.g. bore Houses, soil testing?                                                                                    | No     |                                                                                                                   |
| 1.5        | Construction works?                                                                                                                                | Yes    | Please refer <b>Annexure – II.</b>                                                                                |
| 1.6        | Demolition works?                                                                                                                                  | No     | There will not be any demolition work at the site.                                                                |
| 1.7        | Temporary sites used for construction works or housing of construction workers?                                                                    | No     |                                                                                                                   |
| 1.8        | Above ground buildings, structures or earthworks including linear structures, cut and fill or excavations                                          | Yes    | Please refer <b>Annexure – II.</b>                                                                                |
| 1.9        | Underground works mining or tunneling?                                                                                                             | No     |                                                                                                                   |
| 1.10       | Reclamation works?                                                                                                                                 | No     |                                                                                                                   |
| 1.11       | Dredging?                                                                                                                                          | No     |                                                                                                                   |
| 1.12       | Off shore structures?                                                                                                                              | No     |                                                                                                                   |
| 1.13       | Production and manufacturing processes?                                                                                                            | Yes    | Please refer Annexure –III.                                                                                       |
| 1.14       | Facilities for storage of goods or materials?                                                                                                      | Yes    | Raw material & finished products storage area will be developed.                                                  |
| 1.15       | Facilities for treatment or disposal of solid waste or liquid effluents?                                                                           | Yes    | For Facilities for treatment or disposal of liquid effluents is referred as Annexure-V.                           |
|            |                                                                                                                                                    |        | For Hazardous waste details please refer <b>Annexure – VI.</b>                                                    |
| 1.16       | Facilities for long term housing of operational workers?                                                                                           | No     |                                                                                                                   |
| 1.17       | New road, rail or sea traffic during Construction or operation?                                                                                    | No     |                                                                                                                   |

| 1.18 | New road, rail, air waterborne or other transport infrastructure including new or altered routes and stations, ports, airports etc? | No  |                                                                                         |
|------|-------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------|
| 1.19 | Closure or diversion of existing transport routes or infrastructure leading to changes in Traffic movements?                        | No  |                                                                                         |
| 1.20 | New or diverted transmission lines or Pipelines?                                                                                    | No  |                                                                                         |
| 1.21 | Impoundment, damming, culverting, realignment or other changes to the hydrology of watercourses or aquifers?                        | No  |                                                                                         |
| 1.22 | Stream crossings?                                                                                                                   | No  |                                                                                         |
| 1.23 | Abstraction or transfers of water form ground or surface waters?                                                                    | Yes | Water requirement will be met through Panoli GIDC water supply.                         |
| 1.24 | Changes in water bodies or the land surface Affecting drainage or run-off?                                                          | No  |                                                                                         |
| 1.25 | Transport of personnel or materials for construction, operation or decommissioning?                                                 | Yes | Transportation of personnel, raw materials and products will be primarily by road only. |
| 1.26 | Long-term dismantling or decommissioning or restoration works?                                                                      | No  |                                                                                         |
| 1.27 | Ongoing activity during decommissioning which could have an impact on the environment?                                              | No  |                                                                                         |
| 1.28 | Influx of people to an area either temporarily or permanently?                                                                      | No  |                                                                                         |
| 1.29 | Introduction of alien species?                                                                                                      | No  |                                                                                         |
| 1.30 | Loss of native species or genetic diversity?                                                                                        | No  |                                                                                         |
| 1.31 | Any other actions?                                                                                                                  | No  |                                                                                         |

# 2. Use of Natural resources for construction or operation of the Project (such as land, water, materials or energy, especially any resources which are non-renewable or in short supply):

| Sr.<br>No. | Information/checklist confirmation                                           | Yes/No | Details thereof (with approximate quantities /rates, wherever possible) with source of information data                                                                                                                                                               |
|------------|------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.1        | Land especially undeveloped or agricultural land (ha)                        | No     | Proposed project activity is within the Panoli GIDC Industrial Estate.                                                                                                                                                                                                |
| 2.2        | Water (expected source & competing users) unit: KLD                          | Yes    | Water Source: Panoli GIDC Water Supply For details please refer <b>Annexure – IV.</b>                                                                                                                                                                                 |
| 2.3        | Minerals (MT)                                                                | No     |                                                                                                                                                                                                                                                                       |
| 2.4        | Construction material - stone, aggregates, and / soil (expected source - MT) | Yes    | Small quantity of construction materials will be required for construction and few nos. of equipments. Construction materials, like steel, cement, crushed stones, sand, rubble, etc. required for the project shall be procured from the local market of the region. |
| 2.5        | Forests and timber (source - MT)                                             | No.    |                                                                                                                                                                                                                                                                       |

| 2.6 | Energy including electricity and fuels (source, competing users) Unit: fuel (MT), energy (MW) |    | FUEL: Bio-Coal = 90 MT/Month (Proposed) HSD = 20 Liter/Hr ENERGY: 250 KVA from DGVCL 100 KVA = D G Set in emergency only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|-----------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Any other natural resources (use appropriate standard units)                                  | No | and the second configuration of the second configuration o |

3. Use, storage, transport, handling or production of substances or materials, which could be harmful to human health or the environment or raise concerns about actual or perceived risks to human health.

| Sr.<br>No. | Information/Checklist confirmation                                                                                                             | Yes/No | Details there of (with approximate quantities/rates, wherever possible) with source of information data |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------|
|            | Use of substances or materials, which are hazardous (as per MSIHC rules) to human health or the environment (flora, fauna, and water supplies) |        | Please refer <b>Annexure –VIII.</b>                                                                     |
|            | Changes in occurrence of disease or affect<br>disease vectors (e.g. insect or water borne<br>diseases)                                         |        |                                                                                                         |
| 3.3        | Affect the welfare of people e.g. by changing living conditions?                                                                               | No     |                                                                                                         |
|            | Vulnerable groups of people who could be affected by the project e.g. hospital patients, children, the elderly etc.                            |        |                                                                                                         |
| 3.5        | Any other causes                                                                                                                               | No     |                                                                                                         |

4. Production of solid wastes during construction or operation or decommissioning (MT/month)

| Sr.<br>No. | Information/Checklist confirmation                            | Yes/No | Details there of (with approximate quantities/rates, wherever possible) with source of information data |
|------------|---------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------|
| 4.1        | Spoil, overburden or mine wastes                              | No     |                                                                                                         |
| 4.2        | Municipal waste (domestic and or commercial wastes)           | No     |                                                                                                         |
| 4.3        | Hazardous wastes (as per Hazardous Waste<br>Management Rules) | Yes    | Please refer <b>Annexure – VI.</b>                                                                      |
| 4.4        | Other industrial process wastes                               | Yes    | Please refer <b>Annexure – VI.</b>                                                                      |
| 4.5        | Surplus product                                               | No     |                                                                                                         |
| 4.6        | Sewage sludge or other sludge from effluent treatment         | No     |                                                                                                         |
| 4.7        | Construction or demolition wastes                             | No     |                                                                                                         |
| 4.8        | Redundant machinery or equipment                              | No     |                                                                                                         |

| 4.9  | Contaminated soils or other materials | No  |                                    |
|------|---------------------------------------|-----|------------------------------------|
| 4.10 | Agricultural wastes                   | No  |                                    |
| 4.11 | Other solid wastes                    | Yes | Please refer <b>Annexure – VI.</b> |

#### 5. Release of pollutants or any hazardous, toxic or noxious substances to air (Kg/hr)

| Sr. No | .Information/Checklist confirmation                                                          | Yes/No | Details there of (with approximate quantities/rates, wherever possible) with source of information data |
|--------|----------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------|
| 5.1    | Emissions from combustion of fossil fuels from stationary or mobile sources                  | Yes    | Please refer <b>Annexure – VII.</b>                                                                     |
| 5.2    | Emissions from production processes                                                          | Yes    | Please refer Annexure – VII.                                                                            |
| 5.3    | Emissions from materials handling storage or transport                                       | No     |                                                                                                         |
| 5.4    | Emissions from construction activities including plant and equipment                         | No     |                                                                                                         |
| 5.5    | Dust or odours from handling of materials including construction materials, sewage and waste |        |                                                                                                         |
| 5.6    | Emissions from incineration of waste                                                         | No     |                                                                                                         |
| 5.7    | Emissions from burning of waste in open air e.g. slash materials, construction debris)       | No     |                                                                                                         |
| 5.8    | Emissions from any other sources                                                             | Yes    | Please refer <b>Annexure – VII.</b>                                                                     |

#### **6.Generation of Noise and Vibration, and Emissions of Light and Heat:**

| Sr. No. | Information/Checklist confirmation                                       | Yes/No | Details there of (with approximate quantities/rates, wherever possible) with source of information data with source of information data                                                              |
|---------|--------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | From operation of equipment e.g. engines,<br>ventilation plant, crushers | Yes    | The Noise level will be within the prescribed limit. At noisy areas adequate preventive & control measures will be taken. No significant noise, vibration or emission of light & heat from the unit. |
| 6.2     | From industrial or similar processes                                     | Yes    | -Do-                                                                                                                                                                                                 |
| 6.3     | From construction or demolition                                          | No     |                                                                                                                                                                                                      |
| 6.4     | From blasting or piling                                                  | No     |                                                                                                                                                                                                      |
| 6.5     | From construction or operational traffic                                 | No     |                                                                                                                                                                                                      |
| 6.6     | From lighting or cooling systems                                         | No     |                                                                                                                                                                                                      |
| 6.7     | From any other sources                                                   | No     |                                                                                                                                                                                                      |

# 7. Risks of contamination of land or water from releases of pollutants into the ground or into sewers, surface waters, groundwater, coastal waters or the sea:

| Sr. No. | Information/Checklist confirmation                                                                      | Yes/No | Details there of (with approximate quantities/rates, wherever possible) with source of information data |
|---------|---------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------|
|         | From handling, storage, use or spillage of hazardous materials                                          | Yes    | Please refer <b>Annexure – VIII.</b>                                                                    |
|         | From discharge of sewage or other effluents to water or the land (expected mode and place of discharge) |        | For details please refer <b>Annexure – V.</b>                                                           |
|         | By deposition of pollutants emitted to air into the and or into water                                   | No     |                                                                                                         |
| 7.4     | From any other sources                                                                                  | No     |                                                                                                         |
|         | Is there a risk of long term build up of pollutants in the environment from these sources?              |        |                                                                                                         |

# 8. Risk of accidents during construction or operation of the Project, which could affect human health or the environment

| S.No. | Information/Checklist confirmation                                                                                                      | Yes/No | Details there of (with approximate quantities/rates, wherever possible) with source of information data |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------|
| 8.1   | From explosions, spillages, fires etc from storage, handling, use or production of hazardous substances                                 |        | Please refer <b>Annexure – VIII.</b>                                                                    |
| 8.2   | From any other causes                                                                                                                   | No     |                                                                                                         |
| 8.3   | Could the project be affected by natural disasters causing environmental damage (e.g. floods, earthquakes, landslides, cloudburst etc)? |        |                                                                                                         |

9. Factors which should be considered (such as consequential development) which could lead to environmental effects or the potential for cumulative impacts with other existing or planned activities in the locality

| Sr.<br>No. | Information/Checklist confirmation                                                                                                                           | Yes/No | Details there of (with approximate quantities/rates, wherever possible) with source of information data |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------|
| 9.1        | Lead to development of supporting. utilities, ancillary development or development stimulated by the project which could have impact on the environment e.g. | Yes    | Please refer <b>Annexure – IX.</b>                                                                      |
|            | • Supporting infrastructure (roads, power supply, waste or waste water treatment, etc.)                                                                      |        |                                                                                                         |
|            | <ul><li>housing development</li><li>extractive industry</li><li>supply industry</li><li>other</li></ul>                                                      |        |                                                                                                         |
| 9.2        | Lead to after-use of the site, which could have an impact on the environment                                                                                 | No     |                                                                                                         |
| 9.3        | Set a precedent for later developments                                                                                                                       | No     |                                                                                                         |
| 9.4        | Have cumulative effects due to proximity to other existing or planned projects with similar effects                                                          | No     |                                                                                                         |

### (II) Environmental Sensitivity

| Sr. No. | Areas                                                                                                                                                                                                   | Name/<br>Identity | Aerial distance (within 15km.) Proposed project location boundary                       |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------|
| 1       | Areas protected under international conventions, national or local legislation for their ecological, landscape, cultural or other related value                                                         | NA                | Proposed project site is within the GIDC Industrial Estate, Panoli.                     |
| 2       | Areas which important for are or sensitive Ecol logical reasons - Wetlands, watercourses or other water bodies, coastal zone, biospheres, mountains, forests                                            | NA                |                                                                                         |
|         | Area used by protected, important or sensitive Species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration                                                            | NA                | No protected area or sensitive species within 15 km from the proposed project boundary. |
| 4       | Inland, coastal, marine or underground waters                                                                                                                                                           | NA                | No inland, costal or marine within 15 km from the project.                              |
| 5       | State, National boundaries                                                                                                                                                                              | NA                | N.A.                                                                                    |
| 6       | Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas                                                                                                        | Yes               | Public transportation                                                                   |
| 7       | Defense installations                                                                                                                                                                                   | NA                |                                                                                         |
| 8       | Densely populated or built-up area                                                                                                                                                                      |                   | Panoli village 2 km and Ankleshwar City is around 4 km from the proposed project site.  |
| 9       | Area occupied by sensitive man-made land uses Hospitals, schools, places of worship, community facilities)                                                                                              |                   |                                                                                         |
| 10      | Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals)                                           | No                |                                                                                         |
| 11      | Areas already subjected to pollution environmental damage. (those where existing legal environmental standards are exceeded)or                                                                          | No                | NA                                                                                      |
|         | Areas susceptible to natural hazard which could cause the project to present environmental problems (earthquake s, subsidence, landslides, flooding erosion, or extreme or adverse climatic conditions) |                   | NA                                                                                      |

IV). Proposed Terms of Reference for EIA studies: Please refer Annexure - X

Date: Feb. 6, 2017

Place: Surat

Rajan Rudalal (Partner)

Signature of applicant with full name & Address (Project Proponent/Authorized Signatory)

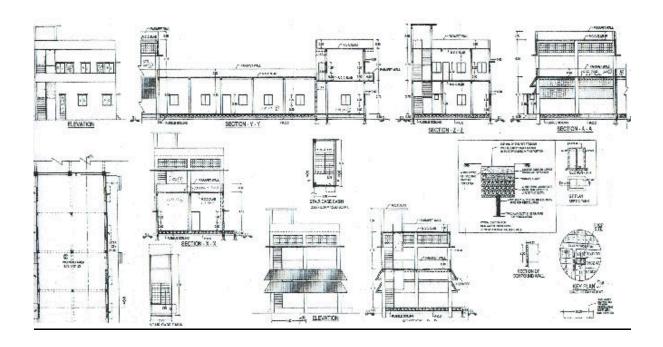
#### **LIST OF ANNEXURES**

| SR. NO. | NAME OF ANNEXURE                                                        |
|---------|-------------------------------------------------------------------------|
| I       | List of Products and Raw materials along with their Production Capacity |
| II      | Layout Map of the Plant                                                 |
| III     | Brief Manufacturing Process Description                                 |
| IV      | Details of water consumption & waste water generation                   |
| V       | Details of Effluent Treatment Scheme                                    |
| VI      | Details of Hazardous Waste Generation and Disposal                      |
| VII     | Details of Stacks and Vents , Fuel & Energy Requirements                |
| VIII    | Details of Hazardous Chemicals Storage & Handling                       |
| IX      | Socio-economic Impacts                                                  |
| Х       | Proposed Terms of Reference                                             |

#### ANNEXURE-I

### LIST OF PRODUCTS ALONG WITH THEIR PRODUCTION CAPACITY WITH RAW MATERIALS

| Sr. No. | Product                                                                                                                              | Proposed Quantity<br>(MT/Month) |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|
| Group-1 |                                                                                                                                      |                                 |  |  |
| 1       | 4-Sulfonamido Phenyl Hydrazine Hydrochloride and It's Intermediates                                                                  |                                 |  |  |
| 2       | 4,4,4-trifluoro-1-[4-(methyl)phenyl]-butane-<br>1,3-dione and It's Intermediates                                                     |                                 |  |  |
| 3       | 2 Amino Phenyl phenyl Sulfide and It's Intermediates                                                                                 |                                 |  |  |
| 4       | Dibenzo[b,f][1,4]Thiazepin-11(10H)-One                                                                                               | 20                              |  |  |
| 5       | 2-Chloro-1,3-bis(dimentylamino)trimethinium hexafluorophosphate and It's Intermediates                                               | 20                              |  |  |
| 6       | m Chloro Nitro benzene                                                                                                               |                                 |  |  |
| 7       | m Bromo Nitro benzene                                                                                                                |                                 |  |  |
| 8       | 2,3-Dibenzoyl-D-tartaric acid                                                                                                        |                                 |  |  |
| 9       | 4 Methyl Acetophenone                                                                                                                |                                 |  |  |
| Group-2 |                                                                                                                                      |                                 |  |  |
| 10      | N-{2-[4-(aminosulfonyl)phenyl]ethyl}-3-ethyl-4-methyl-2-oxo-2,5-dihydro -1H-pyrrole-1-carboxamide and It's Intermediates             |                                 |  |  |
| 11      | 3-Ethyl-4-methyl-N-[2-(4-{[(trans-4-methyl cyclohexyl)carbamoyl] sulfamoyl} phenyl)ethyl]-2-oxo-2,5-dihydro-1H-pyrrole-1-carboxamide |                                 |  |  |
| 12      | 2,4 Difluoro Benzylamine and It's Intermediates                                                                                      | 10                              |  |  |
| 13      | P Methoxy Phenyl Acetonitrile and It's Intermediates                                                                                 |                                 |  |  |
| 14      | 3-Trifluoromethyl Cinnamic Acid and It's Intermediates                                                                               |                                 |  |  |
| 15      | Ethyltrifluoro Acetate                                                                                                               |                                 |  |  |
| Group-3 |                                                                                                                                      |                                 |  |  |
| 16      | Bupropion Hydrochloride and It's Intermediates                                                                                       | 5                               |  |  |
| 17      | Doxofylline and It's Intermediates                                                                                                   |                                 |  |  |
| Total   |                                                                                                                                      | 35                              |  |  |


#### **RAW MATERIAL CONSUMPTION**

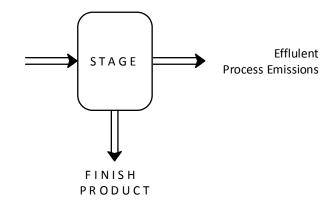
| Sr. No. | Raw Material                                                                           | Quantity (MT/Month)  |
|---------|----------------------------------------------------------------------------------------|----------------------|
| 1       | 4-Sulfonamido Phenyl Hydrazine Hydrochloride and It's Intermediates                    |                      |
|         | Sulfanilamide                                                                          | 16.20                |
|         | Sodium Nitrite                                                                         | 7.00                 |
|         | Sodium bisulphite                                                                      | 10.60                |
|         | Conc HCl                                                                               | 34.00                |
| 2       | 4,4,4-trifluoro-1-[4-(methyl)phenyl]-butane-<br>1,3-dione and It's Intermediates       |                      |
|         | Sodium Methoxide                                                                       | 5.60                 |
|         | Toluene                                                                                | 30.00                |
|         | 4-Methylacetophenone                                                                   | 12.00                |
|         | Methyltrifluoroacetate                                                                 | 12.40                |
|         | Conc HCl                                                                               | 11.60                |
| 3       | 2 Amino Phenyl phenyl Sulfide and It's Intermediates                                   |                      |
|         | Thio Phenol                                                                            | 12.80                |
|         | 2 Nitro Chloro Benzene                                                                 | 17.20                |
|         | Caustic Flakes                                                                         | 5.60                 |
|         | Raney Nickel                                                                           | 0.40                 |
|         | Methanol                                                                               | 80.00                |
|         | Hydrogen gas                                                                           | 16000 M <sup>3</sup> |
|         | Nitrogen                                                                               | 1600 M <sup>3</sup>  |
| 4       | Dibenzo[b,f][1,4]Thiazepin-11(10H)-One                                                 |                      |
|         | 2 Amino phenyl phenyl sulfide                                                          | 19.00                |
|         | Poly Phosphoric Acid                                                                   | 60.00                |
|         | Ethyl Chloro formate                                                                   | 12.50                |
|         | Toluene                                                                                | 60.00                |
|         | Carbon                                                                                 | 1.00                 |
| 5       | 2-Chloro-1,3-bis(dimentylamino)trimethinium hexafluorophosphate and It's Intermediates |                      |
|         | Poly Phosphoric Acid                                                                   | 8.30                 |
|         | HF Gas                                                                                 | 11.70                |
|         | Dimethylformamide                                                                      | 7.20                 |
|         | Chloroacetyl chloride                                                                  | 8.00                 |
|         | Phosphorus Oxychloride                                                                 | 11.00                |
|         | Caustic Flakes                                                                         | 13.20                |
|         | Hexafluorophosphoric acid                                                              | 18.00                |

| 6  | m Chloro Nitro benzene                                      |                     |
|----|-------------------------------------------------------------|---------------------|
|    | Nitro Benzene                                               | 16.40               |
|    | Chlorine                                                    | 10.20               |
|    | Methanol                                                    | 32.00               |
| 7  | m Bromo Nitro benzene                                       |                     |
|    | Nitro Benzene                                               | 13.60               |
|    | Bromine                                                     | 16.00               |
|    | Methanol                                                    | 40.00               |
| 8  | 2,3-Dibenzoyl-D-tartaric acid                               |                     |
|    | Benzoyl Chloride                                            | 18.00               |
|    | D Tartaric Acid                                             | 10.80               |
|    | Toluene                                                     | 30.00               |
| 9  | 4 Methyl Acetophenone                                       |                     |
|    | Acetyl Chloride                                             | 13.00               |
|    | Toluene                                                     | 24.00               |
|    | Aluminum Chloride                                           | 32.00               |
|    | Conc HCl                                                    | 14.00               |
| 40 | N-{2-[4-(aminosulfonyl)phenyl]ethyl}-3-ethyl-4-             |                     |
| 10 | methyl-2-oxo-2,5-dihydro -1H-pyrrole-1-                     |                     |
|    | carboxamide and It's Intermediates                          |                     |
|    | 3-Ethyl-4-methyl-2-oxo-N-(2-phenylethyl)-2,5-               | 0.00                |
|    | dihydro-1H-pyrrole-1-carboxamide (Amide Derivative)         | 8.00                |
|    | Chloro Sulfonic Acid                                        | 10.00               |
|    | Ammonia Solution                                            | 31.00               |
|    | EDC                                                         | 20.00               |
|    | 3-Ethyl-4-methyl-N-[2-(4-{[(trans-4-methyl                  |                     |
| 11 | cyclohexyl)carbamoyl] sulfamoyl} phenyl)ethyl]-2-           |                     |
|    | oxo-2,5-dihydro-1H-pyrrole-1-carboxamide                    |                     |
|    | N-{2-[4-(aminosulfonyl)phenyl]ethyl}-3-ethyl-4-             |                     |
|    | methyl-2-oxo-2,5-dihydro -1 <i>H</i> -pyrrole-1-carboxamide | 10.00               |
|    | (Solfonamide Derivative)                                    |                     |
|    | Trans 4 methyl cyclohexyl isocyanate (Trans Iso             | 6.00                |
|    | Cyanate)                                                    | 100.00              |
|    | Acetone  Retassives Coulomate                               | 100.00              |
|    | Potassium Carbonate                                         | 7.50                |
|    | Methanol                                                    | 40.00               |
|    | Conc HCl                                                    | 16.25               |
| 40 | Carbon                                                      | 0.26                |
| 12 | 2,4 Difluoro Benzylamine and It's Intermediates             | 10.30               |
|    | 2,4 Difluoro Benzonitrile                                   | 10.20               |
|    | Methanol                                                    | 40.00               |
|    | Nickel Catalyst                                             | 0.40                |
|    | Hydrogen gas                                                | 3000 M <sup>3</sup> |
|    | Nitrogen                                                    | 300 M <sup>3</sup>  |

| 13 | P Methoxy Phenyl Acetonitrile and It's Intermediates |                     |
|----|------------------------------------------------------|---------------------|
|    | 4 Methoxy Benzaldehyde                               | 10.40               |
|    | Nickel Catalyst                                      | 0.20                |
|    | Hydrogen gas                                         | 2800 M <sup>3</sup> |
|    | Nitrogen                                             | 200 M <sup>3</sup>  |
|    | Conc HCl                                             | 30.00               |
|    | Toluene                                              | 20.00               |
|    | Sodium Cyanide                                       | 3.60                |
|    | Sodium Chloride                                      | 1.20                |
| 14 | 3-Trifluoromethyl Cinnamic Acid and It's             |                     |
|    | Intermediates                                        |                     |
|    | 3 Trifluoromethyl Aniline                            | 8.00                |
|    | Conc HCl                                             | 13.30               |
|    | Sodium Nitrite                                       | 4.00                |
|    | Acrylonitrile                                        | 2.90                |
|    | Caustic Flakes                                       | 2.50                |
|    | Conc Sulfuric Acid                                   | 3.50                |
| 15 | Ethyltrifluoro Acetate                               |                     |
|    | Trifluoro Acetic Acid                                | 8.60                |
|    | Ethanol                                              | 5.00                |
|    | Sodium Carbonate                                     | 0.40                |
|    | Sulfuric Acid                                        | 1.20                |
| 16 | Bupropion Hydrochloride and It's Intermediates       |                     |
|    | Toluene                                              | 12.50               |
|    | 3-Chloro-2'-Bromo Propiophenone                      | 5.00                |
|    | tert butyl amine                                     | 1.75                |
|    | 20% Methanolic HCl                                   | 4.06                |
|    | Iso Propyl Alcohol                                   | 10.00               |
|    | Carbon                                               | 0.13                |
| 17 | Doxofylline and It's Intermediates                   |                     |
|    | Theofylline                                          | 4.35                |
|    | 2-Bromomethyl-1,3-dioxolane                          | 4.10                |
|    | Sodium Carbonate                                     | 1.40                |
|    | Dimethyl Formamide (DMF)                             | 12.00               |
|    | Carbon                                               | 0.10                |

#### LAYOUTOF MAP OF THE PLANT




#### **BRIEF MANUFACTURING PROCESS DESCRIPTION**

# 1). 4-Sulfonamido Phenyl Hydrazine Hydrochloride

# Ø A) Reaction Chemistry

### Ø B) Process Flow Diagram

Sulfanilamide Sodium Nitrite Conc HCl Sodium Bisulfite Water



### Ø C) Manufacturing Process

- Charged hydrochloric acid, water and sulphonilamide in Reactor at RT. Cool the RM
- Charged aqueous sodium nitrite in above reaction mixture
- Charged Slowly aqueous sodium bisulphite in above reaction mixture
- The reaction mixture was heated and stirred
- Hydrochloric acid was added to the reaction mixture
- The reaction mixture was cooled.
- The separated solid was filtered and dried.


| Capacity, Mt/Month | • | 20.00 |
|--------------------|---|-------|
| Batch Size, Kg     | • | 400   |
| Working Days       | : | 26    |

| Sr.<br>No | Name of Raw Material | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|----------------------|----------|---------------------|----------|------------------|
|           | Input                |          |                     |          |                  |
| 1         | Sulfanilamide        | 325      | 0.81                | 16.20    |                  |
| 2         | Sodium Nitrite       | 140      | 0.35                | 7.00     |                  |
| 3         | Sodium bisulphite    | 210      | 0.53                | 10.60    |                  |
| 4         | Conc HCl             | 680      | 1.70                | 34.00    |                  |
| 5         | Water                | 400      | 1.00                | 20.00    |                  |
|           | Total                | 1755     |                     |          |                  |
|           | Output               |          |                     |          |                  |
| 1         | Final Product        | 400      | 1.00                | 20.00    | Finished product |
| 2         | Drying Loss          | 185      | 0.46                | 9.20     |                  |
| 3         | Effluent             | 1170     | 2.93                | 58.60    |                  |
|           | Total                | 1755     |                     |          |                  |

# 2). 4,4,4-trifluoro-1-[4-(methyl)phenyl]-butane-1,3-dione

### Ø A) Reaction Chemistry

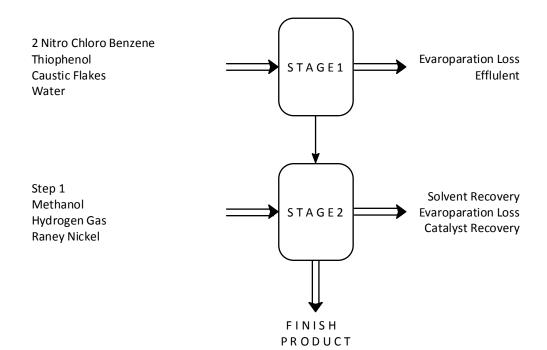
### Ø B) Process Flow Diagram



# Ø C) Manufacturing Process

- Charged Sodium methoxide and toluene in Reactor at RT.
- A solution of 4-methylacetophenone in toluene was added in above reaction mixture
- A solution of methyltrifluoroacetate in toluene was added slowly
- The reaction mixture was heated and stirred well
- The reaction mixture was cooled
- Charged aqueous hydrochloric acid toluene in in above reaction mixture
- The layers were separated
- The organic layer were washed with water
- The solvent was removed completely under vacuum to afford the title compound

| Capacity, Mt/Month |   | 20.00 |
|--------------------|---|-------|
| Batch Size, Kg     | : | 400   |
| Working Days       | : | 26    |


| Sr.<br>No | Name of Raw Material   | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|------------------------|----------|---------------------|----------|------------------|
|           | Input                  |          |                     |          |                  |
| 1         | Sodium Methoxide       | 110      | 0.28                | 5.60     |                  |
| 2         | Toluene                | 600      | 1.50                | 30.00    |                  |
| 3         | 4-Methylacetophenone   | 240      | 0.60                | 12.00    |                  |
| 4         | Methyltrifluoroacetate | 248      | 0.62                | 12.40    |                  |
| 5         | Conc HCl               | 230      | 0.58                | 11.60    |                  |
| 6         | Water                  | 300      | 0.75                | 15.00    |                  |
|           | Total                  | 1728     |                     |          |                  |
|           | Output                 |          |                     |          |                  |
| 1         | Final Product          | 400      | 1.00                | 20.00    | Finished product |
| 2         | Toluene (Recd)         | 560      | 1.40                | 28.00    | Recycle          |
| 3         | Distillation Loss      | 40       | 0.10                | 2.00     |                  |
| 4         | Effluent               | 718      | 1.79                | 35.80    |                  |
| 5         | Residue                | 10       | 0.03                | 0.60     |                  |
|           | Total                  | 1728     |                     |          |                  |

# 3). 2 Amino Phenyl Phenyl Sulfide

Step 1: 2 Nitro Phenyl Phenyl Sulfide

#### Step 2: 2 Amino Phenyl Phenyl Sulfide

# Ø B) Process Flow Diagram

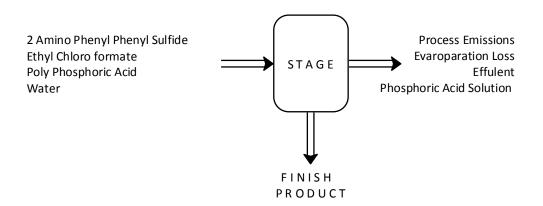


### Ø C) Manufacturing Process

#### Step 1: 2 Nitro Phenyl Phenyl Sulfide

- Charged water in Reactor at RT.
- Charged Caustic Flakes and Thiophenol in Reactor
- The reaction mixture was heated and stirred well.
- Charged 2 Nitro Chloro Benzene in above reaction Mass.
- Heat the RM and stir well for several time
- The reaction mixture was cooled.
- The separated solid was filtered and dried.

#### Step 2: 2 Amino Phenyl Phenyl Sulfide


- Charged Methanol and step 1 in in an autoclave.
- Then add Nickel (Ni) Catalyst in an autoclave.
- Then parching N2 gas in autoclave to removing O2 in autoclave.
- After passed Hydrogen for 4 to 5 hr.
- That time pressure is 2 to 2.5 Kg. Now checked conversion.
- When conversion is completed distill of excess of solvent and then filter the product.
- The separated solid was filtered and dried.

| Capacity, Mt/Month | : | 20.00 |
|--------------------|---|-------|
| Batch Size, Kg     | : | 250   |
| Working Days       | : | 26    |

| Sr.<br>No | Name of Raw Material       | Kg/batch           | Kg/Kg of<br>Product | MT/Month             | Remarks          |
|-----------|----------------------------|--------------------|---------------------|----------------------|------------------|
|           | Input                      |                    |                     |                      |                  |
| 1         | Thio Phenol                | 160                | 0.64                | 12.80                |                  |
| 2         | 2 Nitro Chloro Benzene     | 215                | 0.86                | 17.20                |                  |
| 3         | Caustic Flakes             | 70                 | 0.28                | 5.60                 |                  |
| 4         | Raney Nickel               | 5                  | 0.02                | 0.40                 |                  |
| 5         | Methanol                   | 1000               | 4.00                | 80.00                |                  |
| 6         | Hydrogen gas               | 200 M <sup>3</sup> | $0.80  \text{M}^3$  | 16000 M <sup>3</sup> |                  |
| 7         | Nitrogen                   | 20 M <sup>3</sup>  | $0.08  \text{M}^3$  | 1600 M <sup>3</sup>  |                  |
| 8         | Water                      | 200                | 0.80                | 16.00                |                  |
|           | Total                      | 1650               |                     |                      |                  |
|           | Output                     |                    |                     |                      |                  |
| 1         | Final Product              | 250                | 1.00                | 20.00                | Finished product |
| 2         | Methanol (Recd)            | 970                | 3.88                | 77.60                | Recycle          |
| 3         | Distillation + Drying Loss | 70                 | 0.28                | 5.60                 |                  |
| 4         | Effluent                   | 360                | 1.44                | 28.80                |                  |
|           | Total                      | 1650               |                     |                      |                  |

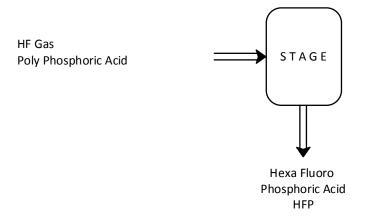
# 4). Dibenzo[b,f][1,4]Thiazepin-11(10H)-One

# Ø B) Process Flow Diagram

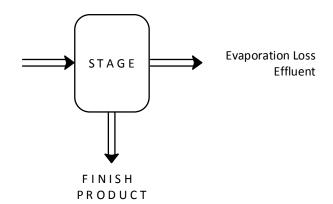


# Ø C) Manufacturing Process

- Charged 2 Amino phenyl phenyl sulfide and Ethyl chloro formate in Reactor at RT
- The reaction mixture was heated and stirred well.
- Charged PPA and water in above reaction mass.
- Heat the RM and stir well for several time.
- Charged Toluene in above reaction mass
- Separate Organic layer and aqueous layer.
- Charged carbon in above organic layer and heat under stirring.
- Filter the reaction mass by sparker filter
- The reaction mixture was cooled.
- The separated solid was filtered wash with water and dried.


| Capacity, Mt/Month | • | 20.00 |
|--------------------|---|-------|
| Batch Size, Kg     | • | 400   |
| Working Days       | • | 26    |

| Sr.<br>No | Name of Raw Material          | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|-------------------------------|----------|---------------------|----------|------------------|
|           | Input                         |          |                     |          |                  |
| 1         | 2 Amino phenyl phenyl sulfide | 380      | 0.95                | 19.00    |                  |
| 2         | Poly Phosphoric Acid          | 1200     | 3.00                | 60.00    |                  |
| 3         | Ethyl Chloro formate          | 250      | 0.63                | 12.50    |                  |
| 4         | Toluene                       | 1200     | 3.00                | 60.00    |                  |
| 5         | Carbon                        | 20       | 0.05                | 1.00     |                  |
| 6         | Water                         | 1000     | 2.50                | 50.00    |                  |
|           | Total                         | 4050     |                     |          |                  |
|           | Output                        |          |                     |          |                  |
| 1         | Final Product                 | 400      | 1.00                | 20.00    | Finished product |
| 2         | Toluene Recd                  | 1150     | 2.88                | 57.50    | Recycle          |
| 3         | Drying + Distillation Loss    | 180      | 0.45                | 9.00     |                  |
| 4         | Residue                       | 25       | 0.06                | 1.25     |                  |
| 5         | Waste Carbon                  | 30       | 0.08                | 1.50     |                  |
| 6         | Effluent                      | 2265     | 5.66                | 113.25   |                  |
|           | Total                         | 4050     |                     |          |                  |


# 5). 2-Chloro-1,3-bis(dimentylamino)trimethinium hexafluorophosphate

# Ø A) Reaction Chemistry

# Ø B) Process Flow Diagram



Dimethyl Formamide Chloroacetyl Chloride Phosphorus Oxychloride Hexa Fluoro Phosphoric Acid Caustic Lye Water



#### Ø C) Manufacturing Process

#### Hexa Fluoro Phosphoric Acid

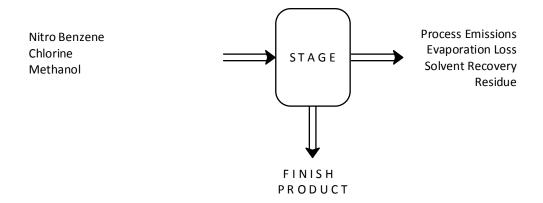
- Charge Poly phosphoric acid in reactor. Chilled the PPA under stirring.
- Charged slowly HF Gas in above RM under vigorous stirring.
- RM is then warmed to give a clear solution of final product

#### 2-Chloro-1,3-bis(dimentylamino)trimethinium hexafluorophosphate

- Charge Dimethylformamide, Chloroacetyl chloride and in above GLR.
- Charge Phosphorus Oxychloride) in above RM.
- RM is then heated to give a clear yellow solution
- After completion of the addition, the reaction mixture is cooled.
- Charged chilled Caustic solution and hexafluorophosphoric acid solution in water in RM
- The RM is maintained at same temp for 2 hr, then the solids are collected by Centrifuged.
- The crude solids are washed with water
- The light-yellow solids are collected by filtration, washed with cold water
- Dry the product to give 2-chloro-1,3-bis(dimethylamino) trimethinium hexafluorophosphate as a light-yellow solid

| Capacity, Mt/Month | : | 20.00 |
|--------------------|---|-------|
| Batch Size, Kg     | • | 1450  |
| Working Days       | : | 26    |

| Sr.<br>No | Name of Raw Material | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|----------------------|----------|---------------------|----------|------------------|
|           | Input                |          |                     |          |                  |
| 1         | PPA                  | 600      | 0.42                | 8.30     |                  |
| 2         | HF Gas               | 850      | 0.59                | 11.70    |                  |
|           | Total                | 1450     |                     | 20.00    |                  |
|           | Output               |          |                     |          |                  |
| 1         | Final Product        | 1450     | 1.00                | 20.00    | Finished product |
|           | Total                | 1450     |                     |          |                  |


| Capacity, Mt/Month | : | 20.00 |
|--------------------|---|-------|
| Batch Size, Kg     | : | 500   |
| Working Days       | : | 26    |

| Sr.<br>No | Name of Raw Material      | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|---------------------------|----------|---------------------|----------|------------------|
|           | Input                     |          |                     |          |                  |
| 1         | Dimethylformamide         | 180      | 0.36                | 7.20     |                  |
| 2         | Chloroacetyl chloride     | 200      | 0.40                | 8.00     |                  |
| 3         | Phosphorus Oxychloride    | 275      | 0.55                | 11.00    |                  |
| 4         | Caustic Flakes            | 330      | 0.66                | 13.20    |                  |
| 5         | Hexafluorophosphoric acid | 450      | 0.90                | 18.00    |                  |
| 6         | Water                     | 415      | 0.83                | 16.60    |                  |
|           | Total                     | 1850     |                     |          |                  |
|           | Output                    |          |                     |          |                  |
| 1         | Final Product             | 500      | 1.00                | 20.00    | Finished product |
| 2         | Drying loss               | 130      | 0.26                | 5.20     |                  |
| 3         | Effluent                  | 1220     | 2.44                | 48.80    |                  |
|           | Total                     | 1850     |                     |          |                  |

# 6). Meta Chloro Nitro Benzene

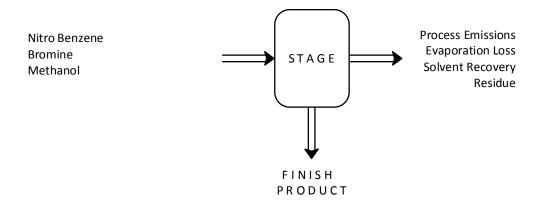
# Ø A) Reaction Chemistry

### Ø B) Process Flow Diagram



# Ø C) Manufacturing Process

- Charged Nitro Benzene in Glass Lined reactor.
- Then slowly purged of Chlorine gas with continues stirring. Keep temp 40°C to 50°C.
- After completion of Chlorine addition, reaction mixture was heated and stirred
- Charged methanol in above organic mass.
- Chilled the reaction mass.
- Filter the solid mass and dry it.


| Capacity, Mt/Month | : | 20.00 |
|--------------------|---|-------|
| Batch Size, Kg     | • | 500   |
| Working Days       | : | 26    |

| Sr.<br>No | Name of Raw Material       | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|----------------------------|----------|---------------------|----------|------------------|
|           | Input                      |          |                     |          |                  |
| 1         | Nitro Benzene              | 410      | 0.82                | 16.40    |                  |
| 2         | Chlorine                   | 255      | 0.51                | 10.20    |                  |
| 3         | Methanol                   | 800      | 1.60                | 32.00    |                  |
|           | Total                      | 1465     | 2.93                | 58.60    |                  |
|           | Output                     |          |                     |          |                  |
| 1         | Final Product              | 500      | 1.00                | 20.00    | Finished product |
| 2         | Methanol Recd              | 750      | 1.50                | 30.00    | Recycle          |
| 3         | Drying + Distillation loss | 190      | 0.38                | 7.60     |                  |
| 4         | Residue                    | 25       | 0.05                | 1.00     |                  |
|           | Total                      | 1465     |                     |          |                  |

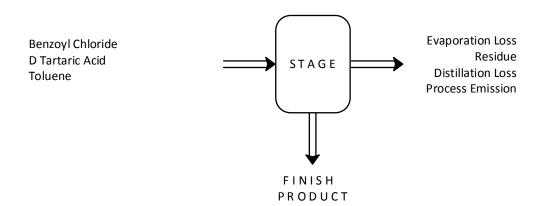
# 7). Meta Bromo Nitro Benzene

# Ø A) Reaction Chemistry

# Ø B) Process Flow Diagram



# Ø C) Manufacturing Process


- Charged Nitro Benzene in Glass Lined reactor.
- Then slowly charged of Liq bromine with continues stirring. Keep temp 60°C to 70°C.
- After completion of Bromine addition, reaction mixture was heated and stirred
- Charged methanol in above organic mass.
- Chilled the reaction mass.
- Filter the solid mass and dry it.

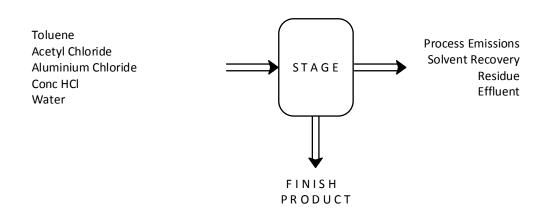
| Capacity, Mt/Month | : | 20.00 |
|--------------------|---|-------|
| Batch Size, Kg     | : | 500   |
| Working Days       | : | 26    |

| Sr.<br>No | Name of Raw Material       | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|----------------------------|----------|---------------------|----------|------------------|
|           | Input                      |          |                     |          |                  |
| 1         | Nitro Benzene              | 340      | 0.68                | 13.60    |                  |
| 2         | Liq Bromine                | 400      | 0.80                | 16.00    |                  |
| 3         | Methanol                   | 1000     | 2.00                | 40.00    |                  |
|           | Total                      | 1740     |                     |          |                  |
|           | Output                     |          |                     |          |                  |
| 1         | Final Product              | 500      | 1.00                | 20.00    | Finished product |
| 2         | Methanol Recd              | 920      | 1.84                | 36.80    | Recycle          |
| 3         | Drying + Distillation loss | 285      | 0.57                | 11.40    |                  |
| 4         | Residue                    | 35       | 0.07                | 1.40     |                  |
|           | Total                      | 1740     |                     |          |                  |

### 8). 2, 3-Dibenzoyl-D-tartaric acid

### Ø A) Reaction Chemistry




- Charge benzoyl chloride in GLR at RT.
- Charge D-(-)-tartaric acid in RM at RT.
- Heat Reaction Mass. Maintain this temp for 3 to 4 hrs.
- Charge Toluene in Reactor. Heat to reflux for 30 min.
- Cool RM to RT.
- Filter the RM and wash with Chilled toluene.
- Dry the product.

| Capacity, Mt/Month | • | 20.00 |
|--------------------|---|-------|
| Batch Size, Kg     | • | 500   |
| Working Days       | : | 26    |

| Sr.<br>No | Name of Raw Material       | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|----------------------------|----------|---------------------|----------|------------------|
|           | Input                      |          |                     |          |                  |
| 1         | Benzoyl Chloride           | 450      | 0.90                | 18.00    |                  |
| 2         | D Tartaric Acid            | 270      | 0.54                | 10.80    |                  |
| 3         | Toluene                    | 750      | 1.50                | 30.00    |                  |
|           | Total                      | 1470     |                     |          |                  |
|           | Output                     |          |                     |          |                  |
| 1         | Final Product              | 500      | 1.00                | 20.00    | Finished product |
| 2         | Toluene                    | 730      | 1.46                | 29.20    | Recycle          |
| 3         | Distillation + Drying loss | 220      | 0.44                | 8.80     |                  |
| 4         | Residue                    | 20       | 0.04                | 0.80     |                  |
|           | Total                      | 1470     |                     |          |                  |

### 9). 4 Methyl Acetophenone

### Ø A) Reaction Chemistry

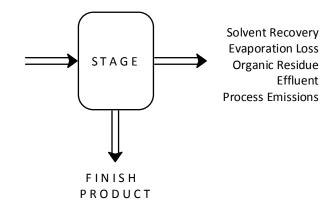


- Charge Acetyl chloride in Glass Lined reactor.
- Charge AlCl<sub>3</sub> by maintaining the temperature less than 10°C during 2-3 hrs.
- Cool above suspension to 0°C to 5°C
- Charged toluene slowly by maintaining temperature 0°C to 5°C in about 5 hrs
- After completion of addition, stir the reaction mixture at 10°C to 15°C
- In Quencher, take chilled water and Conc HCl
- Reaction mixture was added to mixture of HCl and water by maintaining temperature less than 50°C
- Separate the organic layer
- Organic layer was concentrated under reduce pressure
- Distilled finished product under high Vacuum

| Capacity, Mt/Month | • • | 20.00 |
|--------------------|-----|-------|
| Batch Size, Kg     | •   | 500   |
| Working Days       | •   | 26    |

| Sr.<br>No | Name of Raw Material | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|----------------------|----------|---------------------|----------|------------------|
|           | Input                |          |                     |          |                  |
| 1         | Acetyl Chloride      | 325      | 0.65                | 13.00    |                  |
| 2         | Toluene              | 600      | 1.20                | 24.00    |                  |
| 3         | Aluminum Chloride    | 800      | 1.60                | 32.00    |                  |
| 4         | Conc HCl             | 350      | 0.70                | 14.00    |                  |
| 5         | Water                | 1200     | 2.40                | 48.00    |                  |
|           | Total                | 3275     |                     |          |                  |
|           | Output               |          |                     |          |                  |
| 1         | Final Product        | 500      | 1.00                | 20.00    | Finished product |
| 2         | Toluene Recd         | 180      | 0.36                | 7.20     | Recycle          |
| 3         | Distillation loss    | 225      | 0.45                | 9.00     |                  |
| 4         | Residue              | 20       | 0.04                | 0.80     |                  |
| 5         | Effluent             | 2350     | 4.70                | 94.00    |                  |
|           | Total                | 3275     |                     |          |                  |

# 10). N-{2-[4-(aminosulfonyl)phenyl]ethyl}-3-ethyl-4methyl-2-oxo-2,5-dihydro - 1*H*-pyrrole-1-carboxamide


### Ø A) Reaction Chemistry

N-{2-[4-(Aminosulfonyl)phenyl]ethyl}-3-ethyl-4-methyl-2-oxo-2,5-dihydro-1H-pyrrole-1-carboxamide

MW 351.42

### Ø B) Process Flow Diagram

Amide deri Chlorosulfonic acid Liq Ammonia Water EDC



### Ø C) Manufacturing Process

- Charged Chloro Sulfonic Acid in Reactor at RT and chilled it.
- Charged Amide derivative in above reaction mixture in chilling condition.
- The reaction mixture was heated and stirred
- The reaction mixture was very slowly quenched in chilled ammonia solution.
- Filter the solid mass, wash with water and dry it.
- Charged EDC and above crude product in Reactor at RT.
- The reaction mixture was heated and stirred. the chilled to 0-5°C
- Filter the solid mass under chilling condition and dry it.

| Capacity, Mt/Month | : | 10.00 |
|--------------------|---|-------|
| Batch Size, Kg     | • | 200   |
| Working Days       | : | 26    |

| Sr.<br>No | Name of Raw Material       | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|----------------------------|----------|---------------------|----------|------------------|
|           | Input                      |          |                     |          |                  |
| 1         | Amide Derivative           | 160      | 0.80                | 8.00     |                  |
| 2         | Chloro Sulfonic Acid       | 200      | 1.00                | 10.00    |                  |
| 3         | Ammonia Solution           | 620      | 3.10                | 31.00    |                  |
| 4         | EDC                        | 400      | 2.00                | 20.00    |                  |
| 5         | Water                      | 200      | 1.00                | 10.00    |                  |
|           | Total                      | 1580     |                     |          |                  |
|           | Output                     |          |                     |          |                  |
| 1         | Final Product*             | 200      | 1.00                | 10.00    | Finished product |
| 2         | EDC                        | 340      | 1.70                | 17.00    | Recycle          |
| 3         | Distillation + Drying loss | 160      | 0.80                | 8.00     |                  |
| 4         | Residue                    | 5        | 0.03                | 0.26     |                  |
| 5         | Effluent                   | 875      | 4.38                | 43.76    |                  |
|           | Total                      | 1580     |                     |          |                  |

# 11). 3-Ethyl-4-methyl-N-[2-(4-{[(trans-4-methylcyclohexyl)carbamoyl] sulfamoyl} phenyl)ethyl]-2-oxo-2,5-dihydro-1H-pyrrole-1-carboxamide

### Ø A) Reaction Chemistry

N-{2-[4-(aminosulfonyl)phenyl]ethyl}-3-ethyl-4-methyl-2-oxo-2,5-dihydro-1H-pyrrole-1-carboxamide

Trans 4 methyl cyclohexyl isocyanate

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

3-Ethyl-4-methyl-N-[2-(4-{[(trans-4-methylcyclohexyl)carbamoyl]sulfamoyl} phenyl)ethyl]-2-oxo-2,5-dihydro-1H-pyrrole-1-carboxamide

MW 490.62

#### Ø B) Process Flow Diagram

Sulfonamide deri Trans Isocyanate Solvent Recovery Potassium Hydroxide **Evaporation Loss** Acetone STAGE Organic Residue Methanol Effluent Conc HCl Waste Carbon Water Carbon FINISH PRODUCT

#### Ø C) Manufacturing Process

- Charged Acetone, Potassium Carbonate and Sulfonamide derivative in Reactor at RT.
- Charged Trans 4 methyl cyclo hexyl isocyanate in Reaction Mixture.
- The reaction mixture was heated and stirred
- Cool the reaction mixture and separate the solid mass by filtration.
- Charged methanol, carbon and above wet cake in Reactor.
- The reaction mixture was heated and stirred then filter by sparkler filter
- Charged Conc HCl in Reaction Mixture.
- Filter the solid mass, wash with water and dry it

| Capacity, Mt/Month | • | 10.00 |
|--------------------|---|-------|
| Batch Size, Kg     | • | 200   |
| Working Days       | : | 26    |

| Sr.<br>No | Name of Raw Material       | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|----------------------------|----------|---------------------|----------|------------------|
|           | Input                      |          |                     |          |                  |
| 1         | Solfonamide Derivative     | 200      | 1.00                | 10.00    |                  |
| 2         | Trans Iso Cyanate          | 120      | 0.60                | 6.00     |                  |
| 3         | Acetone                    | 2000     | 10.00               | 100.00   |                  |
| 4         | Potassium Carbonate        | 150      | 0.75                | 7.50     |                  |
| 5         | Methanol                   | 800      | 4.00                | 40.00    |                  |
| 6         | Conc HCl                   | 325      | 1.63                | 16.25    |                  |
| 7         | Water                      | 200      | 1.00                | 10.00    |                  |
| 8         | Carbon                     | 5        | 0.25                | 0.26     |                  |
|           | Total                      | 3800     |                     |          |                  |
|           | Output                     |          |                     |          |                  |
| 1         | Final Product              | 200      | 1.00                | 10.00    | Finished product |
| 2         | Acetone                    | 1900     | 9.50                | 95.00    | Recycle          |
| 3         | Methanol                   | 700      | 3.50                | 35.00    |                  |
| 4         | Distillation + Drying loss | 150      | 0.75                | 7.50     |                  |
| 5         | Residue                    | 15       | 0.08                | 0.80     |                  |
| 6         | Effluent                   | 825      | 4.12                | 41.20    |                  |
| 7         | Carbon                     | 10       | 0.05                | 0.50     |                  |
|           | Total                      | 3800     |                     |          |                  |

### 12). 2,4 Difluoro Benzylamine

# Ø A) Reaction Chemistry

#### 2,4 Difluoro Benzonitrile

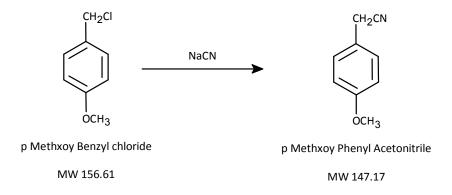
#### 2,4 Difluoro Benzylamine

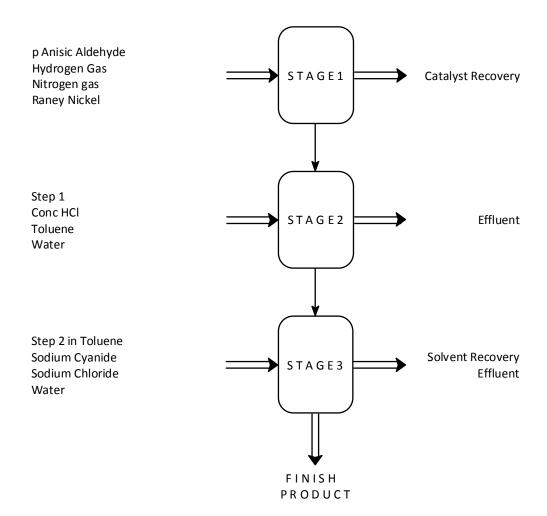


- Charged Methanol, 2,4 Difluoro Benzonitrile and Raney nickel in Autoclave Reactor at RT.
- Then add Nickel (Ni) Catalyst in an autoclave.
- Then parching N2 gas in autoclave to removing O2 in autoclave.
- After passed Hydrogen for 10 to 12 hr.
- That time pressure is 7 to 7.5 Kg. Now checked conversion.
- When conversion is completed than filter of Catalyst.
- Cool the filtrate then chilled it under stirring.
- Filter the solid mass, wash with chilled methanol and dry it

| Capacity, Mt/Month | : | 10.00 |
|--------------------|---|-------|
| Batch Size, Kg     | : | 500   |
| Working Days       | : | 26    |

| Sr.<br>No | Name of Raw Material       | Kg/batch           | Kg/Kg of<br>Product | MT/Month            | Remarks          |
|-----------|----------------------------|--------------------|---------------------|---------------------|------------------|
|           | Input                      |                    |                     |                     |                  |
| 1         | 2,4 Difluoro Benzonitrile  | 510                | 1.02                | 10.20               |                  |
| 2         | Methanol                   | 2000               | 4.00                | 40.00               |                  |
| 3         | Nickel Catalyst            | 20                 | 0.04                | 0.40                |                  |
| 4         | Hydrogen gas               | 150 M <sup>3</sup> | $0.30  \text{M}^3$  | 3000 M <sup>3</sup> |                  |
| 5         | Nitrogen                   | 15 M <sup>3</sup>  | $0.03  \text{M}^3$  | 300 M <sup>3</sup>  |                  |
|           | Total                      | 1015               |                     |                     |                  |
|           | Output                     |                    |                     |                     |                  |
| 1         | Final Product              | 500                | 1.00                | 10.00               | Finished product |
| 2         | Methanol                   | 1950               | 3.90                | 39.00               | Recycle          |
| 3         | Drying + Distillation Loss | 35                 | 0.07                | 0.70                |                  |
| 4         | Residue                    | 20                 | 0.04                | 0.40                |                  |
| 5         | Nickel Catalyst            | 25                 | 0.05                | 0.50                | Regenerated      |
|           | Total                      | 1015               |                     |                     |                  |


### 13). P Methoxy Phenyl Acetonitrile


### Ø A) Reaction Chemistry

Step 1 : p Anisic Alcohol

Step 2: p Methoxy Benzyl chloride

Step 3: p Methoxy Phenyl Acetonitrile





#### Step 1 : p Anisic Alcohol

- Take 4 Methoxy Benzaldehyde in an autoclave.
- Then add Nickel (Ni) Catalyst in an autoclave.
- Then parching N2 gas in autoclave to removing O2 in autoclave.
- After passed Hydrogen for 10 to 12 hr.
- That time pressure is 7 to 7.5 Kg. Now checked conversion.
- When conversion is completed than filter of 4 Methoxy Benzyl Alcohol.

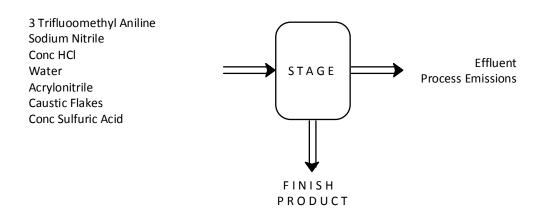
#### Step 2: p Methoxy Benzyl chloride

- Charged Conc. HCl in reactor.
- Then Charged Para Anisic Alcohol in above RM in 2 to 3 hours.
- After Addition, Maintain for 6 hours at same temp.
- Now Charged Toluene in RM and then cool to room temp.
- After settling, separate layers.
- Wash toluene layer with water
- Use Toluene layer for next step.

#### Step 3: p Methoxy Phenyl Acetonitrile

- Take water in reactor and dissolve Sodium Cyanide and TBAB.
- After charged Step-02 in above RM maintain it 70 ~ 75°C.
- Then maintain same temp. for 6-7 hrs.
- Cool to room temp, Separate layers.
- Collect upper organic layer.
- Wash the Organic layer by sodium chloride solution.
- Water wash in to the organic layer & separated the organic layer.
- Collect organic layer, distil off toluene completely.
- Now distill the organic layer then collect finished P-Methoxy Phenyl Acetonitrile.

| Capacity, Mt/Month | • | 10.00 |
|--------------------|---|-------|
| Batch Size, Kg     | : | 500   |
| Working Days       | : | 26    |


| Sr.<br>No | Name of Raw Material   | Kg/batch           | Kg/Kg of<br>Product  | MT/Month            | Remarks          |
|-----------|------------------------|--------------------|----------------------|---------------------|------------------|
|           | Input                  |                    |                      |                     |                  |
| 1         | 4 Methoxy Benzaldehyde | 520                | 1.04                 | 10.40               |                  |
| 2         | Nickel Catalyst        | 10                 | 0.02                 | 0.20                |                  |
| 3         | Hydrogen gas           | 140 M <sup>3</sup> | $0.28  \mathrm{M}^3$ | 2800 M <sup>3</sup> |                  |
| 4         | Nitrogen               | 10 M <sup>3</sup>  | $0.02 \text{ M}^3$   | 200 M <sup>3</sup>  |                  |
| 5         | Conc HCl               | 1500               | 3.00                 | 30.00               |                  |
| 6         | Toluene                | 1000               | 2.00                 | 20.00               |                  |
| 7         | Sodium Cyanide         | 180                | 0.36                 | 3.60                |                  |
| 8         | Sodium Chloride        | 60                 | 0.12                 | 1.20                |                  |
| 9         | Water                  | 1000               | 2.00                 | 20.00               |                  |
|           | Total                  | 4420               |                      |                     |                  |
|           | Output                 |                    |                      |                     |                  |
| 1         | Final Product          | 500                | 1.00                 | 10.00               | Finished product |
| 2         | Toluene                | 930                | 1.86                 | 18.60               | Recycle          |
| 3         | Nickel Catalyst        | 15                 | 0.03                 | 0.30                | Regenerated      |
| 4         | Distillation Loss      | 50                 | 0.10                 | 1.00                |                  |
| 5         | Effluent               | 2925               | 5.85                 | 58.50               |                  |
|           | Total                  | 4420               |                      |                     |                  |

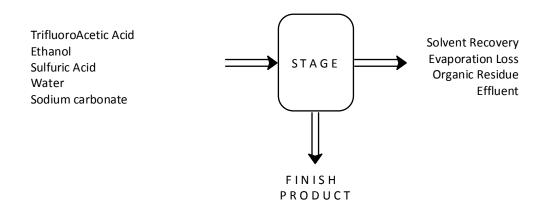
### 14). 3-Trifluoromethyl Cinnamic Acid

#### Ø A) Reaction Chemistry

3 Trifluoromethyl Cinnamic Acid

MW 216.16




- Charged Hydrochloric acid, Water and 3 Trifluoromethyl Aniline in Reactor at RT.
- Charged aqueous Sodium Nitrite in above reaction mixture at RT
- Charged slowly Acrylonitrile in above reaction mixture.
- Add Caustic flakes and water in above reaction mass.
- The reaction mixture was heated and stirred. Now cool the reaction mass.
- Dilute Sulfuric Acid was added to the reaction mixture
- The reaction mixture was cooled.
- The separated solid was filtered and dried.

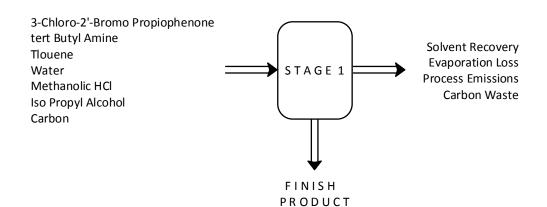
| Capacity, Mt/Month | : | 10.00 |
|--------------------|---|-------|
| Batch Size, Kg     | : | 200   |
| Working Days       | : | 26    |

| Sr.<br>No | Name of Raw Material      | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|---------------------------|----------|---------------------|----------|------------------|
|           | Input                     |          |                     |          |                  |
| 1         | 3 Trifluoromethyl Aniline | 160      | 0.80                | 8.00     |                  |
| 2         | Conc HCl                  | 265      | 1.33                | 13.30    |                  |
| 3         | Sodium Nitrite            | 80       | 0.40                | 4.00     |                  |
| 4         | Acrylonitrile             | 58       | 0.29                | 2.90     |                  |
| 5         | Caustic Flakes            | 50       | 0.25                | 2.50     |                  |
| 6         | Conc Sulfuric Acid        | 70       | 0.35                | 3.50     |                  |
| 7         | Water                     | 200      | 1.00                | 10.00    |                  |
|           | Total                     | 883      |                     |          |                  |
|           | Output                    |          |                     |          |                  |
| 1         | Finish Product            | 200      | 1.00                | 10.00    | Finished product |
| 2         | Drying Loss               | 50       | 0.25                | 2.50     |                  |
| 3         | Effluent                  | 633      | 3.17                | 31.70    |                  |
|           | Total                     | 883      |                     |          |                  |

### 15). Ethyltrifluoro Acetate

### Ø A) Reaction Chemistry




- Charged Ethanol, Trifluoro acetic acid and Sulfuric acid in Reactor at RT.
- Applied heating to reaction mass
- Maintaining Reaction Mass to 65-68°C for 4.00 hrs
- Cooling Reaction Mass to 45-50°C
- Add water and stir for 15 min. Separate Organic Layer
- Add Sodium Carbonate Solution (5%) in above Organic Layer and stir for 15 min. Separate Organic Layer
- Distill Organic Layer for purified Product.

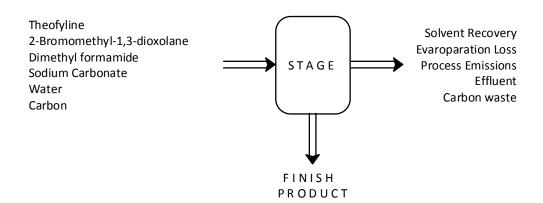
| Capacity, Mt/Month | : | 10.00 |
|--------------------|---|-------|
| Batch Size, Kg     | : | 500   |
| Working Days       | : | 26    |

| Sr.<br>No | Name of Raw Material  | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|-----------------------|----------|---------------------|----------|------------------|
|           | Input                 |          |                     |          |                  |
| 1         | Trifluoro Acetic Acid | 430      | 0.86                | 8.60     |                  |
| 2         | Ethanol               | 250      | 0.50                | 5.00     |                  |
| 3         | Sodium Carbonate      | 20       | 0.04                | 0.40     |                  |
| 4         | Sulfuric Acid         | 60       | 0.12                | 1.20     |                  |
| 5         | Water                 | 250      | 0.50                | 5.00     |                  |
|           | Total                 | 1010     |                     |          |                  |
|           | Output                |          |                     |          |                  |
| 1         | Final Product         | 500      | 1.00                | 10.00    | Finished product |
| 2         | Distillation Loss     | 60       | 0.12                | 1.20     |                  |
| 3         | Residue               | 15       | 0.03                | 0.30     |                  |
| 4         | Effluent              | 435      | 0.87                | 8.70     |                  |
|           | Total                 | 1010     |                     |          |                  |

### 16). Bupropion Hydrochloride

#### Ø A) Reaction Chemistry




- Charged Toluene in Reactor at RT.
- Charge 3-Chloro-2'-Bromo Propiophenone in Toluene
- Slowly charged tert butyl amine in about mass at RT
- Heat Reaction Mass to 55-60°C. Maintain this temp for 3-4 hrs
- Add water in above reaction mass and stir for 1 hrs.
- Now cool the reaction mass and separate the organic layer.
- Charged Carbon in above layer and heat it.
- Filter the above Reaction Mass by Sparkler filter.
- Chilled the filtrate and then Charged Methanolic HCl in Reactor at 5-10°C.
- Maintain RM for 3 hrs at same temp.
- Filter the solid mass.
- Charged Iso Propyl Alcohol in Reactor at RT.
- Add solid mass and stir for 2 hrs.
- Filter the solid mass and dry it

| Capacity, Mt/Month | : | 5.00 |
|--------------------|---|------|
| Batch Size, Kg     | • | 400  |
| Working Days       | : | 26   |

| Sr.<br>No | Name of Raw Material       | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|----------------------------|----------|---------------------|----------|------------------|
|           | Input                      |          |                     |          |                  |
| 1         | Toluene                    | 1000     | 2.50                | 12.50    |                  |
| 2         | 3-Chloro-2'-Bromo          | 400      | 1.00                | 5.00     |                  |
|           | Propiophenone              | 400      | 1.00                | 5.00     |                  |
| 3         | tert butyl amine           | 140      | 0.35                | 1.75     |                  |
| 4         | 20% Methanolic HCl         | 325      | 0.81                | 4.06     |                  |
| 5         | Iso Propyl Alcohol         | 800      | 2.00                | 10.00    |                  |
| 6         | Carbon                     | 10       | 0.03                | 0.13     |                  |
| 7         | Water                      | 600      | 1.50                | 7.50     |                  |
|           | Total                      | 3275     |                     |          |                  |
|           | Output                     |          |                     |          |                  |
| 1         | Final Product              | 400      | 1.00                | 5.00     | Finished product |
| 2         | Toluene (Recd)             | 955      | 2.39                | 11.94    | Recycle          |
| 3         | Isopropyl alcohol (Recd)   | 725      | 1.81                | 9.06     | Recycle          |
| 4         | Distillation + Drying loss | 250      | 0.63                | 3.12     |                  |
| 5         | Residue                    | 20       | 0.06                | 0.25     |                  |
| 6         | Effluent                   | 910      | 2.28                | 11.40    |                  |
| 7         | Carbon Waste               | 15       | 0.04                | 0.19     |                  |
|           | Total                      | 3275     |                     |          |                  |

### 17). Doxofylline

### Ø A) Reaction Chemistry



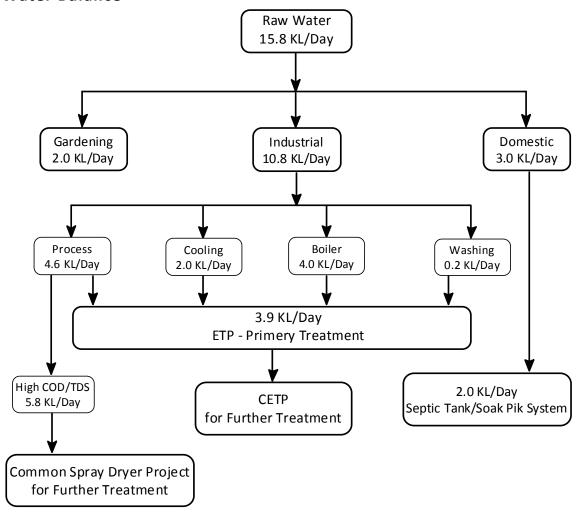
- Charged DMF and Theofylline in Reactor at RT
- Charged 2-Bromomethyl-1,3-dioxolane in above reaction mixture
- The reaction mixture was heated and stirred
- The reaction mixture was cooled.
- Remove excess of solvent under vacuum.
- Now warm the reaction mass and add water in mass.
- · Add carbon in above reaction mass and stir well under heating
- Filter the above mass in hot condition
- Cool and then Chilled the reaction mixture
- Maintain same temp for 4 hrs.
- Filter the solid mass and dry it.

| Capacity, Mt/Month | : | 5.00 |
|--------------------|---|------|
| Batch Size, Kg     | : | 500  |
| Working Days       | : | 26   |

| Sr.<br>No | Name of Raw Material       | Kg/batch | Kg/Kg of<br>Product | MT/Month | Remarks          |
|-----------|----------------------------|----------|---------------------|----------|------------------|
|           | Input                      |          |                     |          |                  |
| 1         | Theofylline                | 435      | 0.87                | 4.35     |                  |
| 2         | 2-Bromomethyl-1,3-         | 410      | 0.82                | 4.10     |                  |
|           | dioxolane                  | 410      | 0.62                | 4.10     |                  |
| 3         | Sodium Carbonate           | 140      | 0.28                | 1.40     |                  |
| 4         | Dimethyl Formamide (DMF)   | 1200     | 2.40                | 12.00    |                  |
| 5         | Carbon                     | 10       | 0.02                | 0.10     |                  |
| 6         | Water                      | 2450     | 4.90                | 49.00    |                  |
|           | Total                      | 4645     |                     |          |                  |
|           | Output                     |          |                     |          |                  |
| 1         | Final Product              | 500      | 1.00                | 5.00     | Finished product |
| 2         | Dimethyl Formamide (DMF)   | 1150     | 2.30                | 11.50    | Recycle          |
| 3         | Distillation + Drying loss | 95       | 0.19                | 0.95     |                  |
| 4         | Effluent                   | 2885     | 5.77                | 57.70    |                  |
| 5         | Carbon Waste               | 15       | 0.03                | 0.15     |                  |
|           | Total                      | 4645     |                     |          |                  |

#### **ANNEXURE - IV**

#### **DETAILS OF WATER CONSUMPTION AND WASTEWATER GENERATION**


| Sr.   | Category     | Proposed Scena    | ario (m³/day) |  |
|-------|--------------|-------------------|---------------|--|
| No.   |              | Water Consumption | Waste Water   |  |
|       |              |                   | Generation    |  |
| 1. Ir | ndustrial    |                   |               |  |
|       | Process      | 4.6               | 8.8           |  |
|       | Boiler       | 4.0               | 0.5           |  |
|       | Cooling      | 2.0               | 0.2           |  |
|       | Washing      | 0.2               | 0.2           |  |
| 2.    | Gardening    | 2.0               | -             |  |
| 3.    | Domestic     | 3.0               | 2.0           |  |
| Total | (Industrial) | 10.8              | 9.7           |  |
| Total |              | 15.8              | 11.7          |  |

**Note:** 1) High COD & High TDS effluent will be neutralized in tank and neutralized effluent will be sent to common spray dryer of M/s. PETL, Panoli for further treatment & disposal.

<sup>2)</sup> Low COD & Low TDS effluent will be neutralized in tank and neutralized effluent will be sent to CETP of M/s. PETL, Panoli for further treatment & disposal.

<sup>3)</sup> Domestic waste water will be sent to Septic Tank & Soak Pit.

#### **Water Balance**



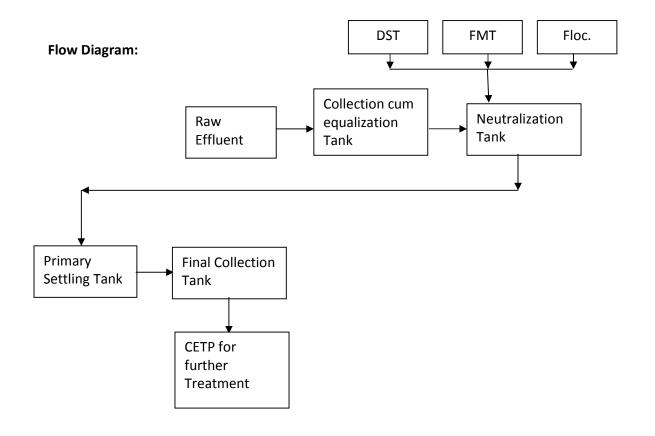
#### **DETAILS OF EFFLUENT TREATMENT PLANT**

**M/s. Sigma Life science** shall have an Effluent treatment plant consisting of primary treatment units. The effluent confirming to inlet standards of CETP. The details of ETP are as follows.

#### PROCESS DESCRIPTION: ETP (EFFLUENT TREATMENT PLANT)

The treatment scheme is given below:

#### 1) Stream-1 Low COD & Low TDS


#### **Primary Treatment:**

The waste water from unit will be brought to the treatment plant via a series of underground pipelines. The waste water will be collected in the collection cum equalization tank. Two numbers of tanks are proposed. One will in filling mode for equalization of waste water while the other will be in pumping mode. The equalized wastewater is pumped to the flash mixer for addition of chemicals like lime. From the flash mixer the waste water flows into the flocculator where chemical flocs are formed by coagulation and flocculation by addition of Alum/Ferrous sulphate and polyelectrolyte. These flocs are removed in the primary settling tank. The underflow (sludge) from the primary settling tank is taken to sludge dewatering unit (Sludge Drying Bed). Treated effluent will sent to CETP for further treatment & disposal.

The Domestic wastewater will be disposed of through septic tank & soak pit.

#### **Effluent Treatment Plant (Dimension):**

| Sr. No. | Name of the Unit         | Dimension         | Volume (m³)        | МОС |
|---------|--------------------------|-------------------|--------------------|-----|
| 1.      | Collection Tank (1 Nos.) | 2.0(m) x 2.0(m)x  | 4.0 m <sup>3</sup> | RCC |
|         |                          | 1.0(m)            |                    |     |
| 2.      | Dosing Tank (1 Nos.)     | 1.0(m) x 1.0(m )x | 1.0 m <sup>3</sup> | RCC |
|         |                          | 1.0(m)            |                    |     |
| 3.      | Flash Mixer              | 1.0(m) x 1.0(m )x | 1.0 m <sup>3</sup> | RCC |
|         |                          | 1.0(m)            |                    |     |
| 4.      | Flocculator              | 1.0(m) x 1.0(m )x | 1.0 m <sup>3</sup> | RCC |
|         |                          | 1.0(m)            |                    |     |
| 5.      | Neutralization Tank      | 2.0(m) x 2.0(m)x  | 4.0 m <sup>3</sup> | RCC |
|         |                          | 1.0(m)            |                    |     |
| 6.      | Primary Settling Tank    | 2.0(m) x 2.0(m)x  | 4.0 m <sup>3</sup> | RCC |
|         |                          | 1.0(m)            |                    |     |



#### **EXPECTED CHARACTERISTICS OF WASTEWATER BEFORE & AFTER TREATMENT**

| Sr.<br>No. | Parameter          | Characteris | CETP Inlet Norms<br>(mg/L) |      |
|------------|--------------------|-------------|----------------------------|------|
|            |                    | Untreated   | Treated                    |      |
| 1.         | рН                 | 6.5 - 8.5   | 7-8                        | 5-9  |
| 2.         | TDS                | 2100        | 2000                       | 2100 |
| 3.         | COD                | 3100        | 1800                       | 2000 |
| 4.         | BOD <sub>3</sub>   | 1100        | 400                        | 500  |
| 5.         | Ammonical Nitrogen | 20          | 10                         | 50   |

#### Stream-2: High COD & High TDS:

High COD & High TDS effluent will be neutralized in tank and neutralized effluent will be sent to common spray dryer of M/s. PETL, Panoli for further treatment and disposal.

#### Annexure -6

## Details of hazardous waste generation, storage & disposal

| CAT.<br>NO. | HAZARDOUS<br>WASTE                       | PROPOSED<br>TOTAL<br>(MT/Month) | METHOD OF DISPOSAL                                                                                                                               |
|-------------|------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.1         | Used Oil                                 | 0.02                            | Collection, Storage, Transportation Re-use or Sent to GPCB approved recycler                                                                     |
| 33.1        | Discarded barrels/<br>containers/ liners | 2                               | Collection, Storage, Transportation, decontamination and Sent back to supplier / to GPCB approved recycler                                       |
| 35.3        | ETP Sludge                               | 5                               | Collection, Storage, Transportation and Sent to TSDF site of M/s. PSWML, Panoli or M/s. SEPPL, Bharuch for secured land filling                  |
| 20.3        | Distillation Residue                     | 4                               | Collection, Storage, Transportation and sent to Cement Industries for Co-processing or Disposal at Common Incineration Site of M/s. SEPPL, Dahej |
| 28.3        | Spent Carbon                             | 2                               | Collection, Storage, Transportation and sent for co-processing in cement industries or disposal at Common Incineration Site of M/s. SEPPL, Dahej |
| 28.2        | Spent Catalyst                           | 0.5                             | Collection, Storage, Transportation and return back to manufacturer for regeneration or sell to end user.                                        |
| 28.6        | Spent solvents                           | 100                             | Collection, Storage, recovered through in house distillation or sent for distillation job work to authorized recycler.                           |

Details of flue gas & proposed pollution control equipment

#### **DETAILS OF FLUE GAS EMISSION THROUGH STACK ATTACHED TO BOILER**

| SR. | TYPE OF                                                                     | PARTICULA | STACK         | STACK        | AIR EMISSION                                       |                                                    | FUEL                           | APCM                                    |
|-----|-----------------------------------------------------------------------------|-----------|---------------|--------------|----------------------------------------------------|----------------------------------------------------|--------------------------------|-----------------------------------------|
| NO. | STACK                                                                       | R         | HEIGHT<br>(M) | DIAMETER (M) | POLLUTANT                                          | CONC.                                              |                                |                                         |
| 2.  | Thermic<br>Fluid<br>Heater<br>(2 Lac<br>Kcal)<br>Steam<br>boiler (1<br>TPH) | STACK-1   | 30            | 0.6          | PARTICULATE MATTER SO <sub>2</sub> NO <sub>X</sub> | $\leq$ 150 MG/NM $^3$ $\leq$ 100 PPM $\leq$ 50 PPM | Agro<br>Waste<br>Agro<br>Waste | Multi cyclone Separator with Bag Filter |
| 3.  | D G Set                                                                     | STACK     | 11            | 0.5          |                                                    |                                                    | HSD                            |                                         |

#### **DETAILS OF PROCESS EMISSION THROUGH VARIOUS VENTS**

| SR. | TYPE OF      | AIR POLLUTION      | HEIGHT (M) | AIR EMISSION    |                               |  |
|-----|--------------|--------------------|------------|-----------------|-------------------------------|--|
| NO. | STACK        | CONTROL SYSTEM     |            | POLLUTANT       | CONC.                         |  |
| 1.  | Process Vent | Two Stage Scrubber | 12.5       | HCL             | $\leq$ 20 MG/NM <sup>3</sup>  |  |
|     |              |                    |            | SO <sub>2</sub> | $\leq$ 40 MG/NM <sup>3</sup>  |  |
|     |              |                    |            | HBR             | $\leq$ 5 MG/NM <sup>3</sup>   |  |
|     |              |                    |            | NH3             | $\leq$ 175 MG/NM <sup>3</sup> |  |

Annexure -8
Storage Details of Hazardous Chemicals

| Sr.<br>No. | Name of the<br>Hazardous<br>Substance | Maximum<br>Storage | Mode of<br>Storage | Actual<br>Storage | State & Operating pressure & temperature | Possible type of<br>Hazards |
|------------|---------------------------------------|--------------------|--------------------|-------------------|------------------------------------------|-----------------------------|
| 1          | Methanol                              | 1 MT               | Drum               | 200 Liter x 5     | NTP                                      | Flammable/<br>Toxic         |
| 2          | Toluene                               | 1 MT               | Drum               | 200 Liter x 5     | NTP                                      | Flammable/<br>Toxic         |
| 3          | Acetone                               | 1 MT               | Drum               | 200 Liter x 5     | NTP                                      | Flammable                   |
| 4          | Methylene Di<br>Chloride              | 1 MT               | Drum               | 200 Liter x 5     | NTP                                      | Flammable/<br>Toxic         |
| 5          | Sulphuric Acid                        | 1 MT               | Drum               | 250 Liter x 4     | NTP                                      | Corrosive                   |
| 6          | IPA                                   | 1 MT               | Drum               | 200 Liter x 5     | NTP                                      | Flammable                   |
| 7          | Ethyl Acetate                         | 1 MT               | Drum               | 200 Liter x 5     | NTP                                      | Flammable                   |
| 8          | Hydrochloric<br>Acid                  | 1 MT               | Drum               | 250 Liter x 4     | NTP                                      | Corrosive                   |

#### **Socio - Economic Impacts**

#### 1) Employment Opportunities

The manpower requirement for the proposed expansion project is being expected to generate some permanent jobs and secondary jobs for the operation and maintenance of plant. This will increase direct / indirect employment opportunities and ancillary business development to some extent for the local population.

This phase is expected to create a beneficial impact on the local socio-economic environment.

#### 2) Industries

Required raw materials and skilled and unskilled laborers will be utilized maximum from the local area. The increasing industrial activity will boost the commercial and economical status of the locality, to some extent.

#### 3) Public Health

The company regularly examines, inspects and tests its emission from sources to make sure that the emission is below the permissible limit. Hence, there will not be any significant change in the status of sanitation and the community health of the area, as sufficient measures have been taken and proposed under the EMP.

#### 4) Transportation and Communication

Since the existing factory is having proper linkage for the transport and communication, the development of this project will not cause any additional impact.

In brief, as a result of the proposed there will be no adverse impact on sanitation, communication and community health, as sufficient measures have been proposed to be taken under the EMP. The proposed scenario is not expected to make any significant change in the existing status of the socio - economic environment of this region.

\_\_\_\_\_

#### **Proposed Terms of Reference for EIA Studies**

#### 1. Project Description

- Justification of project.
- Promoters and their back ground
- Project site location along with site map of 5 km area and site details providing various industries, surface water bodies, forests etc.
- Project cost
- Project location and Plant layout.
- Existing infrastructure facilities
- Water source and utilization including proposed water balance.
- List of Products & their capacity
- Details of manufacturing process of proposed products
- List of hazardous chemicals
- Mass balance of each product
- Storage and Transportation of raw materials and products.

#### 2. Description of the Environment and Baseline Data Collection

- Micrometeorological data for wind speed, direction, temperature, humidity and rainfall in 5 km area.
- Existing environmental status Vis a Vis air, water, noise, soil in 5 km area from the project site.
- Ground water quality at 5 locations within 5 km.
- Complete water balance

#### 3. Socio Economic Data

• Existing socio-economic status, land use pattern and infrastructure facilities available in the study area were surveyed.

#### 4. Impacts Identification And Mitigatory Measures

- Identification of impacting activities from the proposed project during construction and operational phase.
- Impact on air and mitigation measures including green belt
- · Impact on water environment and mitigation measures
- · Soil pollution source and mitigation measures
- · Noise generation and control.
- Solid waste quantification and disposal.
- · Control of fugitive emissions

#### 5. Environmental Management Plan

- Details of pollution control measures
- · Environment management team
- Proposed schedule for environmental monitoring including post project

#### 6. Risk Assessment

- Objectives, Philosophy and methodology of risk assessment
- Details on storage facilities
- Process safety, transportation, fire fighting systems, safety features and emergency capabilities to be adopted.
- Identification of hazards
- · Consequence analysis
- Recommendations on the basis of risk assessment done
- Disaster Management Plan.
- 7. Information for Control of Fugitive Emissions
- 8. Information on Rain Water Harvesting
- 9. Green Belt Development plan