Minutes of the 377th (A)meeting of the State Level Expert Appraisal Committee held on 26/02/2018 at Committee Room, Gujarat Pollution Control Board, ParyavaranBhavan, Gandhinagar.

The 377th (A) meeting of the State Level Expert Appraisal Committee (SEAC) was held on 26thFebruary 2018 at Committee Room, GEER foundation, Gandhinagar. Following members attended the meeting:

- 1. Shri S. C. Shrivastav, Vice Chairman, SEAC.
- 2. Shri R. J. Shah, Member, SEAC.
- 3. Dr. V. K. Jain, Member, SEAC.
- 4. Shri V. N. Patel, Member, SEAC.
- 5. Dr. Mayuri Pandya, Member, SEAC.
- 6. Shri Rajesh Shah, Member, SEAC.

The table agenda of reconsideration for TOR/Scoping cases, ToR amendment and Appraisal cases were taken up. Seven cases of TOR/Scoping, four cases of ToR amendment and ten cases of appraisal were taken up. The Committee considered the applications made by project proponents and additional details submitted as required by the SEAC/SEIAA.

ſ	1.	SIA/GJ/IND2/19948/2016	M/s.: Embio Limited	Reconsideration for
			Plot No. 3/3/2, Dahej GIDC-III, Ta. Vagra,	EC – Appraisal
			Dist. Bharuch	
- E				

12.10.2017

Category of the unit : 5(f)

Project status: New

- PP has submitted online application vide no. SIA/GJ/IND2/19948/2016 dated 14/09/2017 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide letter dated 14/04/2017.
- Project proponent has submitted EIA Report prepared by M/s: En-vision Enviro Technologies Pvt. Ltd., Surat based on the TOR issued by SEIAA.
- Public Hearing was conducted by Gujarat Pollution Control Board on 14/07/2017 at project site of M/s.: Embio Limited Plot No. 3/3/2, Dahej GIDC-III, Ta. Vagra, Dist. Bharuch.
- This is a new unit proposes manufacturing of synthetic organic chemicals as tabulated below:

Sr.	Name of the Products	CAS no.	Quantity	End-use of product
No.			MT/Month	
Α	MULTIPURPOSE API			
	Oxalate for nor products			
1	L-Nor Ephedrine HCI	3198-15-0	600	Synthetic and drug
				Intermediate
2	L-Nor Ephedrine Base	492-41-1	300	Synthetic and drug
				Intermediate
3	P-Nor Ephedrine HCI	50-98-6	240	Synthetic Intermediate
4	P-Nor Ephedrine Base		600	Synthetic Intermediate
5	D-Nor Pseudo Ephedrine	2153-98-2	60	Appetite suppressant
	HCI			drug
В	ANIMAL FEED			
1	Octopamine HCI	770-05-8	864	Veterinary Drug

				Intermediate
2	Ractopamine HCI	90274-24-1	600	Veterinary Drug
С	ENZYME BASED FERMENT	ATION PRODUCTS		
1	10kl fermenter - 2 Nos.	9001-66-5	175.92	Biocatalyst
	(Oxidoreductase)			-
2	20KI fermenter - 2Nos.	9001-62-1	351.96	Biocatalyst
	(Lipase)			-
D	PAIN MANAGEMENT PROD	UCTS		
1	Codeine	76-57-3	960	Cough Suppressant
				Drug
2	Morphine	57-27-2	420	Narcotic analgesic
3	Hydrocodone	125-29-1	264	Narcotic analgesic
4	Oxycodone	76-42-6	264	Narcotic analgesic
5	Methadone	76-99-3	60	Narcotic analgesic
6	Fentanyl	437-38-7	60	Narcotic analgesic

• The project falls underCategory B of project activity5(f)asper the schedule of EIA Notification 2006.

• Salient features of the project including Water, Air and Hazardous waste management:

Sr. no	Particulars					Det	tails
Α	Total cost of Proposed Project			Rs. 401/- Crores			
	(Rs. In Crores)						
	1. Capital cost for EN	/IS (Environmenta	l Mana	agement S	ystem): F	Rs. 836/- Lacs	;
	2. Recurring cost tov	vards the environn	nental	protection	measure	s: Rs. 550/- L	acs
В	Total Plot area:				98,657.	05 m²	
	Green belt area/ Tree	Plantation area:			32,527.	13 m²	
С	Employment genera	tion					
	1. Direct				405		
	2. Indirect				200		
D	Water						
i	Source of Water Supp	bly			GIDC		
	(GIDC, Bore well, Sur						
	Status of permission f		authori	ty. – Applic	ation ma	de, GIDC req	uires CTE/NOC from
	GPCB for permission.						
ii	Water consumption (k	(L/day) – 1090 (51	18 KLE) fresh wat	er + 572	treated water	for reuse)
		Catawama	Wat	er Consur	nption	Fresh Req	uired
		Category		KL/day	•	KLD	
	(A) Domestic		60		60	
	(E	B) Gardening		130		0	
	(0	c) Industrial		900		458	
		Process		355		355	
		Washing		195		53	
		Boiler		50	50		
		Cooling		300		0	
		Others		-		-	
		Total		1090		518	
iii	Waste water generation	on (KL/day) - 578					
		Catego	orv	KL/Day	R	marks	

_				(A) Dome			50	-	-		
				(B) Indus			28	-	-	4	
					Process		73 95	-		-	
					Washing Boiler		95 10	-	•		
					Cooling		50				
					Others		-				
				Total li	ndustrial		28	Subjecte			
		_			ste water	·		-]	
		pip	beline.		pipeline					partially dischar	
iv			cility with ca							O to achieve Z	LD.
	(ETP, (CETP	, MEE, STP	etc).			-	66+12 KLC)		
								125 KLD			
	Mada		accel 9 Fine	maating p	aint			00 KLD stic: ZLD			
V		וס וע	oosal & Fina	meeting p	om			rial: ZLD			
							Note:	iai. ZLD			
								reated wate	r will he re	used	
										eline available,	treated
									• • •	rged to pipeline	
/i	Reuse	/Recv	cle details (k	L/day)			572 KI			<u> </u>	
∕ii			n water harv	• •							
	-	The r	ainwater ava	ailable for h	narvesting	g is 15,	,666.5	53 m ³ /annur	n, which w	ill be collected	and
		used	within the u	nit.							
E	Air										
E	Flue ga	as em	ission details	;							
<u>E</u>	Flue ga No. of	as em Boiler	ission details s/TFH/Furna	; ces/DG se							
E	Flue ga No. of	as em Boiler	ission details	; ces/DG se							
Ξ	Flue ga No. of	as em Boiler	ission detaik s/TFH/Furna z. TPH, Kcal	; ces/DG se /hr, MT/hr,							
E	Flue ga No. of	as em Boiler	ission details s/TFH/Furna z. TPH, Kca Source of	; ces/DG se /hr, MT/hr,	KVA etc.	. 	ntity	Type of			
E	Flue ga No. of	as em Boiler ties vi	ission details s/TFH/Furna z. TPH, Kca Source of emission	ces/DG se /hr, MT/hr, Stack	KVA etc.	Quar	ntity	Type of emission		Emission	
Ε	Flue ga No. of	as em Boiler ties vi	ission details s/TFH/Furna z. TPH, Kca Source of emission With	ces/DG se /hr, MT/hr, Stack Height	KVA etc. Name of the	Quar of F	uel	emission	APCM	Emission	
<u>=</u>	Flue ga No. of	as em Boiler ties vi	ission details s/TFH/Furna z. TPH, Kca Source of emission With Capacity	ces/DG se /hr, MT/hr, Stack	KVA etc.	Quar of F MT/I	uel hr&	emission s i.e. Air	APCM	Emission Standard	
	Flue ga No. of	as em Boiler ties vi	ission details s/TFH/Furna z. TPH, Kca Source of emission With Capacity e.g. Boiler	ces/DG se /hr, MT/hr, Stack Height	KVA etc. Name of the	Quar of F	uel hr&	emission	АРСМ		
	Flue ga No. of	as em Boiler ties vi	ission details s/TFH/Furna z. TPH, Kca Source of emission With Capacity e.g. Boiler (8 TPH)	s ces/DG se /hr, MT/hr, Stack Height (meter)	KVA etc. Name of the	Quar of F MT/I	uel hr&	emission s i.e. Air Pollutants	APCM	Standard	
	Flue ga No. of	as em Boiler ties vi	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile	ces/DG se /hr, MT/hr, Stack Height (meter)	Name of the fuel	Quar of F MT/I MT/I	⁻ uel hr& Day	emission s i.e. Air Pollutants SPM		Standard ≤150 mg/Nm ³	
	Flue ga No. of	as em Boiler ties vi Sr. no.	ission details s/TFH/Furna z. TPH, Kca Source of emission With Capacity e.g. Boiler (8 TPH)	ces/DG se /hr, MT/hr, Stack Height (meter)	KVA etc. Name of the	Quar of F MT/I	⁻ uel hr& Day	emission s i.e. Air Pollutants SPM SO ₂	APCM Bag Filter	Standard ≤150 mg/Nm ³ ≤100 ppm	
Ε	Flue ga No. of	as em Boiler ties vi Sr. no.	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile	ces/DG se /hr, MT/hr, Stack Height (meter)	KVA etc. Name of the fuel Coal	Quar of F MT/I MT/I	^E uel hr& Day T/day	emission s i.e. Air Pollutants SPM SO ₂ NO _X	Bag Filter	Standard ≤150 mg/Nm ³	
<u>E</u>	Flue ga No. of	as em Boiler ties vi Sr. no.	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile (5000 Kg/Hi	ces/DG se /hr, MT/hr, Stack Height (meter)	Name of the fuel Coal Natural	Quar of F MT/I 20 MT	Fuel hr& Day T/day	emission s i.e. Air Pollutants SPM SO ₂ NO _X SO ₂	Bag Filter Adequate	Standard ≤150 mg/Nm ³ ≤100 ppm ≤ 50 ppm ≤100 ppm	
E	Flue ga No. of	as em Boiler ties vi Sr. no.	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile (5000 Kg/H	ces/DG se /hr, MT/hr, Stack Height (meter)	KVA etc. Name of the fuel Coal	Quar of F MT/I MT/I	Fuel hr& Day T/day	emission s i.e. Air Pollutants SPM SO ₂ NO _X	Bag Filter Adequate stack	Standard ≤150 mg/Nm ³ ≤100 ppm ≤ 50 ppm	
<u>E</u>	Flue ga No. of	as em Boiler ties vi Sr. no.	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile (5000 Kg/Hi	ces/DG se /hr, MT/hr, Stack Height (meter)	Name of the fuel Coal Natural	Quar of F MT/I 20 MT	Fuel hr& Day T/day	emission s i.e. Air Pollutants SPM SO ₂ NO _X SO ₂ NO _X	Bag Filter Adequate stack height	Standard ≤150 mg/Nm ³ ≤100 ppm ≤ 50 ppm ≤100 ppm ≤ 50 ppm	
<u> </u>	Flue ga No. of	as em Boiler ties vi Sr. no.	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile (5000 Kg/Hi	ces/DG se /hr, MT/hr, Stack Height (meter) r) 35	KVA etc. Name of the fuel Coal Natural Gas	Quar of F MT/I 20 MT 20 MT 100 Nm ³ /	Fuel hr& Day T/day 000 /day	emission s i.e. Air Pollutants SPM SO ₂ NO _X SO ₂ NO _X	Bag Filter Adequate stack height adequate	Standard ≤150 mg/Nm ³ ≤100 ppm ≤ 50 ppm ≤100 ppm ≤ 50 ppm ≤150 mg/Nm ³	
	Flue ga No. of	as em Boiler ties vi Sr. no.	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile (5000 Kg/Hi Steam Boile	ces/DG se /hr, MT/hr, Stack Height (meter) r) 35 r) 35	Name of the fuel Coal Natural	Quar of F MT/I 20 MT	Fuel hr& Day T/day 000 /day	emission s i.e. Air Pollutants SPM SO ₂ NO _X SO ₂ NO _X SPM SO ₂	Bag Filter Adequate stack height adequate stack	Standard ≤150 mg/Nm ³ ≤100 ppm ≤ 50 ppm ≤ 50 ppm ≤150 mg/Nm ³ ≤100 ppm	
<u> </u>	Flue ga No. of	as em Boiler ties vi Sr. no.	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile (5000 Kg/Hi Steam Boile (5000 Kg/Hi D.G.Set	ces/DG se /hr, MT/hr, Stack Height (meter) r) 35 r) 35	KVA etc. Name of the fuel Coal Natural Gas	Quar of F MT/I 20 MT 20 MT 100 Nm ³ /	Fuel hr& Day T/day 000 /day	emission s i.e. Air Pollutants SPM SO ₂ NO _X SO ₂ NO _X	Bag Filter Adequate stack height adequate	Standard ≤150 mg/Nm ³ ≤100 ppm ≤ 50 ppm ≤100 ppm ≤ 50 ppm ≤150 mg/Nm ³	
	Flue ga No. of capacit	as em Boiler ties vi Sr. no. 1 2 3	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile (5000 Kg/Hi Steam Boile (5000 Kg/Hi D.G.Set (1000 KVA	s ces/DG se /hr, MT/hr, Stack Height (meter) r 35 r 35 12	KVA etc. Name of the fuel Coal Natural Gas HSD	Quar of F MT/I 20 MT 20 MT 100 Nm ³ / 180 L	Fuel hr& Day T/day 000 /day	emission s i.e. Air Pollutants SPM SO ₂ NO _X SO ₂ NO _X SPM SO ₂	Bag Filter Adequate stack height adequate stack	Standard ≤150 mg/Nm ³ ≤100 ppm ≤ 50 ppm ≤ 50 ppm ≤150 mg/Nm ³ ≤100 ppm	
	Flue ga No. of capacit - - Proces	as em Boiler ties vi Sr. no. 1 2 3 s gas	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile (5000 Kg/Hi Steam Boile (5000 Kg/Hi D.G.Set (1000 KVA	s ces/DG se /hr, MT/hr, Stack Height (meter) r 35 r 35 12	KVA etc. Name of the fuel Coal Natural Gas HSD	Quar of F MT/I 20 MT 20 MT 100 Nm ³ / 180 L	Fuel hr& Day T/day 000 /day	emission s i.e. Air Pollutants SPM SO ₂ NO _X SO ₂ NO _X SPM SO ₂	Bag Filter Adequate stack height adequate stack	Standard ≤150 mg/Nm ³ ≤100 ppm ≤ 50 ppm ≤ 50 ppm ≤150 mg/Nm ³ ≤100 ppm	
	Flue ga No. of capacit - - Proces	as em Boiler ties vi Sr. no. 1 2 3 s gas H ₃ , Cl ₂	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile (5000 Kg/Hi Steam Boile (5000 Kg/Hi D.G.Set (1000 KVA	ces/DG se /hr, MT/hr, Stack Height (meter) r 35 r 35 r 35 12 pollutant ga	KVA etc. Name of the fuel Coal Natural Gas HSD ases (SO	Quar of F MT/I 20 MT 20 MT 100 Nm ³ / 180 L	Fuel hr& Day T/day 000 /day	emission s i.e. Air Pollutants SPM SO ₂ NO _X SO ₂ NO _X SPM SO ₂ NO _X	Bag Filter Adequate stack height adequate stack	Standard ≤150 mg/Nm ³ ≤100 ppm ≤ 50 ppm ≤ 50 ppm ≤150 mg/Nm ³ ≤100 ppm	
İ	Flue ga No. of capacit - Proces HCI, Ni	as em Boiler ties vi Sr. no. 1 2 3 s gas H_3 , Cl ₂ Prop	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile (5000 Kg/Hi Steam Boile (5000 Kg/Hi D.G.Set (1000 KVA	ces/DG se /hr, MT/hr, Stack Height (meter) r 35 r 35 r 35 12 pollutant ga is not havi	KVA etc. Name of the fuel Coal Natural Gas HSD ases (SO	Quar of F MT/I 20 MT 20 MT 100 Nm ³ / 180 L	Fuel hr& Day T/day 000 /day Lit/hr gas e	emission s i.e. Air Pollutants SPM SO ₂ NO _x SO ₂ NO _x SPM SO ₂ NO _x	Bag Filter Adequate stack height adequate stack height	Standard $\leq 150 \text{ mg/Nm}^3$ $\leq 100 \text{ ppm}$ $\leq 50 \text{ ppm}$ $\leq 50 \text{ ppm}$ $\leq 150 \text{ mg/Nm}^3$ $\leq 100 \text{ ppm}$ $\leq 50 \text{ ppm}$	
i	Flue ga No. of capacit - Proces HCI, Ni - Fugitive	s gas H ₃ , Cl ₂ Propo	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile (5000 Kg/Hi Steam Boile (5000 Kg/Hi D.G.Set (1000 KVA	ces/DG se /hr, MT/hr, Stack Height (meter) r 35 r 35 r 35 12 pollutant ga is not havi	KVA etc. Name of the fuel Coal Natural Gas HSD ases (SO	Quar of F MT/I 20 MT 20 MT 20 MT 100 Nm ³ / 180 L	Fuel hr& Day T/day 000 /day Lit/hr gas e ource	emission s i.e. Air Pollutants SPM SO ₂ NO _X SO ₂ NO _X SPM SO ₂ NO _X	Bag Filter Adequate stack height adequate stack height 	Standard ≤150 mg/Nm³ ≤100 ppm ≤50 ppm ≤100 ppm ≤100 ppm ≤100 ppm ≤50 ppm ≤150 mg/Nm³ ≤100 ppm ≤50 ppm	•
	Flue ga No. of capacit - Proces HCI, Ni	s gas H ₃ , Cl ₂ Propo	ission details s/TFH/Furna z. TPH, Kcal Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boile (5000 Kg/Hi Steam Boile (5000 Kg/Hi D.G.Set (1000 KVA	ces/DG se /hr, MT/hr, Stack Height (meter) r 35 r 35 r 35 12 pollutant ga is not havi	KVA etc. Name of the fuel Coal Natural Gas HSD ases (SO	Quar of F MT/I 20 MT 20 MT 100 Nm ³ / 180 L	Fuel hr& Day T/day D00 /day Lit/hr gas e ource: nemic:	emission s i.e. Air Pollutants SPM SO ₂ NO _X SO ₂ NO _X SPM SO ₂ NO _X	Bag Filter Adequate stack height adequate stack height e emissior solvents s	Standard $\leq 150 \text{ mg/Nm}^3$ $\leq 100 \text{ ppm}$ $\leq 50 \text{ ppm}$ $\leq 50 \text{ ppm}$ $\leq 150 \text{ mg/Nm}^3$ $\leq 100 \text{ ppm}$ $\leq 50 \text{ ppm}$	g and

F	Hazardous wasto	work zone. - Greenbelt development around the plant.
		- Regular monitoring of solvents' concentration in
		 Safety devices shall be provided to workers Raw material storage in closed storage area
		- All the reactors shall be closed.
		- Closed unloading, conveying and packing system
		- Mechanical seals for pumps etc. should be used and maintained.
		- Water shall be sprinkled on fly ash
		- Water shall be sprinkled during the construction
		Mitigation Measures

F Hazardous waste

(As per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

Sr. no.	Type/Name of Hazardous waste	Source of generation	Category and Schedule as per HW Rules.	Quantity (MT/Annum)	Disposal Method
1.	Used oil	Machinery & Equipments	5.1	2.0	Collection, storage and reuse as lubricants in the machineries within the premises only or send to authorized re-processors.
2.	Discarded Containers/ Barrels/ plastic	raw material packaging	33.3	2000 No./Annum	Collection, storage, sold to re- processors after decontamination
3.	ETP Sludge	ETP	35.3	547.5	Collection, storage and send to TSDF site.
4.	Spent Carbon	Manufacturing process	28.3	54.75	Collection, storage and send to TSDF site.
5.	Production Residue	Manufacturing process	28.1	69.35	Collection, storage and send to incineration facility
6.	Biomass	Manufacturing process		1496.5	Collection, storage and send to TSDF site or sold for manure use.
7.	Fly ash	From Boiler		876	Collection, storage and sold to cement manufacturer or send to TSDF site.
8.	MEE Salt	From MEE		839.5	Collection, storage and send to TSDF site.
9.	Stripper residue	From Stripper column	37.3	182.5	Collection, Storage and send for incineration
10.	Spent Solvent	Manufacturing process	28.6	2372.5	Collection, storage and sold to authorized re-processors.
- Membership details of CETP, TSDF, CHWIF, Common MEE etc.			treatment stor BEIL Ankles	ship of common hazardous w rage and disposal facility (TSDI hwar/Ecocare Infrastructures anagar/ and New upcoming sit	

ii	(MSW and others)				 Organic solid waste will be utilized as manure for greenbelt. Other solid wastes will be sent to nearest available GIDC solid waste site or Municipal solid waste site 		
D		nt managemen					
İ	Details	s of Solvent reco	overy (As per re	spective ToR)			
	- Sr. No.	Solvent	Fresh Requirement (MT/ Year)	Spent Generated* (MT/Year)	Recovered solvent ** (MT/Year)	Spent solvent residue*** (MT/Year)	
	1	Toluene	1295.75	1230.96	1169.41	61.55	
	2	Methanol	966.75	918.41	872.49	45.92	
	3	Acetone	107	101.65	96.57	5.08	
	4	Petroleum Ether	75	71.25	67.69	3.56	
	5	Isopropyl Alcohol	22.75	21.61	20.53	1.08	
 * Spent generated sent to outside for recovery ** - Recovered from spent for sale *** - Spent residue for CHWTSDF generated during recovery of spent solvent at outside 						side	
ii	VOC e	mission source	s and its mitigat	ion measures			
	-	which results f	rom uses of solv	vents.		II be mainly the V	OCs emissions,
	-		will be taken pla losed area with	•	•	will reduce the en	nission.

- PP was called for presentation in the SEAC meeting dated 12/10/2017.
- PP was called for appraisal in the SEAC meeting dated 12/10/2017. Technical presentation made during the meeting by project proponent. During the meeting, the project was appraised based on the information furnished in the EIA Report, details presented before the committee and various issues raised during the public hearing and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 5 km radial distance from project site for the period October 2016 to December 2016. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, HCI and VOC at Six locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST 3 model. The resultant concentrations are within the NAAQS. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS). Committee noted that PP has obtained NOC from the Central Bureau of Narcotics for export of precursor chemicals
- In case of Nor-ephedrines which are classified as Intermediates falling under the controlled substances category, the application needs to be made to Central Bureau of Narcotics for export of these intermediates named as I-Norephedrine HCI, I- Norephedrine base, p-Norephedrine HCI and p-Norephedrine base. For these intermediates, the permission from DCGI is not required for manufacturing the same. The permission from DCGI is required for manufacture only if the product is an API. Application for NOCs to manufacture

these products will be made only after obtaining environmental clearance. All required NOC/Permissions have been obtained for Mahad (Maharashtra) site to manufacture control substance products which are submitted with ElA report and the same way all required NOC/Permissions will be obtained from concerned authority for Dahej site. Recovered solvent will be sent to authorised re-processors (Solvent distillation units) with manifest system. PP has submitted MoU with such distillation unit which is located at Maharashtra. Committee asked to submit MoU with local distillation units. PP has not shown carbon waste in the matrix of hazardous waste. Committee observed that mass balance of the proposed products is not adequate. After detailed discussion, Committee decided to consider the case only after satisfactory submission of the following: (1) Adequacy certificate from the Schedule 1 Auditor for proposed EMS. Stage wise characteristic shall be included with technical justification. (2) Compliance of all the conditions & recommendations mentioned in the guidelines for the management of the spent solvents published by GPCB. (3) MoU with nearby authorised facility for distillation of spent solvents.

Provision of Leak Detection and Repair (LDAR) program as per the CPCB guidelines. (4) Chemical reaction stoichiometry with complete material balance. (Compliance of TOR-8).

- PP has replied for above mentioned additional details vide their letter on 07/02/2018.
- The proposal was considered in the SEAC meeting dated 26/02/2018. Committee noted that PP has submitted adequacy certificate from the Schedule 1 Auditor (MANTRA, Surat) for proposed EMS. Stage wise characteristic is included with technical justification. PP has ensured that they will comply all the conditions of spent solvent management guideline published by GPCB. Point wise compliance of all the conditions and recommendations are submitted. Copy of membership of M/s: RSPL, GIDC-Panoli for distillation of spent solvents is obtained. Provision of Leak Detection and Repair (LDAR) program as per the CPCB guidelines is submitted. Chemical reaction, Stoichiometry and material balance of proposed products is also submitted.
- Committee observed that compliance of the additional information sought was found satisfactory. After detailed discussion, it was decided to recommend the project to SEIAA, Gujarat for grant of Environmental Clearance.

2		M/ou Approxisted Dypottuff Dyt Ltd	Decensideration for
Ζ.	SIA/GJ/IND2/19685/2017	M/s: Associated Dyestuff Pvt Ltd.	Reconsideration for
		Plot 1/5, GIDC-Vatva, Ahmedabad	ToR [Terms of
			Reference]

Category of the unit : 5(f)

Project status: Expansion

- This office has received an application vide their online proposal no. SIA/GJ/IND2/19685/2017 dated 17/07/2017 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- Earlier PP was remain absent in SEAC meeting dated 26/07/2017.
- During the meeting dated 26/07/2017, technical presentation was made by PP before the committee. Committee deliberated on circular published by GPCB vide dated 04/05/2017 regarding specific products Committee observed that GPCB has issued closure notice to their existing project due to non-compliance of existing CC&A conditions. Committee noted that stand alone plant of Vinyl Sulphone shall not be allowed in Vatva GIDC as per the GPCB circular. Considering the above mentioned GPCB circular, PP informed that they want to withdraw their proposal.
- Committee decided to de-list the above mentioned proposal after submission of the letter regarding withdrawal of an application seeking environmental clearance.

- PP has submitted a letter on 26/02/2018 regarding withdrawal of their proposal. During the meeting dated 26/02/2018, Committee noted that project proponent has requested for withdrawal of an application made for getting Terms of Reference for the proposed project.
- Committee agreed for the same & to delist the proposal from the list of pending applications & to close the file and decided to recommend for permission to withdraw an application of proposed project.

3.	SIA/GJ/IND2/18342/2017	M/s: Asian Paints Limited Ankleshwar Plot No. 2602 to 2607, 2609 to 2614, 2701/A, 2701/B, 2703 and 2703 GIDC Ankleshwar, Dist.: Bharuch	Reconsideration for EC – Appraisal
----	------------------------	--	------------------------------------

Category of the unit : 5(h)

Project status: Expansion

- PP has submitted online application vide no. SIA/GJ/IND2/18342/2017 dated 11/09/2017 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA vide letter dated 28/04/2017 and SEIAA issued TOR to PP vide letter dated 01/05/2017.
- Project proponent has submitted EIA Report prepared by M/s: Kadam Environmental Consultants, Vadodara based on the TOR issued by SEIAA
- Public Hearing for the project is exempted as per paragraph 7(i) (III) (i) (b) of the EIA Notification, 2006 since the project site is located in the Notified Industrial area.
- This is an existing unit engaged in manufacturing of Paints, Resins, Emulsion &Phthalic Anhydride and now proposes for expansion as tabulated below:

Sr. No.	Product	Existing (TPA / KLPA)	Additional quantity (TPA/ KLPA)	Total after expansion (TPA / KLPA)
1.	Phthalic Anhydride	29796 TPA	-29796 TPA	0
2.	Light and Heavy ends of Phthalic Anhydride	360 TPA	-360 TPA	0
3.	Maleic Acid Solution	4860 TPA	-4860 TPA	0
4	Paints	130000 KLPA	+170000 KLPA	300000 KLPA
5.	Resins and Emulsions (TSR)	32000 TPA	+53000 TPA	85000 TPA

• The project falls underCategory B of project activity 5(h) asper the schedule of EIA Notification 2006.

- PP was called for presentation in the SEAC meeting dated 20/12/2017.
- Salient features of the project including Water, Air and Hazardous waste management:

Sr.	Particulars	Details
no.		
Α	Total cost of Proposed Project	650 crores
	(Rs. in Crores):	
	(1) Capital cost for EMS (Environmenta(2) Recurring cost towards the environ per Annum.	Management System): 5.44 crores
В	Total Plot area (sq. meter)	168839.5 sq. m

	T				
	Green belt area,/Tree Plantation area	34449.	76 sq. m		
	(sq. meter)				
С	Employment generation				
	1. Direct		d 1500 employees (inclue		
			g work force and the off-	roll	
		employees)			
D	Water				
i	Source of Water Supply	GIDC			
	(GIDC, Bore well, Surface water etc)				
	Status of permission from the concern author	ority: Ap	proval available from GII	DC for	
	supplying the required quantity of water	, ,	I.		
ii	Fresh Water consumption (KL/day): 1000				
	· · · · · · · · · · · · · · · · · · ·				
	Category	Requi	rement		
		KL/da			
	(D) Domestic	300			
	(E) Gardening	50			
	(F) Industrial	1			
	Process	323		7	
	Boiler			-	
	Cooling				
	Total Industrial				
	Total (A+B+C) = 1000				
iii	Waste water generation (KL/day)				
	Category		Generation (KL/day)		
	(C) Domestic	162			
	(C) Domestic	102			
	(D) Industrial			-	
	P	rocess	120		
		Boiler	4		
		Cooling	14		
	Total Inc		138		
	Total Waste Water Generation (A+B)	KL/day	300		
iv	Treatment facility with capacity		L cility with ETP along with		
IV	(ETP, CETP, MEE, STP etc).	and MI			
v	Mode of Disposal & Final meeting point		 stic and Industrial effluen	t: 71 D	
v	mode of Disposal & Final meeting point		with ETP along with RO	-	
			The treated effluent will b		
			ed back into the process	-	
vi	Reuse/Recycle details (KL/day)		Quantity effluent generate	ed	
			rial and Domestic Efflue		
		genera			
vii	Details of rain water harvesting		ain water collected from	he	
			areas would be channe		
		•	storage tank of 350 KL c		
			here the harvested rain		
		will be	reused back into the ope	erations.	
Е	Air		.		

Г

	N W		ers/TFH	/Furna	ces/E)G sets etc hr, MT/hr,	.		
Sta No	ck	Stack Attached to	Capacit Y	Stack Heigh t (m)	Typ e of Fuel Use d	Fuel Consumptio n (Kg/Hr)	Type of emissions i.e. Air Pollutants	АРСМ	Emission Standard S
1		Boiler – 1	3 MT/Hr	33.5	NG	78	SPM, Sox and Nox	Adequate Stack	
2		Boiler – 2	6 MT/Hr	33.5	NG	156	SPM, Sox and Nox	Height and using Cleaner fuel - Natural Gas as fuel	
3		DG SET- 1		30	HSD	131	SPM, Sox and Nox		
4		DG SET- 2		30	HSD	131	SPM, Sox and Nox	Used only	
5		DG SET-3		30	HSD	131	SPM, Sox and Nox	for back	
6		DG SET-4	8MW	30	HSD	131	SPM, Sox and Nox	up and Adequate	
7		DG SET-5	OIVIVV	30	HSD	131	SPM, Sox and Nox	Stack Height	
8		DG SET-6		30	HSD	131	SPM, Sox and Nox	will be	
9		DG SET-7		30	HSD	131	SPM, Sox and Nox	ensured	
10)	DG SET-8		30	HSD	131	SPM, Sox and Nox		
11	L	Incinerator (APCM with 95%efficie ncy) Thermic	2 MTD	30.5	NG	29	SPM, Sox, Nox, HCl, CO, Total dioxins and Furans, Cd+ Th+ Their compounds, Hg and its compounds, Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V+t heir compounds, HF, Total organic compounds	Adequate Stack Height and using Cleaner fuel - Natural Gas as fuel. There will be a Scrubber for control of emissions from the Incinerato r.	Emission norms prescribe d by the Gujarat Pollution Control Board
12	2	fluid Heater - 1	2lakh Kcal/hr	36	NG	120	SPM, Sox and Nox	-	
13	3	Thermic fluid Heater - 2	2lakh Kcal/hr	36	NG	120	SPM, Sox and Nox		
14	Ļ	Thermic fluid Heater - 3	2lakh Kcal/hr	36	NG	120	SPM, Sox and Nox		
15	5	Thermic fluid Heater - 4	2lakh Kcal/hr	36 NG 120		120	SPM, Sox and Nox	Adequate Stack Height	
16	5	Thermic fluid Heater - 5 Kcal/hr 36 NG 120		120	SPM, Sox and Nox	and using Cleaner fuel -			
17	,	Thermic fluid Heater - 6	2lakh Kcal/hr	36	NG	120	SPM, Sox and Nox	Natural Gas as fuel	

Fugitive emission details with its mitigation measures.: Fugitive emissions are unintentional release of process fluid from equipment such

Page **9** of 79

proc and • • • • • • • • • • • • • • • • • • •	edures shall be devibest environmental Hoods and/or en RM's stored in ta Processing of ma Closed loop addi Appropriate cooli processing. Use of covered c Preventive maint ardous waste	langes. To prevent fue eloped and facilities a practices. These wou closure of process ec- anks are unloaded the aterial is done in clos ition of raw materials ing systems shall be or enclosed conveyor renance shall be carri- and Other Wastes (Ma	shall impleuld, for exa quipment, rough clos ed equipn provided t s and tran ied out to	ement good ample,incluc sed loop pipe nent. to reduce en usfer points, address any	housekeeping le: elines nission during and / such issues
Sr. no.	Type/Name of Hazardous waste	Source of generation	Category and Schedule as per HW Rules.	Quantity (MT/Annum)	Disposal Method
1	Oil contaminated with waste water & sludge	All Tanks (other than water) bottom sludge	3.1	4	Incineration In house or TSDF/ Co processing
2	Sludge and filters contaminated with oil	Soil contaminated with any material (RM /Intermediate / Product) Vermiculite /Adsorbent contaminated with any material(RM/Intermediate /Product) Engineering Consumables (such as oilfilters) contaminated with any material	3.3	20	Incineration In house or TSDF/ Co processing
3	Used / Spent Oil	Used / overflow Thermopack oil Spent lubricating oil/grease Used oil such as hydraulic testing oil, transformer oil	5.1	20	Sale to authorized recycler
4	Discarded Asbestos sheet	Discarded Asbestos Sheets, Discarded Asbestos Panels, Used Asbestos Gaskets /cuttings	15.2	2.5	Disposal at TSDF secured landfill
5	Contaminated aromatic, aliphatic or naphthenic solvents, may or may not be fit for reuse	Waste solvent	20.1	185	Sale to authorized recyclers/ Incineration I house or at TSDF/ Co processing
6	Distillation Residues	Distillation Residue	20.3		Incineration In house or TSDF/ Co processing
7	Process waste (landfill incinerable)	Waste powder Test samples of RM, NonResin intermediates and FGs Gelled paint/paint with excess bacterial	21.1	150	Sale to authorized recycler/incineration – i house or at TSDF / Co processing
		growth/paint lumps) Scrapping of dried paint	-		

		Spilled RM, NonResin intermediates and FGs			
		Paper/paper cups/PPEs contaminates with RM/intermediates /FG			
8	Waste /residues	Discarded Resin/Emulsions / polymer	23.1	95	Incineration – in house TSDF/ Coprocessing sale to authorized recycler
9	Waste/residues such as filter aids	Used dicamol, Arbocelcelite, cuno/GAF filter Bags, Waste filter cloth, sieve , mesh	23.1	106	Incineration – in house at TSDF / Co processir
10	Chemical containing residue arising from denomination	Leftover material from RM container (Barrel / carbouv /Drum / Tote	34.1	35	Incineration – in house at TSDF/ Co processin
11	Discarded containers/barrels/ liners contaminated with hazardous wastes / chemical (linear)landfill	All container for RM, intermediates, consumables(plastic)	33.1	50	Secured landfill at TSD
12	Discarded containers/barrels/liners contaminates with hazardous wastes/chemical (linear)incinearble	All containers for RM, intermediates, consumables	33.1	70	Incineration in house or TSDF/co processing / secured landfill at TSDF/sale to authorize recycler
13	Discarded containers / barrels / liners contaminated with hazardous wastes / chemical (packing	All contaminated metal packing material containers including sample tins	33.1	100000	Incineration – in house at TSDF/Co –processir secured landfill at TSDF/sale to authorize
	material and sample containers)	All contaminated plastic packing material containers			recyclers
14	Discarded containers/ barrels / liners contaminated with hazardous waste / chemical (barrels / carboys/drums / totes / IBC's (Numbers)	Contaminated liners and bags (plastic/paper), except those of extenders	33.1	220000*	Sale to Authorized vendors
15	Flue gas cleaning residue	Soot / carbon black	35.1	0.5	Incineration – in house at TSDF/Co processing secured landfill at TSD
16	Spent Ion Exchange Resin containing toxic metals	Resin beads	35.2	1	Incineration In house or TSDF/ Co processing Secured Landfill at TSE
	Chemical sludge from	Gutter/drain sludge Effluent tank/guard pond sludge Primary treatment tank /	05.0	100	Incineration In house or
17	waste – water treatment (dry basis)	pond sludge Centrifuged sludge Chemical sludge from SDB	35.3	100	TSDF/ Co processing
		Chemical salts from MEE			
18	Oil and Grease skimming residue	Floating oil / solvent on trade effluent / sewage	35.4	20	Incineration In house or TSDF/ Co processing
19	Ash from incineration of hazardous waste	Inorganic ash	37.2	100	Secured Landfill at TSE
20	Lead Acid Batteries	Used /Waste lead acid batteries Used /Waste lead acid batteries	Schedule – III, Part A1, A1160	420	Sale back to supplier/Authorized recycler

	(Excisable)								
		21	Spent Carbon	Used carbon granules from common scrubbers	36.2	4	Return to supplier fo regeneration/ Incinerat In house / Co processi		
					in MT/Annum is 2200 .				
ii			bership details of (IF, Common MEE		TS Lin apj ava Ind 2. Me ava (No	DF (Bharuc nited, Ankle	certificate the CETP available		
iii	di	ispo	s of Non-Hazardo sal / and others)	us waste & its	Me	NHW Type Paper Waste Plastic Waste Metal Waste stic RM containers etal RM containers Powder Waste Wooden Waste ellaneous / Kitchen	Unit MT MT MT Nos. Nos. MT MT MT		
i	D	etai	ent management s of Solvent recov ctive ToR)		from o cleane Solver Recovere into th reacto Residue g proces	eleaning of ed solvent nt Recover d solvent i e process rs. generation ss will be r erations o	ainly generated reactors, is processed in ry Plant (SRP). is re-used back /cleaning of from distillation reused back into r sent to co-		

ii VOC emission sources and its mitigation measures 1. Bulk consumed liquids RMs will be bestored in the storage tanks and they will be pumped through pipeline using pump into the Mixers, Dispersers, Reactors and other process vessels. 2. To prevent fugitive emissions, documented procedures shall be developed and facilities shall implement good housekeeping and best environmental practices. These would, for example include: a. Hoods and/or enclosure of process equipment, b. Use of covered or enclosure of process equipment, c. Implemention of action plans to prevent fugitive emission. d. Use of covered or enclosed conveyors and transfer points, and c. Implementation of action plans to prevent fugitive emission. d. Use of covered or enclosed conveyors and transfer points e. Appropriate cooling systems shall be provided to reduce emission during processing f. Preventive maintenance shall be carried out to address any such issues 3. Documentation of procedures for themonitoring and inspecting of emission control equipment will be developed.					
equipment this be developed.		VOC emission sources and its mitigation measures	2.	 bestored in the storage tanks and they will be pumped through pipeline using pump into the Mixers, Dispersers, Reactors and other process vessels. To prevent fugitive emissions, documented procedures shall be developed and facilities shall implement good housekeeping and best environmental practices. These would, for example include: a. Hoods and/or enclosure of process equipment, b. Use of covered or enclosed conveyors and transfer points, and c. Implementation of action plans to prevent fugitive emission. d. Use of covered or enclosed conveyors and transfer points e. Appropriate cooling systems shall be provided to reduce emission during processing f. Preventive maintenance shall be carried out to address any such issues Documentation of procedures for themonitoring and inspecting of emission control 	

- During the meeting dated 20/12/2017, technical presentation made during the meeting by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented before the committee.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March 2017 to June 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, NH₃, O₃, As, Pb, NI, BaP, C6H6, CO and VOC at 8 locations, including the project site. Results of all parameters at all stations are within permissible limit except PM10 at some locations Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed usingdispersion modelling software AERMOD of the United States Environment Protection Agency (USEPA). The proposed expansion will not have

significant impact on the overall emission.

- At present this unit is manufacturing Paints, Resins and Emulsions at its plot no. 2602 to 2607, 2609 to 2614, 2701/B, 2701/A and Phthalic Anhydride, Light and Heavy ends of Phthalic Anhydride and Maleic Acid solution at its plot no. 2702 and 2703. PP has proposed to amalgamate these two plants with increase the production of Paints, Resins and Emulsions and phase out the production of Phthalic Anhydride, Light and Heavy ends of Phthalic Anhydride, and Maleic Acid Solution.
- Committee deliberated on Certified Compliance Report (CCR) of RO-Bhopal, MoEF&CC for existing EC vide dated 04/10/2017 and its addendum vide dated 26/10/2017. After deliberation Committee was of the view that PP has not actually executed the said expansion despite permission from the GPCB. However, Committee asked to submit production details for last 5 years with authentic documents. This proposal is complete Zero Liquid Discharge (ZLD) and there will be no drainage connection from the premises. It was found that there is a discrepancy in stack details as per the TOR and EIA report. Committee asked for clarification in this regard.
- Graphs, isopleths and pictures of EIA report are not legible and clear. Committee desired to have these pictures in proper manner.
- After deliberation, Committee decided to consider the project in one of the upcoming SEAC meetings only after satisfactory submission of the following: (1) Actual production details for last 5 years with authentic documents.
 (2) Clarification for the discrepancy in no. of stacks and relevant details in EIA report as compared with ToR. Give justification in this regard. (3) Compliance of TOR no. 39 & 45. Submit Project specific Solvent management and LDAR. Program. (4) Justification for requirement of Incinerator with its adequacy w.r.t. CPCB guidelines. Technical details of Incinerator. (5) Justification for higher values of PM10 and its mitigation measures. (6) Details regarding management and disposal of construction and demolition waste.
- PP has replied for above mentioned additional details vide their letter on 14/02/2018.
- The proposal was considered in the SEAC meeting dated 26/02/2018. Committee noted that PP has submitted the production figures for last five years, as submitted through Schedule-1 auditors report. They confirm that they have never produced paints beyond 1, 00,000 KL in the past. The actual Production for last 5 years have been less than 100,000 KL. This number is also submitted monthly through the *Monthly Patrak* to GPCB vide the XGN, i.e. gpcbXgn.gujarat.gov.in.
- They acknowledged that there have been changes in the number of stacks as depicted in the EIA report and as earlier mentioned in the ToR documents submitted to the SEAC. They have submitted the changes along with justification, in this regards.
- Compliance of TOR point number 39 and 45 are covered in conceptual form in EIA repor. However, detailed VOC sources and LDAR programme has been planned. It will be carried to ensure that losses in various processes never exceed those mentioned in the process flow.
- In order to maintain uniformity, the size of graphs, isopleths and pictures were reduced to A4 size. They have re-printed all such pages in A3 size to have higher legibility and clarity. The EIA report has been submitted again.
- Existing Incinerator shall be used only as a back- up of Co-processing. In case of any breakdown or some emergency, incinerator shall be used. The incinerator shall be complying to CPCB Guidelines and shall be having following Air pollution control facilities. The air quality parameters shall be monitored and ensured as per the guidelines. (1) Low Nox Burners (2) Venturi Scrubber (3) Stack height greater than 30 m (4) Automatic temperature control and interlock of burner with the temperature (5) Auto Gas Analyser (6) Temperature Guages / Indicators at appropriate locations.

- Higher value of PM10 in baseline study is primarily due to following reasons : (a) High road dust in the region
 (b) High industrial activity in the nearby vicinity
- The increase in vehicular movement (traffic in PCU per hour) due to proposed expansion shall be minimal, just 2.8% in the surrounding roads as demarcated in EIA report.
- In addition to this following measures shall be taken up in proposed plant in order to control PM10
 - a. Powder charging activity shall be carried out using appropriate dust collectors
 - b. Closed loop bulk handling and pneumatic conveying of major Powder Raw Materials
 - c. The exhaust of bulk handling will have bag filters/dust collectors attached to control particulate matters
 - d. All utilities will have stack as per the legal requirement and will be periodically monitored
 - e. Maximum Usage of cleaner fuels in utilities like natural gas.
 - f. During Site preparation for proposed expansion, dust levels shall be suppressed through Barricading and water sprinkling
 - g. Greenbelt development as proposed in EIA report
- Entire Process equipment like Reactors, vessels, pipelines, storage tanks, mezzanine structure (except civil buildings) are being dismantled and reused for construction of Plant at other site by third party.
- Hence, only following wastes are expected to be generated during demolition activities
 - a. Structural Steel
 - b. Civil Debris (concrete, bricks, and mortar)
- Waste generated due to demolition of buildings and other civil structures shall be segregated as steel and civil debris.
- Steel from reinforcement structure shall be segregated and disposed at nearby Mild steel recycler.
- Civil debris shall be sent to M/S R K Bricks and tiles / Surat Green precast Pvt Ltd, Surat which is associated with Surat Municipal Corporation for collection and recycling of construction and demolition waste or to any other similar facility.Excavated soil during construction phase shall be used for landscaping
- Throughout the demolition process proper barricading of the site will be carried out and water sprinkling will be done. Record of the same will be maintained in terms of water consumption details and photographs
- Committee observed that compliance of the additional information sought was found satisfactory. After detailed discussion, it was decided to recommend the project to SEIAA, Gujarat for grant of Environmental Clearance.

4.	SIA/GJ/IND2/19474/2017	M/s: Sulphur mills Itd	Reconsideration for
		plot no. 2, GIDC Estate, Panoli, Dist. Bharuch	ToR [Terms of
			Reference]

Category of the Project: 5(f)

Project Status: New

- This office has received an application vide their online proposal no. SIA/IND2/19474/2017 dated 21/09/2017 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- This is an Expansion of unit process manufacturing of synthetic organic chemicals as tabulated below:

Sr. No.	Name of the Products	CAS no. / Cl no.	Quantity MT/Month	End-use of products	

1	Naphthalene BasedDispersing Agent	9084-06-4	1000	Dispersing Agent**
2	Phenol Based DispersingAgent	71608-70-3	2000	Dispersing Agent**
		Total	3000	
	**It shall be use as a raw mat Construction chemical and pa		er industries, agri	culture pesticide industries,

• The project falls under category B of project activity 5 (f) as per the schedule of the EIA notification 2006.

• PP was called for presentation in SEAC meeting dated 20/12/2017.

• Salient feature of the project including Water, Air and Hazardous waste management:

Sr. no.		Particulars			Details				
Α	Total cost o	of Proposed Project (Re	s. in Crores):	08.10 Crores				
В	Total Plot a	rea (sq. meter)			28,201.00 Sq. m.				
	Green belt a	area,/Tree Plantation are	ea (sq. me	ter)	9310.00 Sq. m.				
С	Employme	nt generation			45				
D				Water					
i	Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) Status of permission from the concern authority.			supply	GIDC, Panoli				
	Status of pe	. ,			Connection will be available from GIDC as & when required.				
ii	Water consumption (KLD)								
		Category	KLD		Remarks				
		(A) Domestic	0.50						
		(B) Gardening	32.25						
		(C) Industrial							
		Process	37.20						
		Washing	2.00						
		Boiler	32.00						
		Cooling	2.00						
		Others	0.5*	ET	P Primary Treated water used.				
		Industrial Total	73.20						
		Total (A + B + C)	105.95						
		 Total water requiren Quantity to be recyc Total fresh water rec 							
iii		V	laste wate	r gene	ration (KLD)				

			Category	Waste v KLE		Re	marks	
			(A) Domestic	0.40	C			
			(B) Industrial					
			Process					
			Washing	1.80	C			
			Boiler	1.60	C			
			Cooling	0.10	C			
			Others					
			Total Industrial waste water	3.50	ס			
iv	са Т	apacit	ent facility within premi y [ETP (Primary, S), MEE, Stripper, Spray D	econdary,	Spray Evapor	0.00 m ³ /day (P Dryer Capa ration Capacity	acity: 1.20 : 500 Lit/hr	MT/hrs, Wate
v	Mode of Disposal & Final meeting point		Domestic: Septic Tank / Soak Pit system. Industrial: Industrial effluent after primary treatment into ETP, treated water is reused again in floor washing/process and in venturi water scrubber and remaining water will be allowed in to spray dryer from where water will be evaporated. Hence, unit is ZLD.					
vi	С		of Common facility (CF) li n Spray dryer, Common M CF		In hous	se spray dryer i	installed.	
	Μ	lembe	ship of Common facility (C	F)	Not Ap	plicable		
vii	R	euse/F	Recycle details (KLD)		Out of total 105.95 KLD fresh water consumption, we have planned to reused 2.00 KLD treated washed water in floor washing/process and 0.5 KLD treated water in ventury water scrubber.			
Е					Air			
		No.	of Boilers/TFH/Furnaces/D	•		on details pacities viz. TP	PH, Kcal/hr, MT	⁻ /hr, KVA etc.
					-			
i		Sr. No.	Source of emission With Capacity	Stack Height (meter)	Type of Fue		Type of emissions i.e. Air Pollutants	Air Pollution Control Measures (APCM)
		1	Boiler – 02 Nos. (Capacity: 800 kg/hr each)		Natura Gas	al 500 m³/hr in each	PM SO ₂	Not Required
		2	Thermic Fluid Heater (Capacity: 4 Lac Kcal/hr	15.00	Natura	al 500 m ³ /hr	NO _X	

		Sr. No.	Source of emission		Type of mission		ck/Vent nt (meter)	Air Pollution Control Measures (APCM)			
		1	Spray Dryer		aphthalene drocarbon)	3	30.00	Venturi Water Scrubber			
ii			Fugitive	e emis	ssion details As	- with its below:	mitigation n	neasures.			
	Nega	tive press	ure will be main	taine	d in each sto	rage ta	nk to avoid f	fugitive emission.			
=	Hazardous waste (As per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.										
	Type / Sr.Type / Name of Hazardous wasteCategory and Source of generationSr.Name of Schedule as per HW Rules		as 🛛	Quantity MT/Annum)	Disposal Method						
	1.	Discard Contain / Emp Bags Liner	ers Raw Mate ty & Produc & Storage A	cts	33.3		307.00	Collection, St Transportation & Di by sale it to GPCB app merchant / reuse			
i	2.	Used (Dil Thermopa	ack	5.1		0.50	Collection, St Transportation & Di by sale it to CPCB or approved recycler / for machine lubrication	MoEF reuse		
	3.	Solic Wast		/ing	35.3		10.00	Collection, St Transportation & Disportation & TSDF TSDF site – for se landfill			
	4. ETP Sludge Vaste Water Treatment Plant			35.3		2.00 Collection, S Transportation & Disp TSDF site – for s landfill					
	Quan	tity of dis	carded containe	rs mu	ist be in MT/	Annum					
i	Memt	Membership details of TSDF, CHWIF etc.					SDF memb	ed project activity, unit w pership after getting EC & of proposed production.			

Sr. No. Type of Waste		Source of GenerationCategory of Waste		Disposal		
1.	Construction Waste	Proposed construction activity	-	Construction waste generated v be stored at one identified pla and sold off to recyclers.		
2.	Domestic Waste (Food waste, Plastic, Paper etc.)	Employees working in the premises	MSW	Collected in separate bin an disposed to bin of GIDC.		
3.	E-waste	Entire Plant		Collection, Storage and disposal M/s. Earth E-Waste Manageme Pvt. Ltd., Surat		

G	Solvent management, VOC emissions etc.					
i	Types of solvents, Details of Solvent recovery, % recovery. reuse of recovered Solvents					
ii	VOC emission sources and its mitigation measures	VOC emission sources: Storage area. Volatile materials will be kept in a cool shed.				

- Technical presentation was made by the project proponent. Committee noted that PP has proposed to achieve Zero Liquid Discharge. However, PP could not reply satisfactorily regarding adequacy of the ZLD system. Looking to the product profile, PP has also applied for the products which are not covered in the schedule to the EIA Notification 2006.
- Considering the above, after detailed discussion, it was decided to consider the project further only after submission of the following:

(1) Revised proposal considering worst case scenario for waste water generation and ZLD system.

- PP has replied for above mentioned additional details vide their letter dated 27/12/2017.
- The proposal was considered in the SEAC meeting dated 26/02/2018.
- PP has submitted revised proposal considering worst case scenario for waste water generation and ZLD system. Committee noted that PP has submitted revised Form-1& relevant details.
- Part of Industrial effluent will be reused after primary treatment for floor washing/process and in venturi water scrubber and remaining water will be allowed in to spray dryer from where water will be evaporated.
- Considering the above project details, after detailed discussion, it was decided to recommend the project to SEIAA Gujarat for grant of Terms of Reference (ToR).

5	SIA/GJ/IND2/17862/2016	M/s: Pilot Industries	Reconsideration for
		Plot No. 38/25, GIDC Industrial Estate,	EC – Appraisal
		Jhagadia, Dist.: Bharuch	

Category of the unit : 5(f)

Project status: New

- Project proponent [PP] has submitted online application vide no. SIA/GJ/IND2/17862/2016 dated 24/04/2017 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA in the SEAC meeting vide letter dated 07/02/2017 SEIAA issued TOR to PP vide their letter dated 15/03/2017.
- Project proponent has submitted EIA Report prepared by M/s: San Envirotech Pvt. Ltd., Ahmedabad based

on the TOR issued by SEIAA.

Sr.	Name of the Products	CAS no.	Quantity	End-use of
No.			MT/Month	product
1	Para Nitro Chloro Benzene Ortho Sulphonic Acid (PNCBOSA)	121-18-6	5.0	
2	4-Amino Diphenyl 2-Sulphonic Acid (4ADPSA)	91-30-5	45.0	
3	4,4 diaminoDiphenyl 2 Sulphonic Acid	119-70-0		Dyes
4	2 Amino Phenol 4 (2 Methoxy Ethyl) Sulphonamide	-		Production
5	2 Amino Phenol 4 (3 Methoxy Propyl Amine) Sulphonamide	-		
	Total		50.0	

- The project falls underCategory B of project activity5(f)asper the schedule of EIA Notification 2006.
- Salient features of the project are as under:

) Cr.
onmental Management
_
vironmental protection
num
2

Sr.	Particulars			Details	
no.					
Α	Water				
i	Source of Water Supply	ý		GIDC water s	supply
	(GIDC, Bore well, Surfa	ace water etc)			
	Status of permission fro	om the concern authority.			
ii	Water consumption (KL	_/day)			
			Exis		
			KL/c	lay	
		(G) Domestic		2.0	
		(H) Gardening		2.0	
		(I) Industrial			
		Proces	SS	5.5	
		Washir	ng	5.0	
		Boil	er	4.0	
		Coolir	ng	5.0	
		Othe	rs	0.0	
iii	Waste water generation	ו (KL/day)			
	-				
		Category I	Existing	Remarks	

					/ _ _		KL/Day					
					\ /	mestic	1.5					
					(F) Ind	ustrial Proces	s 15.0					
						Washin						
						Boile	5					
						Cooling						
						Other	0					
				То	tal Indu	strial wast						
						wate						
iv			acility wi					: 10 KLD for				
	(ETP,	CETF	P, MEE, \$	STP et	c).			: 20 KLD	for con	centrated	effluent	
							(Proc	/				
V	Mode	of Dis	posal &	Final n	neeting	point		estic: soak pit				
								trial: Process				
							reuse	orated in ME	E and cond	densate will	be	
								ent from dilu	ta straam	(70 KID)	will be	
								d in in-hous				
								SIDC drainag				
vi	Reuse	/Recv	cle deta	ils (KL	/dav)		14 KL	V		<u>, </u>		
B	Air											
i			ission d					[.] - 1 TPH,				
						ets etc. wi		l by. D.G. set	t			
	capaci	ties vi	z. TPH,	Kcal/h	r, MT/hr	r, KVA etc.	tc. (125 kVA)					
	-				1						-	
			Sourc emiss		Stack		Quantity o	f Type of		Emission Standard		
		SR.	With Ca		Height	Name of		emissions	АРСМ	Stanuaru		
		no.	e.g. Bo	iler (8	(meter)		I MT/hr& MT/Day	i.e. Air Pollutants				
			TPł	-/								
			Boil		21	Natural		DM~150				
		1			21	Natural	I 1500	PM<150 mg/NM3				
		1			21	Natural Gas		mg/NM3				
		1		er	21		I 1500					
			Boil D G S stanc	er Set-		Gas	I 1500 SCM/day	mg/NM3 SO2<100			-	
		1	Boil D G S	er Set-			I 1500	mg/NM3 SO2<100 ppm				
ii	- Proces	2	Boil D G S stanc (125 k	er Set- I by (VA)	11	Gas HSD	l 1500 SCM/day lit/hr	mg/NM3 SO2<100 ppm NOx<50 ppm		sion.	-	
ii	- Proces NH ₃ , C	2 s gas	Boil D G S stanc (125 k	er Set- I by (VA)	11	Gas	l 1500 SCM/day lit/hr	mg/NM3 SO2<100 ppm NOx<50		sion.		
ii		2 s gas	Boil D G S stanc (125 k	er Set- I by (VA)	11	Gas HSD	l 1500 SCM/day lit/hr	mg/NM3 SO2<100 ppm NOx<50 ppm		sion.		
ii		2 s gas	Boil D G S stanc (125 k s i.e. Typ s i.e. Typ	er Set- I by (VA) De of po	11 bllutant g	Gas HSD gases (SC	l 1500 SCM/day lit/hr	mg/NM3 SO2<100 ppm NOx<50 ppm	gas emis Emissio	on		
ii		2 s gas	Boil D G S stanc (125 k s i.e. Typ s i.e. Typ s ctc.)	er Set- I by (VA) De of po Sourc	11 ollutant (Gas HSD gases (SC	I 1500 SCM/day lit/hr D ₂ , HCI, Stack/Vent Height	mg/NM3 SO2<100 ppm NOx<50 ppm	 s gas emis	on		
ii		2 s gas	Boil D G S stanc (125 k s i.e. Typ s i.e. Typ s i.e. Typ s r. no.	er Set- I by (VA) De of po	11 ollutant (Gas HSD gases (SC	I 1500 SCM/day lit/hr	mg/NM3 SO2<100 ppm NOx<50 ppm	gas emis Emissio	on		
ii		2 s gas	Boil D G S stanc (125 k s i.e. Typ s i.e. Typ s ctc.)	er Set- I by (VA) De of po Sourc	11 ollutant (Gas HSD gases (SC	I 1500 SCM/day lit/hr D ₂ , HCI, Stack/Vent Height	mg/NM3 SO2<100 ppm NOx<50 ppm	gas emis Emissio	on		
ii		2 s gas	Boil D G S stanc (125 k s i.e. Typ s i.e. Typ s i.e. Typ s r. no.	er Set- I by (VA) De of po Sourc	11 ollutant (Gas HSD gases (SC	I 1500 SCM/day lit/hr D ₂ , HCI, Stack/Vent Height	mg/NM3 SO2<100 ppm NOx<50 ppm	gas emis Emissio	on		
ii	NH _{3,} C - -	2 ss gas I _{2.} NO	Boil D G S stanc (125 k s i.e. Typ s i.e. Typ s i.e. Typ s f.e. S r. no.	er Set- I by (VA) De of po Sourc emis	11 ollutant (ce of sion	Gas HSD gases (SC Type of emission	I 1500 SCM/day lit/hr	Mg/NM3 SO2<100 ppm NOx<50 ppm No process	 gas emis Emissic Standar	on rd	/ from	
	NH ₃ , C	2 ss gas I _{2,} NO	Boil D G S stanc (125 k i.e. Typ (125 k stanc (125 k stanc) (125 k stanc (125 k stanc) (125 stanc) (125 er Set- I by (VA) De of po emiss etails w	11 ollutant (ce of sion	Gas HSD gases (SC Type of emission	I 1500 SCM/day lit/hr D ₂ , HCI, Stack/Vent Height (meter)	Mg/NM3 SO2<100 ppm NOx<50 ppm No process APCM e chances	s gas emis Emissic Standar	n rd ation of PN			
	NH ₃ , C	2 ss gas I _{2,} NO	Boil D G S stanc (125 k s i.e. Typ s i.e. Typ s i.e. Typ s f.e. S r. no.	er Set- I by (VA) De of po emiss etails w	11 ollutant (ce of sion	Gas HSD gases (SC Type of emission	I 1500 SCM/day lit/hr D ₂ , HCI, Stack/Vent Height (meter) There will b packing/finish	Mg/NM3 SO2<100 ppm NOx<50 ppm No process APCM e chances ing area.To	5 gas emis Emissic Standar	n rd ation of PN		
	NH ₃ , C	2 ss gas I _{2,} NO	Boil D G S stanc (125 k i.e. Typ (125 k stanc (125 k stanc) (125 k stanc (125 k stanc) (125 k stanc (125 k stanc) (125 stanc) (125	er Set- I by (VA) De of po emiss etails w	11 ollutant (ce of sion	Gas HSD gases (SC Type of emission	I 1500 SCM/day lit/hr D ₂ , HCI, Stack/Vent Height (meter) There will b backing/finish pollowing step	Mg/NM3 SO2<100 ppm NOx<50 ppm No process APCM e chances ing area.To s will be impl	e gas emis Emissic Standar	on rd ation of PN fugitive en	nission,	
	NH ₃ , C	2 ss gas I _{2,} NO	Boil D G S stanc (125 k i.e. Typ (125 k stanc (125 k stanc) (125 k stanc (125 k stanc) (125 k stanc (125 k stanc) (125 stanc) (125	er Set- I by (VA) De of po emiss etails w	11 ollutant (ce of sion	Gas HSD gases (SC Type of emission	I 1500 SCM/day lit/hr D ₂ , HCI, Stack/Vent Height (meter) There will b packing/finish	Mg/NM3 SO2<100 ppm NOx<50 ppm No process APCM e chances ing area.To s will be impl	e gas emis Emissic Standar	on rd ation of PN fugitive en	nission,	

1	r			1						
					 Perecent G 	eriodic w nission. reenbelt	ork a will t	ance of valves, pipes etc. rea monitoring to check the fugitive be developed around the plant to ve emission.		
С	Hazardous waste (as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.									
i	Sr. no.	Type/Name of Hazardous waste	Source of generation	Categor and Schedul as per H Rules.	e	Quantity (MT/An		Disposal Method		
	1	ETP Sludge + MEE salt	ETP, MEE	35.3		150 + 155 MT/mo	5	Collection, storage, transportation & disposal at TSDF site approved by GPCB or sell to cement industry as chemical gypsum for their blending process.		
	2	Used Oil	Machineries	5.1		0.2 Kl/	/ear	Collection, storage, transportation & reuse within premises as a lubricant/ sell to registered recycler.		
	3	Discarded containers / drums/ liners	RM storage	33.1		200 nos./m 0.5 MT/mo	onth	Being used for packing of ETP sludge in case of excess it will be sold to approved recycler or traders.		
	4	Iron sludge (Process waste)	Process	28.1		40 MT/mo		Collection, storage, transportation & disposal at TSDF site approved by GPCB or sell to cement industry as co-processing material.		
		tity of discarded				Annum.				
ii	Com	pership details o mon MEE etc.								
ii		ls of Non-Hazar / and others)	dous waste &	its dispo	sal					
D i		ent manageme Is of Solvent red		r respecti		OR)				
ii		emission sourc								

- Technical presentation was made during the meeting by project proponent. Committee deliberated on ToR wise compliance and found that compliance to the various ToR was not satisfactory. Details regarding BAT, Mass balance of chemical reactions, spent acid generation and its consideration as hazardous waste etc. are not covered properly in the EIA report. After detailed discussion, Committee decided to consider the proposal for further appraisal, only after satisfactory submission of the details/information as below:
- Revised details of Compliance of ToR no. 3, 4, 5, 6, 7, 8, 18, 27, 35, 36, 37 and 40.
- PP has submitted reply vide letter on 01/12/2017.
- PP was called for presentation in the SEAC meeting dated 21/12/2017.
- Layout plan of the factory premises showing all the production plants including Raw material & Products

storage area, separate entry & exit and adequate margin all-round the periphery for unobstructed easy movement of the emergency vehicle/fire tenders without reversing back is submitted. Details regarding BAT, manufacturing process & mass balance, CAS no. of products & raw materials are submitted. PP has informed that there is No generation of any by products/spent acid. The process effluent will achieve ZLD and only utility & washing effluent will be treated in ETP and send it to CETP/FETP. However, PP has proposed to install pH meter & flow meter at the final outlet of the

- ETP. Unit will install separate electric meter for ETP and MEE and maintain operational logbook regularly.
- PP has submitted details regarding hazardous waste management, MSDS of all the product and raw materials and details of hazardous characteristics and toxicity of raw materials. PP has submitted undertaking regarding commitment to carry out tree plantation.
- During the meeting, Committee observed that PP has proposed to send acidic stream waste water in ETP for neutralization and for further treatment. Upon asking, PP informed that they will stop manufacture acidic waste water generating products, if there is an absence of alkaline waste water stream generating products. PP also assured to submit an undertaking in this regard. Looking to the small scale unit and quantum of the waste water, Committee also asked them to explore the possibilities for common facility instead of in-house treatment.
- After deliberation, Committee decided to consider the case only after submission of the following: (1)
 Quantification and qualitative analysis for acidic waste stream generation, its related correction in haz.
 Waste category and relevant details. (2) An undertaking regarding stop the manufacturing of acidic waste
 water generating products in worst case scenario.
- PP has replied for above mentioned additional details vide their letter dated 14/02/2018.
- The proposal was considered in the SEAC meeting dated 26/02/2018.
- PP has submitted as below: (1) Average 870 lit/day of acidic effluent (spent sulphuric acid) generate from Para Nitro Chloro Benzene Ortho Sulphonic Acid (PNCBOSA) product. Average concentration in terms acidity is around 12-15%. This effluent is seperatly collected in collection tank and utilize for neutralization of alkali effluent generated from 2nd group of products. Modified Haz, waste category is given below.

Sr. No.	Types of Waste	Category of Waste as per HWM Rules 2016	Quantity	Disposal facility
1.	ETP Sludge + MEE salt	35.3	150 + 5 = 155 MT/month	Collection, storage, transportation & disposal at TSDF site approved by GPCB or sell to cement industry as chemical gypsum for their blending process.
2.	Used Oil	5.1	0.2 Kl/year	Collection, storage, transportation & reuse within premises as a lubricant/ sell to registered recycler.
3.	Discarded containers / drums/ liners	33.1	200 nos./month 0.5 MT/month	Being used for packing of ETP sludge in case of excess it will be sold to approved recycler or traders.
4.	Iron sludge (Process waste)	28.1	40 MT/month	Collection, storage, transportation & disposal at TSDF site approved by GPCB or sell to cement industry as co-processing material.

5.	Spent H ₂ SO ₄ (12 – 15%)	26.3	21.650 MT/month	Collection, neutralization in-house.	storage n of alkali	& strea	utilize m of effl	for luent	
----	--	------	--------------------	--	------------------------	------------	----------------------	--------------	--

- An undertaking regarding stop the manufacturing of acidic waste water generating products in worst case scenario is submitted.
- Committee observed that compliance of the additional information sought was satisfactory. After detailed discussion, it was decided to recommend the project to SEIAA, Gujarat for grant of Environmental Clearance.

6	SIA/GJ/IND2/18927/2017	M/s: Navkar chemicals	Reconsideration for
		Plot No. 3010, Panoli GIDC, Ankleshwar,	ToR [Terms of
		Dist.: Bharuch	Reference]

Project / Activity No.: 5(f)

Project status: Existing

- This office has received an application vide their online proposal no. SIA/GJ/IND2/18622/2017 dated 24/04/2017 regarding grant of TOR.
- This is a new unit proposes manufacturing of synthetic organic chemicals as tabulated below:

Sr. no.	Name of the Products	CAS no.	Quantity MT/Month	End-use of product
1	Dispersing Agent		20 (Existing)	
2	Dry Sodium Sulphate	7757-82-6	15 (Existing)	
3	NaphthaleneFormldehyde Sodium Sulphonnate (SulfonatedNaphthaleneFomaldehyde) (Snf)	36290-04-7	540 (proposed)	Construction chemical
4	Di-Octyle Sodium Sulpho Succinate (Doss)	577-11-7	250 (proposed)	
5	Cacium Alkyl BenzeneSulphonate	26264-06-2	200 (proposed)	

- The project falls under Category B of project activity 5(f)as per the schedule of EIA Notification 2006.
- PP was called for presentation during the meeting on 09/08/2017.
- During the meeting, Committee deliberated on compliance of the existing project. PP informed that their existing project was established well before the EIA Notification i.e. 14/09/2006. PP has obtained CTE and CC&A of the Board. During presentation, PP could not reply satisfactorily regarding justification of the area with respect to various activities, green belt area, hazardous chemical storage area etc. Committee also observed that mass balances with respect to raw material requirement and water consumption for proposed products are not appropriate. Process effluent (Condensate) management is not shown in Form-1 & PFR. After detailed discussion on various aspects of the project, it was decided to consider the project only after submission of the following: (1) Adequacy of proposed area with respect to plant machineries , EMS, green belt , safety aspect, raw material & product storage considering worst case scenario. (2) Mass balance for all the products with chemical reactions and stoichiometry. (3) Justification for no generation of waste water from washing and any other section from the proposed project. (4) Management of process condensate and feasibility to reuse with quantitative and qualitative analysis. (5) Proposal for complete Zero Liquid Discharge (ZLD).

- PP has submitted a letter on 26/02/2018 regarding withdrawal of their proposal. During the meeting dated 26/02/2018, Committee noted that project proponent has requested for withdrawal of an application made for getting Terms of Reference for the proposed project.
- Committee agreed for the same & to delist the proposal from the list of pending applications & to close the file and decided to recommend for permission to withdraw an application of proposed project.

7.	SIA/GJ/IND2/20516/2017	M/s. Abhilasha Pharma Pvt. Ltd.,	Reconsideration for
		Plot No. 1408, 1409, GIDC Industrial Estate,	ToR [Terms of
		Ankleshwar-393002, Gujarat.	Reference]

Category of the Project: 5(f)

Project Status: Expansion

- This office has received an application vide their online proposal no. SIA/GJ/IND2/20516/2017 dated 03/11/2017 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- This is an Expansion of unit process manufacturing of synthetic organic chemicals as tabulated below:

Sr			Quan	tity MT/Mo		
N o.	Name of Products	CAS No.	Existin g	Propose d Addition al	Tota I	End Use of Product
	Exis					
1.	1:1 Di Methylbigumide Base (Metformin)	657- 24-9	50		50	Drug Intermediate for bulk drug manufacturing
2.	N-[4-[2-(3- ethyl -4 methyl-2 –oxo-3- pyrroline -1- carboxamido) ethyl benzene Sulfonamide (Glimepiride)	93479- 97-1	0.05		0.05	Drug Intermediate for bulk drug manufacturing
		OR				
3.	4-Hydroxy -9(H) Carbazole (Carvidilol)	72956- 09-3				Drug Intermediate for bulk drug manufacturing
4.	4-2-S (Chloro 2 – MethoxyBenzamidoe thyl) PehenylSulphonami de (Glibenclamide)	10238- 21-8	0.9		0.9	Drug Intermediate for bulk drug manufacturing
5.	DipheylHydanationB ase (Phenytion Sodium)	630- 93-3				Drug Intermediate for bulk drug manufacturing
6.	N- Methyl -4-(8- Chloro-5,6 Di hydro - 1 (H) Benzo (5,6)	79794- 75-5				Drug Intermediate for bulk drug

	Cyelohepta (1,2b) Pyridine -11 YlidinePiperidine (Lorataine)					manufacturing	
7.	1-[2-Amino-1-P- Methoxyphenyl) Ethyl] Cyclohexanol Hydrochloride (Venalafixine)	93413- 69-5				Drug Intermediate for bulk drug manufacturing	
8.	2,4 Difluoro -2 (1H-1- 2-4, triazole -1-yl acetophenone) (Fluconazole)	86386- 73-4				Drug Intermediate for bulk drug manufacturing	
9.	5-Fluro -2 –hydroxyl Acetophenone (Nebivilol)	99200- 09-6				Drug Intermediate for bulk drug manufacturing	
10	3-Methylamino -1 phenyl -1-propanol (Fluoxetine)	54910- 89-3				Drug Intermediate for bulk drug manufacturing	
11	3-Ethyl[5- Methyl – (4RS) 2-/ (2 aminoethoxy) Methyl]4-(2- Chlorophyl)-6- Methyl-1-4-Di- Hydropyridine -3,5 discarboxylate	11102 5-46-8				Drug Intermediate for bulk drug manufacturing	
		Prop	osed Pro	ducts			
12	Metformin Hydrochloride	1115- 70-4		100	100	Drug	
13	Glimepiride	93479- 97-1		0.2	0.2	Drug	
14	Pioglitazone Hydrochloride	11102 5-46-8				Drug	
15	5-[[4-2-(5-ethyl-2- pyridinyl)ethoxy]Phe nvlimethyl]-2.4- thiazolidinedione (Piobase)			7].0	7.0	Drug Intermediate for bulk drug manufacturing	
16	5-{[2-(5-ethyl-2- pyridyl) ethoxy]Benzylidene}- 2,4- Thiazolidinedione (Benzylidene)	122- 57-6		J		Drug Intermediate for bulk drug manufacturing	
17	Desloratadine	10064 3-71-8		0.1	0.1	Drug	
18	Glibenclamide	10238- 21-8		0.5	0.5	Drug	
19	Loratadine	79794- 75-5		0.8	0.8	Drug	
20	Nebivilol Hydrochloride	15252 0-56-4		0.2	0.2	Drug	

21	Chlorohexidine	56-95- 1		4.0	4.0	Drug
22	Clopidogrel Bisulfate	13504 6-48-9		2.0	2.0	Drug
23	Fluconazole	86366- 73-4		0.5	0.5	Drug
24	Fluoxetine HCI	59333- 67-4		0.5	0.5	Drug
25	Nicoumalone (Acenocoumarol)	152- 72-7		0.066	0.06 6	Drug
26	FluphenazineDecan oate	5002- 47-1		0.0125	0.01 25	Drug
27	Crotamiton	483- 63-6		1.25	1.25	Drug
28	Bupivacaine Hydrochloride	14252- 80-3		0.083	0.08 3	Drug
29	Ropicaine Hydrochloride	13211 2-35-7		0.041	0.04 1	Drug
	Total		50.95	117.2525	168. 202 5	

• The project falls under category B of project activity 5 (f) as per the schedule of the EIA notification 2006.

• PP was called for presentation in SEAC meeting dated 04/01/2018.

• Salient feature of the project including Water, Air and Hazardous waste management:

-		
S	Particulars	Details
r.		
n		
0.		
Α	Total cost of Proposed Project	Existing: 5
	(Rs. in Crores):	Proposed: 4.1
		Total: 9.1
в	Total Plot area	Existing: 5787
	(sq. meter)	Proposed: No additional land
		requirement
		Total: 5787
	Orean halt area /Tree Diantation area	
	Green belt area,/Tree Plantation area	Existing: 2506
	(sq. meter)	Proposed:
		Total: 2506
С	Employment generation	
	1. Direct	Existing: 42 Nos.
		Proposed:28 Nos.
		Total: 70 Nos.
	2. Indirect	Existing:15 Nos.
		Proposed:10 Nos.
		Total:25 Nos.
D	Water	
i	Source of Water Supply	GIDC piped water supply
	(GIDC Bore well, Surface water, Tanker supply r	
	etc)	
	Status of permission from the concern authority.	Already available
ii	Water consumption (KLD)	· · · · · · · · · · · · · · · · · · ·

			_			-1
		Existing	Proposed	Total after	Remarks	
		KLD	(Additional)	Expansion		
			KLD	KLD		
	(J) Domestic	1.5	1.5	3.0		
	(K) Gardening	1.0	0.5	1.5		
	Industrial	•	L			
	Process	1.8	19.2	21.0		
	Washing	1.0	2.0	3.0		
	Boiler	5.7	5.3	11.0	Fresh – 4.0 + Recycle	
	Doner	0.1	0.0	11.0	-7.0	
	Cooling	9.6	15.4	25.0	Fresh – 3.0 + Recycle	
	Cooling	0.0	10.4	20.0	-22.0	
	Scrubber	0.0	0.5	0.5		
	DM Plant	0.5	1.5	2.0		
	Regeneration	40.0	40.0	<u> </u>		
	Industrial Total	18.6	43.9	62.5	Fresh – 33.5 + Recycle	
	Orand T. f. I	04.4	45.0	07.0	- 29.0	
	Grand Total	21.1	45.9	67.0	Fresh – 38.0 + Recycle	
	(A+B+C)				- 29.0	
	4) Total water requ			7 KLD		
	Quantity to be re					
	6) Total fresh water		ent: 38 KLD			4
iii	Waste water generation		1	-1		
	Category	Existing	Proposed	Total after	Remarks	
		KLD	(Additional)	Expansion		
			KLD	KLD		
	(G) Domestic	1.3	1.2	1.5		
	(H) Industrial					
	Process	3.3	11.7	15.0		
	Washing	1.0	2.0	3.0		
	Boiler	0.6	5.4	6.0		
	Cooling	0.3	2.7	3.0		
	Scrubber	0.0	0.5	0.5		
	DM Plant		1.5	2.0		
	Regeneration	0.0	1.0	2.0		
	Industrial Total	5.7	23.8	29.5		
	Grand Total (A+B)	5.7 7.0	25.0	32.0		
	Granu Total (ATD)	1.0	23.0	32.0		
	- Tree store and for all (1977)					-
iv	Treatment facility within			-	ETP consisting of primary,	
	[ETP (Primary, Seconda		/), MEE,		ry and tertiary treatment	
	Stripper, Spray Dryer, S	IP etc].			Capacity of ETP is 10	
				kl/day.		
					ry modifications will be	
					ETP for additional quantity	
					ewater after proposed	
					n project.	
V	Mode of Disposal & Fina	al meeting	point	Domestic	: Through septic tank/	
		2		soak pit.		
					: ETP treated water will	1
					ed to RO. Reject from RO	
					diverted to evaporator.	
					ate from evaporator with	
					neate will be recycled as	
1					icate will be recycled as	

		of Common fa on Spray dryer			ame		
	of CF	n opray uryer					
		rship of CF					
vii	Reuse/I	Recycle detail	s (KLD)		treate	sting operation d wastewater i	s recycled
						g tower makeu	
						proposed expar	,
						ed for cooling to	
					make	up.	
		sting & Prop					
				sets etc. wit	h capacities	viz. TPH, Kcal/ł	nr, MT/hr,
	-	Source of					
	Sr. no.	emission With Capacity	Stack Height (meter)	Name of the fuel	Quantity of Fuel MT/hr&	Type of emissions i.e. Air	АРСМ
		e.g. Boiler (8 TPH)	(meter)	luei	MT/Day	Pollutants	
	Exis	ting Scenario					
		Steam	H: 11	Natural	11.25	PM, SO ₂ ,	Stack of
	1	Boiler: 0.8 TPH x 1no.	D: 0.15	Gas	scm/hr	NO ₂	adequate height
	2	D. G. Set - 125 kVA	H: 11 D: 0.15	Diesel	11 liter/hr	PM, SO ₂ , NO ₂	Stack of adequate height
	Prop	osed Scenar	io				neight
		Steam	H: 11	Natural	77 scm/hr	PM, SO ₂ ,	Stack of
	1	Boiler: 1 TPH x 1no.	D: 0.15	Gas		NO ₂	adequate height
		D. G. Set -	H: 11	Diesel	11 liter/hr	PM, SO ₂ ,	Stack of
	2	125 kVA –	D: 0.15			NO ₂	adequate
		2 nos.	0.000		14 /1		height
		Thermic Fluid	Common Stack	Natural Gas	14 scm/hr	PM, SO ₂ , NO ₂	Stack of adequate
		Heater 1	H:11,	Gas			height
	3	Lakh	D:0.15				
		kCal/hr - 1					
		No.					
		Thermic]		7 scm/hr]	
		Fluid					
	4	Heater					
		50000					
		kCal/hr – 1 No.					
	_	110.	l	l	1	1	1
	_	s gas i.e. Type		(00			

		ource of em	nission		e of sion H	Stack/Vent Height (meter)	APCM				
Ex	isting Sce										
	1 Rea	actor of pro	cess		SO _{2,} Cl _{2,} NH ₃	H: 11, D:0.15	Twin Scrubber				
Proposed Additional											
	1 Rea	actor of pro	cess		SO _{2,} Cl _{2,} NH ₃	H: 11, D:0.15	Twin Scrubber				
-											
Fugitive emission details with its mitigation measures. [Existing & Proposed]As below:											
• • • • • • • • • • • • • • • • • • •	Closed rea out. All the mo arrangeme Control of valves, pre All the flan All the flan All the raw closed. Precautior chemicals Adequate area is pro Good hous ardous wa per the Haz	actors are otors of pun ent. all parame essure relea nge joints of v materials nary measu ventilation ventilation ovided. sekeeping v aste	provideo nps are eters or ase valve f the pipe are stor ures are system <u>will be m</u>	d and reg provided n a contir es and sa e lines are red in isola e also be n in proce <u>naintained</u>	ular checki with suitabl nuous basis ifety valves e covered w ated storag e taken wh ess plant a	ng and mainte le mechanical s are done by etc. vith flange guar e area and con nile handling N	ntainers are tigh various hazardo chemical stora				
	isting & Pr										
	isting & Pr	roposed] f Sourc	Cat.	Haza	rdous was	te details	Mode of				
[Exi	isting & Pr	f Sourc e of Gene-	Cat. No.	Existin	rdous was Proposec		Mode of disposal				
[Exi S	isting & Pr	f Sourc e of			•						

3	Spent Carbon	Waste Water Treat ment	28.3	3 TPA	16 TP.	A	19 TPA	Collection, Storage, transportation and incineration at
4	ETP Sludge	Waste Water Treat ment	35.3	60 TPA	120 TI	PA	180 TPA	BEIL. Collection, Storage, Transportatio n, and final Disposal at TSDF, BEIL.
5	Discarde d Container / Barrels/ Liner	Materi al Storag e	33.1	138 TPA	52 TP.	A	190 TPA	Collection, Storage, Reuse & Decontaminat ion.
6	Date Expired & Off Specificat ion product	Manuf acturin g Proce ss	28.4/ 28.5		0.07 T	ΡΑ	0.07 TPA	Collection, Storage, transportation and incineration at BEIL or co- processing in cement Ind.
8	MEE Salt	Waste Water Treat ment	35.3		6 TPA		6 TPA	Collection, Storage, Transportatio n, and final Disposal at TSDF, BEIL.
9	Process Waste	Manuf acturin g Proce ss	28.1		6 TPA		6 TPA	Collection, Storage, transportation and incineration at BEIL or co- processing in cement Ind.
1 0	Spent Solvent	Manuf acturin g Proce ss	28.6		105 TI	PA	105 TPA	Collection, Storage, reuse within industrial unit in process.
	antity of disca mbership det				n MT/An	The certif BEIL gene		
	ails of Non-F SW and other		waste	& its dispo	osal	None		
	vent manag		OC emi	issions etc).			

i	Types of solvents, Details of Solvent recovery, % recovery. reuse of recovered Solvents	Collection, Storage, In-house recovery & reuse within industrial unit in process.
ii	VOC emission sources and its mitigation measures	As mentioned in E (iii)

- Technical presentation was made by the project proponent. Committee noted that PP has proposed to send their additional waste water to proposed CETP of M/s: Ankleshwar waste management. Committee noted that there is no existence of said CETP at present. Committee was of view that unit shall propose sound management for additional waste water quantity.
- After deliberation, Committee decided to consider the project in one of the upcoming SEAC meetings only after satisfactory submission of the following:
 - 1. Sound management for Waste water considering 18 (1) (b) directions under the Water Act 1974 imposed by CPCB on CETP.
- PP has replied for above mentioned additional details vide their letter dated 22/02/2018.
- The proposal was again considered in the SEAC meeting dated 26/02/2018.As per revised proposal, PP has proposed ZLD by providing ETP with RO & MEE system. Committee noted that PP has proposed ZLD within premises.
- Considering the above project details, after detailed discussion, it was decided to recommend the project to SEIAA Gujarat for grant of Terms of Reference (ToR).

8.	SIA/GJ/IND2/20796/2017	M/s. Atulya Life Science LLP	Reconsideration for
		Plot no.02, Survey No.906, B/H:	ToR [Terms of
		ShubhlaxmiInd.Estate,Chhatral-Kadi	Reference]
		Road, Chhatral-382729. Dist: Gandhinagar.	_

Category of the Project: 5(f)

Project Status: New

- This office has received an application vide their online proposal no. SIA/GJ/IND2/20796/2017 dated 09/11/2017 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- This is a New of unit process manufacturing of synthetic organic chemicals as tabulated below:

Sr. No.	Name of Product	CAS No.	Total Qty. (MT/M)
1.	3,4- Dimethoxy Phenyl Amine	120-20-7	40
2.	4-Methoxy Benzyl Alcohol	105-13-5	120
3.	Dihydropapavarine HCL (DHP)	5884-22-0	8
4.	3,4- Dimethoxy Phenyl Acetic Acid	93-40-3	20
5.	3,4- Dimethoxy Phenyl Acetonitrile	93-17-4	8
6.	4-Methoxy Phenyl Acetic Acid	104-01-8	40
7.	4-Methoxy Phenyl Acetonitrile	104-47-2	60
8.	Indoline	496-15-1	40
9.	Raspberry Ketone (RBK)	5471-51-2	20
10.	2 chloro 4 nitro toluene	121-86-8	60

- The project falls under category B of project activity 5 (f) as per the schedule of the EIA notification 2006.
- PP was called for presentation in SEAC meeting dated 10/01/2018.

Sr.	Particulars		Details							
no.										
Α	Water									
i	Source of Water Su	ource of Water Supply			Water Tanker					
	(GIDC, Bore well, S									
		n from the concern auth	ority.							
ii	Water consumption (KL/day): 23.5 KL/day									
	Sr.	Category	Wate	Water consumption						
	1	Domestic		1	1.5					
	2	Industrial								
	2.1	Process			14					
	2.2	Boiler		2	2.0					
	2.3	Cooling		1	1.0					
	2.4	Washing			1.0					
	2.5	Scrubber		2.0						
	2.6	Gardening		2.0						
				2	3.5					
iii	Waste water generation	ation (KL/day)								
	Sr.	Category	Wa	Waste Water Generation (KL/Day))				
	1	Domestic		1.0						
	2	Industrial								
	2.1	Process		30.3						
	2.2	Boiler			0.2					
	2.3	Cooling			0.1					
	2.4	Washing			1.0					
	2.5	Scrubber		2.0						
	2.6	Gardening			0.0					
		Total			34.6					
iv	Treatment facility w				Proposed ETP					
	(ETP, CETP, MEE,	,								
		ame of Unit	Nos.		Capacity (KL)					
1.	Collection Ta		02	_	35 KL (each)					
2.	Neutralization		01	_	25 KL					
3.	Primary Sett	02	_	20 KL (each)						
4. 5.	Holding Tank Sludge drying	02	02 50 KL (each)							
0. V	Mode of Disposal 8	Domestic: Soak Pit/Septic tank								
v		Industrial:								
					strial Effluent of 33.6 KL/day	will be sent to				
					for primary treatment and					
			sent to Chhatral Environment Managemen							
			System Pvt. Ltd. So, our unit will achieve Zero							
			[Disc	harge.					
vi	Reuse/Recycle det	ails (KL/day)	Not A	ppli	cable					
vii										
В	Air									

Sr.	Name of Unit		VA etc. Stack	Air Pollution	Parameter	Permissible	
no.			ht. (m)	Control System		Limit	
01	Steam Boiler (1 MT	Г)	33	Cyclone Separator/Bag filter	SPM SO ₂ NO _x	150 mg/NM ³ 100 ppm 50 ppm	
02	Thermic Fluid Hea Kcal/hr)	iter (2 L	20	Cyclone Separator/Bag filter			
03	DG Set (125 KVA)		09				
Proce	ss gas i.e. Type of p	ollutant ga	ses (SO ₂	$_{2,}$ HCI, NH $_{3,}$ CI $_{2,}$ N	IO _x etc.)		.
	Name of Unit		Stack ht. (m)	Air Pollution Control System	Parameter	Permissible Limit	
01	Reaction vessel		11	Water Scrubber	Ammonia HCl	175 mg/NM ³ 20 mg/NM ³	
ugiti	ve emission details v	vith its mitig	gation m	easures.			
Haza	ig system. ardous waste per the Hazardous ar	nd Other W	/astes (N	lanagement and	l Transboundar	v Movement)	
Haza (as p Rule Sr.	ber the Hazardous ar s 2016.	Process	Otv	Managomor	,	y Movement)	
Haza (as p Rule	ardous waste ber the Hazardous ar s 2016. Types of Waste		Otv	Managemer	n ts storage, Transpor	y Movement) tation, Disposal at	
Haza (as p Rule Sr. No	Ardous waste ber the Hazardous an s 2016. Types of Waste ETP Sludge Used Oil	Process Category	, Qty	yr. Collection, S approved TS /r. Collection, S selling to Re	nts Storage, Transpor SDF site. Storage, Transpor gistered re proce	tation, Disposal at rtation, Disposal b ssor.	
Haza (as p Rule Sr. No 01	Ardous waste ber the Hazardous an s 2016. Types of Waste ETP Sludge Used Oil Discarded Container/Bags/L iners	Process Category 35.3	, Qty 8 MT/ 10 L/y 1980 Nos./y	Managemen yr. Collection, S approved TS approved TS Collection, S selling to Re 0 Bags Will be drums/barre supplier.	nts Storage, Transpor SDF site. Storage, Transpor gistered re proce use in packing c Is will be return b	tation, Disposal at rtation, Disposal b ssor. of ETP waste and ack to raw materia	y II
Haza (as p Rule Sr. No 01 02	Ardous waste per the Hazardous and s 2016. Types of Waste ETP Sludge Used Oil Discarded Container/Bags/L iners Distillation	Process Category 35.3 5.1	, Qty 8 MT/ 10 L/y 1980	yr. Collection, S approved TS rr. Selling to Re 0 Bags Will be drums/barre yr. Collection, S fr. Selling to Re 0 Collection, S fr. Supplier. Collection, S fr. Incinerator.	nts Storage, Transpor SDF site. Gistered re proce use in packing c Is will be return b Storage, Transpor	tation, Disposal at rtation, Disposal b ssor. of ETP waste and ack to raw materia tation, Disposal by	y II
Haza (as p Rule Sr. No 01 02 03	Ardous waste per the Hazardous and s 2016. Types of Waste ETP Sludge Used Oil Discarded Container/Bags/L iners Distillation Residue	Process Category 35.3 5.1 33.3	, Qty 8 MT/ 10 L/y 1980 Nos./y 264	yr. Collection, S approved TS approved TS collection, S selling to Re drums/barre supplier. Collection, S fr. Collection, S fr. Collection, S by selling to ETP & finally	nts Storage, Transpor SDF site. Storage, Transpor gistered re proce use in packing c use in packing c swill be return b storage, Transpor authorized indus discharged CMS	tation, Disposal at rtation, Disposal b ssor. of ETP waste and ack to raw materia tation, Disposal by tation & disposed tries or treatment i SPL, Chhatral.	y II /
Haza (as p Rule Sr. 01 02 03 04	Ardous waste Deer the Hazardous ar S 2016. Types of Waste ETP Sludge Used Oil Discarded Container/Bags/L iners Distillation Residue NH₄ OH (25 %)	Process Category 35.3 5.1 33.3 20.3	Qty 8 MT/ 10 L/y 1980 Nos./y 264 MT/Y 432	Managemen yr. Collection, S approved TS approved TS collection, S selling to Re 0 Bags Will be drums/barre supplier. Collection, S r. Collection, S fr Incinerator. Collection, S by selling to ETP & finally Collection, S by selling to by selling to	nts Storage, Transpor SDF site. Storage, Transpor gistered re proce use in packing c use in packing c swill be return b Storage, Transpor authorized indus otorage, Transpor authorized indus storage, Transpor authorized indus	tation, Disposal at rtation, Disposal b ssor. of ETP waste and ack to raw materia tation, Disposal by tation & disposed tries or treatment i	y II /
Haza (as p Rule 01 01 02 03 04 05 06 Quant	Ardous waste ardous waste ber the Hazardous and second s	Process Category 35.3 5.1 33.3 20.3 26.1 26.1 ncluding d	, Qty 8 MT/ 10 L/y 1980 Nos./y 264 MT/Y 432 MT/Y 156 MT/Y iscarded	Management yr. Collection, S approved TS approved TS yr. Collection, S selling to Re drums/barre supplier. 0 Bags Will be drums/barre supplier. 0 Collection, S fr. Collection, S fr. Collection, S by selling to ETP & finally Collection, S by selling to in ETP & finally containers must	nts Storage, Transpor SDF site. Storage, Transpor gistered re proce use in packing c use in packing c storage, Transpor authorized indus discharged CMS storage, Transpor authorized indus discharged CMS storage, Transpor authorized indus torage, Transpor authorized indus	tation, Disposal at rtation, Disposal b ssor. of ETP waste and ack to raw materia tation, Disposal by tation & disposed tries or treatment i <u>SPL, Chhatral.</u> tation & disposed tries or treatment MSPL, Chhatral. um .	y Il /
Haza (as p Rule 01 01 02 03 04 05 04 05 06 Quant Memb Comr	Ardous waste Deer the Hazardous ar S 2016. Types of Waste ETP Sludge Used Oil Discarded Container/Bags/L iners Distillation Residue NH₄ OH (25 %) Dil. HCl (28 %) tity of all the wastes is Dership details of CE Dom MEE etc.	Process Category 35.3 5.1 33.3 20.3 26.1 26.1 Process The second sec	Qty 8 MT// 10 L/y 1980 Nos./y 264 MT/Y 432 MT/Y 156 MT/Y 156 MT/Y Iscarded CHWIF,	Managemer yr. Collection, S approved TS approved TS collection, S selling to Re 0 Bags Will be drums/barre supplier. Collection, S fr Incinerator. Collection, S fr Collection, S by selling to ETP & finally Collection, S by selling to in ETP & final by selling to in ETP & final System Pvt.	nts storage, Transpor SDF site. Storage, Transpor gistered re proce use in packing c use in packing c swill be return b storage, Transpor authorized indus discharged CMS storage, Transpor authorized indus discharged CMS storage, Transpor authorized indus discharged CMS storage, Transpor authorized indus of Chhatral Er Ltd, Chhatral.	tation, Disposal at rtation, Disposal b ssor. of ETP waste and ack to raw materia tation, Disposal by tation & disposed tries or treatment i <u>SPL, Chhatral.</u> tation & disposed tries or treatment MSPL, Chhatral.	y Il /
Haza (as p Rule 01 02 03 04 05 04 05 06 Quant Memb	Ardous waste Deer the Hazardous and second Process Category 35.3 5.1 33.3 20.3 26.1 26.1 Process The second sec	Qty 8 MT// 10 L/y 1980 Nos./y 264 MT/Y 432 MT/Y 156 MT/Y 156 MT/Y Iscarded CHWIF,	Managemer yr. Collection, S approved TS approved TS collection, S selling to Re 0 Bags Will be drums/barre supplier. Collection, S fr Incinerator. Collection, S fr Collection, S by selling to ETP & finally Collection, S by selling to in ETP & final by selling to in ETP & final System Pvt.	nts storage, Transpor SDF site. Storage, Transpor gistered re proce use in packing c use in packing c swill be return b storage, Transpor authorized indus discharged CMS storage, Transpor authorized indus discharged CMS storage, Transpor authorized indus discharged CMS storage, Transpor authorized indus of Chhatral Er Ltd, Chhatral.	tation, Disposal at rtation, Disposal b ssor. of ETP waste and ack to raw materia tation, Disposal by tation & disposed tries or treatment i <u>SPL, Chhatral.</u> tation & disposed tries or treatment MSPL, Chhatral. um .	y Il /	

						MT/M		
01	3,4-Dimethoxy Phenyl Acetonitrile	Chloroform		48	30.8	17.2		
02	3,4-Dimethoxy Phenyl Amine	Methanol		94.8	88.48	6.32		
		Ra-Ni Catalys	t	1.2	1.12	0.08		
03	4-Methoxy Phenyl Acetonitrile	Toluene		28.8	27	1.8		
04	4-Methoxy Benzyl Alcohol	Ra-Ni Catalys	t	1.2	1.15	0.05		
05	DHP (Dihydropapavari ne HCL)	Toluene		14.4	13.68	0.72		
		Methanol		17.2	16.32	0.88		
06	Indoline	Methanol		56.88	54	2.88		
		Ra-Ni Catalys	t	4.6	4.5	0.08		
07	Raspberry Ketone (RBK)	Ra-Ni Catalys	t	0.54	0.52	0.02		
		Methanol		43.88	41.5	2.38		
i	VOC emission sources and its		We will assure that measure VOC level in our Manufacturing					
	mitigation measures			unit as well as Raw material storage area. We will also do worl place monitoring & according implementation.				

- Technical presentation was made by the project proponent. The location of the unit is outside the notified area. As per amendment to EIA Notification, 2006 vide SO 1599 (E) dated 25.06.2014, small units are categorized as Category "B" projects. Small units are defined as with water consumption less than 25 M3/day; Fuel consumption less than 25 TPD; and not covered in the category of MAH units as per the Management, Storage, Import of Hazardous Chemical Rules (MSIHC Rules), 1989.
- Looking to the hazardous chemicals to be used for the proposed products & water consumption & waste water generation scenario, Committee was of the view that PP should submit legal undertaking regarding small unit with technical justification.
- After detailed discussion, Committee decided to consider the proposal only after submission of the following:
 - Legal Undertaking stating that unit is complying the three conditions [i.e. water consumption less than 25 M³/day; Fuel consumption less than 25 TPD; and not covered in the category of MAH units as per the Management, Storage, Import of Hazardous Chemical Rules (MSIHC Rules), 1989] as per the amendment to EIA Notification, 2006 vide SO 1599 (E) dated 25/06/2014. Give technical justification in this regard.
- PP has replied for above mentioned additional details vide their letter dated 08/02/2018.
- The proposal was again considered in the SEAC meeting dated 26/02/2018.
- PP has submitted legal undertaking regarding small unit as per the amendment to EIA Notification, 2006 vide SO 1599 (E) dated 25/06/2014. Committee noted that water consumption 23.5 KLD, Fuel consumption less than 25 MTPD & not covered in MAH unit as per the "Manufacturing, Storage and Import of Hazardous Chemicals (MSIHC) Rules, 1989.
- Considering the above project details, after detailed discussion, it was decided to recommend the project to SEIAA Gujarat for grant of Terms of Reference (ToR).

09. SIA/G	GJ/IND2/18942/2017	M/S. SHREE HARI FINE CHEM	Reconsideration for
-----------	--------------------	---------------------------	---------------------

Shed No C1- 240, Phase-II, GIDC, Vatva, Ahmedabad, Gujarat-382 445	EC – Appraisal
---	----------------

Project / Activity No.: 5(f)

Project status: New

- PP has submitted online application vide no. SIA/GJ/IND2/18942/2017 dated 26/10/2017 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide letter dated 30/04/2017.
- Project proponent has submitted EIA Report prepared by M/s: Green Circle Inc., Vadodara based on the TOR issued by SEIAA
- This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

Sr.	Name of Product	MT/	CI Number	End use of
No.		Month		the product
1	3-Chloro-2-Hydroxy Propane Sulphonic	16	143218-48-8	All are as a
	Acid Sodium Salt			raw material of
2	2 Pyridinium Propyl Sulphobetaine		15471-17-7	Electroplating
3	Bis Sodium SulphopropylDisulphide	2	27206-35-5.	
4	Sodium 3-Mercaptopropane Sulphonate	0.5	17636-10-1	
5	Dimethyl DithioCarbamyl Propane	0.5	18880-36-9	
	Sulphonic Acid Sodium Salt			
6	3-Benzothiozolyl-2-Mercapto Propane	0.5	49625-94-7	
	Sulphonic Acid Sodium Salt			
7	Morpholine Propane Sulfonic Acid and its	0.5	1132-61-2	
	derivatives			
8	3-Cyclohexylamino Propane Sulfonic Acid	0.5	1135-40-6	
	and allied derivatives			
9	Oxathiolane, 2,2 – Dioxide	7	1120-71-4	
10	Pyridine – 3 – Sulfonic Acid	0.5	636-73-7	
11	Benzene 1,3 – Disulfonic Acid Disodium	0.5	831-59-4	
	Salt.			
Total	•	31.5		

- The project falls under Category B1 of project activity 5(f)as per the schedule of EIA Notification 2006
- PP was called for presentation in the SEAC meeting dated 17/01/2018.
- During the meeting dated 17/01/2018, technical presentation made during the meeting by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented before the committee.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 5 km radial distance from project site for the period March 2017 to May 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, HCl and VOC at Six locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST 3 model. The resultant concentrations are within the NAAQS. The modelling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality

	around	the proposed	d project s	ite will remain w	ithin tl	he Na	tional Ambie	nt Air Quali	ty Standards (NAAC	λ S).
•	Salient	t features of th	ne project	are as under:						
Sr.	Partic	ulars					Details			
no.										
Α	Wate									
i		e of Water Su , Bore well, S		ter etc)			GIDC shall	supply wate	er	
				concern authori	itv					
ii		consumption			ity.					
		•								
	Cat	tegory				Propo				
						(L/Da	У			
		(L) Domestic				.2				
		(M) Gardenin (N) Industrial	g).3				
				Proce	ess 1	.6				
				Boi		.0				
				Cooli).5				
	Ot	hers (Washing	g and mak	eup for scrubbir	ng) ().4				
					otal 5	5.0				
iii	Waste	e water genera	ation (KL/o	lay)						
	-									
	Cat	tegory				Propo				
		<u> </u>				KL/Day				
		(I) Domestic				<u>1.000</u> 0.000				
		(J) Gardenin (K) Industrial	g			5.000				
				Proce	ess 1	.160				
				Boi		0.100				
				Cooli	ing C	0.050				
	Ot			eup for scrubbir).400				
				strial waste wa	ter 1	.710				
iv		nent facility w							city of 2.0 KLD.	£
	(ETP,	CETP, MEE,	STP etc).				ted stream @		acility for disposal o ດ	II.
							-		cility for disposal of	
							centrated eff		<i>,</i>	
						Novel, Vatva facility for disposal of spent acid				<u>a</u>
			E ''				MT/Month			
V	Mode	of Disposal &	Final mee	eting point			nestic: Soak	•		
							ncentrated St		CETP Vatva	
vi	Reuse	e/Recycle deta	ails (KI /da	v)		-			-, • αινα	
B	Air			·J/		1				
		as emission o	letails							
1				DG sets etc. wit	h					
	capac	ities viz. TPH	, Kcal/hr, I	MT/hr, KVA etc.						
1	-									
	SR	Source of	Stack	Name of the	Quar	-	Type of		Emission	
	no.	emission With	Height (meter	fuel	of F MT/		emission s i.e. Air	APCM	Standard	
	no.	VVILII	(meter			il Ca	S I.e. Alf			

		Capacity e.g. Boiler (8 TPH))		MT/Day		utant s				
	1.	Steam Boiler	12	Wooden Waste White Coa Imported Coal	1.00 / MT/Day al/	SO ₂ , PM	NO ₂ ,	Dust Colle r		PM<150 m SO ₂ < 100 NO _x < 50 pp	ppm
	2.	D.G. Set (6.5 KVA) (Stand by)	5	Diesel	7 Lit/hr	SO ₂ , PM	NO ₂ ,	-		PM<150 m SO ₂ < 100 NO _x < 50pp	ppm
		ss gas i.e. Typ Cl _{2,} NO _x etc.)	e of poll	utant gases	(SO _{2,} HCI,						
	Sr. No.	Stack Attached to	Stac Heigl (m)	nt	APCM System		Expec Pollut	ant			
	1.	Reactor	12	through	ed under Vac Water and A h by Vacuum P	Alkali	SO ₂ HCI			40 mg/Nm ³ 20 mg/Nm ³	
	, intige	tion measures	-	Miti •	container, mate gation measur Proper storage	'es: of raw	materia	als, pro	oduct	•	
.	Haza	ardous was	ste	Miti • I • I Reg done	gation measur Proper storage Ensuring closed Establishing S(operational prod ular work place	res: of raw d feedir OPs for cedure and and	materia ng and r start-u mbient	als, pro sampli ıp, shu air qua	oduct ing. it dov ality r	s and fuels wn and main monitoring w	ill be
, ,	Haza	ardous was	s te us and C	Miti • I • I Reg done	gation measur Proper storage Ensuring closed Establishing SC operational prod ular work place e.	res: of raw d feedir OPs for cedure and and	materia ng and r start-u mbient ransbou	als, pro sampli ıp, shu air qua	oduct ing. it dov ality r	s and fuels wn and main monitoring w vement) Rule	ill be
	Haza (as pe	ardous was	ste us and C Vaste us	Miti Miti Reg done	gation measur Proper storage Ensuring closed Establishing SC operational prod ular work place e. s (Management Quantity 12.0 MT/Annum	res: of raw d feedir OPs for cedure and and and T	materia ng and s r start-u mbient ransbou	als, prosampli sampli ip, shu air qua undary e of Di	oduct ing. it dov ality r <u>v Mov</u>	s and fuels wn and main monitoring w vement) Rule	ill be
	Haza (as pe Sr. No.	ardous was er the Hazardor Types of V Hazardo	ste us and C Vaste us Sludge	Miti Miti Reg done Other Wastes Category	gation measur Proper storage Ensuring closed Establishing SG operational prodular work place e. (Management Quantity 12.0 MT/Annum 14.4 MT/Annum	res: of raw d feedir OPs for cedure and and and Tr t and Tr Storag	materia ng and i r start-u mbient ransbou Mode ge and o	als, prosampli sampli p, shu air qua undary e of Di dispos	oduct ing. it dov ality r <u>Mov</u> spos	s and fuels wn and main monitoring w vement) Rule	ill be
	Haza (as pe Sr. No. 1.	ardous was er the Hazardo Types of W Hazardo WasteETP S Calcium Sul Boiler A	ste us and C Vaste us Sludge sh	Miti Miti Reg done Other Wastes Category 34.3	gation measur Proper storage Ensuring closed Establishing SC operational prodular work place e. (Management Quantity 12.0 MT/Annum 14.4 MT/Annum 6.0 MT/Annum	res: of raw d feedir OPs for cedure and and and Tr t and Tr Storag Storag	materia ng and i r start-u mbient <u>ransbou</u> ge and o ge and o ge and o	als, pros sampli up, shu air qua undary e of Di dispos dispos	ality r ality r Mov al to al to al to	s and fuels wn and main monitoring w <u>vement) Rule</u> sal TSDF site. TSDF site.	ill be
	Haza (as pe Sr. No. 1. 2.	Types of W Hazardo WasteETP S Calcium Sul Boiler A Used Oil/ S Oil	Ste us and C Vaste us Sludge Iphate sh Spent	Miti Miti Reg done Other Wastes Category 34.3	gation measur Proper storage Ensuring closed Establishing SG operational prodular work place e. (Management Quantity 12.0 MT/Annum 14.4 MT/Annum 6.0 MT/Annum 40 Lit/Year	res: of raw d feedir OPs for cedure and and and Tr and Tr Storag Storag Storag Storag	materia ng and i r start-u mbient ransbou ge and o ge and o ge and o ge and o ge and o	als, prosampli sampli p, shu air qua undary dispos dispos dispos ccler, F cants f	ality r ality r <u>Mov</u> al to al to al to Repro	s and fuels wn and main monitoring w vement) Rule sal TSDF site. TSDF site. TSDF site.	ill be
	Haza (as per Sr. No. 1. 2. 3.	Types of W Hazardo WasteETP S Calcium Sul Boiler A Used Oil/ S Oil Discardo Container /	ste us and C Vaste us Sludge lphate sh Spent ed	Miti Miti Reg done Other Wastes Category 34.3 34.3 -	gation measur Proper storage Ensuring closed Establishing SG operational prodular work place e. (Management Quantity 12.0 MT/Annum 14.4 MT/Annum 6.0 MT/Annum 40 Lit/Year	res: of raw d feedir OPs for cedure and and and Tr and Tr Storag Storag Storag Storag Sold t used a Send b	materia ng and i r start-u mbient ransboi ge and o ge and o	als, prosampli sampli p, shu air qua undary dispos dispos dispos dispos vcler, F cants t raw m	ality r ality r <u>Mov</u> ality r ality r ality r ality r ality r ality r ality r ality r ality r ality r	s and fuels wn and main monitoring w /ement) Rule sal TSDF site. TSDF site. TSDF site. TSDF site. Decessor or lachineries. al supplier / ecycler	ill be
	Haza (as pe Sr. No. 1. 2. 3. 4 5.	Types of W Hazardo WasteETP S Calcium Sul Boiler A Used Oil/ S Oil Discardo Container / Bags	Ste us and C Vaste us Sludge Iphate sh Spent ed Drum	Miti • <	gation measur Proper storage Ensuring closed Establishing SG operational prodular work place e. (Management Quantity 12.0 MT/Annum 14.4 MT/Annum 6.0 MT/Annum 40 Lit/Year 3 MT/Annum 2 MT/Annum	res: of raw d feedir OPs for cedure and and and Tr and Tr Storag Storag Storag Storag Sold t used a Send b	materia ng and i r start-u mbient ransboi ge and o ge and o	als, prosampli sampli p, shu air qua undary dispos dispos dispos dispos vcler, F cants t raw m	ality r ality r <u>Mov</u> ality r ality r ality r ality r ality r ality r ality r ality r ality r ality r	s and fuels wn and main monitoring w <u>vement) Rule</u> sal TSDF site. TSDF site. TSDF site. Decessor or lachineries. al supplier /	ill be
	Haza (as per string) Sr. No. 1. 2. 3. 4 5. Quant Memb CHWI	Types of W Hazardo WasteETP S Calcium Sul Boiler A Used Oil/ S Oil Discardo Container / Bags	Ste us and C Vaste us Sludge phate sh Spent ed Drum d contair of CETP IEE etc.	Miti Miti Reg done Other Wastes Category 34.3 34.3 - 5.1 33.3 hers must be , TSDF,	gation measur Proper storage Ensuring closed Establishing SC operational prodular work place e. (Management Quantity 12.0 MT/Annum 14.4 MT/Annum 6.0 MT/Annum 40 Lit/Year 3 MT/Annum 2 MT/Annum 2 MT/Annum	res: of raw d feedir OPs for cedure and and and Tr and Tr storag Storag Storag Storag Storag Storag Sold t used a Send b so Sold t	materia ng and i r start-u mbient ransbou Mode ge and o ge an an an an an an an an an an an an an	als, prosampli sampli p, shu air qua undary disposa disposa disposa clisposa clisposa vcler, F cants f raw m egister egister	ality r ality	s and fuels wn and main monitoring w /ement) Rule sal TSDF site. TSDF site. TSDF site. TSDF site. Decessor or lachineries. al supplier / ecycler	ill be

D		
i	Solvent management (If any) Details of Solvent recovery (As per respective ToR)	NA
ii	VOC emission sources and its mitigation measures	 VOC source: Liquid material storage area Production area VOC mitigation measures Store VOC-containing products in air-tight containers. Buy products with less packaging as the printing of packaging materials generates VOCs Will assign a person develop and implement the VOC reduction plan. Utilizing natural ventilation Maintaining the good housekeeping practice

The projectproponent along with their experts/consultants attended the meeting of the SEAC held on 17/01/2018. During the meeting, the project was appraised based on the information furnished in the EIA Report. Technical presentation made during the meeting by project proponent. EIA report reveals that baseline environmental study was carried out during the month of March 2017 to May 2017 to determine the prevailing status of ambient air, land use, noise level topography, meteorology, ecology & socioeconomic outline. Baseline ambient air quality was measured at nine locations. Monitoring was carried out for PM10, PM2.5, SO2, NOx and VOC within 10 km radius from the project site. The maximum concentrations of PM10, PM2.5, SO2 and NOx at each ambient air monitoring locations were compared with NAAQS for industrial, residential, rural and other areas. Concentration of PM10 ranged from 42.60 µg/m3 to 72.60 µg/m3. Concentration of PM2.5 recorded from minimum 32.5 µg/m3 to maximum 49.20 µg/m3. Concentration of SO2 recorded ranged from minimum 4.2 2µg/m3 to maximum 42.2µg/m3.Concentration of NO2recorded ranged from minimum 12.2µg/m3 to maximum 39.50 µg/m3.The value of VOC ranged from 0.10µg/m3 to 0.3 µg/m3.The Value of HCL ranged from 1.2 µg/m3 to 40.2 µg/m3.The incremental Ground Level Concentration (GLC) has been computed using ISC-AERMOD View". The maximum 24hourly average ground level concentration for pollutant due to proposed project calculated using mathematical model (ISCST3) for PM10, SO2, NOx and resultant values also meets with NAAQ standards. For ground water qualities in terms of various essential and desirable characteristics are found within the limits specified by IS 10500:2012. Total water requirement of the project for domestic & Industrial activity during operation phase will be 5.0 KLD. Water requirement for the industrial purpose will be 4.0 KLD, for the domestic purpose will be 1.2 KLD and 0.3 KLD for green belt. Main source of water supply is GIDC Estate. Waste water generated from domestic activities (1.0 KLD) and industrial activity (1.71 KLD). Total waste water will be 2.71KLD, which will be treated in ETP. ETP is proposed with capacity of 2.0 KLD. Dilute stream of waste water is proposed to be discharged to CETP and concentrated waste water stream is proposed to be sent to common MEE. Committee asked PP to send entire quantity of treated waste water to common spray drier keeping direction under section 18(1) B of CPCB in view.Spent acid is proposed to be sent to Novel, Vatva. Scrubber is proposed by the unit with reaction vessel for scrubbing process gas emission of HCI and SO2.After deliberation, it was unanimously decided to consider the project for further consideration only after submission of the following: (1) Revised details of entire quantity of treated waste water to be sent to common spray drier with membership facility showing quantity of treated waste

water to be hand over to common spray drier. (2) Revised hazardous waste details incorporating spent sulfuric acid and bleed liquor (Exhausted scrubbing Media in the form of spent HCI) details with its handling and disposal management plan.

- PP has replied for above mentioned additional details vide their letter dated 12/02/2018.
- The proposal was considered in the SEAC meeting dated 26/02/2018.
- PP has submitted as under: They will not discharge any treated effluent to CETP till effect of the direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB dated 31/03/2016 regarding compliance of CETP.PP has also submitted valid Membership Certificate of Common Spray Dryer Facility of M/s: GESCSL, Vatva for sending entire treated effluent and Certificate of NOVEL Spent Acid Management System, Vatva, Ahmedabad for disposal of Spent Sulfuric Acid and bleed liquid.
- Committee observed that compliance of the additional information sought was satisfactory. After detailed discussion, it was decided to recommend the project to SEIAA, Gujarat for grant of Environmental Clearance.

10.	SIA/GJ/IND2/21101/2017	JEFF IINDUSTRIES	Reconsideration for
		Plot No: 198, Rampur, Talod GIDC industrial	ToR [Terms of
		Estate Talod, Dist.: Sabarkantha	Reference]

Category of the Project: 5(f)

Project Status: Expansion (New Project for Environment Clearance)

- This office has received an application vide their online proposal no. SIA/GJ/IND2/21101/2017 dated 23/11/2017 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- This is an Expansion of unit process manufacturing of synthetic organic chemicals as tabulated below:

SR.	PRODUCT NAME	CAPACITY IN KG/MONTH				
NO	PRODUCT NAME	EXISTING	PROPOSED	ULTIMATE		
	NON EC P	roduct				
01	Cupric Chloride Hydrous	10000		10000		
02	Cupric Chloride Anhydrous	10000	NIL	10000		
03	Magnesium Oxide	20000		20000		
04	Zinc Sulphate Monohydrate	10000		10000		
	EC Produc	t		•		
05	BeclomethasoneDipropionate		25	25		
06	Betamethasone	1	10	10		
07	Betamethasone Dipropionate	1	25	25		
08	Betamethasone Sodium Phosphate		20	20		
09	Betamethasone Valerate	1	20	20		
10	Clobetasol Propionate	1	30	30		
11	Clobetasol Butyrate	1	10	10		
12	Dexamethasone Acetate	NIL	5	5		
13	Dexamethasone Sodium Phosphate	1	100	100		
14	Fluticasone Propionate	1	5	5		
15	Hydrocortisone Acetate		33	33		
16	Hydrocortisone Hemi Succinate]	5	5		
	(Hydrocortisone Hydrogen Succinate)		5	5		
17	Methyl Prednisolone]	10	10		
18	Methyl Prednisolone Acetate]	10	10		

19	Methyl Prednisolone Hemi Succinate	5	5
20	MometasoneFuroate	20	20
21	Prednisolone Acetate	50	50
22	Prednisolone Sodium Phosphate	10	10
23	Triamcinolone	5	5
24	Triamcinolone Acetonide	5	5
25	Deflazacort	50	50
26	Helobetasol Propionate	2	2
27	Methyl Cobalamin	500	500
28	Calcium Stearate	25000	25000
29	Zinc Stearate	25000	25000
30	Magnesium Stearate	25000	25000
31	Calcium Citrate	5000	5000
32	Croscarmellose Sodium	10000	10000
33	Sodium Starch Glycollate	10000	10000
34	Combiflame Citrate	2000	2000
35	Methyl Paraben IP	10000	10000

• The project falls under category B of project activity 1(d) as per the schedule of the EIA notification 2006.

- PP was called for presentation in SEAC meeting dated 17/01/2018.
- Salient feature of the project including Water, Air and Hazardous waste management:

Sr.	Particula	rs	Details								
no.											
А	Water										
i		of Water Supply	GIDC Estat	te							
		Bore well, Surface water etc)									
	Status of	Status of permission from the concern authority.									
ii	Water co	Water consumption (KL/day)									
			Water	Consumption i	n KL/Day						
	Sr No	Category	EXISTING	PROPOSED	PROPOSED TOTAL						
	1.	Domestic Purpose	1.5	0.5	2.0						
		INDUSTRIAL									
	2.	Process	-	2.62	2.62						
	Ζ.	Boiler	2.50	NIL	2.50						
		Ancillary	0.05	0.1	0.15						
		Total water Consumption (Domestic)	1.5	0.5	2.0						
		Total water Consumption (Industrial)	2.55	2.72	5.27						
iii	Waste w	ater generation (KL/day)									
	-	<u>+</u>									
	C		Wastew	ater Generation	in KL/Day						
	Sr No	Category	EXISTING	PROPOSED	PROPOSED TOTAL						
	1.	Domestic Purpose	1.5	0.3	2.0						
	2.	INDUSTRIAL									

1		-				1			~ - '		
		Process					-		2.5	2.5	
		Boiler (Bl	ow Dov	wn)			0.05		NIL	0.05	
		Ancillary			-		0.05	(0.1	0.15	
		Total Wa (Domest		ter gen	eration		1.5		0.5	2.0	
		Total Wa (Industri		ter gen	eration		0.1	:	2.6	2.7	
		ment facility w , CETP, MEE,					ZERO DIS	SCHARG	GE UNIT		
	Mode	of Disposal &	Final	meeting	g point		Domestic	: Soak P	it		
	Device (Decvice details (1/1 (dev))					sent to Ev unit will re	vaporatio	n for the w	ndustrial wast aste water eva IARGE UNIT		
	Reuse/Recycle details (KL/day)				NO						
╉	<u>Air</u> (E	xisting and Pr	oposed	d)(b							
	No. o	gas emission of f Boilers/TFH/	Furnac								
	capad	cities viz. TPH			hr, KVA (etc.					
	Sr no	Stack attached to	、 h	Stack eight meter	Fi	uel	Consum	ption	APCM	Remarl	¢
	1.	Small Industrial Boiler (1 TPI	1	1.00	/Ĭmp	Waste orted oal	55 Kg	j/hr	Cyclone Separato		1
	2	DG Set		5.00	н	SD	10 L	/hr	Acoustic Enclosur		
		ess gas i.e. Ty ing and Propo Vent Attach	sed)	St heig	ack ght in	. ,	ICI, NH _{3,} CI _{2,} APCM	Po) ollutant centration	Remark	
	1.	Reacto	r		eter .00	Alka	ali scrubber	Cl2 <	9 mg/Nm3	B Existing	
1											
	•	ve emission d ures. (Existing			-	n R	ead in Secti	on 3.3 of	PFR Attac	ched with appli	cation
	(as pe	rdous waste er the Hazardo (Existing and			Wastes	(Mana	agement and	d Transb	oundary M	ovement) Rule	es
		tity of discarde			must be	in MT	/Annum.				
	Sr. No	Types of Hazardous Waste	Cate	gory	Existin	ng	Propose	Ultima	te	Disposal	
	1	Spent Oil	5.	1	0.010 MT/Yea		0.2 MT/ Year	0.21 MT/ Ye	Trans	Collection, sto portation and Active TSDF	Dispose to
		Discarded					1.0	1.5		Collection, sto	rade

	3	ETP Sludge	35.3	NIL	2.00 MT/Year	2.00 MT/Year	Collection, storage, Transportation and Dispose to TSDF Site			
ii				SDF, CHWIF,	Not App	Not Applicable				
	Comr	non MEE etc.								
ii	Detai	ls of Non-Haz	ardous wast	e & its disposa	I Not Appl	Not Applicable				
	(MSV	V and others)								
D										
i	Spen	t Solvent man	agement (If	any)	Not App	Not Applicable				
ii	VOC emission sources and its mitigation				Not App	Not Applicable				
	meas	ures		-						

Technical presentation was made by the project proponent.. Committee noted CC&A compliance of the existing unit. PP mentioned that there is no public complaint or any litigation pending before any court of law. After the proposed expansion, water consumption proposed is 5.27 KLPD and waste water generation is 2.70 KLPD. PP could not explain techno-economic feasibility of the evaporator proposed to be installed in-house. Committee also felt that details of solvent used and their losses need to be addressed adequately at the stage of issuance of TOR. It was also asked to explore alternative option for pursuing zero discharge with reuse/recycle possibilities of treated waste water.

The location of the proposed unit is virgin in its class of product, hence after technical presentation it was decided to consider the proposal in one of the upcoming meeting upon submission of followingdetails: (1) Adequate proposal for zero discharge by the project proponent with techno-economical feasibility for zero liquid discharge. (2) Adequacy of proposed area with respect to plant machineries, EMS, green belt, safety aspect, raw material & product storage considering worst case scenario. Submit proper lay out plan clearly demarcating all activities with scale. (3) Solvent handling and management plan for maximum recovery of solvent.

- PP has replied for above mentioned additional details vide their letter dated 23/02/2018.
- The proposal was considered in the SEAC meeting dated 26/02/2018.
- PP has submitted as under: Total industrial waste water 2.7 KLD generated from Process and other ancillary and it was evaporate though Evaporation system after Treatment in ETP plant hence there will be no wastewater discharge. They assured to maintain the zero liquid discharge. Technical details for Evaporation System is submitted.
- Total effluent generated from process and utility @ 2.7 KL/day will be evaporated in jackated Steam evaporation system. Total energy required for evaporation will be approximately 2.0 Lac Kcal/Hr. Hence, it will be more than sufficient to provide energy required for evaporation system for the process.Details of energy requirement for evaporation system are submitted.
- They have attached Plant Lay-out including all manufacturing Process, ETP, packing, labeling, storage and other purpose area.
- Committee observed that compliance of the additional information sought was satisfactory. After detailed discussion, it was decided to recommend the project to SEIAA, Gujarat for grant of Environmental Clearance.

11.	SIA/GJ/IND2/20487/2017	M/s. Basic International Plot No. 47/1/3,4,5, GIDC Industrial Estate, Dist.: Nandesari, Vadodara.	Reconsideration for EC – Appraisal
-----	------------------------	--	------------------------------------

Project / Activity No.: 5(f)

Project status: Expansion

- PP has submitted online application vide no. SIA/GJ/IND2/20487/2017 dated 27/10/2017 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide letter dated 01/05/2017.
- Project proponent has submitted EIA Report prepared by M/s: Excel Enviro Tech, Ahmedabadbased on the TOR issued by SEIAA
- This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

Sr.	Name of the Products	CAS	Quar	ntity (MT/Mont	h)	End-use of product	
No.		no.	Existing	Proposed	Total		
	Name of the Existing Pro				-		
1	Trichloro acetyl chloride	76-02- 08	15		15	pharmaceuticals and plant protection compounds	
	Name of the Proposed P	roducts					
01	Etoricoxib	202409- 33-4		1.50	1.50	Medication	
02	Febuxostat	144060- 53-7		1.00	1.00	Medication	
03	Doxofylline	69975- 86-6		2.50	2.50	Medication/Drug Intermediates	
04	Pregabalin	148553- 50-8		1.00	1.00	Medication	
05	Tramadol Hydrochloride	27203- 92-5		2.50	2.50	Medication	
06	Montelukast Sodium	151767- 02-1		0.50	0.50	Medication	
07	Nebivolol Hydrochloride	152520- 56-4		0.25	0.25	Medication	
08	Rosuvastatin Calcium	147098- 20-2		0.25	0.25	Medication	
09	Bisaprolol	66722- 44-9		0.50	0.50	Medication	
10	Ambroxol Hydrochloride	23828- 92-4		2.00	2.00	Medication	
11	Itopride Hydrochloride	122892- 31-3		1.00	1.00	Medication	
12	Sevelamer Carbonate	917381- 47-6		0.50	0.50	Medication	
13	Tadalafil	171596- 29-5		0.50	0.50	Medication	
14	Chlorohexadine Base	55-56-1		3.00	3.00	Disinfectant and topical anti- infective agent	
15	Chlorohexadine Hydrochloride	3697- 42-5		1.00	1.00	Germicidal mouthwash	

					1	
1	16	ChlorohexadineGluconat	18472-	 100.00	100.00	Germicidal
		е	51-0	100.00	100.00	mouthwash
	17	Bis (2 chloroethyl) amine	821-48-	 40.00	10.00	Medication
		Hydrochloride	7	10.00	10.00	
	18	2-(chloromethyl)-4-	109113-	 2.00	2.00	Medication
		methyl-quinazoline	72-6	2.00	2.00	
-	19	4-Hydroxy 2-methyl 2-H	70415-			Medication
		thieno (2, 3,e),	50-8			
		1,2,thiazine –3-carboxylic		0.50	0.50	
		Methyl ester, 1,1,-				
		dioxide.				
2	20	2- chloro ethyl	14337-			Medication
		Acetatoacetate	14337-	2.50	2.50	
			43-0			
2	21	Chlorohexadine Acetate	56-95-1.	 5.00	5.00	Antiseptic
				5.00	5.00	Solution

• The project falls under Category B1 of project activity 5(f)as per the schedule of EIA Notification 2006

- PP was called for presentation in the SEAC meeting dated 18/01/2018.
- During the meeting dated 18/01/2018, technical presentation made during the meeting by project proponent.
- Salient features of the project are as under::

Sr. No.		Particulars				Detai	ils
Α	Total Cost of Propose	d Project (R	s. In Crores)		Existi	ng: Rs. 40 Lakh	
	-					osed: Rs.3 Crore	
					Total	Rs. 3.40 Crores	3
	(1) Capital cost for EMS	(Environme	ental Manageme	ent Syster	m) : 0.3	5 Crores	
	(2) Recurring cost towar	ds the envir	onmental prote	ction mea	sures:	0.01 Crores per	Annum.
В	Total Plot Area (sq. Me	eter)			Existi	ng: 1500 m ² .	
						osed: NIL	
						: 1500 m².	
	Green belt area,/Tree P	lantation are	a			ing: 100 m ²	
	(sq. meter)					osed:	
					Total	: 100 m ²	
С	Employment generation	on					
	1. Direct					ng:06	
						osed:14	
					Total	-	
	2. Indirect					ng:04	
						osed:08	
-					Total	:12	
D	Water						
	Source of Water Supply		`		GIDC	Water Supply	
	(GIDC, Bore well, Surfa						
	Status of permission fro		an authonity				
ii	Water consumption (KL		Dronood	Total		Demerika	1
	Category	Existing	Proposed	Total a		Remarks	
		KL/day	(Additional)	Expans			
	(O) Domestic	0.5	KL/day 3.5	KL/d 4.0	-		
		0.5	3.0	4.0			

	(P)	Gardening		2.5		2.5		
	(P) (Q)	Industrial		2.5	I	2.0		—
		Proces	s	20		20		—
		Washing		6		6		
		Boile		12		12		
		Cooling		6		14		
		Other	5					
	Total (A	A+B+C)				58.5		
ii		vater generation	on (KL/dav)			00.0		
••		ategory	Existing	Propos	ed To	tal after	Remark	(S
			KL/Day		nal) Ex	pansion (L/day		
		Domestic	0.4	2.8	<u> </u>	3.2		
		Gardening						
	(C)	Industrial		7	1			
		Process		20		20		
		Washing		6		6		
		Boile		2		2		
		Cooling		2		2		
		Others						
	-	Total Industria				30.0		
	waste water							
		c water will be		ak pit.				
/		ent facility with			ETP & CE	IP		
		ETP, MEE, S						
	(=, 0	, ,			Domostic	Sook Dit		
,			*	upoint	Domestic:			lesari Industrias
		Disposal & F	*) point	Industrial:	common	CETP (Nand	lesari Industries
	Mode of	Disposal & F	inal meeting	ı point	Industrial: Associatio	common	CETP (Nand	lesari Industries
i	Mode of Reuse/F	Disposal & F	inal meeting) point	Industrial: Association None	common	CETP (Nanc	lesari Industries
iii	Mode of Reuse/F Details of	Disposal & F Recycle details of Rain Water	inal meeting (KL/day) Harvesting) point	Industrial: Associatio	common	CETP (Nanc	lesari Industries
i /iii	Mode of Reuse/F Details o Air [Exi s	Disposal & F Recycle details of Rain Water sting & Prope	inal meeting (KL/day) Harvesting osed]) point	Industrial: Association None	common	CETP (Nanc	lesari Industries
′i /iii E	Mode of Reuse/F Details o Air [Exi Flue gas	Disposal & F Recycle details of Rain Water sting & Propo s emission det	inal meeting (KL/day) Harvesting Dsed] ails		Industrial: Associatic None None	common (on)	· · · · · · · · · · · · · · · · · · ·	
′i ∕iii ∎	Mode of Reuse/F Details o Air [Exi Flue gas	Disposal & F Recycle details of Rain Water sting & Prope	inal meeting (KL/day) Harvesting Dsed] ails		Industrial: Associatic None None	common (on)	Kcal/hr, MT	/hr, KVA etc. Emission standard
/ /iii =	Mode of Reuse/F Details o Air [Exis Flue gas No. of B Sr.	Disposal & F Recycle details of Rain Water sting & Prope s emission det oilers/TFH/Fu Source of emission With Capacity e.g. Boiler (8 TPH)	inal meeting (KL/day) Harvesting Dsed] ails rnaces/DG Stack Height (meter)	sets etc. with Name of the Fuel white	Industrial: Association None None Capacities Quantit y of Fuel MT/hr& MT/Day 52	common (on) s viz. TPH, Type of emissio ns i.e. Air Polluta nts PM	Kcal/hr, MT	/hr, KVA etc. Emission standard PM<150 mg/Nm ³
i /iii	Mode of Reuse/F Details o Air [Exis Flue gas No. of B Sr.	Disposal & F Recycle details of Rain Water sting & Prope s emission det oilers/TFH/Fu Source of emission With Capacity e.g. Boiler (8 TPH) Boiler (1	inal meeting (KL/day) Harvesting osed] ails rnaces/DG Stack Height	sets etc. with Name of the Fuel	Industrial: Associatic None None Capacities Quantit y of Fuel MT/hr& MT/Day 52 MT/Mon	common (on) viz. TPH, Type of emissio ns i.e. Air Polluta nts PM SO _X	Kcal/hr, MT	/hr, KVA etc. Emission standard PM<150 mg/Nm ³ SO _x < 100 ppm
'i /iii	Mode of Reuse/F Details of Air [Exis Flue gas No. of B Sr. no	Disposal & F Recycle details of Rain Water sting & Prope s emission det oilers/TFH/Fu Source of emission With Capacity e.g. Boiler (8 TPH)	inal meeting (KL/day) Harvesting Dsed] ails rnaces/DG Stack Height (meter)	sets etc. with Name of the Fuel white	Industrial: Association None None Capacities Quantit y of Fuel MT/hr& MT/Day 52	common (on) s viz. TPH, Type of emissio ns i.e. Air Polluta nts PM	Kcal/hr, MT	/hr, KVA etc. Emission standard PM<150 mg/Nm ³ SO _x < 100 ppm NO _x < 50 ppm
i 'iii	Mode of Reuse/F Details of Air [Exis Flue gas No. of B Sr. no	Disposal & F Recycle details of Rain Water sting & Prope s emission det oilers/TFH/Fu Source of emission With Capacity e.g. Boiler (8 TPH) Boiler (1 T/Hr)	inal meeting (KL/day) Harvesting Dsed] ails rnaces/DG Stack Height (meter) 11.0	sets etc. with Name of the Fuel white coal/brique tte	Industrial: Associatic None None Capacities Quantit y of Fuel MT/hr& MT/Day 52 MT/Mon th	common (on) s viz. TPH, Type of emissio ns i.e. Air Polluta nts PM SO _x NO _x PM	Kcal/hr, MT APCM Cyclone Adequat	/hr, KVA etc. Emission standard PM<150 mg/Nm ³ SO _x < 100 ppm NO _x < 50 ppm PM<150 mg/Nm ³
	Mode of Reuse/F Details of Air [Exis Flue gas No. of B Sr. no	Disposal & F Recycle details of Rain Water sting & Prope s emission det oilers/TFH/Fu Source of emission With Capacity e.g. Boiler (8 TPH) Boiler (1 T/Hr) D. G. Set-	inal meeting (KL/day) Harvesting Dsed] ails rnaces/DG Stack Height (meter)	sets etc. with Name of the Fuel white coal/brique	Industrial: Association None None Capacities Quantit y of Fuel MT/hr& MT/Day 52 MT/Mon th 25	common (on) viz. TPH, Type of emissio ns i.e. Air Polluta nts PM SO _X NO _x PM SO _X	Kcal/hr, MT APCM Cyclone Adequat e stack	/hr, KVA etc. Emission standard PM<150 mg/Nm ³ SO _X < 100 ppm NO _x < 50 ppm PM<150 mg/Nm ³ SO _X < 100 ppm
i 'iii	Mode of Reuse/F Details of Air [Exis Flue gas No. of B Sr. no	Disposal & F Recycle details of Rain Water sting & Prope s emission det oilers/TFH/Fu Source of emission With Capacity e.g. Boiler (8 TPH) Boiler (1 T/Hr)	inal meeting (KL/day) Harvesting Dsed] ails rnaces/DG Stack Height (meter) 11.0	sets etc. with Name of the Fuel white coal/brique tte	Industrial: Associatic None None Capacities Quantit y of Fuel MT/hr& MT/Day 52 MT/Mon th	common (on) s viz. TPH, Type of emissio ns i.e. Air Polluta nts PM SO _x NO _x PM	Kcal/hr, MT APCM Cyclone Adequat	/hr, KVA etc. Emission standard PM<150 mg/Nm ³ SO _x < 100 ppm NO _x < 50 ppm PM<150 mg/Nm ³
i /iii :	Mode of Reuse/F Details of Air [Exis Flue gas No. of B Sr. no 1	Disposal & F Recycle details of Rain Water sting & Prope s emission det oilers/TFH/Fu Source of emission With Capacity e.g. Boiler (8 TPH) Boiler (1 T/Hr) D. G. Set-	inal meeting (KL/day) Harvesting osed] ails rnaces/DG Stack Height (meter) 11.0	sets etc. with Name of the Fuel white coal/brique tte Diesel	Industrial: Association None None Capacities Quantit y of Fuel MT/hr& MT/Day 52 MT/Mon th 25 Lit/hour	common (on) s viz. TPH, Type of emissio ns i.e. Air Polluta nts PM SO _X NO _x PM SO _X NO _x	Kcal/hr, MT APCM Cyclone Adequat e stack height	/hr, KVA etc. Emission standard PM<150 mg/Nm ³ SO _X < 100 ppm NO _x < 50 ppm PM<150 mg/Nm ³ SO _X < 100 ppm
′i ∕iii ∎	Mode of Reuse/F Details of Air [Exis Flue gas No. of B Sr. no 1	Disposal & F Recycle details of Rain Water sting & Prope s emission det oilers/TFH/Fu Source of emission With Capacity e.g. Boiler (8 TPH) Boiler (1 T/Hr) D. G. Set- 150 KVA gas i.e. Type r. Source	inal meeting (KL/day) Harvesting osed] ails rnaces/DG Stack Height (meter) 11.0	sets etc. with Name of the Fuel white coal/brique tte Diesel gases (SO ₂ ,	Industrial: Association None None Capacities Quantit y of Fuel MT/hr& MT/Day 52 MT/Mon th 25 Lit/hour HCI, NH ₃ ,0	common (on) s viz. TPH, Type of emissio ns i.e. Air Polluta nts PM SO _X NO _x PM SO _X NO _x	Kcal/hr, MT APCM Cyclone Adequat e stack height	/hr, KVA etc. Emission standard PM<150 mg/Nm ³ SO _X < 100 ppm NO _x < 50 ppm PM<150 mg/Nm ³ SO _X < 100 ppm

Unit is using White coal/agro waste as a fuel in High therm Boiler & Glass Line Reaction vessel, which is eco friendly& less polluting. So, there will be no APCM is required. Regular Work Place Monitoring, Ambient Air, Stack Air Monitoring to be done. F Hazardous waste (As per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016. Type/Name Quantity (MT/Annum) **Disposal Method** i Source of Catego Sr. of no generation ry Propo Hazardous Existing Total sed waste 2000.0 Collection Storage, ETP ETP 35.3 Kgs/mon Transportation, Disposal at 1 ___ Sludge Process th TSDF Collection storage Discarded 500 Decontamination disposal Containers/ Mfg. 2 Authorized 33.1 Nos./Mo GPCB to Drums process nth recycler or reuse within the premises Collection, storage 750 Decontamination disposal Discarded Mfg. 3 33.1 Nos./Mo GPCB Authorized to process Bags recycler or reuse within the nth premises Collection. Storage. Decontamination, Disposal 5 Used Oil Mfg. to GPCB Authorized 4 5.1 Liter/Yea process recycler. Used for r lubrication of machineries at our unit 6 Collection Storage, Solvent Mfg. 5 MT/Mont Transportation, Disposal at ___ Residue Process 28.1 co processing or CHWIF h Collection Storage, 18 Spent Transportation, Disposal at MT/mont 6 28.6 ___ -solvent co processing or registered h recycler, CHWIF 9 Storage, Collection Spent 7 28.3 Transportation, Disposal at MT/mont charcoal h co processing or CHWIF Quantity of discarded containers must be in MT/Annum. Membership details of CETP, TSDF, CHWIF, Common MEE **NECL Membership** ii Details of Non-Hazardous waste & its disposal ii None (MSW and others) G Solvent management (If any) Details of Solvent recovery (As per respective ToR) The unit have in-house facility for i solvent recovery ii VOC emission sources and its mitigation measures

 The project proponent along with their experts/consultants attended the meeting of the SEAC held on 18/01/2018.Since proposal is for expansion, compliance of CCA, action by the GPCB interms of SCN, direction under the environmental laws were discussed and found satisfactorily addressed. PP mentioned that there is no public compliant and there is no litigation pending against unit before any court of law. During the meeting, the project was appraised based on the information furnished in the EIA Report,Technical presentation made during the meeting by project proponent. EIA report reveals that baseline environmental study was carried out during the month of April 2016 to June 2016 to determine the prevailing status of ambient air, land use, noise level topography, meteorology, ecology & socioeconomic outline. Baseline ambient air quality was measured at nine locations. Monitoring was carried out for PM10, PM2.5, SO2, NOx, and VOC within 10 km radius from the project site. The maximum concentrations of PM10, PM2.5, SO2 and NOx at each ambient air monitoring locations were compared with NAAQS for industrial, residential, rural and other areas. Concentration of PM10 ranged from 79.9µg/m3 to 51.50µg/m3. Concentration of PM2.5 recorded from minimum 25.60µg/m3 to maximum 42.3µg/m3.Concentration of SO2 recorded ranged from minimum 13.40µg/m3 to maximum 23.40µg/m3. Concentration of NO2 recorded ranged from minimum 17.80µg/m3 to maximum 23.1µg/m3. Concentration of Cofounded from BDL. Concentration of CO ranged from 40µg/m3 to 60 µg/m3. The incremental Ground Level Concentration (GLC) has been computed using AERMOD model. The maximum 24-hourly average ground level concentration for pollutant due to proposed project calculated using mathematical model AERMOD for PM10, SO2, NOx and resultant values also meets with NAAQ standards. Committee observed that PP has proposed Cyclone for proposed boiler of 1TPH. Unit has provided two stage scrubber to the glass line reaction vessel. Total fuel requirement of White Coal/briquette 52 Mt/Month and Diesel of 25Lit/hr. Total water consumption for proposed project will be 58.5 KLD which will be sourced from GIDC water supply only. Total industrial wastewater generation will be 30 KLD which will be treated in proposed ETP. Generated domestic wastewater of 3.2 KLD will be collected and disposed off through Soak pit. The treated wastewater will be finally discharged into the CETP and membership of CETP of NIA has been obtained by the PP.

- During appraisal, committee found all the TOR addressed satisfactorily except detail of hazardous waste.PP was asked to submit following. (1) Details of spent HCI generation as bleed liquor (Scrubber outlet) with source, quantity and its management considering hazardous and other waste Rules 2016. (1) Detailed Leak Detection and Repairing Programme (LDAR) for curbing release of VOCs in ambient air.
- PP has replied for above mentioned additional details vide their letter on 09/02/2018.
- The proposal was considered in the SEAC meeting dated 26/02/2018. PP has submitted as below: PP has submitted that spent HCL generated from the scrubbing system (50 MT/Month) will be sold out to Actual users or will be sent to ETP for treatment. This waste stream is considered as Hazardous waste. PP has also submitted Leak Detection and Repairing Programme (LDAR) program and corrective and preventive actions to be taken for potential area of solvent or solvent vapour leakage.
- Committee observed that compliance of the additional information sought was satisfactory. After detailed discussion, it was decided to recommend the project to SEIAA, Gujarat for grant of Environmental Clearance.

12.	SIA/GJ/IND2/20545/2016	M/s. SHREE VARDHAN INDUSTRIES Plot no 2406, GIDC - Sarigam, Tal:	Reconsideration for EC – Appraisal
		Umargaon, Dist: valsad-396155, Gujarat	

Project / Activity No.: 5(f)

- PP has submitted online application vide no. SIA/GJ/IND2/20545/2016 dated 26/10/2017 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide letter dated 18/02/2017.
- Project proponent has submitted EIA Report prepared by M/s: Aqua-Air Environmental Engineers Pvt. Ltd.,

Surat based on the TOR issued by SEIAA

• This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

No.	Name of Product	Existing (MT/Month)	Proposed (MT/Month)	Total (MT/Month)	CAS No.	End Use
1	Fumaric Acid	10	101	111	110-17-8	Pharmaceutical Industries, and Resin Industries
2	Ferrous Sulphate	120		120	7782-63- 0	Wastewater treatment/Agricultural fertilizer
3	Mono Ammonium Phosphate	70		70	7722-76- 1	Fertilizer
4	Di Ammonium Phosphate	70		70	7783-28- 0	Fertilizer
5	Poultry Feed	100		100		Cattle Feed
6	Copper Sulphate	50		50	7758-98- 7	Electroplating/Pharma /Dyes/ Agricultural
7	Ferrous Sulphate (Dry/Granules Form)	250		250	7720-78- 7	Pharma
8	Ferrous Fumarate		150	150	141-01-5	To treat iron deficiency
9	Zinc Sulphate Monohydrate		100	100	7446-19- 7	Agricultural fertilizer
10	Ferric Orthophosphate	-	50	50	10045- 86-0	Food Nutrition
11	Ferric Pyrophosphate	1	50	50	10058- 44-3	Food Nutrition.
12	Sodium Citrate		50	50	68-04-2	In Pharma Industries for systemic alkalinising agent.
13	Iron Sucrose	1	20	20	8047-67- 4	In Pharma Industries for Supplemented in Vitamin Tablets. And Food Supplement
14	Ferrous Citrate		25	25	2338-05- 8	Pharma - To treat iron deficiency
15	Ammonium Ferric Citrate		25	25	1185-57- 5	In Pharma Industries use for Blood Medicine, Iron Deficiency anemia, some anticancer drugs. And also use in Food, Feed Industries.
16	Iron Polysaccharide Complex		25	25	541-41-3	In Pharma and Food industries as nutrient supplement
17	Iron (II) Sodium EDTA		60	60	15708- 41-5	
18	Ferrous Ascorbate		25	25	24808- 52-4	

19	Iron Dextran		20	20	9004-66-	Pharma - To treat iron
					4	deficiency
20	Trichloine Citrate		20	20	546-63-4	Pharma
21	Choline Bitartarte		70	70	87-67-2	Pharma
22	L lysine HCI		25	25	657-27-2	Feed additive
23	Ferrous gluconate		20	20	299-29-6	Pharma - To treat iron deficiency
Tota	al	670	801	1471		

- The project falls under Category B1 of project activity 5(f)as per the schedule of EIA Notification 2006
- PP was called for presentation in the SEAC meeting dated 18/01/2018.
- Salient features of the project are as under::

Sr.	Particulars				Details		
no. A	Water						
<u>Λ</u> i	Source of Water Supply				GIDC W	ater Supply	
•	(GIDC, Bore well, Surfa		ic)			ater ouppry	
	Status of permission fro			Please	refer Ann	exure-2	
ii	Water consumption (KL		ionn dathontyr	1 10000			
		Existing	Proposed	Tota	lafter	Remarks	7
		KL/day	(Additional)		ansion		
			KL/day	KL/d			
	(R) Domestic	1.0	2.0	3.0	<u> </u>		
	(S) Gardening	0.0	1.0	1.0			
	(T) Industrial						7
	Process	2.0	13.0	15.0			
	Washing	0.0	3.0	3.0			
	Boiler	0.0	10.0	10.0			
	Cooling	0.0	14.0	14.0			
	Others	0.0	3.0	3.0			
	Total (A+B+C)			49			
iii	Waste water generation	(KL/day)					
	Category	Existing	Proposed	Total a	after	Remarks	
		KL/Day	(Additional)	Expan			
			KL/day	KL/da	у		
	(L) Domestic	0.6	1.8	2.4			
	(M) Industrial		1	1			
	Process	1.5	9.5	11.0			
	Washing	0.0	3.0	3.0			
	Boiler	0.0	1.0	1.0			
	Cooling	0.0	2.0	2.0			
	Others	0.0	3.0	3.0			
	Total Industrial waste	2.1	20.3	22.4			
	water				·		
iv	Treatment facility with c						onsists Primary &
	(ETP, CETP, MEE, STF				dary Trea		
V	Mode of Disposal & Fina	al meeting	point				g - 0.6 KL/Day +
			ŀ			L/Day)> Seption	
				industr	iai: 20.0	KL/Day (Existin	ng - 1.5 KL/Day +

								d -18.5 KL/E will be sent				
		K. With Capacity e.g. Boiler (8 TPH) Height (meter) o 1 Steam Boiler Capacity: 1000 Kg/hr 20 Na 2. D. G. Set: Stand By Capacity : 250 KVA 10 Height (meter) Na 2. D. G. Set: Stand By Capacity : 250 KVA 10 Height (meter) Na occess gas i.e. Type of pollutant gases xisting & Proposed] Sr. Source of no. Type emission 1 Process Vent-I Height (meter) Height (meter) Height (meter) Height (meter) 2 Proposed] NH Height (meter) Height (meter) Height (meter) 3 Proposed] Height (meter) Height (meter) Height (meter) Height (meter) 4 Process Vent-I Height (meter) Height (meter) Height (meter) Height (meter) 2 Process Vent-II Height (meter) Height (meter) Height (meter) Height (meter) 3 Process Vent-II Height (meter) Height (meter) Height (meter) 4 Proposed]- Height (meter) Height (meter) Height (meter) 5 Care will b					treatmen			, 0		
vi		[Existing & Proposed] e gas emission details of Boilers/TFH/Furnaces/DG sets etc. acities viz. TPH, Kcal/hr, MT/hr, KVA Source of emission With Capacity e.g. Boiler (8 TPH) Steam Boiler (8 TPH) Steam Boiler (8 TPH) Steam Boiler (8 TPH) Capacity: 1000 Kg/hr D. G. Set: Stand By Capacity: 250 KVA D. G. Set: Stand By Capacity: 250 KVA Cess gas i.e. Type of pollutant gases of sting & Proposed] Sting & Proposed] I Process 1 Process NH itive emission details with its mitigation sting & Proposed]- owing measures will be adopted to sting & Proposed]- owing measures will be adopted to sting the standard										
B	_											
						to oto with						
	-			<u>, rtoa</u> #m,		1007000						
		Sourc	e of er	mission	Stack	Name	Quantity	Type of		Emiss		
	SR.						of Fuel MT/hr&	emissions i.e. Air	APCM	Standa	ard	
		Bo	iler (8	TPH)	(meter) fuel	MT/Day	Pollutants				
	1				20	Natural	2000	SPM		150 mg/		
					20	Gas	SCM/Day	SO2		262 mg/		
	2.						25 Lit/Hr	NOx		94 mg/N	m3	
	<u>-</u>						1					
	Proce	ess gas	i.e. Ty	pe of pol	lutant g	ases (SO _{2.}	HCI, NH _{3.} CI	l _{2.} NO _x etc.)				
	[Exist	ing & P	roposé	ed]	0	ц —,	,	_, ,				
	-			<u> </u>							1	
			Sr.			Type of	Stack/Vent Height			Emission Standard		
			no.	emiss	ion	emission	(meter)			otandara		
			1	Process			44	Water		.0		
			1	Vent-I		псі	11	Scrubber	n	ng/Nm3		
				Dragoog								
			2			NH3	11	Water + H		-		
	- Fugiti	ve emis		Vent-II		NH3	11	Water + H Scrubber		75 ng/Nm3		
/	[Exist	ing & P	sion d	Vent-II letails wit	h its mit	tigation me	asures.	Scrubber	n	ng/Nm3		
/	[Exist Follo	ing & Pi wing m Airboi	sion d ropose easur rne du	Vent-II letails wit ed]- res will b	h its mit e adop transfer	tigation me ted to prev	asures. vent and co	Scrubber	ve emiss	sions	ying wa	ater o
,	[Exist Follo	ing & Pi wing m Airboi provic	ssion d ropose easur rne du ling er	Vent-II letails wit ed]- es will b ust at all nclosures	h its mit e adop transfer	tigation me ted to prev s operatior	easures. vent and co ns/ points w	Scrubber	ve emiss	sions er by spra		
	[Exist Follo 1. 2.	ing & P wing m Airboi provic Care	sion d ropose easur rne du ling er will be	Vent-II letails wit ed]- res will b ust at all inclosures taken to	h its mit e adop transfer s. store c	tigation me ted to prev s operation	asures. vent and co ns/ points w material pro	Scrubber	ve emiss lled eith vent fug	sions er by spra	sions, if	any.
,	[Exist Follo 1. 2.	ing & P wing m Airbou provic Care Regul	sion d ropose easur rne du ling er will be lar ma	Vent-II letails wit ed]- res will b ust at all nclosures taken to aintenanc	h its mit e adop transfer s. store c e of va	tigation me ted to prev s operation construction lves, pump	vent and co vent and co ns/ points w material pro ps, flanges,	Scrubber ntrol fugitiv ill be contro operly to pre joints and o	ve emiss lled eith vent fug ther equ	sions er by spra	sions, if	any.
,	[Exist Follo 1. 2. 3.	ing & P wing m Airbor provic Care Regul preve	sion d ropose easur rne du ding er will be lar ma nt leal	Vent-II letails with ed]- res will b ist at all inclosures taken to aintenanc kages an	h its mit e adop transfer s. store c e of va d thus r	tigation me ted to prev s operation construction lves, pump minimizing t	vent and co vent and co ns/ points w material pro os, flanges, the fugitive e	Scrubber ntrol fugitiv ill be contro operly to pre joints and o emissions of	ve emiss lled eith vent fug ther equ VOCs.	sions er by spra itive emiss uipment wi	ions, if ill be d	any. one to
	[Exist Follo 1. 2. 3.	ing & P wing m Airbon provic Care Regul preve Entire	sion d ropose easur rne du ling er will be lar ma lar ma nt leal proce	Vent-II letails wit ed]- res will b nclosures taken to aintenanc kages an ess will b	h its mit e adop transfer s. store c e of va d thus r	tigation me ted to prev s operation construction lves, pump minimizing t	vent and co vent and co ns/ points w material pro os, flanges, the fugitive e	Scrubber ntrol fugitiv ill be contro operly to pre joints and o emissions of	ve emiss lled eith vent fug ther equ VOCs.	sions er by spra itive emiss uipment wi	ions, if ill be d	any. one to
,	[Exist Follo 1. 2. 3. 4.	ing & P wing m Airbon provic Care Regul preve Entire and te	sion d ropose easur rne du ling er will be lar ma lar ma e proce emper	Vent-II letails wit ed]- es will b ist at all nclosures taken to aintenanc kages an ess will b ature.	h its mit e adop transfer s. store c e of va d thus n e carrie	tigation me ted to prev s operation onstruction lves, pump ninimizing t ed out in th	vent and co vent and co ns/ points w material pro os, flanges, the fugitive e e closed rea	Scrubber Introl fugitiv ill be contro operly to pre joints and o emissions of actors with p	ve emiss lled eith vent fug ther equ VOCs. proper m	sions er by spra itive emiss uipment wi	ions, if ill be d e of pre	any. one to
/	[Exist Follo 1. 2. 3. 4. 5.	ing & P wing m Airbon provic Care Regul preve Entire and te Perior	sion d ropose easur rne du ding er will be lar ma nt leal proce empera dic mo	Vent-II letails wit ed]- res will b nclosures taken to aintenanc kages an ess will b ature. onitoring c	h its mit e adop transfer s. store c e of va d thus r e carrie	tigation me ted to prev s operation onstruction lves, pump ninimizing t ed out in th area will be	asures. vent and co ns/ points w material pro- os, flanges, the fugitive e e closed rea e carried out	Scrubber Introl fugitiv ill be contro operly to pre joints and o emissions of actors with p	ve emiss lled eith vent fug ther equ VOCs. proper m	sions er by spra itive emiss uipment wi	ions, if ill be d e of pre	any. one to
/	[Exist Follo 1. 2. 3. 4. 5. 6.	ing & P wing m Airbon provic Care Regul preve Entire and te Perioo Breat	sion d ropose easur rne du ling er will be lar ma ant leat e proce empera dic mo her va	Vent-II letails wit ed]- res will b ist at all nclosures taken to aintenanc kages an ess will b ature. onitoring o lves will b	h its mit e adop transfer store c e of va d thus n e carrie of work	tigation me ted to prev s operation onstruction lves, pump ninimizing t ed out in th area will be ided on sol	vent and co vent and co ns/ points w material pro os, flanges, the fugitive e e closed rea e carried out vent tanks.	Scrubber Introl fugitiv ill be contro operly to pre joints and o emissions of actors with p to check the	ve emiss lled eith vent fug ther equ VOCs. proper m	sions er by spra itive emiss uipment wi	ions, if ill be d e of pre	any. one to
/	[Exist Follo 1. 2. 3. 4. 5. 6. 7.	ing & P wing m Airbon provic Care Regul preve Entire and te Perioo Breat Solve	sion d ropose easur rne du ding er will be lar ma nt leal e proce empera dic mo her va nt tanl	Vent-II letails with ed]- res will b nclosures taken to aintenanc kages an ess will b ature. onitoring of lves will b k vents w	h its mit e adop transfer s. store c e of va d thus r e carrie of work oe provi	tigation me ted to prev s operation onstruction lves, pump ninimizing t ed out in th area will be ided on sol	vent and co vent and co ns/ points w material pro os, flanges, the fugitive e e closed rea e carried out vent tanks.	Scrubber ntrol fugitiv ill be contro operly to pre joints and o emissions of actors with p to check the s.	ve emiss lled eith vent fug ther equ VOCs. proper m e fugitive	sions er by spra itive emiss uipment wi naintenanc e emission	sions, if ill be d e of pre	any. one to
· · · · · ·	[Exist Follo 1. 2. 3. 4. 5. 6. 7.	ing & P wing m Airbon provic Care Regul preve Entire and te Perioo Breat Solve To eli	sion d ropose easur rne du ling er will be lar ma ant leal proce empera dic mo her va nt tanl minate	Vent-II letails with ed]- res will b ist at all inclosures taken to aintenance kages and ess will b ature. onitoring of lves will b k vents w e chance	h its mit e adop transfer s. store c e of va d thus r e carrie of work oe provi	tigation me ted to prev s operation onstruction lves, pump ninimizing t ed out in th area will be ided on sol	vent and co vent and co ns/ points w material pro os, flanges, the fugitive e e closed rea e carried out vent tanks.	Scrubber ntrol fugitiv ill be contro operly to pre joints and o emissions of actors with p to check the s.	ve emiss lled eith vent fug ther equ VOCs. proper m e fugitive	sions er by spra itive emiss uipment wi naintenanc e emission	sions, if ill be d e of pre	any. one t
,	[Exist Follo 1. 2. 3. 4. 5. 6. 7. 8.	ing & P wing m Airbon provic Care Regul preve Entire and te Perioo Breat Solve To eli all sol Close	sion d ropose easur rne du ding er will be lar ma nt leal proce empera dic mo her va nt tanl minate vent p	Vent-II letails with ed]- res will b ist at all inclosures taken to aintenance kages and ess will b ature. onitoring of lves will b k vents w e chance oumps. ng syster	transfer store c e of va d thus r e carrie of work of work ill be co s of lea	tigation me ted to prev s operation onstruction lves, pump ninimizing t ed out in th area will be ided on solio nnected to akages from	vent and co vent and co ns/ points w material pro os, flanges, the fugitive e e closed rea e carried out vent tanks.	Scrubber ntrol fugitiv ill be contro operly to pre joints and o emissions of actors with p to check the s. pumps, med	ve emiss lled eith vent fug ther equ VOCs. proper m e fugitive	sions er by spra itive emiss uipment wi naintenanc e emission. seal will b	sions, if ill be d e of pre	any. one to essuro ded a
,	[Exist Follo 1. 2. 3. 4. 5. 6. 7. 8. 9.	ing & P wing m Airbon provic Care Regul preve Entire and te Period Breat Solve To eli all sol Close conne	sion d ropose easur rne du ding er will be lar ma ant leak e proce dic mo her va nt tanl minate vent p feedin ected t	Vent-II letails with ed]- res will b ist at all inclosures taken to aintenance kages and ess will b ature. onitoring of lves will b ature.	h its mit e adop transfer store c e of va d thus n e carrie of work oe provi rill be co s of lea m will be	tigation me ted to prev s operation onstruction lves, pump ninimizing f ed out in th area will be ided on solio nected to akages from e provided	vent and co vent and co ns/ points w material pro os, flanges, the fugitive e e closed rea e carried out vent tanks. o vent chillers n glands of for centrifug	Scrubber Introl fugitive ill be contron operly to pre- joints and operly ve emiss lled eith vent fug ther equ VOCs. proper m e fugitive	sions er by spra itive emiss uipment wi naintenanc e emission. seal will b	sions, if ill be d e of pre	any. one to essure ded a	
,	[Exist Follo 1. 2. 3. 4. 5. 6. 7. 8. 9.	ing & P wing m Airbon provic Care Regul preve Entire and te Period Breat Solve To eli all sol Close conne	sion d ropose easur rne du ding er will be lar ma nt leal e proce empera dic mo her va nt tanl minate vent p feedil ected t	Vent-II letails with ed]- res will b ist at all inclosures taken to aintenance kages and ess will b ature. onitoring of lves will b k vents w e chance oumps. ing syster to vent ch umber of	h its mit e adop transfer s. store c e of va d thus r e carrie of work of work of work of work of work of of lea n will be flanges	tigation me ted to prev s operation onstruction lves, pump ninimizing t ed out in th area will be ided on sol onnected to akages from e provided , joints and	vent and co vent and co ns/ points w material pro os, flanges, the fugitive e e closed rea e carried out vent tanks. o vent chillers n glands of for centrifug valves in pi	Scrubber Introl fugitive ill be contron operly to pre- joints and operly ve emiss lled eith vent fug ther equ VOCs. proper m e fugitive chanical ge and f	sions er by spra itive emiss uipment wi naintenanc e emission. seal will b filtrate tank	sions, if ill be de e of provi	any. one to essuro ded a will bo	
,	[Exist Follo 1. 2. 3. 4. 5. 6. 7. 8. 9.	ing & P wing m Airbon provic Care Regul preve Entire and te Period Breat Solve To eli all sol Close conne D. Minim 1. Enclo	sion d ropose easur rne du ling er will be lar ma nt leak proce empera dic mo her va nt tanl minate vent p feedin ected t sures	Vent-II letails with ed]- res will b ist at all inclosures taken to aintenance kages and ess will b ature. onitoring of lves will b ature. onitoring of k vents w e chance oumps. ing system to vent ch umber of to chemi	h its mit e adop transfer store c e of va d thus n e carrie of work of work ill be co s of lea m will be nillers. flanges cal stora	tigation me ted to prev s operation onstruction lves, pump ninimizing t ed out in th area will be ided on solionnected to akages from e provided , joints and age area, o	asures. vent and co ns/ points w material pro- os, flanges, the fugitive e e closed rea e carried out vent tanks. o vent chillers n glands of for centrifug valves in pi collection of	Scrubber Introl fugitive ill be contro operly to pre- joints and operly	ve emiss lled eith vent fug ther equ VOCs. oroper m e fugitive chanical ge and f m loadir	sions er by spra itive emiss uipment wi naintenanc e emission seal will b filtrate tank	sions, if ill be d e of provi c vents naterial	any. one to essuro ded a will bo s in
V	[Exist Follo 1. 2. 3. 4. 5. 6. 7. 8. 9.	ing & P wing m Airbon provid Care Regul preve Entire and te Period Breat Solve To eli all sol Close conne D. Minim 1. Enclo partic	sion d ropose easur rne du ding er will be lar ma nt leal e proce empera dic mo her va nt tanl minate vent p feedin ected t sures ular so	Vent-II letails wit ed]- res will b ist at all inclosures taken to aintenanc kages an ess will b ature. onitoring o lves will b k vents w e chance oumps. ing syster to vent ch umber of to chemi plvents th	h its mit e adop transfer store c e of va d thus r e carrie of work of work of work of work s of lea m will be fillers. flanges cal stora rough h	tigation me ted to prev s operation onstruction lves, pump ninimizing t ed out in th area will be ided on solionnected to akages from e provided , joints and age area, o	vent and co vent and co ns/ points w material pro os, flanges, the fugitive e e closed rea e carried out vent tanks. o vent chillers n glands of for centrifug valves in pi	Scrubber Introl fugitive ill be contro operly to pre- joints and operly	ve emiss lled eith vent fug ther equ VOCs. oroper m e fugitive chanical ge and f m loadir	sions er by spra itive emiss uipment wi naintenanc e emission seal will b filtrate tank	sions, if ill be d e of provi c vents naterial	any. one to essure ded a will be s in
v	[Exist Follo 1. 2. 3. 4. 5. 6. 7. 8. 9. 9. 10	ing & P wing m Airbon provic Care Regul preve Entire and te Perioo Breat Solve To eli all sol Close conne D. Minim 1. Enclo partic collec	sion d ropose easur rne du ding er will be lar ma nt leak proce empera dic mo her va nt tanl minate vent p feedin ected t sures ular so tor to	Vent-II letails with ed]- res will b ist at all inclosures taken to aintenance kages and ess will b ature. onitoring of lves will b ature. onitoring of k vents w e chance oumps. ing system to vent ch umber of to chemi plvents th be ensure	h its mit e adop transfer store c e of va d thus r e carrie of work oe provi vill be cc s of lea m will be nillers. flanges cal stora rough h ed.	tigation me ted to prev s operation lonstruction lves, pump minimizing f ed out in th area will be ided on sol onnected to akages from e provided , joints and age area, o	asures. vent and co ns/ points w material pro- os, flanges, the fugitive e e closed rea e carried out vent tanks. o vent chillers n glands of for centrifug valves in pi collection of	Scrubber Introl fugitive ill be contron operly to pre- joints and operly ve emiss lled eith vent fug ther equ VOCs. oroper m e fugitive chanical ge and f m loadir ind contr	sions er by spra litive emiss uipment wi naintenanc e emission. seal will b filtrate tank ng of raw n rol by scrul	sions, if ill be do e of pro- e provi a vents naterial bber / c	any. one to essure ded a will be s in lust	

Haz	ardous v	of odorous che vaste	emicais.							
(as p		ardous and Ot	her Waste	es (Manage	ement and Tran	sboundary Mo	vement) Rule	S		
Sr. no.	Type/Nam of Hazard waste		on Sch	egory and edule as HW Rules.	Quantity (MT/Annum)	Disposal Meth	od			
1	Used Oil	Equipme Machiner		5.1	0.2 MT/Year	Collection, Storage, Transportation & Sent to GPCB approved refiners				
2	Discarded barrels/ containers liners	Materials	&	33.1	5 MT/Year i. e.250 Nos./Month		orage, Transpor o supplier / GPC dor			
3	ETP Sludg	ge ETP		35.3	48 MT/Month		rage, Transpor TSDF site	tation		
4	Distillation Residue	Itiliation Process 36.1 24 MT/Year Collection, St & co-process industries or l common incir			rage, Transpor ng in cement	tation				
5 Inorganic Salt F		Salt Process		26.1	2400 MT/Year	Collection, Sto & Disposal at	rage, Transpor TSDF site	tation		
6	Ammoniur Sulphate				3000 MT/Year	Collection, Storage, Transportation & sale to end users.				
Solv Deta	ils of Solver	ement (If any nt recovery (A	s per resp							
-	me of vent	Total Input (Kg)	Qty. of Solvent		d Qty. Losses (K	of % g) Recover	% y Losses			
Me	thanol	10000	(9600	400	96.0	4.0			
	Propyl ohol	5000	2	4650	350	93.0	7.0			
Atmo Pri nor Sec	emission sources and its mitigation measures ospheric Distillation of Solvents: mary Condenser HE-01: Cooling Tower water will be used to condense the solvents an n-condensed vapors will be condensed in a Secondary Condenser. condary Condenser HE-02: Chilled water at 6 °C will be used to condense the ndensed vapors in the Secondary Condenser. C Trap Condenser HE-03: Chilled Brine at -35 °C will be used to trap any traces of So									
VO wh Va	C Trap Co ich is slippe cuum disti		03: Chille dary cond /ent:	d Brine at lenser.	-35 °C will be		-			

Г

Secondary Condenser HE-02: Chilled Brine at -17 ^oC will be used to condense the non-condensed vapors in the Secondary Condenser.
 VOC Trap Condenser HE-03: Chilled Brine at -35 ^oC will be used to trap any traces of Solvent which is slipped from Secondary condenser.

- The project proponent along with their experts/consultants attended the meeting of the SEAC held on 18/01/2018. During the meeting, the project was appraised based on the information furnished in the EIA Report. Technical presentation made during the meeting by project proponent. Since proposal is for expansion, compliance of CCA, action initiated by the GPCB were discussed and found satisfactorily addressed. PP mentioned that there is no public compliant and there is no litigation pending against unit before any court of law. EIA report reveals that baseline environmental study was carried out during the month of March 2017 to May 2017 to determine the prevailing status of ambient air, land use, noise level topography, meteorology, ecology & socioeconomic outline. Baseline ambient air quality was measured at nine locations. Monitoring was carried out for PM10, PM2.5, SO2, NOx, and VOC (isobutylene) within 10 km radius from the project site. The maximum concentrations of PM10, PM2.5, SO2 and NOx at each ambient air monitoring locations were compared with NAAQS for industrial, residential, rural and other areas. Concentration of PM10 ranged from 70.24µg/m3 to 82.36 µg/m3. Concentration of SO2 recorded ranged from minimum 13.51µg/m3 to maximum 19.15µg/m3. Concentration of NO2 recorded ranged from minimum 10.08µg/m3 to maximum 16.48µg/m3. Concentration of HCL founded BDL. Concentration of NH3 ranged from 1.2µg/m3to 6.8µg/m3.The incremental Ground Level Concentration (GLC) has been computed using ISC-AERMOD View" by Lakes Environmental, Canada. The maximum 24-hourly average ground level concentration for pollutant due to proposed project calculated using mathematical model (ISCST3) for PM10, SO2, NOx and resultant values also meets with NAAQ standards . Committee observed that PP has proposed Dust collector for proposed Steam Boiler. Unit has also proposed alkali Scrubber for proposed process gas emission. Total fuel requirement of wooden waste/ white coal/ imported coal 1 MT/day and Diesel of 7Lit/Hr. Total water consumption after expansion will be 49 KLD which will be sourced from GIDC water supply. Total wastewater generation will be 22.40 KLD. Generated domestic wastewater of 2.40 KLD will be disposed to soak pit. Industrial waste water after treatment will be sent to CETP, Sarigam. Adequacy of proposed area with reference to the proposed expansion was discussed in depth. Considering storage of inventory with limited space availability in the premises, it was decided to allow project by allowing any two proposed product at any point of time considering lower area availability of the premises.
- During appraisal, committee found all the TOR addressed satisfactorily except detail of hazardous waste.PP was asked to submit following. It was decided by the Committee that uponsubmission of the following details, proposal will be considered in one of the upcoming meeting. (1) Details of spent HCl generation as bleed liquor (Scrubber outlet) with source, quantity and its management considering hazardous and other waste Rules 2016. (2) Details of spent solvent generation as bleed liquor with source, quantity and its management considering hazardous and other waste Rules 2016. (2) Details of spent solvent generation as bleed liquor with source, quantity and its management considering hazardous and other waste Rules 2016. (3) Undertaking of manufacturing any two proposed product at any point of time having upper cap of 250 MTPM keeping proposed product profile in view with no wood to be used as fuel.
- PP has replied for above mentioned additional details vide their letter on 20/02/2018.
- The proposal was considered in the SEAC meeting dated 26/02/2018. PP has submitted as under: Spent HCL will be generate from the scrubbing system and quantity will be 30 KL/Month. Company will send spent HCl to ETP for treatment purpose. Then treated effluent will be sent to CETP, Sarigam for further treatment. PP has submitted details of spent solvent generation as bleed liquor with source, quantity and its management considering hazardous and other waste rules, 2016. PP has also submitted an undertaking of manufacturing any two proposed product at any point of time having upper cap of 250 MTPM keeping proposed product profile in view with no wood to be used as fuel.
- Committee observed that compliance of the additional information sought was found satisfactory.

After detailed discussion, it was decided to recommend the project to SEIAA, Gujarat for grant of Environmental Clearance.

13.	SIA/GJ/IND2/18485/2017	M/s. Prima Chemicals Unit III	Reconsideration for
		Plot no: 337, 338. GIDC Odhav, Ahmedabad.	EC – Appraisal

Project / Activity No.: 5(f)

Project status: Expansion

- PP has submitted online application vide no. SIA/GJ/IND2/18485/2017 dated 03/11/2017 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide letter dated 01/05/2017.
- Project proponent has submitted EIA Report prepared by M/s: Ramans Enviro Services Pvt. Ltd, Ahmedabad based on the TOR issued by SEIAA
- This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

Sr. No.	Name of Products	Existing (MT/Month	Proposed (MT/Month)	Ultimate (MT/Month)	CAS No	End User
Gro	up No1					
1	1- Phenyl 3 methyl 5 Pyrazolone				89-25-8	Used as an
2	Para Tolyl-3 methyl 5 Pyrazolone				86-92-0	Intermediate for
3	1-(3-Chlorophenyl)-3 methyl 5-Pyrazolone				90-31-3	Manufacturing of dyes.
4	3- methyl 5- Pyrazolone				108-26-9	
5	1-2 methyl 4- sulphophenyl 3 methyl 5-Pyrazolone			40.00	118-07-0	
6	1-3 sulphoamido phenyl 3 methyl 5- Pyrazolone	30.00	40.00		89-29-2	
7	1-4 sulphoamido phenyl 3 methyl 5- Pyrazolone				13269-73- 3	
8	1-Phenyl 3-methyl 5 amino Pyrazolone				1131-18-6	
Gro	up No2					
1	1-3 sulphophenyl 3 methyl 5 Pyrazolone				119-17-5	
2	1-4 sulphophenyl 3 methyl 5 Pyrazolone			30.00	89-36-1	
	Total	30.00	40.00	70.00		-

• The project falls under Category B1 of project activity 5(f) as per the schedule of EIA Notification 2006

• PP was called for presentation in the SEAC meeting dated 19/01/2018.

• Salient features of the project are as under:

Sr. Particulars

no.											
Α	Water										
i	Source of Water Supply						GIDC				
	(GIDC, Bore well, Surfa	ce water e	etc)								
	Status of permission fro	m the con	cern auth	ority.; re	eques	t let	ter for i	ncrease in v	water sup	ply has	s been
	submitted to GIDC			-						-	
i	Water consumption (KL	/day)									
		Existing	Proposed		Tota	ıl aft	ter	Remarks			
		KL/day	(Addit				ion				
			KL/day		KL/d	lay					
	(U) Domestic	1.5	0.5	2	2.0	-					
	(V) Gardening	0.00	0.00		0.00)					
	(W)Industrial										
	Process	8.0	10.0		18.0)					
	Washing	0.5	1.5		2.0						
	Boiler	1.0	1.0		2.0						
	Total (A+B+C)	-	_		24.0	0					
i	Waste water generation	(KL/dav)						ı			
-	Category	Existing	Propose	т be	otal a	fter	Ren	narks			
		KL/Day	(Additio		Expans						
		IXE/Duy	KL/day	,	(L/day		•				
	(N) Domestic	1.0	0.2		1.2		•	To septic T	ank		
	(O) Industrial	1.0	0.2			-					
	Process	7.0	7.6		14.	6	• 12	2 KLD Dilute	2		
	Washing	0.5	1.5		2.0			ream will be			
	Boiler	0.2	0.2		0.4			ent to CETP			
	Total Industrial	7.7	9.3		17.			KLD			
	waste water	1.1	5.5		17.0		Concentrated				
								tream will be			
								ent to Comn			
								oray Dryer.			
	Spent acid	9.3	1.2		10.50		Sent to Novel				
v	Treatment facility with c							e Primary T			
	(ETP, CETP, MEE, STR							CETP :@1		,	
	(,,							Common		er : @	5 KLD
								Novel:@1			
v	Mode of Disposal & Fin	al meeting	point					tic: 1.2 KLD			
		J	I					ial: 17.0 KLI			
vi	Reuse/Recycle details	KL/dav)									
B	Air [Existing & Propose										
	Flue gas emission deta										
	No. of Boilers/TFH/Furr		sets etc. v	vith cap	acities	s					
	viz. TPH, Kcal/hr, MT/h			•							
	-	,									
	Source of	01-1	NI	Quant	ity	Τv	pe of		Emissi	on	
	SR emission	Stack	Name	of Fu			ssions		Standa		
	· With Capacity	Height	of the	MT/h			e. Air	APCM			
	e.g. Boiler	(meter)	fuel	MT/D			utants				
	Steam Boiler				<u> </u>				150		
	1 (800 kg/hr)		Noture			F		Adamint	mg/Nm ³		
		12	Natural	10			PM	Adequat e Stack	100 ppn		
	Thermic Fluid		Gas	SCM/	hr		SO₂		50 ppm		
	2 Heater (12 Lack KCal)					IN	10 _x	Height			
										1	

	3	D.G.Set (75 kVA)	9	D	iesel	17.5	L/hr						
		ess gas i.e. Type (ing & Proposed]	of pollut	ant ga	ses (S	50 _{2,} HC	CI, NH₃	, Cl _{2,} NO _x	etc.)			
	Sr. no.	Source of em	ission	Type emiss		Stack Hei (me	ght	APC	N		ssion ndard		
	1	Reaction Vess Nos.) Reaction Vess		SC) ₂	1	-	Two Sta Alkali Scrubbo	•	40 mg/N	m³		
	3	No.) Fluid bed stea dryer (2 No.) (closedsystem		PM		1	1	Bag Filt		150 mg/l	Nm ³		
	[Exist Haza (As pe	ve emission detai ing & Proposed] : rdous waste er the Hazardous	ls with i Covere	d in Fi	inal R	apid E	IA repo						s 2016.
	Sr. no.	ing & Proposed] Type/Name of Hazardous waste	Source genera		and		Quan (MT//	tity Annum)	Dis	sposal Met	thod		
	1	ETP Sludge	From Plant	m ETP		53		40 MT/month		Collection, Storage, Transportation & Disposal to TSDF.)
	2	Used Oil	Plant a Machi		5	5.1	5 L/	month		Collection, Storage, Transportation & Disposal by sale to registered re-cycler.		-	
	3	Discarded Container/Line rs	Raw materi	als	3	3.1	Nos	15 /month Kg/M)	Т		ion, Stor ion & Di	rage, sposal b	y
	4	Process Sludge	From Proces	SS	2	6.1	0.	.650 Month		Collecti ransportat	on, Stor	age,	
	5	Spent Acid	From Proces	SS	2	6.3	(@	MT/day)10.5 (LD)	TI	Collect ransportat sale to	ion, Stor	sposal b ered	у
	6	Distillation residue	Fro Proc		2	0.3	50 K	g/Year	Т	ransportat	ion, Stor ion & Di IF of NE	isposal to	0
+	Memt Comr Detail	tity of discarded of pership details of mon MEE etc. Is of Non-Hazardo	containe	rs mus FSDF,	CHW	/IF,	С	ETP, TSI	-	CHWIF, C EIA report	ommon		ryer
	Solve	/ and others) ent management is of Solvent reco						overed in 16 in cha		al Rapid E	IA repor	rt in sect	ion

	ToR)		
ii	VOC emission sources and its mitigation measures	Covered under section 3.3.3 in Chapter 3 of Final rapid EIA report	
]

- During the meeting dated 19/01/2018, technical presentation made during the meeting by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented before the committee.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March 2017 to May 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, HCI and VOC at 6 locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD. The resultant concentrations are within the NAAQS.
- Committee observed that PP has proposed Natural gas as fuel so no required APCM. Unit has provided two stage alkali scrubbers to reaction vessels and bag filter to fluid bed steam dryer. The total industrial water consumption will be 24 KLD which will be sourced from GIDC only. The industrial wastewater generation will be 17 KLD. The dilute stream of 12 KLD will be sent to CETP and concentrated stream of 5 KLD will be sent to common spray dryer. The domestic wastewater will be finally discharged into the septic tank. Spent acid of 10.5 KLD will be sent to NOVEL. After deliberation, it was unanimously decided to consider the project for further consideration only after submission of the following: (1) Action plan for additional waste water generation considering 18 (1) (b) directions under the Water Act 1974 imposed by CPCB on CETP. (2) Latest certificate from NOVEL with additional quantity i.e. 10.5 KL/day spent sulphuric acid. (3) Green belt / adequate plantation on road sides and suitable open areas in consultation with the GIDC/ local authority / GPCB and submit an action plan of plantation fornext three years to the GPCB.
- PP has replied for above mentioned additional details vide their letter dated 23/02/2018.
- The proposal was considered in the SEAC meeting dated 26/02/2018.
- PP has submitted as under: Wastewater to be sent to CETP after expansion will not exceed beyond the present consented quantity and it will in compliance considering 18 (1) (b) directions under the Water Act 1974 imposed by CPCB on CETP.
- PP has submitted revalidated certificate dated 22nd January 2018 obtained from NOVEL, Vatva for spent Sulphuric acid. They have already finalized the location for compensatory plantation by group companies of Prima Chemicals having an area of @ 2000 sq meter .The location is the premises of Ambaji Temple at VIIageKanij, DistMehmedabad. The gram Panchayat has agreed in principle for the same and the agreement is executed between Prima Chemical group of company and Kanej gram panchayat on 25/1/2018. Group Company will allocate the annual budgetary provision of @ Rs 1.0 lac/Annum for first five years for development of and maintenance of the greenbelt and will continue to maintain further. The detailed greenbelt development plan with proposed annual cost estimates is submitted.
- Committee observed that compliance of the additional information sought was satisfactory. After detailed discussion, it was decided to recommend the project to SEIAA, Gujarat for grant of Environmental Clearance.

14	SIA/GJ/IND2/20191/2017	M/s: Kunder Chemicals Pvt. Limited Plot No 316/A, 2nd Phase area, GIDC Notified Industrial Vapi, Ta: Vapi, Dist-	Reconsideration for EC – Appraisal
		Valsad 396 195. Gujarat.	

Project / Activity No.: 5(f)

- PP has submitted online application vide no. SIA/GJ/IND2/20191/2017 dated 03/11/2017 for obtaining Environmental Clearance.
- The ToR was issued by MoEF&CC, New Delhi vide letter no. J-11011/174/2017-IA.II (I) dated: 30/05/2017.
- Project proponent has submitted EIA Report prepared by M/s: Eco Chem Sales & Services, Surat based on the TOR issued by MoEF&CC.
- Project site is located within the Notified area of Vapi. Distance of common boundary between Gujarat and UT- Daman, Diu and Dadra Nagar Haveli is less than 5 Km from the proposed site. However, referring to the letter received from (1) Member Secretary, PCC, Daman, Diu and Dadra Nagar Haveli, Daman vide dated 23/06/2016 and (2) Administration of Dadra and Nagar Haveli, U.T. (Survey and Settlement Department) vide dated 20/07/2017, General Condition (GC) of the EIA Notification 2006 as amended is not applicable in this instant proposal and this proposal is considered as Category B project.
- This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

Sr. No.	Name of the Products	CAS no.	Quantity MT/Month			End-use of product
			Existin	Proposed	Total	
			g			
1.	Copper Phthalo Cyanine Green	1328-53- 6	20	80	100	Used in inks, coatings, many plastics, printing
2.	Pigment Beta Blue 15.3 & 15.4	147-14-8	0	100	100	ink and packaging industry
3.	Pigment Emulsions/ Dispersions		0	100	100	Used in textile, paint, detergent paper, ink industry, soap industry and many others.
	Total		20	280	300	-

- The project falls under Category B1 of project activity 5(f)as per the schedule of EIA Notification 2006
- PP was called for presentation in the SEAC meeting dated 19/01/2018.
- Salient features of the project are as under::

Sr.	Particulars		Detail	Details				
no.								
Α	Water							
i	Source of Water Supply		GIDC	Water Supply				
	(GIDC, Bore well, Surface wa	ter etc)						
	Status of permission from the	concern authority.						
	Water permission letter date	ed 23/09/2016by GI	DC.					
	•	•						
ii	Water consumption (KL/day)							
	Category	Existing	Proposed	Total after	Remarks			
		KL/Day	(Additional)	Expansion				
			KL/day	KL/day				
	(P) Domestic	5.0	5.0	10.0				
	(Q) Industrial	•	1	1				

	Pro	cessing & Washing			35	5.5	29	5.65	5	331.15			
	Boil					2.0		8.0	-	30.0			
	Coo	lina			5	.0	Ę	5.0		10.0			
		pr/container/equipm	ent washi	ina		.0		5.0		10.0			
		ubber				.5				2.69			-
	Tota					.0		1.0		2.0			
	100		dustrial w	/ater		1.0		1.84	1	395.84			
iii	Wast	e water generation			•		00	1.0-		000.04			
				Existing KL/day	•		oosed litional lav	I)	Total af Expansi KL/day		Rem	arks	
		(X) Domestic		4.0		4.0			8.0*				
		(Y) Gardening											
		(Z) Industrial						1					
		cessing & Washing		31.5		252.	35		283.85				
	Boil			2.0		8.0	00		10.0				
	Coo			<u>2.0</u> 1.0		1.0			2.0				
	Floo			5.0		5.0			10.0				
	-	Jubber		0.5		-0.05	5		0.45				
	Tota			<u>0.5</u> 44.0		-0.08 270 .			0.45 314.3				
				_									
iv		otal Industrial wast ment facility with c a		40.0		266.	3 stic Ef	<u></u>	306.3				
v vi vii B	Reus	e of Disposal & Fina e/Recycle details (F Existing & Proposed	۔ KL/day) ا]	point	Ir T a r s e D to	ndusti otal ir nodifie econd ffluent oomes o ETP ndustri	rial Ef ndustri d efflu lary tre t drain tic: Tre	flue ial \ uent eatm age eate	nt: Waste W trial efflu treatmen nent unit line to C d in sept	uent will nt plant c and disc ETP for f ic tank au	nera be f consi charç furth nd o	o ETP tion is 306 treated in p sting of prim ge into unde er treatment verflow will t urther treatm	roposed hary and erground be taker
1	No. c etc. v MT/h	gas emission detail of Boilers/TFH/Furna vith capacities viz. 7 r, KVA etc. Source of	aces/DG s					T\	/pe of			Emission	
	S R. no	emission With Capacity e.g. Boiler (8 TPH)	Stack Height (meter)	Nam of th fue	e	Quai of F MT// MT//	uel hr&	em s i	ission i.e. Air llutant s	APCM		Standard	
	1	Capacity of steam boiler: I (0.6 TPH)	11 meters	Natu I ga		20 SCM		5	rocess Stack Ilutants	-		PM: <150 mg/Nm ³ SO _X : < 100 ppm	
	2	Capacity of steam boiler: II (0.6 TPH)	11 meters	Natu I ga		20 SCN			: D _{2,} HCI, H _{3,} CI _{2,}			NO _x : < 50 ppm	

3	Capacity of Thermopack: I (4 lacs k cal)	11 meter	Natu s I ga			NO _x e	ເບ.)				
4	Capacity of Thermopack: II (4 lacs k cal)	11 meter	Natu s I ga								
5	Capacity of D G set(187.5) (Stand By)	11 meter	s HSI	D 8 kgs	s/hr						
6	Capacity of steam boiler: II (4 TPH)	I 11 meter	Natu s I ga	-							
	ess gas i.e. Type ting & Proposed]	of polluta	nt gases	(SO _{2,} HCI,	NH _{3,}	CI _{2,} NO	_x etc.)				
1	Chlorinator & drowning vessel (Existing)	11 meters			mg	l: <20 /Nm ³	wate follow alkal scrut	ved by i ober			
	Chlorinator & drowning vessel (Proposed)	11 meters			_	2 : < 9 J/Nm ³	wate follow alkal scrut	ved by i ober			
2	Spin Flash dryer	11 meters				: <150 /Nm ³	Cyclo sepa follov bag f	rator ved by			
[<u>Exis</u> Haza (as p	ive emission deta ting & Proposed] i rdous waste er the Hazardous ting & Proposed]					and Tra	ansbo	undary Mov	vement) Ru	ules 201	
			of C	ategory an	nd	Quantit	V	Dispos	al Method		
Sr. no.	Type/Name of Hazardous waste	Source genera	tion So	chedule as er HW Rule	es.	(MT/An (After Expans	num)				
	Hazardous		tion So pe		es.	(MT/An (After Expans	num)	Sell	to registere refiner	ed re-	
no.	Hazardous waste		tion Soperation Soperation Soperation Soperation (5)	er HW Rule	es.	(MT/An (After Expans 1	inum) sion)				
no. 1.	Hazardous waste Used oil Discarded		tion September 2015 (5	er HW Rule	es.	(MT/An (After <u>Expans</u> 1 20	inum) sion) .0	Sel	refiner Il to authori	ized I &	
no. 1. 2.	Hazardous waste Used oil Discarded containers		tion Se pe (5 (3 (2	er HW Rule .1) 3.1)	es.	(MT/An (After Expans 1 20	<u>sion)</u> .0 .0	Sel Sel	refiner Il to authori recycler ell to actua	ized I & sers	

i		Membership details of CETP, TSDF, CHWIF, Common MEE etc.	We have already received CETP as well as TSDF Membership Certificate of Vapi Green Enviro Limited with Certificate No.: VGEL/2016-2017/0144- 15 dated:03/05/2016
I		Details of Non-Hazardous waste & its disposal (MSW and others)	
[)		
Ι		Solvent management (If any) Details of Solvent recovery (As per respective ToR)	
Ι		VOC emission sources and its mitigation measures	Source: Mitigation Measures:

- During the meeting dated 19/01/2018, technical presentation made by project proponent. During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented during the meeting. The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March 2017 to May 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, HCI and VOC at 8 locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD. The resultant concentrations are within the NAAQS
- The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan has been covered in the RA report.
- Total industrial Waste Water Generation is 306 KL/Day and entire industrial effluent will be treated in proposed modified effluent treatment plant consisting of primary and secondary treatment unit and discharge into underground effluent drainage line to CETP for further treatment.
- After detailed discussion, it was decided to consider the project further only after submission of the following:
 - 1. Action plan for additional waste water generation considering 18 (1) (b) directions under the Water Act 1974 imposed by CPCB on CETP. Zero Liquid Discharge scheme in this regard.
 - 2. Qualitative and quantitative analysis of hazardous waste streams Spent HCI, Spent Aluminum Chloride etc. generation from the manufacturing process/scrubbing system and its feasibility report for reuse within premises. Worst case scenario shall be considered for generation of wastes streams. Explore the possibilities to complete reuse of above mentioned hazardous wastes streams within premises.
- PP has replied for above mentioned additional details vide their letter on19/02/2018.
- The proposal was considered in the SEAC meeting dated 26/02/2018.PP has submitted as under:
- Action plan to maintain existing effluent load as per existing CCA issued by GPCB and no additional discharge into CETP after proposed expansion. Presently, they are generating 40 m3/day of industrial effluent, which is treated in their own ETP and finally discharge into CETP for further treatment and disposal. For the discharge of 40 m3/day of industrial effluent they are having valid CCA of the board.
- After proposed expansion, there will be increased in industrial waste water by 266.3 m3/day. To maintain

existing industrial effluent discharge considering 18 (1) (b) directions under the Water Act 1974 imposed by CPCB on CETP, they proposed to provide RO followed by MEE for additional effluent treatment.

- Details of revised water consumption, waste water generation along with water balance diagram, hazardous waste generation and revised details of effluent treatment plant/RO/MEE are submitted.
- After proposed expansion, they will generate maximum 1000 MT/Anum of hydro Chloric acid (30%) and 14400 MT/Anum of Aluminium Chloride solution (8-12%) from the scrubbing of chlorine gas and process respectively.
- They are not using hydro chloric acid in the process and also using aluminium chloride powder (100%) in CPC green product.Hence there are no possibilities to reuse/recycle both the said hazardous waste.
- They will sell both the hazardous waste having authorization under hazardous waste rule 2016.
- PP has proposed to sell hydro chloric acid (30%) to actual and authorized users for the manufacture of Calcium chloride powder and aluminium chloride solution (8-12%) to actual and authorized users for the manufacture of Poly Aluminium Chloride solution.
- Committee observed that compliance of the additional information sought was satisfactory. After detailed discussion, it was decided to recommend the project to SEIAA, Gujarat for grant of Environmental Clearance.

15M/s. Sika India Private Limited
Plot no. 916, GIDC Jhagadia, Ta- Jhagadia,
Dist – Bharuch.Reconsideration for
EC – Appraisal

Category of the Project: 5(f)

Project Status: Expansion

- This office has received an application vide their online proposal no. SIA/GJ/IND2/20698/2017 dated 26/10/2017 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 18/02/2017.
- Project proponent has submitted EIA Report prepared by M/s: Kadam Environmental Consultants, Vadodara; based on the TOR issued by SEIAA.
- Public Hearing for the project is exempted as per paragraph 7(i) (III) (i) (b) of the EIA Notification, 2006 since the project site is located in the Notified Industrial area.
- This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

Sr.	Nome of the Dreducto	CAS no.	Quantity			End use of product
No.	Name of the Products	CAS 110.	MT/Annum Existing	Proposed	Total	End-use of product
1	Concrete Admixture Products		90000	0	90000	
2	Cementitious Mortar (Powder) Products		60000	0	60000	
3	Epoxy Resin based Industrial Flooring, Adhesives & Grouts Products		15000	0	15000	Construction chemicals
4	Polymer MR (Medium Range Polymer)		1250	-1250	0	
5	Membrane (Liquid		3000	0	3000	

	Applied Membrane Poly Urathrene, Poly Vinyl Chloride &Waterbar)				
6	Sealant (Poly Sulphide)	1500	0	1500	
7	Polymer (PCE)	0	10000	10000	
8	Trading Products (Construction Chemicals)	0	1800	1800	

• PP was called for presentation in the SEAC meeting dated 24/01/2018.

• Salient features of the project are as under:

Sr.	Particulars						Details		
no. A	Water								
i	Source of Water Suppl (GIDC, Bore well, Surfa	ace water etc		prity : Pr		GIDC and attached as Annexure 14 in EIA			
	Report		in autro	onty Pe		akena		eu as Annexul	
ii	Water consumption (KI	_/day)							
		/ /	•		1				
		Existing KL/day	(Addi	oosed tional) /day	Total at Expans KL/da	ion	Re	marks	
	(AA) Dome stic	4.5	3.5		8				
	(BB) Garde ning	30	-		30				
	(CC)				T				
	Process	72	1.5		73.5				
	Washing	3	0.5		3.5				
	Boiler	2	-		2				
	Cooling	0	0		0				
	Others								
	Total (A+B+C)	111.5	5.5		117		8.4 KL water will be recycled water		
iii	Waste water generation	n (KL/day)							
	Category		isting /Day	(Ade	posed ditional) L/day	Exp	al after ansion _/day	Rema	rks
	(R) Domestic	3.6		1.4	-	5	-		
	(S) Industrial								
	Process	0		-		0			
	Washing	3		0.5		3.5			
	Boiler	0.2		-		0.2			

	Cooling	0		0		0		
T)	Г) Others	I				L		
Ċ	PU Regeneration							
Ba	ackwash from Raw ater Treatment Plant							
D	M Regeneration &							
	cycle water from RO,							
	& Boiler blow down							
То	otal Industrial waste water	6.8	1.9)		8.7		
	nent facility with capa CETP, MEE, STP et					kisting ETP is o 7 KLD waste w		dequate to tr
	of Disposal & Final m		nt			omestic along v		wastewater
					be	e sent to ETPfo Il be used for p	r treatment ar	
	/Recycle details (KL/	day)				4 KLD		
	kisting & Proposed] as emission details							
No. of	Boilers/TFH/Furnace PH, Kcal/hr, MT/hr, K		etc. with c	apacities				
SR. no.	Source of emission With Capacity e.g. Boiler (8 TPH)	Stack Height (meter)	Name of the fuel	Quantit of Fue MT/hr8 MT/Day	Í &	Type of emissions i.e. Air Pollutants	АРСМ	Emissior Standard
	····,		As pe	er EC Rece	eiveo	d		
1	Boiler stack* operates max 8 hrs/day	9	HSD or Natural Gas	15 - 20 Lit/hr or 16.5 - 22 m3/hr	2			
2	DG stack* 630 KVA- 2 nos. – Only as stand by when Power goes off (will be removed)	9	HSD or Natural Gas	260 Lit/h or 290 m3/l		SO ₂ , NOx, PM	Adequate Stack Height	80 μg/m ³ 80 μg/m ³ 100μg/m ³
3	Sand Dryer * Only in Monsoon/winter season @ 6-8 hours/Day	21	HSD or Natural Gas	70 - 80 Lit/hr or 90 m3/hi				
		Amendme	ent Require	ed for (Tota	al af	ter amendment	t)	
	DG stack* 750			154		SO ₂ ,	Adequate	80 μg/m ³ 80 μg/m ³

Sr. n	o. Source emissi		-	/pe of lission	Stack/V Height (m		AP	СМ	Emission Standard	
				As per	EC receiv	/ed				
1	Mortar plar vents (2 M			PM	28		Bag	Filter	100µg/m ³	
2	Admixture	Plant		PM	11		Water S	Scrubber	100µg/m ³	
3	Industrial Fl Coatings Adhesives	and plant		PM	11		Bag Filter		100µg/m³	
4	Industrial FI Coatings Adhesives includ	and plant		НС	11			n Active ter	100µg/m ³	
5	Concrete	Lab		PM	11		Bag	Filter	100µg/m ³	
6	Polymer MF (To be Rep with Polyme Plant	placed r (PCE)		PM	11		Water s	crubber	100µg/m ³	
7	Membrane	Plant		PM	11		Bag	filter	100µg/m³	
8	Sealant F	Plant		HC	11			n Active ter	100µg/m ³	
				рі	roposed					
	Polymer (Plant (In pl Polymer MR	ace of	РМ		11		Water so	crubber	100µg/m ³	
Fugitiv the eve control Hazaro (as per	ng & Proposed] e emission or lev ent of failure of po <u>measures are re</u> dous waste r the Hazardous a ng & Proposed]	ollution co ectified to	ontrol s achiev	systems add ve the desir	opted by the ed efficien	ne unit, Icy.	the respe	ective unit i	is restarted until	
						Quanti	ty			
	_			Category and		/T/Mor	<u>nth)</u>			
Sr. no.	Type/Name of Hazardous waste	Sourc genera		Schedule as per HW Rules.	As per EC received	Addition	Amendmen t Required	Disp	oosal Method	
1	Used/Spent oil	Sale to GPCB Approve vender	ed	5.1	0.1	-	0.1		Generation from ner, Forklift and	
2	Discarded containers / barrels / liners	Sale to approve vender	ed	33.1	25	10	35	will be ge	rs/barrels/drums enerated during uction as all raw	

i		emission sources				No VC	C emiss	ion
		ent management Is of Solvent recov		pective ToR)	Solver	nts are g	oing with the products
D	(MSV	/ and others)		•		dispos	sed to sc	rap dealer
i	MEE	pership details of (etc. Is of Non-Hazardo		•	mon	& RSF EIA re	PL are give port	tters of TSDF of BEIL, GSPL ven as Figure 2-8 to 2-10 in per/ bags will be sold /
	9 Quan	Products or off specification tity of discarded co	to Approved TSDF ontainers must	28.5 be in MT/An	0 num.	3.33	3.33	grade (Off quality) material generated during manufacturing process
	8	Used Filter Expire	to Approved TSDF For Landfill	36.2	0.004	-	0.004	the production Expired material comes to plant for disposal, Off
	7	waste water treatment	to Approved TSDF For Landfill	35.3	0.2	0.1	0.3	ETP Waste generated during
		residue Chemical sludge from	TSDF For Landfill					Boiler Stack Sludge generated from the
	6	Flue gas cleaning	For Landfill to Approved	35.1	0.1	_	0.1	0.5 % of the production Waste generated from
	5	Waste Residue (Resin)	For Landfill to Approved TSDF	23.1	30	0.3	30.3	Expired material comes to plant for disposal, Off grade (Off quality) material generated during manufacturing process .Waste generated during processing of admixture & Powder plant. Approximate
	4	Process Waste Residue & Sludge	For Incineration to Approved TSDF	21.1	30	0.3	30.3	Expired material comes to plant for disposal, Off grade (Off quality) material generated during manufacturing process .Waste generated during processing of pigments in Epoxy plant. Approximate 1 % of the production
	3	Contaminated aromatic, aliphatic or naphthenic solvents may or may not be fit for reuse	For Incineration to Approved TSDF/ to be Sold approved recyclers	20.1	20	0.5	20.5	Expired Raw materials, waste solvent generated from cleaning of epoxy blenders etc.
		waste / chemicals						and the quantity of wastes depends upon the production.

- During the meeting dated 24/01/2018, technical presentation made during the meeting by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report, details presented before the committee and various issues raised during the public hearing and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 5 km radial distance from project site for the period March 2017 to May 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, HC, CO and VOC at 8 locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST 3 model. The resultant concentrations are within the NAAQS. The modeling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- This unit has received EC for 1250 MT Polymer MR Production from SEIAA, Gujarat vide Letter No. SIEAA/ GUJ/EC/5(F)/3074/2015 dated 21.08.15. Now they proposes to discontinue production of Polymer MR and to introduce another grade of Polymer i.e. Polymer (PCE).
- To manufacture Polymer (PCE), existing Manufacturing facility of Polymer MR will be used as manufacturing process of Polymer MR & Polymer (PCE) is same. Expansion will be done in existing infrastructure installed by reducing batch time and increasing number of shifts (2 shifts). No additional installation of plant and machinery will be required for proposed expansion.No wastewater generation from manufacturing process as water consumed forproduction is consumed with products. Wastewater generated from Boiler (0.2 KLD), Washing (3.5 KLD), and Domestic (5KLD) is treated in Effluent Treatment Plant of 10 KLD Capacity.Primary, Secondary and Tertiary treatment is provided to meet GPCB norms andtreated effluent meeting on land irrigation norms is used for greenbeltdevelopment. Treated effluent is used for greenbelt Development.
- While discussing about the compliance status, PP informed that they have submitted Compliance report to concern authority. However, inspection by concern authority is awaited. Committee decided to ask RO-GPCB through the Member Secretary GPCB to get the Certified Compliance Report (CCR).
- Issues related to compliance of existing project, waste water management, reuse of waste water for green belt, VOC emission etc. has been discussed in detail. After detailed discussion, it was decided to consider the project further only after submission of the following:
- Compliance of ToR no. 5 & 6.
- Certified Compliance Report (CCR) from the Member Secretary, GPCB as per the MoEFCC's Circular no. J-11011/618/2010- IA(II) (I) dated 30/05/2012 and Circular no. J-11013/6/2010-IA-II (Part) vide dated 07/09/2017.
- Waste water management by exploring the possibilities to reuse treated waste water for industrial purposes instead of gardening-plantation to avoid any soil contamination.
- PP has replied for above mentioned additional details vide their letter on 16/02/2018.
- The proposal was considered in the SEAC meeting dated 26/02/2018. PP has submitted as under:
- Details regarding manufacturing process with chemical reactions, mass balance, cleaner production, CAS

no.s of products etc. PP has submitted action taken report for the non-complied points of Certified Compliance report of RO-Bhopal. Regarding use of treated waste water for industrial purpose, PP informed that they have gardening/plantation area of 8728 sq. m. and due to utilization of treated waste water for gardening, fresh water consumption will be reduced. PP has also mentioned that treated water is not usable in their process as it will effect on product quality and specification.

• Committee observed that compliance of the additional information sought was satisfactory. After detailed discussion, it was decided to recommend the project to SEIAA, Gujarat for grant of Environmental Clearance.

16. SIA/GJ/IND2/20245/2017	M/s: Pooja Industries Plot No. D-2/CH/148, Dahej-II, Industrial Estate, Dahej, Dist.: Bharuch	Reconsideration for ToR [Terms of Reference] (Referred back case)
----------------------------	--	---

Category of the unit: 5(f)

Status of the project: Expansion

As you are well aware, M/s. Pooja Industries applied for Terms of Reference [ToR] and the SEAC recommended the project for grant of Terms of Reference [ToR] vide this officeletterno. EIA-10-2017-IND2-127/1857dated 15/11/2017 for setting up of '**Synthetic Organic Chemicals**' manufacturing plant with the products mentioned therein.

The case was referred back by the SEIAA, Gujarat vide no. SEIAA/GUJ/EC/5(f)/8/2018 dated 10/01/2018 with the following point:

1. To verify the status of existing unit & its compliance.

Project proponent submitted reply vide letter dated 02/02/2018 for the above mentioned point. PP has submitted regarding the status of existing unit and its compliance. PP submitted that during last two years, Dahej plant has been running at lower production capacity as and when they need production. However, they have valid CCA and the conditions of same are complied. Copy of CC&A no. AWH - 76532, dated 18/02/2016 valid till 11/01/2021 and its compliance is submitted. PP ensured that there are no court cases pending against the project and there are no public complaints against the unit.

The case was reconsidered in the SEAC meeting dated 26/02/2018.

Committee noted that this unit is engaged in manufacturing of inorganic products and now applied for manufacturing of organic products. PP has furnished details of existing activity..

Based on the information furnished by the project proponent with relevant documents, Committee decided to correct project/activity as below:

Category of the unit : 5(f)

- This office has received an application vide their online proposal no. SIA/GJ/IND2/20245/2017 dated 14/09/2017 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- This is a new unit proposes manufacturing of synthetic organic chemicals as tabulated below:

|--|--|

		No.					MT/Month	product				
		<u>1.</u>	G-Salt		842-	18-2	50	Dyes-intermediate				
		2.	Gama A	cid		51-7	25	Dyes-intermediate				
		3.	K-Acid			03-6	25	Dyes-intermediate				
	• Th			nderCategory B of p				edule of EIA Notificati	on 2006.			
				presentation in the	•	•	., .					
				of the project includir		•						
Sr.			Р	articulars	-		D	etails				
A	Total	cost of	f Propose			E	xisting: 1.2 Cror					
		n Crore					roposed:8.44 Cro					
							otal: 9.64 Crore					
			urring cost	or EMS (Environmer t towards the Enviro								
В	Total		rea (Sq. M	(leter)		F	xisting: 10662.71					
	rotar	1 10174	ica (oq. ii				roposed: NIL					
							otal: 10662.71					
	Greer	n Belt /	Area/Tree	Plantation Area (sq	. Meter)		xisting:					
							roposed:3500					
			1.0	<u></u>		T	otal: 3500					
С			nt Genera	ation			victing, 50					
	1.Dire	CL					Existing:50 Proposed: 58					
							Total: 108					
	2.Indi	rect					Existing:5					
	_						Proposed: 25					
						T	Total:30					
D	Wate											
i			/ater Supp			G	IDC					
				face water etc) from the concern aut	thority		Applied					
ii			umption (k		lifonty		Applied					
	vvatci	00130		(L/ddy)								
				Category		Quar	ntitv					
				0,		KL/da						
				(A) Domes		5						
				(B) Garder		5						
				(C) Industr		00						
					Process /ashing	28						
				V	Boiler	130						
				(Cooling	40						
					Others	1						
					Total	209						
iii	Waste	e wate	r generati	on (KL/day)								
]	Category	Qu	antity	Remarks					
				catogory		'Day						
			-	(A) Domestic	5	<u> </u>	To Septic					
							Tank/soak pit					
				(B) Industrial			710	_				
				Proce	ess 30		ZLD					

			-		Washi		- -3				
			-		Boi Cooli	ing 2					
			-	Total Ir	Othe ndustrial was		31	_			
	—	har -	· · · · · · · · · · · · · · · · · · ·		wa		- 				
V			t facility with TP, MEE, S⊺		у						
V	Mode	e of C	Disposal & Fi	nal mee	eting point			Domestic: 7		Tank	/soak pit
ï			ecycle details					60			
i	Deta Air	ils of	Rain Water	Harvest	ing						
_	Flue No. c	of Boi	emission det ilers/TFH/Fu s viz. TPH, K	rnaces/l							
	SR. no.	-	Source of emission With Capacity .g. Boiler (8 TPH)	Stac Heig (mete	ht of the	of F MT/	intity Fuel /hr& /Day	APCM	Type c emissio i.e. Ai Pollutar	ns r	Emissio n Standard s
	1.	F	FBC Steam Boiler	30	Import ed coal	1	15	APH, MDC, Cyclone and Bag filter	SPM = mg/nm SO ₂ = 7 mg/nm NO ₂ = mg/nm	າ ³ 10 1 ³ 5	$SPM < 100 \\ mg/nm^3 \\ SO_2 < 40 \\ mg/nm^3 \\ NO_2 < 20 \\ mg/nm^3$
	2.	т	hermo pack Oil heater	25	Import ed coal	:	2	APH, MDC, Cyclone Bag Filter	SPM = mg/nm SO ₂ = mg/nm NO ₂ = mg/nm	າ ³ 5 1 ³ 5	SPM < 100 mg/nm3 SO ₂ < 40 mg/nm ³ NO ₂ < 20 mg/nm ³
	3.	S	Spray Dryer HAG	30	Import ed coal	1	16	Cyclone Separato r with Two Stage Water Scrubber	SPM = mg/nm SO ₂ = 7 mg/nm NO ₂ = mg/nm	າ ³ 10 າ ³ 5	SPM < 100 mg/nm ³ SO ₂ < 40 mg/nm ³ NO ₂ < 20 mg/nm ³
	4.		DG Set	10			L/Hr	Accousti c enclosur e	-		-
		ess g Sr. no.	gas i.e. Type Source emissi	e of	tant gases (Stack/Ven Height (meter)			l <u>₃, Cl₂, NO_x e</u> PCM	etc.) Type o emissio i.e. Air Pollutar	ns	Emission Standards

	1.	(/C	rowning G-Salt Samma d/K-Acic		25 m	Three Alkaline s with vent colui	scrubber tury and	HCI = 3 mg/m ³	HCL < 20 mg/nm ³
	2. Amidation (Gama Acid/ K-Acid) 3. (Gama Acid/ 3. (Gama Acid/ K-Acid) 3. (Gama Acid/ Sem		Three Ventury s with chille circulation by cond	scrubber ed water followed	$NH_2 = 5$ mg/m ³	NH ₂ < 40 mg/nm ³			
				Series of t ventury a stage p columr Alkaline circula	and one backed n with e water	$SO_2 = 5$ mg/m ³	SO ₂ < 40 mg/nm ³		
	4.	let	iust air o for Spir sh Drye	n	25 m	Cyclone S with Bag		SPM = 10 mg/m ³	SPM < 50 mg/nm ³
i Fug	5.	Exha let	ay Drye aust air o for ZED	out	25 m	Cyclone S with Two Water So	Stage	SPM = 10 mg/m ³	SPM < 50 mg/nm ³
(as	zardous per th les 201	e Haz	-	and Otl	ner Wastes	s (Manage	ement and	l Transboun	dary Movemer
i					Quantity				
	r. Typ	eof	Categor y	Existing	Quantity Proposed	Total		ModeofDisp	oosal
Sr	r. Typ p. Wa Disca	eof ste irded gs		Existing 500 Kg/Year	-		Sold to r		oosal econtamination
Sr No	r. Typ D. Wa Disca ba &Cont	eof ste orded gs ainers	У	500	Proposed 3000 Nos. HDPE Bags,200		Aut	ecycler after D horized Regist	econtamination er recycler
Sr No 1.	r. Typ Disca Disca ba &Cont . Useo	eof ste irded gs ainers d Oil n Hypo	у 33.1	500 Kg/Year 0.03	Proposed 3000 Nos. HDPE Bags,200 drums. 0.47 MT/Year		Aut Collect	ecycler after D horized Regist	econtamination er recycler ransportation, o Registered
Sr Nc 1. 2. 3.	r. Typ Disca Disca &Cont Used	eof ste irded gs ainers d Oil n Hypo iride n from	y 33.1 5.1 Class C	500 Kg/Year 0.03 MT/Year 28.08	Proposed 3000 Nos. HDPE Bags,200 drums. 0.47 MT/Year	0.500 MT/Year 28.08	Aut Collect Dispo Fabricat under the 6 PCC,	ecycler after D horized Regist ion, Storage, T isal by selling t reprocesso ed roof with HI 5 inch RCC imp	econtamination er recycler ransportation, o Registered ors. DPE Liner laying ervious Layer wit t industries.
i Sr Nc 1. 2. 3. 4.	r. Typ Disca Disca ba &Cont Used Sodiun Chlo Gypsur Sludge	eof ste irded gs ainers d Oil n Hypo iride n from s	у 33.1 5.1 Class C C-7	500 Kg/Year 0.03 MT/Year 28.08	Proposed 3000 Nos. HDPE Bags,200 drums. 0.47 MT/Year	 0.500 MT/Year 28.08 MT/Year	Aut Collect Dispo Fabricate under the 6 PCC, Collection with HDF	ecycler after D horized Regist ion, Storage, T iosal by selling t reprocesso ed roof with HI 5 inch RCC imp sell to cement under the stee PE Liner laying	econtamination er recycler ransportation, o Registered ors. DPE Liner laying ervious Layer wit t industries. el fabricated roof under the 6 inch vith PCC, send to
Sr Nc 1. 2. 3. 4.	r. Typ Disca ba &Cont Used Sodiun Chlo Gypsur Sludge process	eof ste irded gs ainers d Oil n Hypo iride n from s	y 33.1 5.1 Class C C-7 35.3	500 Kg/Year 0.03 MT/Year 28.08	Proposed 3000 Nos. HDPE Bags,200 drums. 0.47 MT/Year 910	 0.500 MT/Year 28.08 MT/Year 910 360	Aut Collect Dispo Fabricate under the 6 PCC, Collection with HDF RCC impe Collect in s HDPE bag	ecycler after D horized Regist ion, Storage, T ion, Storage, T iosal by selling t reprocesso ed roof with HI 5 inch RCC imp sell to cement under the stee 2 Liner laying ervious Layer w authorized T pecially design	econtamination er recycler ransportation, o Registered ors. DPE Liner laying ervious Layer wit t industries. el fabricated roof under the 6 inch vith PCC, send to SDF . ed silo and pack i nt industries and

	Common MEE etc.	
ii	Details of Non-Hazardous waste & its disposal	To be managed as per Rules
	(MSW and others)	
G	Solvent management (If any)	
i	Details of Solvent recovery (As per respective ToR)	Details will be covered in EIA report
ii	VOC emission sources and its mitigation measures	Details will be covered in EIA report

After deliberation, Committee decided to recommend grant of Terms of Reference [ToR] with above mentioned correction and the ToRs unchanged as prescribed in previous recommendation letter dated15/11/2017.

17.	SIA/GJ/IND2/17873/2017	M/s, SHREE HARI INDUSTRIES	Reconsideration for
		Shed No C1- 95/1, Phase-II, GIDC, Vatva,	EC – Appraisal
		Ahmedabad, Gujarat-382 445	

Project / Activity No.: 5(f)

Project status: Expansion

- PP has submitted online application vide no. SIA/GJ/IND2/17873/2017 dated 13/10/2017 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide letter dated 24/04/2017.
- Project proponent has submitted EIA Report prepared by M/s: Green Circle Inc., Vadodara based on the TOR issued by SEIAA.
- Public Hearing for the project is exempted as per paragraph 7(i) (III) (i) (b) of the EIA Notification, 2006 since the project site is located in the Notified Industrial area.
- This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

Sr.	Name of Product	MT/Month	CI Number	End use of
No.				the Product
1	Sodium AllylSulphonate	40	2495-39-8	ALL as use as
2	Sodium PropyneSulphonate	20	55947-46-1	electroplating
3	Ethylene DiamineEpichlorohydrine	15	-	chemical
	Condensate			
4	Benzyl Sodium CarboxyPyridinium Chloride	5	68133-60-8	
5	Imidazole Epichlorohydrine Condensate	1	68002-42-6	
6	Stabilize Poly Vinyl Alcohol	2	9002-89-5	
7	Diethyl Propyne Amine	1	4079-68-9	
8	Tartaric Acid Solution (Blending & Mixing)	2	87-69-4	
9	Tartaric Acid Powder (Blending & Mixing)	1	133-37-9	
10	Zinc Brightener (Mixing)	10	68797-57-9]
	Total	97		

- The project falls under Category B2 of project activity 5(f)as per the schedule of EIA Notification 2006
- PP was called for presentation in the SEAC meeting dated 10/01/2018.
- Salient features of the project are as under::

Sr.	Particulars	Details
no.		
Α	Water	
i	Source of Water Supply1	GIDC shall supply water
	(GIDC, Bore well, Surface water etc)	

Wate	er consump	otion (KL/da	y):5.5 KL	_/day					
		Cate	egory			Propo KL/Da			
			(D) Dom	nestic					
			(E) Garo	dening	_	0.5			
					Process Washing	2.0 0.5			
					Boiler	1.0			
					Cooling	0.5			
					Others	-			
Was	te water ge	eneration (K	L/day)		Total	5.5			
 -			• •						
С	ategory			Prop					
	(C) Dom	actic		KL/D	ау				
	(C) Dom (D) Gar			0.8 0.0					
	(2) 00.1		Process	0.16					
		V	/ashing	0.5					
			Boiler Cooling	0.2					
			Others	0.0					
	Total Ind	lustrial wast	e water	0.96]		
- Trea	tment facili	ity with capa	acity			ETI	P house	9	
(ETF	P, CETP, M	IEE, STP et	с).).8 KL/day	
Mod	e of Dispos	al & Final n	neetina r	oint			E Vatva	Soak pit	
			515 515			Ind	ustrial: (CETP Vatva	
Dave		dataila (KI	(dev)			ME	E,Vatva	1	
 Air	se/Recycle	details (KL	uay)			-			
Flue No. d		ion details FH/Furnace FPH, Kcal/h							
- -			, , , , , , , , , , , , , , , , , , , ,	1					
Sr. No	Stack attached to	Capacity	Fue Consun		Stack Ht. (m)		ck Dia. nm)	Stack Gas temp (°C)	APCM
1.	Boiler	0.8 MT/Day	Woode waste /Importe Coal / V Coal	ed	12		0.2	110	None
	ess gas i.e IO _x etc.)	e. Type of po	ollutant g	ases ($SO_{2,}$ HCI, NH ₃	The	ere is no	process gas	
	tive emissio ation meas	on details w sures.	ith its		storage of Mitigation m	ontain	ier, mate 'es:	lue to the leaka erial transferrin materials, produ	ages in pump, g, and packing.

				•	maintenan	ce operational pork place and a	art-up, shut down and procedure mbient air quality monitoring			
		dous waste	and Other Maa	too (Mor	agament a	and Transhaum	lon (Movement) Dules 2016			
(a	as per		and Other was	tes (mai	nagement a		lary Movement) Rules 2016.			
	Sr. no.	Type/Name of Hazardous waste	Source of generation	Catego Sched HW Ru	ory and ule as per ules.	Quantity	Disposal Method			
	1	Hazardous Waste ETP Sludge	ETP	34.3		12 MT/ Annum	Storage and disposal to TSDF site.			
	2	Used Oil/ Spent Oil	DG set	5.1		50 Lit/Year	Sold to Recycler, Reprocessor or used as Lubricants for Machineries.			
	3	Discarded Container / Drum / Bags	Raw materials Packing	:	33.3	4.5 MT/ Annum 0.36 MT/ Annum	Send back to raw material supplier / sold to registered recycler			
C	CHWIF	ership details of C F, Common MEE	etc.		MEE for c	concentrated str	eated waste water			
		of Non-Hazardo al (MSW and oth			AMC colle	ection centre				
D										
D	Details	nt management (of Solvent recov tive ToR)			NA					
	/OC e neasu	mission sources res	and its mitigatio	on	P VOC mitig S cc B p V V V V V V V V V V U	iquid material s roduction area gation measure tore VOC-conta ontainers. uy products wit rinting of packa OCs /ill assign a per ne VOC reduction tillizing natural v	s aining products in air-tight h less packaging as the ging materials generates son develop and implement on plan.			

- During the meeting dated 10/01/2018, technical presentation made during the meeting by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented before the committee.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March 2017 to May 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, HCl and VOC at 8 locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The

incremental Ground Level Concentration (GLC) has been computed using Air Modes Views[™]. The resultant concentrations are within the NAAQS. The modelling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).

- There is no process gas emission. Total water consumption for proposed project will be 5.5 KLD which will be sourced from GIDC water supply. Total industrial wastewater generation will be 0.96 KLD which will be treated in proposed ETP and then sent to CETP, Vatva.
- Looking to the 18 (1) (b) directions under the Water Act 1974 imposed by CPCB on CETP, Committee asked to go for another option. After deliberation, Committee decided to consider the project in one of the upcoming SEAC meetings only after satisfactory submission of the following: (1) Waste water management considering 18 (1) (b) directions under the Water Act 1974 imposed by CPCB on CETP
- PP has replied for above mentioned additional details vide their letter on 12/02/2018.
- The proposal was considered in the SEAC meeting dated 26/02/2018. PP has submitted valid membership Certificate of Common Spray dryer facility for discharge of entire treated effluent. Committee noted that there is no increase in CETP load due to proposed project. Hence, 18 (1) (b) directions under the Water Act 1974 imposed by CPCB on CETP is not applicable in the instant case.
- Committee observed that compliance of the additional information sought was satisfactory. After detailed discussion, it was decided to recommend the project to SEIAA, Gujarat for grant of Environmental Clearance.

ľ	18	SIA/GJ/IND2/2134174161/2016	M/s: Godavari Cellulosics Ltd.	ToR Amendment
			R.S. no: 142, 151, 152, 153/1, 154, 155, 156,	(PCPIR reg.)
			157, 158, 159, 160, vill: antali, PCPIR notified	
			area, Ta: Vagra, Dist: bharuch	

Category of the unit : 5(f)

- SEIAA, Gujarat has accorded ToR [Terms of Reference] toM/s: Godavari Cellulosics Ltd. vide letter no. SEIAA/GUJ/TOR/5(f)/770/2016 vide dated 29/12/2016.
- Now, project proponent has applied online vide proposal no. SIA/GJ/IND2/17416/2016 dated 28/09/2016 for amendment in TOR dated29/12/2016regarding public hearing exemption.
- This proposal was considered in the SEAC meeting dated 26/02/2018. During the meeting, Committee observed that project was granted TOR with Public Hearing as per para 7(i) (III) (i) (b) of the EIA Notification, 2006. Now PP has requested to exempt Public Hearing as the Gujarat Industrial Development Corporation (GIDC), GoG has obtained Environmental clearance for Petroleum, Chemical and Petrochemical Investment Region (PCPIR), Bharuch.
- Committee observed that GIDC has obtained Environmental clearance from MoEF&CC, New Delhi for the development of Petroleum, Chemical and Petrochemical Investment Region at Dahej, Ta. Vagra, Dist. Bharuch vide F. No. 21-49/2010-IA-III dated 14/09/2017. As per the said Environmental Clearance, 5 GIDC estates namely Dahej-I, Dahej-II, Dahej-III, Vilayat and Saykha are covered within PCPIR.
- Committee noted that the instant proposal falls within the region of PCPIR, Ta. Vagra, Dist. Bharuch.
- Referring to the EIA Notification 2006 and its amendments, Committee decided to exempt public hearing of this

proposal as per para 7(i) (III) (i) (b) of the EIA Notification, 2006 since the project site is located within the PCPIR.

- After deliberations, committee accepted the amendment of TOR regarding public hearing and decided to recommend amendment of TOR as requested with the following additional ToRs. Additional Terms of reference (TOR)
 - a) Specify safety precautions to be taken for Chemical storage, process, handling & transportation hazard.
 - b) Details on workers training before engaging work, periodical, in-house, outside etc.
 - c) Details on various SOP to be prepared.
 - d) Details on safety audit to be carried out and their compliance status.
 - e) Specific safety measures to be taken for general Public living in the vicinity.
 - f) Details on hazard identification i.e. HAZOP, HAZAN, Fault tree analysis, Event tree analysis, Checklist, Audit etc. to be adopted for the safety operation of the plant.
 - g) Detection and monitoring of VOC's / gases.

The prescribed amended TOR as above is for your kind approval

19.	SIA/GJ/IND2/18468/2017	M/s: Krishna Anti Oxidants Pvt. Ltd. Plot no. D-3/24/1 at GIDC dahej-III, village	ToR Amendment (PCPIR reg.)
		samatpor, Ta- Vagra, Dist. Bharuch	

Category of the unit : 5(f)

- SEIAA, Gujarat has accorded ToR [Terms of Reference] to M/s: Krishna Anti Oxidants Pvt. Ltd. vide letter no. SEIAA/GUJ/TOR/5(f)/493/2017 vide dated 30/04/2017.
- Now, project proponent has applied online vide proposal no. SIA/GJ/IND2/18468/2017dated 14/02/2017 for amendment in TOR dated 30/04/2017 regarding public hearing exemption.
- This proposal was considered in the SEAC meeting dated 26/02/2018. During the meeting, Committee observed that project was granted TOR with Public Hearing as per para 7(i) (III) (i) (b) of the EIA Notification, 2006. Now PP has requested to exempt Public Hearing as the Gujarat Industrial Development Corporation (GIDC), GoG has obtained Environmental clearance for Petroleum, Chemical and Petrochemical Investment Region (PCPIR), Bharuch.
- Committee observed that GIDC has obtained Environmental clearance from MoEF&CC, New Delhi for the development of Petroleum, Chemical and Petrochemical Investment Region at Dahej, Ta. Vagra, Dist. Bharuch vide F. No. 21-49/2010-IA-III dated 14/09/2017. As per the said Environmental Clearance, 5 GIDC estates namely Dahej-I, Dahej-II, Dahej-III, Vilayat and Saykha are covered within PCPIR.
- Committee noted that the instant proposal falls within the region of PCPIR, Ta. Vagra, Dist. Bharuch.
- Referring to the EIA Notification 2006 and its amendments, Committee decided to exempt public hearing of this proposal as per para 7(i) (III) (i) (b) of the EIA Notification, 2006 since the project site is located within the PCPIR.
- After deliberations, committee accepted the amendment of TOR regarding public hearing and decided

to recommend amendment of TOR as requested with the following additional ToRs. Additional Terms of reference (TOR)

- h) Specify safety precautions to be taken for Chemical storage, process, handling & transportation hazard.
- i) Details on workers training before engaging work, periodical, in-house, outside etc.
- j) Details on various SOP to be prepared.
- k) Details on safety audit to be carried out and their compliance status.
- I) Specific safety measures to be taken for general Public living in the vicinity.
- m) Details on hazard identification i.e. HAZOP, HAZAN, Fault tree analysis, Event tree analysis, Checklist, Audit etc. to be adopted for the safety operation of the plant.
- n) Detection and monitoring of VOC's / gases.

The prescribed amended TOR as above is for your kind approval.

20.	SIA/GJ/IND2/19110/2017	M/s: Cadila Pharmaceuticals Limited Plot no. D-2/11/B/4, GIDC Industrial Estate	ToR Amendment (PCPIR reg.)
		Dahej Phase-II, Dist Bharuch, Gujarat.	

Category of the unit : 5(f)

Project status: Expansion

- SEIAA, Gujarat has accorded ToR [Terms of Reference] to M/s: Cadila Pharmaceuticals Limited. vide letter no. SEIAA/GUJ/TOR/5(f)/543/2017 vide dated 30/04/2017.
- Now, project proponent has applied online vide proposal no. SIA/GJ/IND2/19110/2017dated 20/04/2017 for amendment in TOR dated30/04/2017 regarding public hearing exemption.
- This proposal was considered in the SEAC meeting dated 26/02/2018. During the meeting, Committee observed that project was granted TOR with Public Hearing as per para 7(i) (III) (i) (b) of the EIA Notification, 2006. Now PP has requested to exempt Public Hearing as the Gujarat Industrial Development Corporation (GIDC), GoG has obtained Environmental clearance for Petroleum, Chemical and Petrochemical Investment Region (PCPIR), Bharuch.
- Committee observed that GIDC has obtained Environmental clearance from MoEF&CC, New Delhi for the development of Petroleum, Chemical and Petrochemical Investment Region at Dahej, Ta. Vagra, Dist. Bharuch vide F. No. 21-49/2010-IA-III dated 14/09/2017. As per the said Environmental Clearance, 5 GIDC estates namely Dahej-I, Dahej-II, Dahej-III, Vilayat and Saykha are covered within PCPIR.
- Committee noted that the instant proposal falls within the region of PCPIR, Ta. Vagra, Dist. Bharuch.
- Referring to the EIA Notification 2006 and its amendments, Committee decided to exempt public hearing of this proposal as per para 7(i) (III) (i) (b) of the EIA Notification, 2006 since the project site is located within the PCPIR.
- After deliberations, committee accepted the amendment of TOR regarding public hearing and decided to recommend amendment of TOR as requested with the following additional ToRs. Additional Terms of reference (TOR)
 - o) Specify safety precautions to be taken for Chemical storage, process, handling & transportation

hazard.

- p) Details on workers training before engaging work, periodical, in-house, outside etc.
- q) Details on various SOP to be prepared.
- r) Details on safety audit to be carried out and their compliance status.
- s) Specific safety measures to be taken for general Public living in the vicinity.
- t) Details on hazard identification i.e. HAZOP, HAZAN, Fault tree analysis, Event tree analysis, Checklist, Audit etc. to be adopted for the safety operation of the plant.
- u) Detection and monitoring of VOC's / gases.

The prescribed amended TOR as above is for your kind approval

21			
21.	SIA/GJ/IND2/17987/2016	M/s: VedantChloro Chem	ToR Amendment
		Plot no. D-2/CH/77, GIDC Dahej, Vagra	(PCPIR reg.)
		Tauka, Bharuch, Gujarat	

Category of the unit : 5(f)

Project status: Expansion

- SEIAA, Gujarat has accorded ToR [Terms of Reference] to M/s: VedantChloro Chem vide letter no. SEIAA/GUJ/TOR/5(f)/309/2017 vide dated 24/04/2017.
- Now, project proponent has applied online vide proposal no. SIA/GJ/IND2/17987/2016 dated 11/01/2017 for amendment in TOR dated24/04/2018regarding public hearing exemption.
- This proposal was considered in the SEAC meeting dated 26/02/2018. During the meeting, Committee observed that project was granted TOR with Public Hearing as per para 7(i) (III) (i) (b) of the EIA Notification, 2006. Now PP has requested to exempt Public Hearing as the Gujarat Industrial Development Corporation (GIDC), GoG has obtained Environmental clearance for Petroleum, Chemical and Petrochemical Investment Region (PCPIR), Bharuch.
- Committee observed that GIDC has obtained Environmental clearance from MoEF&CC, New Delhi for the development of Petroleum, Chemical and Petrochemical Investment Region at Dahej, Ta. Vagra, Dist. Bharuch vide F. No. 21-49/2010-IA-III dated 14/09/2017. As per the said Environmental Clearance, 5 GIDC estates namely Dahej-I, Dahej-II, Dahej-III, Vilayat and Saykha are covered within PCPIR.
- Committee noted that the instant proposal falls within the region of PCPIR, Ta. Vagra, Dist. Bharuch.
- Referring to the EIA Notification 2006 and its amendments, Committee decided to exempt public hearing of this proposal as per para 7(i) (III) (i) (b) of the EIA Notification, 2006 since the project site is located within the PCPIR.
- After deliberations, committee accepted the amendment of TOR regarding public hearing and decided to recommend amendment of TOR as requested with the following additional ToRs. Additional Terms of reference (TOR)
 - v) Specify safety precautions to be taken for Chemical storage, process, handling & transportation hazard.
 - w) Details on workers training before engaging work, periodical, in-house, outside etc.
 - x) Details on various SOP to be prepared.

- y) Details on safety audit to be carried out and their compliance status.
- z) Specific safety measures to be taken for general Public living in the vicinity.
- aa) Details on hazard identification i.e. HAZOP, HAZAN, Fault tree analysis, Event tree analysis, Checklist, Audit etc. to be adopted for the safety operation of the plant.
- bb) Detection and monitoring of VOC's / gases.

The prescribed amended TOR as above is for your kind approval

Meeting ended with thanks to the Chair and the Members.

Minutes approved by:

1.	Shri S. C. Shrivastav, Vice Chairman, SEAC	
2.	Shri R. J. Shah, Member, SEAC.	
3.	Dr. V. K. Jain, Member, SEAC.	
4.	Shri V. N. Patel, Member, SEAC	
5.	Dr. Mayuri Pandya, Member, SEAC	
6.	Shri Rajesh Shah, Member, SEAC	