# **FOR**

THE PROPOSED EXPANSION PROJECT BY CAPACITY ENHANCEMENT AND ADDITION OF NEW PRODUCTS FOR MANURACTURING OF

Tri phenyl phosphite @300 MT/Month, Poly phosphoric acid @30 MT/Month, Plastic Additives (Organic Phosphite) @240 MT/Month Organic Phosphates @50 MT/Month and addition of Styrenated Phenol @100 MT/Month

Under Activity: 5(f), Category-B

(Synthetic Organic Chemicals Industry)

**OF** 

M/s. S. M. Chemical Vapi Pvt. Ltd. (formerly known as M/s. S. M. Chemicals)

# Located at:

Plot No. 313/1, 40 Shed Area, GIDC Estate, Vapi-396 195, Dist- Valsad (Gujarat).

|    | INDEX   |                                                                                                                                                                   |    |  |
|----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| 1. | Executi | ive Summary                                                                                                                                                       | 4  |  |
| 2. | Introdu | uction                                                                                                                                                            | 6  |  |
|    | i.      | Identification of the Project and Proponent.                                                                                                                      | 6  |  |
|    | ii.     | Brief Description of the project                                                                                                                                  | 7  |  |
|    | iii.    | Need of the project and its importance to the country and or region                                                                                               | 10 |  |
|    | iv.     | Demand –Supply Gap                                                                                                                                                | 10 |  |
|    | V.      | Imports vs. Indigenous production                                                                                                                                 | 10 |  |
|    | vi.     | Export Possibility / Domestic / export Markets                                                                                                                    | 10 |  |
|    | vii.    | Employment Generation (Direct and Indirect) due to the project.                                                                                                   | 10 |  |
| 3. | Project | Description                                                                                                                                                       | 11 |  |
|    | i.      | Type of Project including interlinked and interdependent projects, If any                                                                                         | 11 |  |
|    | ii.     | Location (map showing general location, Specific location, and project boundary & project site layout) with coordinates                                           | 13 |  |
|    | iii.    | Profile of Project site                                                                                                                                           | 14 |  |
|    | iv.     | Site Layout Plan                                                                                                                                                  | 15 |  |
|    | V.      | Details of alternate sites considered and the basis of selecting the proposed site, particularly the environmental considerations gone into should be highlighted | 16 |  |
|    | vi.     | Size or magnitude of operation                                                                                                                                    | 16 |  |
|    | vii.    | Project description with process details (a schematic diagram/ flow chart showing the project layout components of the project etc. should be given)              | 16 |  |
|    | viii.   | Resource optimization/ recycling and reuse envisaged in the project, If any, should briefly outlined                                                              | 29 |  |
|    | ix.     | Availability of water its source, Energy/power requirement and source should be given                                                                             | 29 |  |
|    | x.      | Quantity of waste to be generated (liquid and solid) and scheme for their Management/disposal                                                                     | 30 |  |
|    | xi.     | Schematic representations of the feasibility drawing which give information of EIA purpose                                                                        | 34 |  |
| 4. | Site An | alysis                                                                                                                                                            | 35 |  |
|    | i.      | Connectivity                                                                                                                                                      | 35 |  |
|    | ii.     | Land Form, land Use and Land Ownership                                                                                                                            | 35 |  |
|    | iii.    | Existing Infrastructure/ land use pattern                                                                                                                         | 35 |  |
|    | iv.     | Soil Classification and Land Use Classification                                                                                                                   | 35 |  |
|    | V.      | Climate Data from secondary source                                                                                                                                | 35 |  |
|    | vi.     | Social Infrastructure available                                                                                                                                   | 35 |  |
| 5. | Plannir | ng Description                                                                                                                                                    | 36 |  |
|    | i.      | Planning Concept (Type of industries, facilities, transportation, etc.) Town and Country Planning/Development authority Classification.                           | 36 |  |
|    | ii.     | Population Projection                                                                                                                                             | 36 |  |
|    | iii.    | Land use planning (breakup along with green belt etc.                                                                                                             | 36 |  |
|    | iv.     | Assessment of Infrastructure demand (Physical & Social)                                                                                                           | 36 |  |

|    | v.    | Amenities/ Facilities                                                                                                                                                      | 36 |
|----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6. | Prop  | osed Infrastructure                                                                                                                                                        | 37 |
|    | i.    | Industrial Area (Processing Area)                                                                                                                                          | 37 |
|    | ii.   | Residential Area (Non Processing Area).                                                                                                                                    | 37 |
|    | iii.  | Green belt                                                                                                                                                                 | 37 |
|    | iv.   | Connectivity (traffic and Transportation Road/Rail/Metro/Water ways etc):                                                                                                  | 37 |
|    | v.    | Drinking Water management (Source& Supply of water)                                                                                                                        | 37 |
|    | vi.   | Sewage System                                                                                                                                                              | 37 |
|    | vii.  | Industrial Waste Management                                                                                                                                                | 37 |
| 7. | Reha  | bilitation and Resettlement (R&R) Plan                                                                                                                                     | 38 |
|    | I.    | Policy to be adopted (Central/ State) in respect of the project affected persons including home oustees, land oustees and landless laborers (a brief outline to be given): | 38 |
| 8. | Proje | ect Schedule & Cost Estimates                                                                                                                                              | 38 |
|    | i.    | Likely date of start of construction and likely date of completion                                                                                                         | 38 |
|    | ii.   | Estimated project cost along with analysis in terms of economic viability of the project                                                                                   | 38 |
| 9. | Anal  | ysis of Proposal (Final Recommendations)                                                                                                                                   | 39 |
|    | i.    | Financial and social benefits with special emphasis on the befit to the local people including tribal population, if any, in the area                                      | 39 |

#### 1. EXECUTIVE SUMMARY

#### 1.0 About Project:

M/s. S. M. Chemical Vapi Pvt. Ltd. proposes to expand its existing Particle Board manufacturing unit by capacity enhancement of production capacity of its existing products and addition of new products manufacturing covered under "Synthetic Organic Compounds" from 300.00MT/Month to 720.00MT/Month, at Plot No. 313/1, 40 Shed Area, GIDC Estate, Vapi-396 195, Dist- Valsad (Gujarat).

| High | lights | of the | Pro | iect: |
|------|--------|--------|-----|-------|
|      |        | ·      |     | ,     |

Company Type & Small Scale, Private Limited Company
 Registered Address Plot No. 313/1, 40 Shed Area, GIDC Estate,
 Vapi - 396195, Dist.- Valsad, Gujarat, India

Name and Location of project
 M/s. S.M. Chemical Vapi Pvt. Ltd.

Plot No. 313/1, 40 Shed Area, GIDC Estate, Vapi- 396195, Dist.- Valsad, Gujarat, India

Coordinates
 20.364062°N & 72.935441°E

Name of Applicant Mr. R. J. Shah

(a) Address: (i) Postal C/o S.M.Chemical Vapi Pvt. Ltd.,

Plot No. 313/1, 40 Shed Area, GIDC Estate Vapi

(ii) E-mail sagarpatel@ sandhya-group.com

(b) Phone (i) Land line 0260-6451111

(ii) Mobile 09725260270

(iii) Fax: 0260-2425905

Year of Commissioning
 Exiting unit is under operation since 2005 and proposed

expansion will be under operation after obtaining E.C. &

CC&A

Nature of project
 Expansion of Existing Synthetic Organic Chemicals

Manufacturing Unit by capacity enhancement and addition

of new products.

Land Type of Project Site
 Industrial Plot in GIDC Notified Industrial Estate of Vapi

Plot No. 313/1, 40 Shed Area, GIDC Estate, Vapi - 396195, Dist. Valsad. Gujarat, India

 Is land procured or to be procured for new project or for

expansion?

The existing land is adequate for the proposed expansion and no additional land is required. Land within Notified Industrial estate: GIDC Industrial Estate of Vapi, Gujarat.

 Screening category (as per SO 1533 as timely amended) 5(f) – "Synthetics Organic Chemicals"

Category: "B", but considered at Central level because of applicability of GC (Interstate boundary within 5 Km

radius.)

• Total area 2197.00m<sup>2</sup>

• Land for Green belt 330.00 m² within premises and 406.00 m²in common space

in Vapi, GIDC. Total greenbelt area will be about 736.00 m<sup>2</sup>

Cost of project
 Existing unit - Rs. 341.33 Lacks

For proposed expansion-Rs. 73.15 Lacks Total after the proposed expansion- Rs. 414.63 Lacks Capital cost for EMP: Rs. 12.75 lakhs and Capital and recurring Cost earmarked for environment-al Recurring cost for EPM: Rs 19.00 Lakhs /Year protection measures: Water requirement and sources 48.00 KLD, Through pipeline of GIDC Water Supply Dept., Vapi GIDC. Power requirement and source Total requirement 250 KVA from Dakshin Gujarat Vij. Co. Ltd. D.G.Set Total Capacity- 250 KVA, Set as standby arrangement Thermo Pack Heater Existing: 2 Nos. (Total capacity: 8 Lac K.Cal/Hr Steam Boiler Existing: 2 Nos.(Total capacity: 1.550 kg/Hr) Fuel Requirement HSD from local supplier and Natural gas through pipeline of GSPC. Waste water Generation Domestic waste water: 3.00 KLD Will be disposed off through septic tank & soak pit. Industrial waste water: 5.00 KLD Industrial effluent will be generated basically from boiler and cooling tower. It will be reused in scrubber. The recovered HCl solution from scrubber will be sold as byproduct. Emissions and its control **Utility Emissions:** Adequate stack will be provided for the utility emissions from D.G. Sets, Boiler and Thermopac. Process Emission: Adequate stack height will be provided to Two stage Water Scrubber and one stage alkali scrubberof Glass Reactor for HCl Recovery. Resource Recovery Phenol and Cresol recovery directly from process system Reuse/Recycling during distillation for product separation and HCl solution is recovery as by-product using scrubber. Solid/Hazardous Wastes Used Oil generated will be sold to the approved recycler and Discarded containers generated will be sold to authorised re-conditioner. Status of the project Existing- Under operation obtained required permissions Proposed-Under progress with proceeding of necessary statutory clearances & permission

#### 2. INTRODUCTION OF THE PROJECT

### i) Identification of the Project and Proponent:

M/s. S. M. Chemical Vapi Pvt. Ltd. (formerly known as M/s. S. M. Chemicals) had its beginning in the year 2005 with manufacturing plant at GIDC Vapi (Gujarat) for manufacturing of "Synthetic Organic Compounds" at Plot No. 313/1, 40 Shed Area, GIDC Estate, Vapi-396 195, Dist- Valsad (Gujarat). The unit then obtained prior Environmental Clearance [vide EC Letter No. J-11011/293/2011- IA II (I), dated 22<sup>nd</sup> March 2013] for the proposed expansion by capacity enhancement and addition of new products. At present the existing unit is involved in the production of its main products @300.00 MT/Month (Tri phenyl phosphite @ 150MT/Month, Poly phosphoric @ 30 MT Kg/Month and Plastic additives @ 120MT/Month; whereas the by-products is generated @247.00 MT/Month.

Now, considering the increased demand of its existing products as well as focusing on the potential of some additional products developed through its extensive R&D, M/s. S.M. Chemical Vapi Pvt. Ltd. has proposed for expansion of the existing unit by capacity enhancement of its existing two products and introduction of one new product. After the proposed expansion project, the gross production capacity of the main products would be 720.00 MT/Month and the capacity of the by-products generated would be 579.85 MT/Month.

The proposed project being "Synthetics organic Compounds" is covered under scheduled category of EIA notification -2006 as Item – 5 (f) categories – B of Schedule I of the said notification as timely amended. Further, as the proposed project is the unit of manufacturing of Synthetic Organic Chemicals to be developed in notified industrial area-GIDC of Vapi of Gujarat, needs EIA study to be conducted excluding public hearing process as per provisions of EIA notification: SO 1533 Dtd. 14th September 2006. Moreover, the project is covered in category B requires to apply at state level but as the project falls within 5 Km distance from the interstate boundary, application has been made to national level expert appraisal committee for proceedings of prior EC in-line with the provision of general condition of SO 1533.

With planning of utilization of all suitable existing facilities and for capacity enhancement actions, the proposed project has been designed to establish within the existing unit premises. The key highlight of proposed project is tabulated below.

#### **DETAIL ABOUT DIRCTRORS**

**Table 2: Details of Director:** 

| Sr. No. | Name of Director      | Residential Address                                             |  |
|---------|-----------------------|-----------------------------------------------------------------|--|
| 1.      | Mr. Kantilal M Koli   | Plot. No. 203 & 204, Residential Bunglow area, Saurabh          |  |
|         |                       | Society, GIDC Vapi, Di; Valsad.                                 |  |
|         |                       | Education :B.Sc. with chemistry                                 |  |
|         |                       | Experience; last from about 30years experience in the same line |  |
| 2       | Mrs.Sandhyaben K koli | Plot. No. 203 & 204, Residential Bunglow area, Saurabh          |  |
|         |                       | Society, GIDC, Vapi, Di; Valsad.                                |  |
|         |                       | Education and experience: Matriculate with vast                 |  |
|         |                       | administrative experience                                       |  |
| 3       | Mr.Smit K Patel       | Plot. No. 203 & 204, Residential Bunglow area, Saurabh          |  |
|         |                       | Society, GIDC Vapi, Di; Valsad.                                 |  |
|         |                       | Education : B.Com.,M.B.A. in Marketing and                      |  |
|         |                       | administration                                                  |  |
|         |                       | Experience ; Vast experience in Commercial activity             |  |
| 4       | Mr.Snehal K Patel     | Plot. No. 203 & 204, Residential Bunglow area, Saurabh          |  |

|  | Society, GIDC Vapi, Di; Valsad.                         |
|--|---------------------------------------------------------|
|  | Education: B.EChemical in India and M.S.at U.S.A.       |
|  | Experience: Very good experience in Plant Commissioning |
|  | and technical activity                                  |

As, described The company was founded by CMD Mr.Kantilal Koli who ventured into the domain of phosphorus based specialty chemicals with the establishment of a manufacturing unit at Sarigam of Gujarat in 1984. Over the past years, the group has grown in strength with 4 strategic locations offering a multiproduct spectrum from phosphorus based industrial chemicals, specialty chemicals and agrochemicals carving a niche for itself by vertical integration offering cost effective quality inputs. A team of dedicated professionals has ensured that the manufacturing facilities are regularly upgraded to meet international accreditation for exports to regulated & unregulated market. Sandhya group believes in offering a quality product at a competitive price that meets the global standards for requirement of industrial chemicals, specialty chemicals and agrochemicals. A significant investment towards building quality infrastructure has ensured that lifeline moves rapidly toward becoming a manufacturing conglomerate across the country.

The company is a registered privet Limited company and is promoted by four Directors. The details of the Directors are presented below.

#### ii) Brief Description of the project:

M/s. S.M. Chemical Vapi Pvt. Ltd. is an existing unit, now proposing the enhancement of production capacity of its existing products and addition of new products manufacturing covered under "Synthetic Organic Compounds". As per the EIA notification- 2006 as amended the manufacturing of proposed new products are covered under activity 5(f), hence required Prior Environmental Clearance. It is located in the main chemical hub of the country at Plot No. 313/1, 40 Shed Area, GIDC Estate, Vapi-396 195, Dist- Valsad (Gujarat).

The project area is situated mostly in the southern part of Gujarat State and shares some area of UT of Daman and Dadra & Nagar Haveli. The area has global identity for its industrial development since many decades. The region is also exhibiting some patch of good forest area and a reservoir —Dam on Damanganga. National Highway 8 bisects the city, creating east and west parts - the western part being the original old town-place, and the eastern part mainly hosting the industries and the newly constructed residential areas. Via the modernized highway, Mumbai is about 180 km to the south and the city of Surat is about 125 km to the north.

The Arabian Sea is about 7 km to the west, where the Daman Ganga River creates its delta. The city has tropical weather and enjoys three distinct seasons of mild winter, moderate summer and heavy monsoon, with rainfall ranging from 100 inches to 120 inches per annum.

In addition to the old town, some of the other main residential areas and suburbs that make Vapi a city are Geeta Nagar, Gunjan, Chanod Colony, Vapi Town, Dungra, Hariya Park, Chala and also upcoming Balitha and Salvav with many other small areas. Vapi is surrounded by some magnificent location around it namely: Daman & Diu, Dadra & Nagar Haveli, Umbergaon, Sarigam, Bhilad, Udavada, Sanjan, Pardi, Silvassa. Premises of Vapi are rich in all sorts, i.e. both the Union territories as well as Sarigam, Bhilad, Umbergaon &Pardi are good residential cum commercial areas, which are situated near Vapi with a mere distance of 12–40 km. Daman and Silvassa (capital of D&NH) have proved magnificent attraction for tourist not only in India but they have been successful enough to attract people from other countries even. Vapi has recorded a very important note in Gujarat's and India's success story. To

cater to the industry, the city handles a huge amount of what is called a "floating population" and the Vapi railway station on the Mumbai-Vadodara rail link of Western Railway (India) has become the direct beneficiary in terms of revenues due to daily commuters. Most of the trains including Rajdhani Express passing through Vapi have a stop here.

For the proposed expansion project, the company intends to install required plant & machinery with the help of competent people in this field.

#### PLANT & MACHINERYRESOURCES

The company will setup its manufacturing unit having following main machineries & equipment. The details of the proposed machineries & equipment are presented below in tabular form.

**Table 3: Major Machineries & Equipment** 

| SR.NO.   | EQUIPMENT                      | CAPACITY          | МОС           |  |  |  |
|----------|--------------------------------|-------------------|---------------|--|--|--|
| Existing | Existing                       |                   |               |  |  |  |
| 1.       | Glass Line Reactor (1No)       | 02 KL             | Glass Lined   |  |  |  |
| 2.       | Glass Line Reactor( 2Nos)      | 03 KL             | Glass Lined   |  |  |  |
| 3.       | Glass Line Reactor (1No)       | 05 KL             | Glass Lined   |  |  |  |
| 4.       | Holding Tank                   | 05 KL             | SS-316        |  |  |  |
| 5.       | WATER + Steam Ejector          | Adequate          | Graphite      |  |  |  |
| 6.       | Hcl Scrubbing System (3 stage) | Adequate          | Graphite HDPE |  |  |  |
| 7.       | Cooling Tower                  | 250 TR            | FRP           |  |  |  |
| 8.       | Holding Tank                   | 05 KL             | SS-316        |  |  |  |
| 9.       | Four Stage Steam Ejector       | Adequate          | Graphite      |  |  |  |
| Propos   | ed                             |                   |               |  |  |  |
| 1.       | Glass Line Reactors ( 4Nos)    | 05KL              | Glass Lined   |  |  |  |
| 2.       | S.S. Reactors (2Nos)           | 05 KL             | SS            |  |  |  |
| 3.       | S.S. Reactor (1No)             | 10 KL             | SS            |  |  |  |
| 4.       | S.S. Holding Tank (1No)        | 05 KL             | SS            |  |  |  |
| 5.       | Cooling Tower                  | 60 m <sup>3</sup> | PPFRP         |  |  |  |
| 6.       | Dry vacuum pump (1 No)         |                   | MS            |  |  |  |
| 7.       | Flakers (1 no.)                |                   | SS            |  |  |  |
| 8.       | Air compressor (1No)           | 8.5 CFM           |               |  |  |  |
| 9.       | HCl Scrubber System (1 no.)    |                   | PPFRP         |  |  |  |

 The company will provide employment to 57people in different categories for operation of proposed project. The details of the proposed employment structure are presented below in tabular form.

**Table 4: Human Resource Requirement** 

| Sr. No. | Particular   | Employment Nos., | Employment    | Employment    |
|---------|--------------|------------------|---------------|---------------|
|         |              | Shift 1          | Nos., Shift 2 | Nos., Shift 2 |
| 1       | Managerial   | 4                | 0             | 0             |
| 2       | Skilled      | 2                | 1             | 1             |
| 3       | Semi-Skilled | 3                | 3             | 3             |
| 4       | Unskilled    | 15               | 15            | 10            |
|         | TOTAL        | 24               | 19            | 14            |

**Table 5: Details of Infrastructure** 

| Green Belt                                           | 330 sq.m. Within premises + 406 sq.m. |
|------------------------------------------------------|---------------------------------------|
|                                                      | in GIDC common area                   |
| Connectivity (Traffic and Transportation Road/ Rail/ | NH 8: 1.49km W& SH185:1.13Km S        |
| Metro/ Water ways etc.                               |                                       |
| Drinking Water management (Source & Supply of water) | GIDC Water Supply                     |
| Sewerage System                                      | Sewage water is disposed off through  |
|                                                      | the septic tank/soak pit.             |
| Industrial Waste Management                          | The unit is Zero discharge unit       |
| Solid Waste Management                               | The Discarded container will be after |
|                                                      | decontamination will be sold to re-   |
|                                                      | conditioners                          |
| Power Requirement & Supply / Source                  | Sale to registered re-refiners.       |

#### **EXISTING &PROPOSED PRODUCTS**

The existing unit is involved in the production of its main products @300.00 MT/Month (Tri phenyl phosphite @ 150MT/Month, Poly phosphoric @ 30 MT Kg/Month and Plastic additives @ 120MT/Month); whereas the by-products is generated @247.00 MT/Month. And after the proposed expansion project, the gross production capacity of the main products would be 720.00 MT/Month and the capacity of the by-products generated would be 579.85 MT/Month.

Table 6: List of Products and By-products with Capacity

| Sr. | Dundrista Nama                                      | Production C | apacity (MT/I | pacity (MT/Month) |  |  |
|-----|-----------------------------------------------------|--------------|---------------|-------------------|--|--|
| No. | Products Name                                       | Existing     | Proposed      | Total             |  |  |
| 1   | Tri phenyl phosphite(TPP)                           | 150.00       | 150.00        | 300.00            |  |  |
| 2   | Poly phosphoric acid                                | 30.00        | 00.00         | 30.00             |  |  |
| 3   | Plastic Additive                                    |              |               |                   |  |  |
|     | [Products like: Di-phenyl isodecyl phoshite (DPDP), |              |               |                   |  |  |
|     | Di-phenyl 2-ethyl hexyl phosphite (2EHDP),          |              |               |                   |  |  |
|     | Phenyl Di-Isodecyl Phosphite (DDPP),                |              |               |                   |  |  |
|     | Tri-Decyl Phosphite (TDP), Tri-Trisdecyl Phosphite  |              |               |                   |  |  |
|     | (TTDP), Tris Nonyl Phenyl Phosphite (TNPP), Tris    | 120.00       | 120.00        | 240.00            |  |  |
|     | Lauryl phosphite(TLP), Di-phenyl phosphite (DPP),   | 120.00       | 120.00        | 240.00            |  |  |
|     | Tri-isooctyl phophite (TIOP), Di-phenyl tridecyl    |              |               |                   |  |  |
|     | phosphite (DPTDP), Tetra-phenyl dipropylene glycol  |              |               |                   |  |  |
|     | phosphite (THOP), Poly(dipropylene glycol)phenyl    |              |               |                   |  |  |
|     | phosphite (DHOP), 4-4 isopropylidene di phenol      |              |               |                   |  |  |
|     | C12-15 alcohol phosphite(Sanphos <b>1500)</b> etc.] |              |               |                   |  |  |
| 4   | Organic Phosphates (tri aryl and alkyl phosphate)   |              |               |                   |  |  |
|     | Triphenyl Phosphate, Tricresyl Phosphate, Cresyl    | 0.00         | 50.00         | 50.00             |  |  |
|     | Diphenyl Phosphate.)                                |              |               |                   |  |  |
| 5   | Styrenated Phenol                                   | 0.00         | 100.00        | 100.00            |  |  |
|     | Total of Main Product                               | 300.00       | 420.00        | 720.00            |  |  |
| Nam | e of by-products                                    |              |               |                   |  |  |
| 1   | Hydrochloric Acid (25-31 % Solution)                | 187.00       | 266.00        | 453.00            |  |  |
| 2   | Phenol                                              | 60.00        | 60.00         | 120.00            |  |  |
| 3   | Cresol                                              | 0.00         | 6.85          | 6.85              |  |  |
|     | Total of By-products                                | 247.00       | 332.85        | 579.85            |  |  |

- By-product HCl will be sold out to its actual users.
- By product Phenol will be reused to manufacture TPP and excess will be sold out to its actual users.
- By product cresol will be reused to manufacture our phosphate products.

**Table 6: End-Use of Products** 

| Sr.<br>No. | Products Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | End Use                                                                                                                                                                                                                                                                                                                                             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | Tri phenyl phosphite (TPP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Anti-oxidant                                                                                                                                                                                                                                                                                                                                        |
| 2          | Poly phosphoric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Strong drying and dehydrating agent.                                                                                                                                                                                                                                                                                                                |
| 3          | Plastic Additive [Products like: Diphenyl isodecyl phoshite (DPDP), Diphenyl 2-ethyl hexyl phosphite(2EHDP), Phenyl Di-Isodecyl Phosphite (DDPP), Tri-Decyl Phosphite (TDP), Tri-Trisdecyl Phosphite (TTDP), Tris Nonyl Phenyl Phosphite (TNPP), Tris Lauryl phosphite(TLP), Di-phenyl phosphite (DPP), Tri-isooctyl phophite (TIOP), Di-phenyl tridecyl phosphite (DPTDP), Tetra-phenyl dipropylene glycol phosphite (THOP), Poly(dipropylene glycol)phenyl phosphite (DHOP), 4-4 isopropylidene phenol C12-15 alcohol phosphite(Sanphos 1500) etc.] | Pharmaceuticals, Paints & Plastic, Rubber Industry, Antioxidant for Polyster, Acrylics and Polyphenylene oxide, Improve colour retention during processing of polymer, Stabilizer used in epoxies, as component in PVC stabilizer mixtures for heat and light stability in PP, HDPE, LDPE, and ABS. Also in Food Packaging, Adhesive, Latexes, etc. |
| 4          | Organic Phosphates(tri aryl and alkyl phosphate) Triphenyl Phosphate, Tri cresyl Phosphate, Cresyl Diphenyl Phosphate.)                                                                                                                                                                                                                                                                                                                                                                                                                               | cables (PVC & Rubber), Hose Pipe, Coatings                                                                                                                                                                                                                                                                                                          |
| 5          | Styrenated Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Antioxidant for Polyester & Rubber                                                                                                                                                                                                                                                                                                                  |

# iii) Need for the project and its importance to the country and or region:

The proposed expansion project provides a potential growth opportunity for the already running business of the company. The company is already engaged in the business of manufacturing of "Synthetic Organic Compounds".

Additional capacities of product range required over & above our existing capacities, as the company expect strong growth of local market.

# iv) Demand-Supply Gap:

The products have very high specific demand for manufacturing of Synthetic Organic Compounds.

# v) Imports vs. Indigenous production:

Existing products manufacturing in the country will be very much economical compare to Imports of the same and also the export of the same will earn extra revenue generation for our county.

# vi) Export Possibility / Domestic / export Markets:

Existing products are having very good domestic market as well as high export potential.

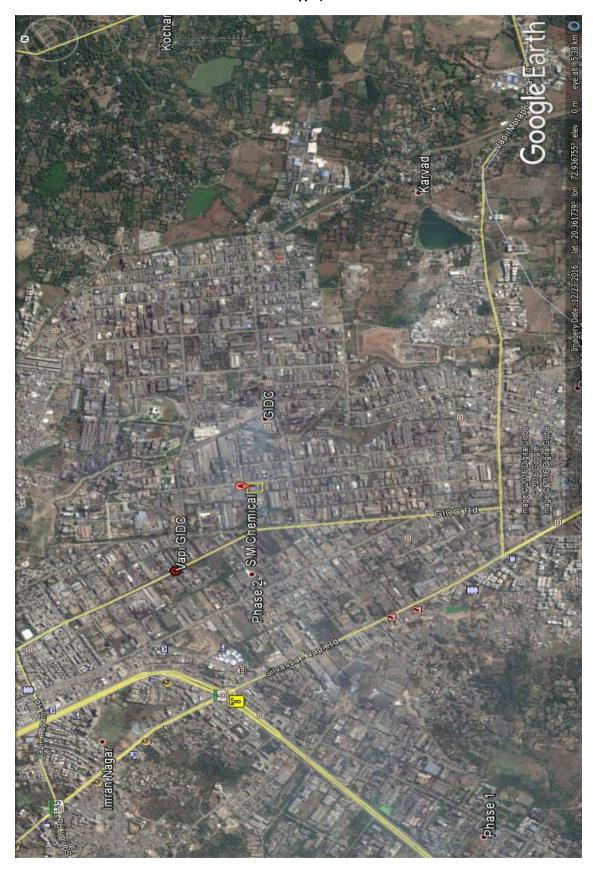
Additional capacities of product range required over & above our existing capacities, as the company expect strong growth of exports to the extent of 40-50%. Local market also showing strong growth potential.

#### vii) Employment Generation (Direct and Indirect) due to the project:

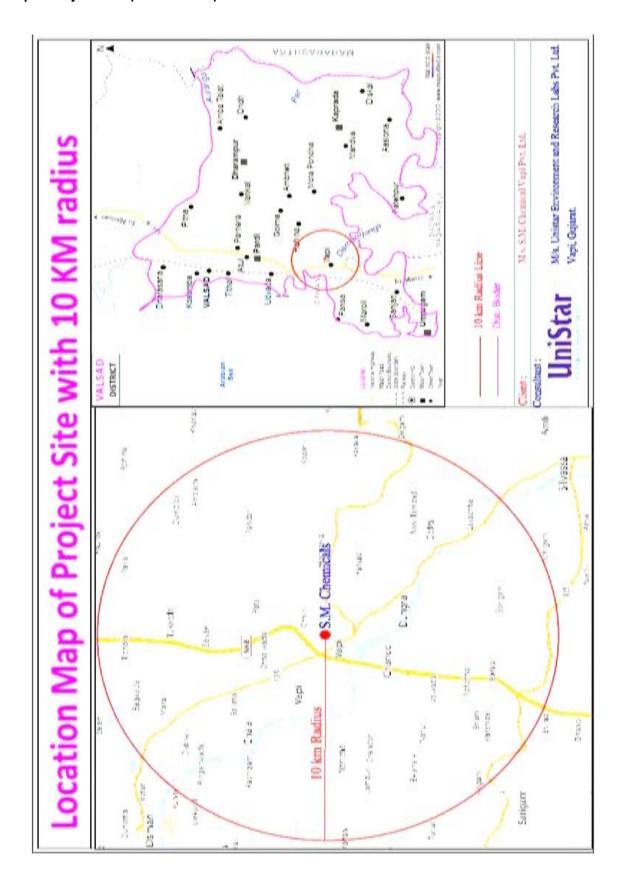
The man power employed in the existing unit is 57 Nos. and due to the expansion of the project there will be very good opportunity of employment generation directly and indirectly due to proposed project. Due to proposed expansion project there will be requirement of manager, supervisor, operator and semi-skilled workers.

# 3. Project Description

#### I. Type of Project including interlinked and interdependent projects, If any:


The proposed project is an independent project of the company.

# II. Location (map showing general location, specific location, and project boundary & project site layout) with coordinates:


The map showing general location, specific location and project boundary and project site layout of M/s. S. M. Chemical Vapi Pvt. Ltd. unit located at Plot No. 313/1, 40 Shed Area, GIDC Estate, Vapi-396 195, Dist- Valsad (Gujarat).

The latitude and longitude of the project site is 20.364062°N & 72.935441°E

Fig 1: Map of Project Site (in GIDC etc. showing minimal area of representing land type)

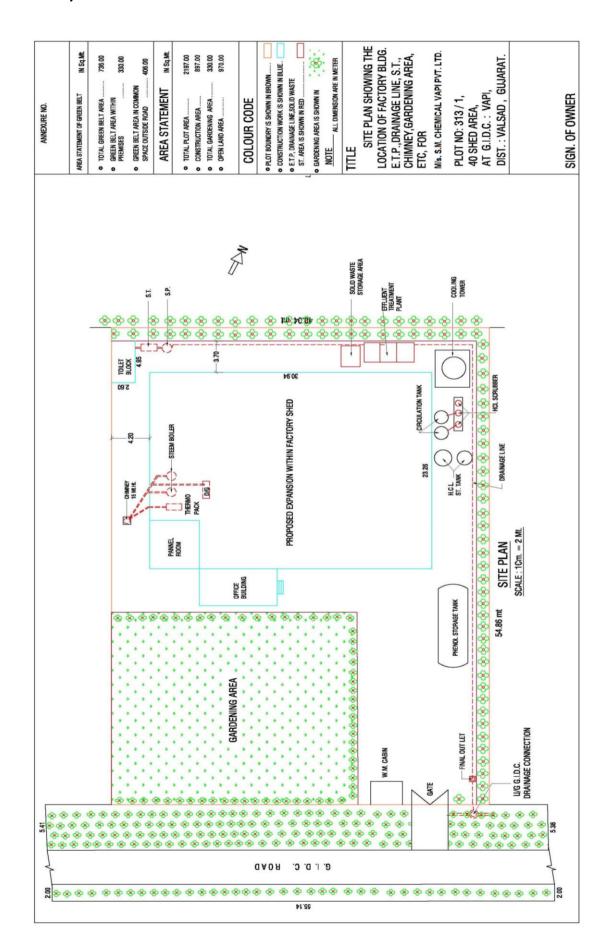


# ii) Map of Project Area (10 Km radius)



# III. Profile of Project Site:

**Table 5: Salient Features of Project Area** 


| Sr.No. | Nearest Infrastructure Feature                         | Approx. Aerial Distance from Site                                                     |
|--------|--------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1      | Geographical Position                                  | Lat.: 20.364062°N, Long.: 72.935441°E                                                 |
| 2      | Elevation above Sea Level                              | 23 Meters                                                                             |
| 3      | Nearest Village                                        | Chhiri: 1.92 Km NE                                                                    |
| 4      | Nearest Town                                           | Vapi residential town area –1.39 Km N<br>Site is in Vapi (Notified industrial Estate) |
| 5      | Nearest National & State Highway                       | NH 8: 1.49km W & SH185:1.13Km S                                                       |
| 6      | Nearer Railway station                                 | Vapi – 3.5 Km W                                                                       |
| 8      | Nearest Airport                                        | Public: Surat 85.75 Km NW<br>Non-Public: Daman- 12.12 Km NW                           |
| 9      | Nearest Surface water Resource/Reservoir               | Damanganga River 3.5 Km SW GIDC Water Supply Weir: 3.6 Km SW                          |
| 10     | Nearest Forest Land                                    | Approx. 3 Km SW                                                                       |
| 11     | National Park/Sanctuary or Ecologically sensitive Area | D&NH WLS Approx. 12 km SE                                                             |
| 12     | Inter-State Boundary                                   | UT of Dadra &Nagar Haveli -2.1 Km SE,<br>UT of Daman-4.46 Km NW                       |

**Table 6: Plot site Area Statement:** 

| Area Statement                       | Existing<br>(in m²) | Proposed<br>(in m²) | Area After Proposed Expansion(in m²) |
|--------------------------------------|---------------------|---------------------|--------------------------------------|
| Production plant[consider only       | 576.00              | 00.00               | 576.00                               |
| ground floor area but actually it is |                     |                     |                                      |
| three layer plant]                   |                     |                     |                                      |
| Storage Shed/ Godown Area            | 221.00              | 00.00               | 221.00                               |
| Office & other built-up Area         | 100.00              | 00.00               | 100.00                               |
| Open area and Road & Parking         | 970.00              | 00.00               | 970.00                               |
| Area                                 |                     |                     |                                      |
| Green Belt* Area[o/s adjoining       | 330.00              | 00.00               | 330.00                               |
| common area place 206sq.mt. not      |                     |                     |                                      |
| consider ]                           |                     |                     |                                      |
| Total Area                           | 2197.00             | 00.00               | 2197.00                              |

**Note:** \* Along with 330m<sup>2</sup>green belt area within premises, additional 406m<sup>2</sup> greenbelt area will also be developed in common space of GIDC, Vapi, totalling to 736 m<sup>2</sup> of greenbelt area.

# iv) Site Layout Plan:



# v) Details of alternate sites considered and the basis of selecting the proposed site, particularly the environmental considerations gone into should be highlighted:

The proposed expansion project will be accommodated within the existing plot, so no alternative site is being considered.

# vi) Size or magnitude of operation:

As per the proposed project cost the project is covered under Medium Scale category of manufacturing industries, it comes under SME segment of the industry.

# vii) Project description with process details (a schematic diagram/ flow chart showing the project layout components of the project etc. should be given):

The products of proposed project are described in earlier section with required raw materials. The company shall use the best available process technology for the production. This section includes the manufacturing process of the product, chemical reactions, and mass balance of each product.

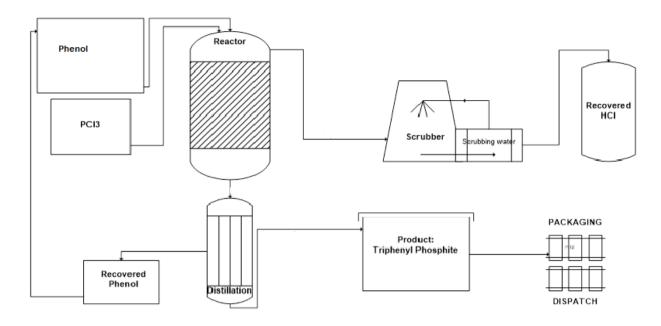
#### Product 1: Tri Phenyl Phosphite (TPP)

#### **Manufacturing Process:**

Phenol and PCI3 are reacted at elevated Temperature. During the course of reaction HCl gas is generated, which is scrubbed in water and dispatched as HCl solution. Excess phenol is recovered by distillation at elevated temperature and under reduced pressure. After complete removal of phenol from the reaction mass finally pure Tri phenyl Phosphite is collected and packed in suitable containers as per customer's requirements.

#### **Reactions of Process:**

$$3C_6H_5OH+PCI_3$$
  $\longrightarrow$   $(C_6H_5O)_3P+3HCI_{gas}$  ......In Reactor for Main Product  $HCI_{gas}+H_2O$   $\longrightarrow$   $HCI_{Soln.}$  ......In Scrubber for By-Product


Details of Product: CAS# 101-02-0

Molecular formula: (C<sub>6</sub>H<sub>5</sub>O)<sub>3</sub>P Mole. Weight: 310.28g/mol

Material balance for 1 MT Product:

| INPUT                 |               | OUTPUT                          |               |
|-----------------------|---------------|---------------------------------|---------------|
| In Reactor (Main Prod | luct)         |                                 |               |
| 1.Phenol              | : 951.00kgs   | 1. Tri Phenyl Phosphite         | : 1000.00 Kgs |
| 2. PCl <sub>3</sub>   | : 450.00kgs   | 2. HCl <sub>gas</sub>           | : 360.00kgs   |
|                       |               | 3. Phenol                       | : 41.00 Kgs   |
| Total                 | : 1401.00 Kgs | Total                           | : 1401.00 Kgs |
|                       |               |                                 |               |
| In Scrubber (By-Produ | ıct)          |                                 |               |
| 2. HCl <sub>gas</sub> | : 360.00kgs   | 1. HCl <sub>Soln</sub> (25-30%) | : 1440.00kgs  |
| 4. Scrubbing Water    | : 1080.00kgs  |                                 |               |
| Total                 | : 1440.00 Kgs | Total                           | : 1440.00 Kgs |

### Manufacturing Process Flow Diagram for Tri Phenyl Phosphite



**Product 2: Poly Phosphoric Acid (PPA) (Existing Product)** 

#### **Manufacturing Process:**

Phosphoric Acid is charged and then slowly Phosphorus Pentoxide added. It is exothermic reaction. So temperature is controlled through slow addition of Phosphorous Pentoxide. Once solid  $P_2O_5$  is dissolved, batch is collected and packed in suitable containers as per customer's requirement.

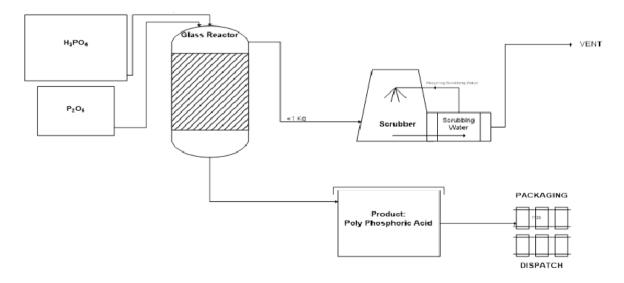
**Reaction of Process:**  $H_3PO_4 + P_2O_5 \longrightarrow (P_2O_5)nH_3PO_4$ 

Details of Product: CAS# 8017-16-1,

Molecular formula: (P<sub>2</sub>O<sub>5</sub>)nH<sub>3</sub>PO<sub>4</sub> Mole. Weight: 338 g/mol

#### **Material balance for 1 MT Product:**

INPUT


1. Phosphorous pentoxide:625.00kgs

1. Poly Phosphoric acid: 1000.00 Kgs

2. Phosphoric Acid (85%) :375.00kgs

Total :1000.00 Kgs Total :1000.00 Kgs

# **Manufacturing Process Flow Diagram of Poly Phosphoric Acid**



Product 3 (A): Plastic Additives (Di-Phenyl Isodecyl Phosphite (DPDP), Di-phenyle tridecyl phosphite (DPTDP), THOP, DHOP, etc.

#### **Manufacturing Process:**

TPP and 1 mole IsoDecanol reacted at elevated temperature. During the course of reaction 1 mole phenol is generated. Phenol is distilled out and Di phenyl IsoDecyl Phosphite is collected and packed in suitable containers as per customer's requirement.

**Reaction of Process:**  $(C_6H_5O)_3P + C_{10}H_{21}OH \longrightarrow (C_6H_5O)_2-P-OC_{10}H_{21} + C_6H_5OH$ 

Details of Product: CAS# 26544-23-0,

Molecular Formula:  $(C_6H_5O)_2$ -P-OC<sub>10</sub>H<sub>21</sub> Mole. Weight: 374 g/mol

#### Material balance for 1 MT Product:

INPUT

1.Triphenyl Phosphite : 829.00kgs

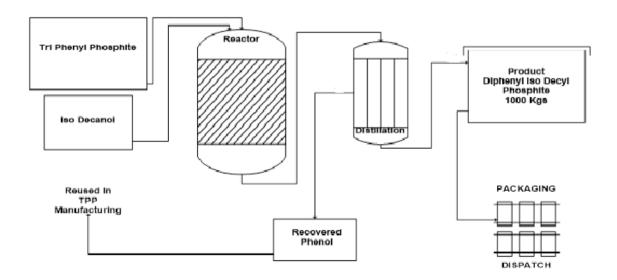
2. IsoDecanol : 423.00kgs

Total : 1252.00 Kgs

OUTPUT

1. Di-Phenyl IsodecylPhosphite : 1000.00 Kgs

2. Phenol : 252.00 Kgs


Total : 1252.00 Kgs

Note: - If(1) TPP and 1 mole TDA reacted give DPTDP

(2) 2 mole TPP and 1 mole DPG reacted give THOP

(3) 8mole TPP and 7 moles DPG reacted give DHOP

#### Manufacturing Process Flow Diagram of Di-Phenyl IsodecylPhosphite



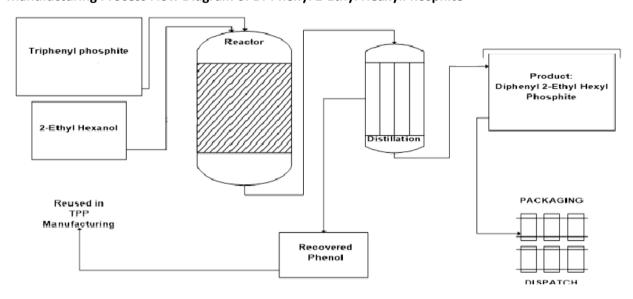
# Product 3 (B): Plastic Additives (Di-Phenyl 2-Ethyl Hexyl Phosphite) (2-EHDP) Manufacturing Process:

TPP and 1 mole 2- Ethyl Hexanol are reacted at elevated temperature. During the course of reaction 1 mole phenol is generated. Phenol is distilled out and Diphenyl2- Ethyl Hexyl Phosphite is collected and packed in suitable containers as per customer's requirement.

**Reaction of Process:**  $(C_6H_5O)_3P + C_8H_{17}OH \longrightarrow (C_6H_5O)_2 - P - OC_8H_{17} + C_6H_5OH$ 

Details of Product: CAS# 15647-08-2,

Molecular Formula: (C<sub>6</sub>H<sub>5</sub>O)<sub>2</sub>-P-OC<sub>8</sub>H<sub>17</sub> Mole. Weight: 346 g/mol


#### **Material balance for 1 MT Product:**

INDLIT

| Total                 | : 1272.00 Kgs | Total                                | :1272.00 Kgs |
|-----------------------|---------------|--------------------------------------|--------------|
| 2. 2- Ethyl Hexanol   | : 376.00kgs   | 2. Phenol                            | :272.00 Kgs  |
| 1.Triphenyl Phosphite | : 896.00kgs   | 1. Di-Phenyl 2-Ethyl Hexyl Phosphite | :1000.00 Kgs |
| INPUT                 |               | OUTPUT                               |              |

**CUITDUIT** 

# Manufacturing Process Flow Diagram of Di-Phenyl 2-Ethyl HeaxylPhosphite

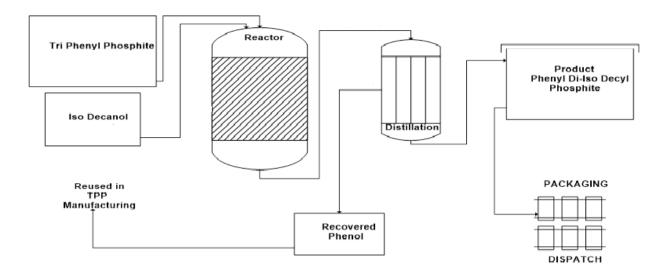


Product 3(C): Plastic Additives (Phenyl Di-Isodecyl Phosphite ) (DDPP)

# **Manufacturing Process:**

TPP and 2 mole IsoDecanol reacted at elevated temperature. During the course of reaction 2 mole phenol is generated. Phenol is distilled out and Phenyl Di-Isodecyl Phosphite is collected and packed in suitable containers as per customer's requirement.

**Reaction of Process:**  $(C_6H_5O)_3$ -P+ 2  $C_{10}H_{21}OH$   $\rightarrow$   $C_6H_5O$ -P- $(OC_{10}H_{21})_2$  +2 $C_6H_5OH$ 


Details of Product: CAS# 25550-98-5,

Molecular Formula:  $(C_6H_5O)$ -P- $(OC_{10}H_{21})_2$  Mole. Weight: 438.64 g/mol

#### **Material balance for 1 MT Product:**

| Total                             | : 1429.00 Kgs | Total                                       | : 1429.00 Kgs |  |  |
|-----------------------------------|---------------|---------------------------------------------|---------------|--|--|
| 2. IsoDecanol                     | : 721.00kgs   | 2. Phenol                                   | : 429.00 Kgs  |  |  |
| 1.Triphenyl Phosphite : 708.00kgs |               | 1. Phenyl Di-IsodecylPhosphite: 1000.00 Kgs |               |  |  |
| INPUT                             |               | OUTPUT                                      |               |  |  |

# Manufacturing Process Flow Diagram of Phenyl Di-Isodecyl Phosphite



Product 3 (D): Plastic Additives (Tri Isodecyl Phosphite) (TDP), Tri lauryl phoshite(TLP), Tri-isooctyl phophite (TIOP)

#### **Manufacturing Process:**

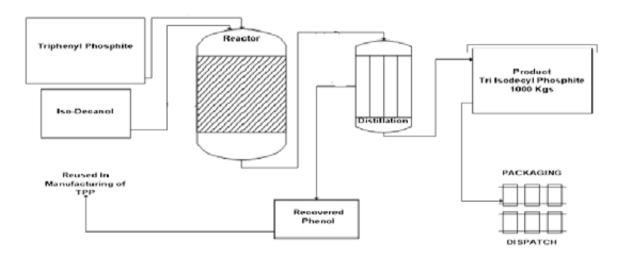
TPP and 3 mole Iso Decanol reacted at elevated temperature. During the course of reaction 3 mole phenol is generated. Phenol is distilled out and Tri Iso Decyl Phosphite is collected and packed in suitable containers as per customer's requirement.

**Reaction of Process:**  $(C_6H_5O)_3P + 3 C_{10}H_{21}OH \longrightarrow (C_{10}H_{21}O)_3P + 3 C_6H_5OH$ 

Details of Product: CAS# 25448-25-3,

**Molecular Formula**: (C<sub>10</sub>H<sub>21</sub>O)<sub>3</sub>P **Mole. Weight:**503 g/mol

#### **Material balance for 1 MT Product:**


 INPUT
 OUTPUT

 1.Triphenyl Phosphite
 : 616.00kgs
 1. Tri IsodecylPhosphite
 : 1000.00 Kgs

 2. Iso-Decanol
 : 944.00kgs
 2. Phenol
 : 560.00 Kgs

 Total
 : 1560.00 Kgs
 Total
 : 1560.00 Kgs

#### Manufacturing Process Flow Diagram of Tri-IsodecylPhosphite



NOTE: - (1) we use1 mole TPP and 3 mole Lauryl alcohol reacted give Tri lauryl phoshite(TLP)

(2) We use1 mole TPP and 3 mole 2-Octanol reacted give Triiso octyl phosphite(TIOP)

#### Product 3 (E): Plastic Additives Tri Trisdecyl Phosphite(TTDP),

#### **Manufacturing Process:**

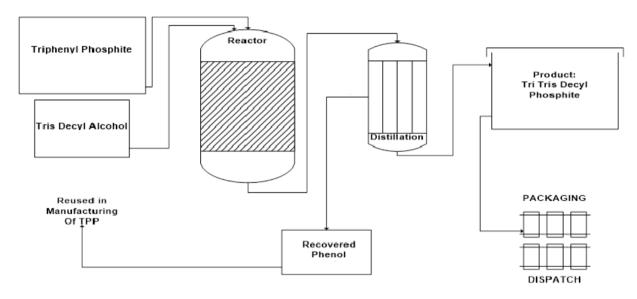
TPP and 3mole TDA reacted at elevated temperature. During the course of reaction 3 mole phenol is generated. Phenol is distilled out and Tri TrisDecyl Phosphite is collected and packed in suitable containers as per customer's requirement.

**Reaction of Process:**  $(C_6H_5O)_3P + 3 C_{13}H_{27}OH \longrightarrow (C_{13}H_{27}O)_3P + 3 C_6H_5OH$ 

Details of Product: CAS# 77745-66-5

Molecular Formula: (C<sub>13</sub>H<sub>27</sub>O)<sub>3</sub>P Mole. Weight: 628 g/mol

#### **Material balance for 1 MT Product:**


INPUT OUTPUT

 1.Triphenyl Phosphite
 : 495.00kgs
 1. Tri Tris decyl Phosphite
 : 1000.00 Kgs

 2. Tridecanol
 : 955.00kgs
 2. Phenol
 : 450.00 Kgs

 Total
 : 1450.00 Kgs
 Total
 : 1450.00 Kgs

# **Manufacturing Process Flow Diagram of Tri Trisdecyl Phosphite**



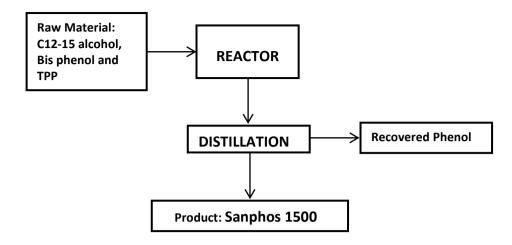
## Product 3 (F): 4-4 iso propylidene di phenol C12-15 alcohol (Sanphos -1500)

TPP, Bisphenol and C12-15 alcohol reacted at elevated temperature. During the course of reaction 6 mole phenol is generated. Phenol is distilled out and product is collected and packed in suitable containers as per customer's requirement.

#### **Reaction of Process:**

**2{**
$$(C_6H_5O)_3P$$
}+  $C_{15}H_{16}O_2$ +  $4(C_{12-15}H_{25-31})$   $\longrightarrow$  [(  $C_{12-15}H_{25-31}O$ )2 P  $C_6H_4O$ )]<sub>2</sub> C (CH<sub>3</sub>)2 + 6  $C_6H_5OH$ 

Details of Product: CAS# 96152-48-6 Mole. Weight: 1112 g/mol


#### Material balance for 1 MT Product:

| INPUT                 |             | OUTPUT          |               |
|-----------------------|-------------|-----------------|---------------|
| 1.Triphenyl Phosphite | : 558.00kgs | 1. Sanphos 1500 | : 1000.00 Kgs |
| 2. Bis phenol         | : 205.00kg  | 2. Phenol       | : 508.00 Kgs  |

3 C12-15 alcohol : 745.00kg

Total : 1508.00 Kgs Total : 1508.00 Kgs

#### **Manufacturing Process Flow Diagram of Sanphos -1500**



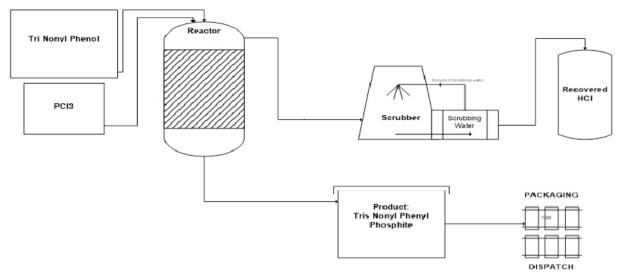
Product 3 (G): Plastic Additives (Tris Nonyl Phenyl Phosphite) (TNPP)

# **Manufacturing Process:**

PCl₃and Nonyl Phenol retreated at elevated temperature. During the course of reaction 3 mole HCl is generated as gas. Gaseous HCl is scrubbed in water scrubber attached to the reactor and Tris Nonyl Phenyl Phosphite is collected after complete removal of HCl from reactor. The product Tris Nonyl Phenyl Phosphite is then packed in suitable containers as per customer's requirement.

# **Reaction of Process:**

$$3C_9H_{19}-C_6H_4OH+PCl_3 \longrightarrow (C_9H_{19}-O-C_6H_4)_3P+3HCl_{gas} \qquad .....In \ Reactor \ for \ Main \ Product \\ HCl_{gas}+H_2O \longrightarrow HCl_{Soln} \qquad .....In \ Scrubber \ for \ By-Product$$


Details of Product: CAS#26523-78-4

Molecular Formula:  $(C_9H_{19}-O-C_6H_4)_3P$  Mole. Weight: 688 g/mol

#### Material balance for 1 MT Product:

| INPUT                           |               | OUTPUT                        |               |
|---------------------------------|---------------|-------------------------------|---------------|
| In Reactor (Main Prod           | duct)         |                               |               |
| <ol> <li>NonylPhenol</li> </ol> | : 959.00kgs   | 1. Tri Nonyl Phenyl Phosphite | : 1000.00 Kgs |
| 2. PCl <sub>3</sub>             | : 200.00kgs   | 2. HCl <sub>gas</sub>         | : 159.00kgs   |
| Total                           | : 1159.00 Kgs | Total                         | : 1159.00 Kgs |
| In Scrubber (By-Produ           | uct)          |                               |               |
| 2. HCl <sub>gas</sub>           | : 159.00kgs   | 1. HCl <sub>Soln</sub> (30%)  | : 530.00kgs   |
| 4. Scrubbing Water              | : 371.00 kgs  |                               |               |
| Total                           | : 530.00 Kgs  | Total                         | : 530.00 Kgs  |

#### Manufacturing Process Flow Diagram of TrisNonylPhenylPhosphite



#### Product 3 (H): Di-phenyl phosphite(DPP)

#### **Manufacturing Process:**

In TPP to be charge phosphorus acid crystal with at elevated temperature. After complete the reaction cool to 70 C temperature. This Finished product packed in drums

#### **Reaction of Process:**

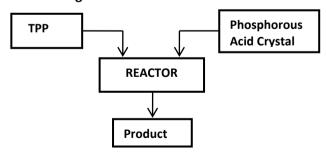
**2**  $(C_6H_5O)_3P + H_3PO_3 \longrightarrow 3\{C12H11O_3P\}$ 

Details of Product: CAS# 4712-55-4

Molecular Formula: C12H11O3P Mole. Weight: 234.19 g/mol

#### Material balance for 1 MT Product:

INPUT OUTPUT


In Reactor (Main Product)

1. TPP : 883.00kgs 1.DPP : 1000.00 kgs

2. phosphorus acid : 117.00kgs

Total : 1000.00 Kgs Total : 1000.00 Kgs

#### **Manufacturing Process Flow Diagram**



Product 4 (A): Organic Phosphates -Tri cresyl Phosphate (TCP)

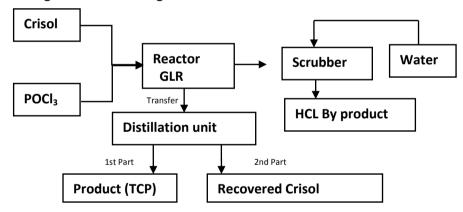
#### **Manufacturing Process:**

3 mole alcohol (Cresol) reacted with 1 mole of POCl<sub>3</sub> at elevated temperature in presence of catalyst during the course of reaction HCl is generated which is trapped in water and will be dispatched as HCl solution. Excess alcohol used is distilled out under vaccum after the reaction.

Finished product distilled at elevated temperature and at reduced pressure and collected in to the receiver. From receiver the material is packed in drums.

#### **Reaction of Process:**

$$3(C_7H_8O) + POCl_3 \longrightarrow (C_7H8O)P + 3HCl_{gas}$$
 ......In Reactor for Main Product  $HCl_{gas} + H_2O \longrightarrow HCl_{Soln.}$  .....In Scrubber for By-Product


**Details of Product: CAS#1330-78-5** 

**Molecular Formula:** (C<sub>21</sub> H<sub>23</sub> O<sub>4</sub> P) **Mole. Weight:** 368.37 g/mol

#### Material balance for 1 MT Product:

| INPUT                          |               | OUTPUT                              |                                      |
|--------------------------------|---------------|-------------------------------------|--------------------------------------|
| In Reactor (Main Prod          | uct)          |                                     |                                      |
| 1. Crisol                      | : 1012.00 kgs | 1. Tricrysyl Phosphate [TCP]        | : 1000.00 Kgs                        |
| 2. POCl <sub>3</sub>           | : 417.00 kgs  | 2. HCl <sub>gas</sub>               | : 297.00 kgs                         |
|                                |               | 3. Recover cresol                   | : 122 Kgs                            |
|                                |               | 4. Process Residue                  | : 10 kgs                             |
|                                |               |                                     |                                      |
| Total                          | : 1429.00 Kgs | Total                               | : 1429.00 Kgs                        |
| Total<br>In Scrubber (By-Produ | J             | Total                               | : 1429.00 Kgs                        |
|                                | J             | Total  1. HCl <sub>Soln</sub> (30%) | : <b>1429.00 Kgs</b><br>: 990.00 kgs |
| In Scrubber (By-Produ          | ct)           |                                     | J                                    |

#### **Manufacturing Process Flow Diagram TCP**



# Product 4 (B): Organic Phosphates (Cresyl Diphenyl Phosphate)(CDPP) Manufacturing Process:

1 mole Cresol and 2 mole phenol are reacted with 1 mole of POCl<sub>3</sub> at elevated temperature in presence of catalyst during the course of reaction HCl is generated which is trapped in water and will be dispatched as HCl solution. Excess alcohol used is distilled out under vaccum after the reaction. Finished product distilled at elevated temperature and at reduced pressure and collected in to the receiver. From receiver the material is packed in drums.

# **Reaction of Process:**

C7H8O + 
$$2C_6H_6O + POCl_3$$
  $\longrightarrow$  C19H17O4P+3HCl<sub>gas</sub> .....In Reactor for Main Product HCl<sub>gas</sub> +  $H_2O$   $\longrightarrow$  HCl<sub>Soln.</sub> .....In Scrubber for By-Product

**Details of Product: CAS#115-86-6** 

Molecular Formula:  $(C_{19}H_{17}O_4P)$  Mole. Weight: 340.31 g/mol

#### Material balance for 1 MT Product:

INPUT OUTPUT

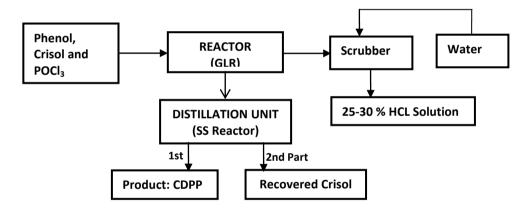
In Reactor (Main Product)

1. Crisol : 470.00 kgs 1. CRESYL DIPHENYL PHOSPHATE (CDPP):1000.00 Kgs

2. Phenol : 553.00 kgs 2. HCl<sub>gas</sub> :322.00 kgs 3. POCl<sub>3</sub> : 451.00 kgs 3. Cresol recover :137.00 kgs

4. Process residue :15.00kgs

Total : 1474.00 Kgs Total :1474 Kgs


In Scrubber (By-Product)

2. HCl<sub>gas</sub> :322.00 kgs 1. HCl<sub>soln</sub>(25-30%) :1073.00 kgs

4. Scrubbing Water :751.00 kgs

Total :1073.00 Kgs Total :1073.00 Kgs

#### **Manufacturing Process Flow Diagram CDPP**



Product 4 (C): Organic Phosphates (Triphenyl Phosphate)

#### **Manufacturing Process:**

3 mole of Phenol reacted with 1 mole of POCl<sub>3</sub> at elevated temperature in presence of catalyst during the course of reaction HCl is generated which is trapped in water and will be dispatched as HCl solution. Excess alcohol used is distilled out under vaccum after the reaction.

Finished product distilled at elevated temperature and at reduced pressure and collected in to the receiver. From receiver flaking the material and flakes packed in drums.

#### **Reaction of Process:**

 $3C_6H_6O + POCl_3 \longrightarrow OP(OC_6H_5)_3 + 3HCl_{gas}$  .....In Reactor for Main Product  $HCl_{gas} + H_2O \longrightarrow HCl_{Soln}$  .....In Scrubber for By-Product

Details of Product: CAS#115-86-6

Molecular Formula: (C<sub>18</sub>H<sub>15</sub>O<sub>4</sub>P) Mole. Weight: 326 g/mol

Material balance for 1 MT Product:

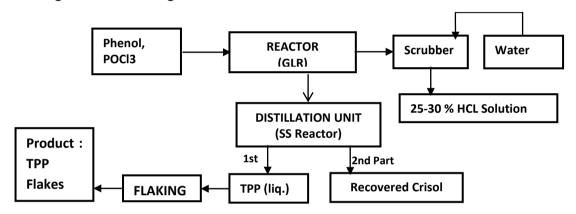
INPUT OUTPUT

In Reactor (Main Product)

2. HCl<sub>gas</sub> :335.00 kg 3. Phenol recover :61.00 kgs

4. Process residue :12.00kgs

Total : 1408.00 Kgs Total :1408.00 Kgs


In Scrubber (By-Product)

2. HCl<sub>gas</sub> :335.00 kgs 1. HCl<sub>Soln</sub>(30%) :1117.00 kgs

4. Scrubbing Water :782.00 kgs

Total :1117.00 Kgs Total :1117.00 Kgs

# **Manufacturing Process Flow Diagram TPP**



Product 5: Styrenated phenol (Mono, Di, Tri Styrenated phenol)

#### **Manufacturing Process:**

Phenol reacted with 1, 2 OR 3 mole of Styrene at elevated temperature under reflux. After complete the reaction cool to 70 C temperature. This Finished product packed in drums

M.W:302.41 g/mol (Di)

Reaction of Process: (1) Mono Styrenated phenol

(2) Di Styrenated phenol

(3) Tri Styrenated phenol

(1)  $C_6H_6O+(R) \longrightarrow (C14H14)O$  **M.W:198.26** g/mol (Mono)

(3)  $C_6H_6O+3(R) \rightarrow (C30H30)O$  M.W. 406.56 g/mol (Tri)

• Note: R= C8H8 (Styrene)

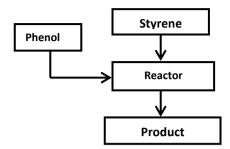
Details of Product: CAS# 61788-44-1

Molecular Formula: C<sub>22</sub>H<sub>22</sub>O Mole. Weight: 302.41 g/mol

(2)  $C_6H_6O + 2(R) \longrightarrow (C22H22)O$ 

Material balance for 1 MT Product: (As Di Styrenated phenol)

INPUT OUTPUT


In Reactor (Main Product)

1. Phenol : 311.22 kgs 1.Di Styrenated phenol :1000.00 kgs

2. Styrene : 688.78 kgs

Total : 1000.00 Kgs Total :1000.00 Kgs

# **Manufacturing Process Flow Diagram Di Styrenated phenol**



Raw material required along with estimated quantity, likely source, marketing area of final product(s), mode of transport of raw material and finished product:

The details of Raw Materials & production process of all products are described in subsequent paragraphs under respective headings.

# **RAW MATERIALS**

In existing unit the company requires 8 raw materials. After proposed project these raw materials requirement will increase to meet the additional requirement of capacity enhancement of the existing product. Beside these 8 chemical, 11 additional chemicals will be required for the proposed project. The details of raw materials for proposed products are given below in tabular form.

**Table 7: Details of Source, Transportation & Storage Raw Materials** 

| Sr. | Name Of Raw                 | Physical | Storage  | Mode Of   | Mode Of             | Source       |
|-----|-----------------------------|----------|----------|-----------|---------------------|--------------|
| No. | Material                    | State    | Capacity | Transport | Storage             | Source       |
| 1.  | Phenol                      | Solid    | 26MT     | By Road   | SS Tanks            | Import/Local |
| 2.  | Isodecanol                  | Liquid   | 20MT     | By Road   | HDPE<br>Tanks/Drums | Import/Local |
| 3.  | Trisdecanol                 | Liquid   | 20MT     | By Road   | HDPE<br>Tanks/Drums | Import/Local |
| 4.  | 2-Ethyl Hexanol             | Liquid   | 20MT     | By Road   | HDPE<br>Tanks/Drums | Import/Local |
| 5.  | Lauryl alcohol              | Liquid   | 5 MT     | By Road   | Drums               | Local        |
| 6.  | C12-15 alcohol              | Liquid   | 5 MT     | By Road   | Drums               | Local        |
| 7.  | Bis phenol A                | Solid    | 1.0 MT   | By Road   | Drums               | Local        |
| 8.  | Phosphorus acid<br>Crystals | Solid    | 0.5 MT   | By Road   | Drums               | Local        |
| 9.  | Phosphorus<br>Trichloride   | Liquid   | 15MT     | By Road   | Ms Tanks            | Local        |
| 10. | Phosphorous<br>Pentoxide    | Powder   | 5MT      | By Road   | Carboys             | Local        |
| 11. | Phosphoric Acid             | Liquid   | 10MT     | By Road   | Carboys             | Local/Import |
| 12. | Cresol                      | Liquid   | 5 MT     | By Road   | Drums               | Local/Import |
| 13. | Nonyl Phenol                | Liquid   | 20MT     | By Road   | HDPE<br>Tanks/Drums | Local/Import |
| 14. | POCl <sub>3</sub>           | Liquid   | 1MT      | By Road   | Carboys             | Local        |

|     | Name Of Raw<br>Material | Physical<br>State | Storage<br>Capacity | Mode Of<br>Transport | Mode Of<br>Storage | Source |
|-----|-------------------------|-------------------|---------------------|----------------------|--------------------|--------|
| 15. | Styrene                 | Liquid            | 10 MT               | By Road              | Drum               | Local  |
| 16. | Dipropylene gycol       | Liquid            | 5 MT                | By Road              | Drum               | Local  |
| 17. | Stearyl alcohol         | Solid             | 5 MT                | By Road              | Drum               | Local  |
| 18. | Petaerythritol          | Solid             | 5 MT                | By Road              | Drum               | Local  |
| 19. | 2-Octanol               | Liquid            | 5 MT                | By Road              | Drum               | Local  |

Table 8: List of Hazardous Materials (Products & Raw Materials) as Per MSIHC Rule 2000

| Sr.<br>No. | Name of Raw material   | Classification as per<br>Schedule of MSIHC Rule | Threshold Storage as per MSIHC Rule |
|------------|------------------------|-------------------------------------------------|-------------------------------------|
| 1.         | Phenol                 | Sch-I, part –II,481                             | 5000 MT                             |
| 2.         | 2-Ethyl Hexanol        | Sch-I,Part-II, 254                              |                                     |
| 3.         | Phosphorus trichloride | Sch-I,Part-II,506                               | NA                                  |
| 4.         | Phosphorous pentoxide  | Sch-I,Part-II, 505                              | NA                                  |
| 5.         | Phosphoric Acid        | Sch.I, part –II,497                             | NA                                  |
| 6.         | POCl <sub>3</sub>      | Sch.l, part –II,504                             |                                     |
| 7.         | Styrene                | Sch.l, part –II,583                             |                                     |

Table 9: Hazardous characteristics of Chemicals (Product & Raw Material)

|            | LIST OF CHEMICAL PROPERTIES OF HAZARDOUS CHEMICALS IDENTIFIED |                                   |                                |              |            |                      |             |              |                    |                           |        |            |                                 |                                                   |
|------------|---------------------------------------------------------------|-----------------------------------|--------------------------------|--------------|------------|----------------------|-------------|--------------|--------------------|---------------------------|--------|------------|---------------------------------|---------------------------------------------------|
|            |                                                               |                                   |                                |              |            |                      |             |              |                    |                           |        |            |                                 |                                                   |
| Sr.<br>No. | Name of Raw materials                                         | Chemical<br>Classificati<br>on    | Moleculer<br>weight<br>(g/mol) | MP (°C)      | BP (°C)    | FP (°C)              | LEL %       | UEL%         | NFPA (H, F &<br>R) | VP (mmHg)                 | VD     | HC (cal/g) | TLV ppm OR<br>mg/m <sup>3</sup> | LD <sub>50</sub> mg/Kg<br>(LC <sub>50</sub> mg/I) |
| 1          | Phenol                                                        | Toxic                             | 94.11<br>g·mol−1               | 40.91        | 181.75     | 85.00                | 1.30        | 9.50         | 4,2,0              | 0.35 mm Hg @ 25<br>deg C  | 3.24   | -          | 5 ppm                           | ORAL-<br>RAT(LD50):<br>Acute: 530<br>mg/kg        |
| 2          | 2-Ethyl Hexanol                                               | Irritant                          | 130.23                         | -76.00       | 184.34     | 81.00                | 0.90        | 9.70         | 2,2,0              | 0.36 mm Hg @<br>20 deg C  | 4.50   | -          | -                               | 2049 mg/kg                                        |
| 3          | PCL3(Phosphorus trichloride)                                  | Toxic,<br>Corrosive               | 137.332                        | -93.60       | 76.10      | ı                    | I           | ı            | 3,0,0              | 100                       | 4.75   |            | 0.2 ppm (1.5<br>mg/m3)          | LC50 (rat)<br>mg/kg:0.28<br>mg/m3/4<br>hours      |
| 4          | Phosphorous pentoxide                                         | Toxic,<br>Flammable,<br>Corrosive | 141.94<br>g/mole               | 562 00       | 360°C      | NA                   | NA          | NA           | 3,0,2              | 1 mm Hg at 384<br>deg C   | NA     | -          | 1                               | (LC50):<br>Acute: 1084<br>ppm 4<br>hour(s)        |
| 5          | Phosphoric Acid                                               | Corrosive                         | 98.00                          | 42.35        | 158.00     | Non<br>Flammabl<br>e | NA          | NA           | 3,0,0              | 0.03@20                   | 0.03   |            | 1 mg/m3                         | 1530.00                                           |
| 6          |                                                               | Toxic,<br>Flammable,<br>Corrosive |                                | 1.25         | 105.80     | NA                   | NA          | NA           | 0,4,2              | 40 mm Hg at 27.3<br>deg C | 5.30   |            | 0.1 ppm (0.6<br>mg/m3)          | (LC-50)0.3<br>mg/liter/4<br>hours                 |
|            | - melting point                                               | 1                                 | LEL- Lower e                   | •            |            | l .                  |             |              | 1                  |                           |        | pour Press |                                 |                                                   |
|            | Boiling Point                                                 |                                   | UEL- Upper                     |              |            |                      |             |              |                    |                           |        | our Densit | •                               |                                                   |
| FP -       | Flash Point                                                   |                                   | NFPA- Natio                    | nal Fire Pro | tection As | sociation Ra         | ting – (H-H | ealth, F- Fi | re & R-Reactiv     | ity)                      | HC- He | at of Comb | ustion                          |                                                   |

viii) Resource optimization/ recycling and reuse envisaged in the project, if any, should briefly outlined:

By-product HCl will be sold out to its actual users.

By product Phenol will be reused to manufacture TPP and excess will be sold out to its actual users. By product cresol will be reused to manufacture our phosphate products.

# ix) Availability of water its source, energy/power requirement and source should be given: Availability of water its source energy/power required and its source.

The company does not require water for process of manufacturing of product and washing in existing unit. Similarly the water will not require for manufacturing of proposed products& washing. Water is required only for operations of utilities and domestic activities as well as irrigation of garden & greenbelt area. The breakup of total water requirements are presented in tabular form below.

**Table 10: Water Requirement** 

| Sr. | Particulars          |          | Quantity(KL per day) |       |  |  |  |  |
|-----|----------------------|----------|----------------------|-------|--|--|--|--|
| No. | Particulars          | Existing | Proposed             | Total |  |  |  |  |
| 1   | Domestic             | 3.50     | 1.50                 | 5.00  |  |  |  |  |
| 2   | Industrial           | •        |                      |       |  |  |  |  |
|     | Process & Washing    | 0.00     | 0.00                 | 0.00  |  |  |  |  |
|     | Boiler               | 6.00     | 6.00                 | 12.00 |  |  |  |  |
|     | Cooling              | 6.00     | 10.00                | 16.00 |  |  |  |  |
|     | Scrubbing            | 10.00    | * 0.00               | 10.00 |  |  |  |  |
|     | Sub Total Industrial | 22.00    | 16.00                | 38.00 |  |  |  |  |
| 3   | Gardening            | 5.00     | 0.00                 | 5.00  |  |  |  |  |
|     | Total                | 30.50    | 17.5                 | 48.00 |  |  |  |  |

**Source:** The water supply from GIDC Water Supply Dept.

**Note:** \* 5 KL from boiler and cooling tower blow down water and boiler condensate will be reused in scrubber for HCl scrubbing.

#### Power

Total power requirement after the proposed expansion will be 250 KVA. The existing unit is having 150 KVA powers and the additional 100 KVA power for proposed expansion project will also be met from Dakshin Gujarat Vij. Co. Ltd. As a standby power source, D. G. sets of total capacity 250 KVA is required after proposed expansion. The unit is having a D. G. Set of capacity 125 KVA and is now proposing to install another D.G. Set of capacity 125 KVA to meet the requirement only during power failure and emergency. The details of power requirement are tabulated in subsequent table.

#### **Fuel**

In existing unit, natural gas is used in the utilities as fuel. The natural gas requirement of existing unit is 28000 SCM/month which supplied by GSPC through the gas pipeline laid in the GIDC Vapi for industrial supply. The Steam Boiler &Thermopack are the fuel consuming utilities of the existing unit. The fuel (natural gas) consumption of these utilities will therefore increase after proposed project. After proposed project the natural gas requirement of these utility will be 40000SCM/month and the supply source will remain same as pipeline of GSPC existing in GIDC Vapi. Additionally, for proposed project HSD will be used as fuel for DG set only during power failure from DGVCL and the HSD requirement will be 60 lit/hr. The HSD will be procured from local authorized supplier/dealer. The details of fuel requirement are tabulated below.

The details of Fuel & Power requirement is presented in tabular form in subsequent table.

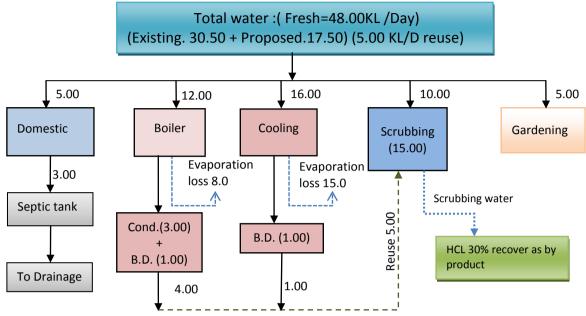
| Components                 | Existing                           | Proposed           | Total (after<br>proposed<br>expansion) | Sources                   |
|----------------------------|------------------------------------|--------------------|----------------------------------------|---------------------------|
| Power                      | 150 KVA                            | 100 KVA            | 250 KVA                                | Domestic                  |
| Heat Requirement           | 6 lakh K.cal/Hr &<br>2 lac kcal/hr | -                  | 8 lakh Kcal/hr                         | Thermopack                |
| Steam<br>Requirement       | 550 kg /Hr &<br>1.0 T/ hr          | -                  | 1.55 T/Hr                              | Steam Boiler              |
| Power during power failure | 125 KVA                            | 125 KVA            | 250 KVA                                | D.G. Set                  |
| Natural Gas                | 28000 SCM/Month                    | 12000<br>SCM/Month | 40000 SCM/Month                        | From GSPC                 |
| HSD 30 L/Hr                |                                    | 30 L/Hr            | 60 L/Hr                                | Local Petroleum<br>Dealer |

**NOTE:** As per our existing consent, maximum quantity of Natural Gas permitted is 65,000 SCM/Month. But our actual consumption in existing unit is 28,000 SCM/Month and the same is mentioned in this table.

# X. Quantity of waste to be generated (liquid and solid) and scheme for their Management/disposal:

# Quantity of Waste Water (liquid waste) generation and its management:

In existing unit, total industrial wastewater generation is measured to be 1.00 KLD on maximum basis whereas sewage generation is also noticed around 1.80 KLD. From proposed unit, the industrial wastewater generation will be around 4.20KLD whereas domestic sewage generation is expected to be around 0.20 KLD additional to the existing. The sewage is disposed off through the septic tank followed by common sewage drainage of the area. The industrial wastewater will be generated from boiler& cooling system blow down. Thus the whole & all effluent generated from existing & proposed unit is identified as non-hazardous/toxic effluent. The blow down from boiler & cooling is utilized for makeup in scrubber and similar practice will be done after proposed project.


The details of wastewater generation are tabulated below whereas the water balance diagram is shown in subsequent figure.

**Table 12: Details of Wastewater Generation** 

| Sr.<br>No. | Particulars          | Existing Quantity (KL per day) | Proposed Quantity<br>(KL per day) | Total Quantity (KL per day) |
|------------|----------------------|--------------------------------|-----------------------------------|-----------------------------|
| 1          | Domestic             | 2.30                           | 0.70                              | 3.00                        |
| 2          | Industrial           |                                |                                   |                             |
|            | Process              | 0.00                           | 0.00                              | 0.00                        |
|            | Boiler*              | 0.70                           | 3.30                              | 4.00                        |
|            | Cooling*             | 0.30                           | 0.70                              | 1.00                        |
|            | Sub Total Industrial | 1.00                           | 4.00                              | 5.00                        |
|            | Total                | 3.30                           | 4.70                              | 8.00                        |

<sup>\*</sup> Industrial effluent basically from boiler and cooling tower is reused in scrubber, and the recovered HCl solution is sold as by-product.

Fig. 3: Water Balance Diagram



#### Note:

The unit of all water requirement & effluent discharge are in KL/Day B.D - Blowing Down Cond. - Condensation

#### • DETAILS OF AIR POLLUTION CONTROL MEASURES AFTER PROPOSED CHANGE:

#### **Air Pollution Sources & Control**

In existing unit, emissions sources are the three utilities installed in the plant. The utilities include one steam Boiler (550Kg/Hr.) and another steam Boiler (1.00 T/Hr.), Two Thermopack (6lakhs Kcal/Hr and 2 lakhs Kcal/Hr) & one DG set of 125KVA and natural gas is used as fuel for Steam Boiler and Thermopack utilities and HSD is used for D.G.Sets. Now, we are proposing DG set of capacity 125 KVA to meet the power requirement only during failure of power supply from the Electricity Department. Thus, after proposed project the emission load of the utilities, and DG set.

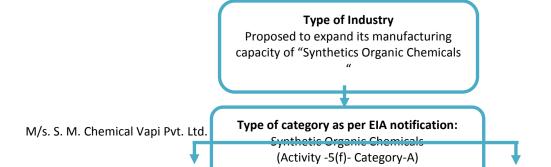
The summarized details of the stationary/utility emissions are presented in tabular form below.

**Table 13: Details of Emission & Control Measures** 

| Sr.    | Particulars               | Fuel Type & Quantity | Pollutants &               | Control Measures   |
|--------|---------------------------|----------------------|----------------------------|--------------------|
| No.    |                           |                      | Limits                     |                    |
| Existi | ing                       |                      |                            |                    |
| 1.     | Steam Boiler (2 No.):     | CNG:                 | PM <150 mg/Nm <sup>3</sup> | Stack ht.: 11 mtr. |
|        | Capacity: 550 Kg/Hr&      | 28000 scm/Month      | SO <sub>2</sub> < 100 ppm  | Diameter: 400 mm   |
|        | 1 T/hr                    |                      | NO <sub>x</sub> < 50 ppm   |                    |
| 2.     | Thermopack (2 No.):       |                      |                            | Stack ht.: 23 mtr. |
|        | Capacity: 2 lakh K.Cal/Hr |                      |                            | Diameter: 400 mm   |
|        | &6 lakh K.Cal/Hr          |                      |                            |                    |
| 3      | D.G. Set                  | HSD: 30 L/Hr         | PM <150 mg/Nm <sup>3</sup> | Stack ht. 11 mtr.  |
|        | Capacity: 125 KVA         |                      | SO <sub>2</sub> < 100 ppm  | Diameter: 200 mm   |

| 4.   | Glass Line Reactor (3 No.) | N/A             | HCl<20 mg/Nm <sup>3</sup>  | Two stage Water        |
|------|----------------------------|-----------------|----------------------------|------------------------|
|      |                            |                 |                            | Scrubber               |
|      |                            |                 |                            | Stack ht. 11 mtr.      |
|      |                            |                 |                            | Diameter: 100 mm       |
| Prop | osed                       |                 |                            |                        |
| 1    | Steam Boiler               | CNG:            | PM <150 mg/Nm <sup>3</sup> | Stack ht. 15 mtr.      |
|      | Capacity: 1.0T/Hr          | 12000 scm/Month | SO <sub>2</sub> < 100 ppm  | Diameter: 450 mm       |
|      |                            |                 | NO <sub>x</sub> < 50 ppm   |                        |
| 2    | D.G. Set                   | HSD: 30 L/Hr    | PM <150 mg/Nm <sup>3</sup> | Stack ht. 11 mtr.      |
|      | Capacity: 125 KVA          |                 | SO <sub>2</sub> < 100 ppm  | Diameter: 200 mm       |
|      |                            |                 | NO <sub>x</sub> < 50 ppm   |                        |
| 3    | Glass Line Reactor (5No.)  | N/A             | HCl<20 mg/Nm <sup>3</sup>  | Two stage Water        |
|      |                            |                 |                            | Scrubber and one       |
|      |                            |                 |                            | stage alkali scrubber. |
|      |                            |                 |                            | Stack ht: 11 mtr.      |
|      |                            |                 |                            | Diameter: 100 mm       |

#### Solid & Hazardous Waste Generation & Management


There is no solid &/or hazardous waste generation from the existing unit. Similarly no waste will be generated from proposed project. The hazardous waste generation from existing unit comprises discarded containers & used Oil. Same wastes will be generated from proposed unit. The discarded containers/drums is /will be sold to the authorized scrap dealers or re-conditioners. Company has facility for decontamination of containers with defined operational procedures. The used oil is being recycled indirectly through sell to authorized recyclers. Similar practice of management of used oil will be continued after proposed project. The details of hazardous waste generation and mode of treatment &/or Disposal is tabulated below.

The details of all wastes & their management are tabulated below.

Table 14: Quantity of Hazardous/Non-hazardous Waste generation and its management

| Types of Waste                              | Source of                  | Quantity           |           | Storage           | Method of                                                                   |                                                               |  |  |
|---------------------------------------------|----------------------------|--------------------|-----------|-------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| & Category                                  | Generation                 | Exiting            | Proposed  | Total             | Method                                                                      | Disposal                                                      |  |  |
| Hazardous Waste                             | Hazardous Wastes           |                    |           |                   |                                                                             |                                                               |  |  |
| Process residue<br>(Schedule-I,<br>20.3)    | From<br>Process            |                    | 10.00 MT  | 10.00 MT          | Will be stored<br>at a separate<br>storage area in<br>a closed<br>container | Will be sent to co incineration or common incinerations.      |  |  |
| Used oil<br>(5.1)                           | From<br>utility            | 25<br>L/Annum      | 10L/Annum | 35L/Annu<br>m     | Stored in to the closed container                                           | Dispose by selling to registered refiners                     |  |  |
| Discarded containers/barre ls/liners (33.1) | Raw<br>Material<br>storage | 150 Nos./<br>Annum | -         | 150Nos./<br>Annum | Stored at<br>Specified<br>Storage area as<br>per rules                      | Decontaminate d drum will be sold to authorized reconditioner |  |  |

XI. Schematic representations of the feasibility drawing which give information of EIA purpose: A schematic representation of the feasibility drawing



#### 4. SITE ANALYSIS

#### 4.0 Site Analysis

# I. Connectivity:

The land use is in GIDC, Vapi, Gujarat which is very well connected to National Highway no.08. And the nearest Surat airport is 85.75 Km NW & Non-Public: Daman- 12.12 Km NW away from the project site by road.

#### II. Land Form, Land use and Land ownership:

The total plot area (2197.00 sq.m.) is belonging to M/s. S. M. Chemical Vapi Pvt. Ltd. The existing land is located in GIDC, VApi Area.

#### III. Existing Infrastructure/land use pattern

Proposed project will be located in GIDC, Vapi area. It is very well connected to national highway NH-08. Proposed project will be located within the GIDC notified industrial area of Vapi which has available infrastructure like water, electricity, roads, rail, transportation and drainage system, CETP and TSDF Site. Surrounding area is consisting with agriculture, other industrial units.

#### IV. Soil classification and Land use classification:

The area, being of basaltic formation, falls under the broad soil group of red loams and black clay soils. The transmission of water through similar parent material seems to have influenced the development of different physiographic characteristics of the soils in the area. The area in between the hills with sloping lands contains dark yellowish brown to very dark grayish brown gravelly clay loam to clayey soils of shallow to moderate thickness. The dissected hill and steep slopes suffer from severe erosion hazards. The steep hill slopes are almost devoid of soil.

#### V. Climate data from secondary sources:

The climate here is tropical. The winter months are much rainier than the summer months in Valsad. This climate is considered to be as according to the Köppen-Geiger climate classification. The temperature here averages 26.9 °C. Rain fall about 1500 mm approximately of precipitation falls annually during 2015.

#### VI. Social Infrastructure available:

#### **LAND & BUILDINGS**

As mentioned in earlier section the proposed project would be set up in existing premises of M/s S.M. Chemical Vapi Pvt. Ltd., which is situated in Plot No. 313/1,40 Shed Area, GIDC Estate, Vapi - 396195, Dist. Valsad, of Gujarat state. The plots of existing premises measure 2197.00 m², out of which897 m²planned for industrial use for existing &proposed facilities. Further,330 m² land is already developed as greenbelt within premises and 406 m²is developed as additional greenbelt in common space of GIDC allocated for greenbelt. Remaining 970 m² land area of the site is kept open.

The plant layout showing all necessary details of existing & proposed land utilization and built-up area are shown in subsequent figure whereas the details of total land, land area allocated for each type of building, structure & facilities of existing & proposed unit are tabulated below.

The layout of project premises /site showing existing & proposed buildings & infrastructures including raw materials storage area, production area, utility area, ETP, Stacks, Hazardous waste storage area, office area, greenbelt area, internal roads and parking area etc. is shown in subsequent figure of plant layout.

#### 5. Planning Description

#### 5.0 Planning Brief.

I. Planning Concept (Type of industries, facilities, transportation etc.) Town and Country Planning /Development authority Classification:

The project site is located at Vapi, GIDC, Gujarat.

#### **II.** Population Projection:

Not applicable

#### III. Land use planning (breakup along with green belt etc.):

The project is located Industrial notified area and due to the proposed project there will not be any change in the land use pattern of the region.

| Area Statement                                                           | Existing<br>(in m²) | Proposed<br>(in m²) | Area After Proposed Expansion(in m²) |
|--------------------------------------------------------------------------|---------------------|---------------------|--------------------------------------|
| Production plant[consider only ground                                    | 576.00              | 00.00               | 576.00                               |
| floor area but actually it is three layer                                |                     |                     |                                      |
| plant]                                                                   |                     |                     |                                      |
| Storage Shed/ Godown Area                                                | 221.00              | 00.00               | 221.00                               |
| Office & other built-up Area                                             | 100.00              | 00.00               | 100.00                               |
| Open area and Road & Parking Area                                        | 970.00              | 00.00               | 970.00                               |
| Green Belt* Area[o/s adjoining common area place 206sq.mt. not consider] | 330.00              | 00.00               | 330.00                               |
| Total Area                                                               | 2197.00             | 00.00               | 2197.00                              |

#### IV. Assessment of Infrastructure demand (Physical & Social):

The proposed infrastructure to manufacture products will be built with standard engineering design considering all the relevant parameters related to environment, health and safety.

Facilities like road and communication are good. Banks, ATM's and medical facilities are also adequate.

#### V. Amenities/ Facilities:

**Education-** schools including middle, secondary and higher secondary schools, Colleges, social welfare hostels.

**Medical and Health-** M/s. S. M. Chemical Vapi Pvt. Ltd., as an existing unit, has formulated well defined safety procedures & code as well as on-site emergency plan. The company is maintaining good workplace condition to ensure good status of occupational health & safety. Similar arrangement with necessary modification in established procedure, codes and on-site emergency plan will be made for proposed project. The details of occupational health & safety related information are presented below under respective headings.

**Power and water**- All the villages are electrified and drinking water facilities are extended to all villages.

Rail and Road- The project site is very well connected by road through Natinal Highway no. 08.

#### Infrastructure Details

# 6.0 Proposed Infrastructure:

#### I. Industrial Area (Processing Area):

Basic infrastructure developed already and the required additional plant and machineries will be installed after getting statutory clearance.

# II. Residential Area (Non Processing Area):

No residential area is involved in the proposed project as it is located in GIDC area. The employs are accommodated in nearby Residential areas.

#### III. Green Belt:

Along with 330m<sup>2</sup>green belt area within premises, additional 406m<sup>2</sup> greenbelt area will also be developed in common space of GIDC, Vapi, totalling to 736 m<sup>2</sup> of greenbelt area.

#### **Greenbelt Development:**

Green belt form a surface capable of absorbing air pollutants and forming sinks for pollutants. Plants grown in such a way as to function as pollutants sinks are collectively referred to as green belts. Apart from functioning as a pollutant sink, green belts provide other benefits like:

- Green belt helps in noise abatement for the surroundings area. Thus, it is recommended as noise barriers.
- Green belt helps in achieving bio diversity by providing possible habitats for birds and animal, thus recreating hospitable nature in an otherwise drab urban industrial scene.
- Green belts increase the aesthetic value of the site.

It may be noted that SM Chemical is an existing unit located in the notified industrial estate of GIDC Estate Vapi. The unit has already developed a green belt in its premises admeasuring 330 m<sup>2</sup>. Company has also developed 406 m<sup>2</sup> area available in common space of GIDC allocated for greenbelt as additionally greenbelt.

# IV. Connectivity (Traffic and Transportation Road/ Rail/ Metro/ Water ways etc):

The project site is very well connected by road through National Highway no. 8 and western railways.

# V. Drinking Water management (Source& Supply of water):

Water requirement will be fulfilled through GIDC Water Supply Department, Vapi GIDC.

#### VI. Sewerage System:

Sewerage water is disposed off to soak pit through septic tank.

#### VII. Industrial Waste Management:

- Industrial effluent basically from boiler and cooling tower is reused in scrubber, and the recovered HCl solution is sold as by-product.
- Generated domestic liquid waste is being disposed off through soak pit system to drainage.

#### 7 Rehabilitation and Resettlement (R&R) Plan:

# II. Policy to be adopted (Central/ State) in respect of the project affected persons including home oustees, land oustees and landless laborers (a brief outline to be given):

The proposed Industry does not envisage any disturbance to local community or the village since the land is located in notified industrial area, GIDC. The proposed project will not affect the home oustees, land oustees and landless laborers. Hence there is no R & R plan required.

# 8. Project Schedule & Cost Estimates:

# I. Likely date of start of construction and likely date of completion (Time schedule for the project to be given):

After obtaining Environmental clearance and Consent to Establish from GPCB, the company shall start the proposed additional manufacturing product and commissioning of the project.

# II. Estimated project cost along with analysis in terms of economic viability of the project:

Estimated project cost along with the analysis in terms of economic viability of the project Plant & Machinery, Pipeline & Fittings, Electrical Installation, Safety systems, etc. are the major heads considered in the Capital Cost Projection for the proposed expansion project. Environment Protection has also been considered in planning the Cost Projection, which will include Green belt development, safety systems, etc.

The capital of proposed project has been estimated & budgeted with costs of Rs. 414.63 lakhs after proposed expansion. The proposed capital includes Rs. 12.75 Lakhs for environmental protection measures. The details of proposed capital costs estimation including land, buildings, plant machineries & equipment, environmental protection measures etc. is presented below in tabulated form.

**Table 15: Capital Cost** 

| Sr. | Dumage                                 | <b>Existing Cost</b> | Proposed Cost  | Total Cost     |
|-----|----------------------------------------|----------------------|----------------|----------------|
| No. | Purpose                                | (Rs. In Lakhs)       | (Rs. In Lakhs) | (Rs. In Lakhs) |
| 1.  | Land                                   | 6.75                 | -              | 6.75           |
| 2.  | Building and Civil Works               | 31.68                | 30.00          | 61.68          |
| 3.  | Plant, Machinery and other fittings    | 293.15               | 40.00          | 333.15         |
| 4.  | Environmental protection measures& CSR | 9.75                 | 3.00           | 12.75          |
| 5.  | Safety & Emergency Measures            | 0.15                 | 0.15           | 0.30           |
|     | TOTAL:                                 | 341.48               | 73.15          | 414.63         |

#### **Recurring Cost per Annum**

| Sr. | Durmore                                              | Cost           |  |
|-----|------------------------------------------------------|----------------|--|
| No. | Purpose                                              | (Rs. In Lakhs) |  |
| 1.  | Environment and safety management                    | 11.00          |  |
| 2.  | Greenbelt Maintained                                 | 1.00           |  |
| 3.  | Expansion for common solid waste disposal facilities | 5.00           |  |
| 4.  | CSR activities                                       | 2.00           |  |
|     | TOTAL:                                               | 19.00          |  |

# 9. Analysis of Proposal (Final Recommendations):

- **I.** Financial and social benefits with special emphasis on the befit to the local people including tribal population, if any, in the area:
  - Proposed expansion activity will provide benefits to the local people in terms of financial and social welfare.
- Local people will get direct financial benefit by way of employment.
- Local people will get some contracts of supply and services to get indirect income.
- Company will contribute in improving education and health facilities in nearby area.