Minutes of the 449th meeting of the State Level Expert Appraisal Committee held on 13/11/2018 at Committee Room, Gujarat Pollution Control Board, Sector 10-A, Gandhinagar.

The 449^h meeting of the State Level Expert Appraisal Committee (SEAC) was held on 13th November 2018 at Committee Room, Gujarat Pollution Control Board, Sector 10-A, Gandhinagar. Following members attended the meeting:

- 1. Dr. Dinesh Misra, Chairman, SEAC
- 2. Shri S. C. Srivastav, Vice Chairman, SEAC
- 3. Shri V. N. Patel, Member, SEAC
- 4. Shri R. J. Shah, Member, SEAC
- 5. Dr. V. K. Jain, Member, SEAC
- 6. Shri K. C. Mistry, Secretary, SEAC

The additional agenda of TOR/Scoping cases and Appraisal was taken up. The applicants made presentations on the activities to be carried out along with other details furnished in the Form-1, PFR, EIA-EMP reports and other reports.

5.	SIA/GJ/IND2/19758/2017	M/s Indian Oil Corporation Limited,	Appraisal
		Kandla LPG Import Plant, PO Box No.7,	
		K.K.Road, Near Booster Station, Kandla,	
		Dist- Kutch, Gujarat	

Project / Activity No.: 6(b)

Project status: Expansion

- PP has submitted online application vide no. SIA/GJ/IND2/19758/2017 dated 07/09/2018 for obtaining Environmental Clearance.
- Project proponent has submitted EIA Report prepared by M/s Hubert Enviro Care Systems Pvt. Ltd based on the TOR issued by SEIAA.
- This is an expansion of Isolated storage and Handling of Hazardous Chemicals and proposed for products as tabulated below:

Sr.	Name of the	CAS no.	St	Storage capacity			
no.	Products		MT &	MT & numbers of tanks			
			Existing	Proposed	Total		
1	Propane Tank (MT)		1 x 15000	1 x 15000	2 x 15000	LPG	
2	Butane Tank (MT)		1 x 15000	1 x 15000	2 x 15000	LPG	

• The project falls under Category B2 of project activity 6(b) as per the schedule of EIA Notification

2006.

- PP was called for presentation in the SEAC meeting dated 13/11/2018.
- Salient features of the project are as under:

no. A Total cost of Proposed Project (Rs. in Crores): B Total Plot area (sq. meter) Green belt area (sq. meter) Existing: 0 Sq. m. Proposed: 0 Sq. m. Total: There is no green belt existing facility. Due to salinity and soil development of green difficult. C Employment generation Existing: 175
(Rs. in Crores): Proposed:800 Crores Total: 1320 Crores Existing: 165.83 Sq. m. (sq. meter) Proposed: Nil Total: 165.83 Sq. m. Green belt area (sq. meter) Garden to the extent of 3000 sq.r maintained. Existing: 0 Sq. m. Proposed: 0 Sq. m. Total: There is no green belt existing facility. Due to salinity and soil development of greer difficult.
Total: 1320 Crores B Total Plot area (sq. meter) Existing: 165.83 Sq. m. Proposed: Nil Total: 165.83 Sq. m. Green belt area (sq. meter) Garden to the extent of 3000 sq.r maintained. Existing: 0 Sq. m. Proposed: 0 Sq. m. Proposed: 0 Sq. m. Total: There is no green belt existing facility. Due to salinity and soil development of green difficult.
B Total Plot area (sq. meter) Green belt area (sq. meter) Green belt area (sq. meter) Green belt area (sq. meter) Existing: 165.83 Sq. m. Garden to the extent of 3000 sq.r maintained. Existing: 0 Sq. m. Proposed: 0 Sq. m. Total: There is no green belt existing facility. Due to salinity and soil development of green difficult.
(sq. meter) Proposed: Nil Total: 165.83 Sq. m. Green belt area (sq. meter) Garden to the extent of 3000 sq.r maintained. Existing: 0 Sq. m. Proposed: 0 Sq. m. Total: There is no green beltexisting facility. Due to salinity and soil development of green difficult.
Total: 165.83 Sq. m. Green belt area (sq. meter) Existing: 0 Sq. m. Proposed: 0 Sq. m. Total: There is no green belt existing facility. Due to salinity and soil development of green difficult.
Green belt area (sq. meter) Garden to the extent of 3000 sq.r maintained. Existing: 0 Sq. m. Proposed: 0 Sq. m. Total: There is no green belt existing facility. Due to salinity and soil development of green difficult.
(sq. meter) maintained. Existing: 0 Sq. m. Proposed: 0 Sq. m. Total: There is no green believisting facility. Due to salinity and soil development of green difficult.
Existing: 0 Sq. m. Proposed: 0 Sq. m. Total: There is no green believisting facility. Due to salinity and soil development of green difficult.
Proposed: 0 Sq. m. Total: There is no green believisting facility. Due to salinity and soil development of green difficult.
Total: There is no green believisting facility. Due to salinity and soil development of green difficult.
existing facility. Due to salinity and soil development of green difficult.
and soil development of green difficult.
difficult.
C Employment generation Eviating 475
C Employment generation Existing: 175
Proposed: 85
Total: 260
D Water
i Source of Water Supply (GIDC Bore well, Surface Water sourced from Narmada as
water, Tanker supply etc) from road tankers through private
vendors
Status of permission from the concern authorityNil-
ii Water consumption (KLD)
Existing Proposed Total after Remarks
KLD (Additional) Expansion
KLD KLD
(A) Domestic 1.65 3.35 5 Sent to Septic Tanl
(B) Gardening 10 10
Industrial
Process

Grand Total (A+B+C)	103.85	190.15	294	
Industrial Total	92.2	186.8	279	
Others	2	2	4	Fire Water Makeup
Cooling	19	16	35	Blow down Sent to ETP
Boiler	70.2	167.8	238	Condensate recovered and reused.
Washing	1	1	2	DM plant washing

1) Total water requirement for the project: 294 KLD

2) Quantity to be recycled: 239 KLD

3) Total fresh water requirement: 55 KLD

iii Waste water generation (KLD)

Category	Existin	Proposed	Total after	Remarks
	g	(Additional)	Expansion	
	KLD	KLD	KLD	
(A) Domestic	1.65	3.35	5	Sent to Septic Tank
Industrial		1		
Process				
Washing	1	1	2	DM Plant regeneration
				sent to ETP
Boiler	7	13	20	Treated in ETP
Cooling	7.6	2.4	10	Treated in ETP
Others				
Total Industrial	15.6	16.4	32	
waste water				

- iv Treatment facility within premises with **capacity [For existing and Proposed]**[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc.
 - > Neutralization pit provided in existing
 - > ETP proposed for augmentation.
- v Mode of Disposal & Final meeting point

Domestic:	Septic Tank / Soak Pit
Industrial:	Treated water reuse for process & sludge to TSDF

vi In case of Common facility (CF) like CETP, Common Spray dryer, Common MEE, CHWIF etc.

Name of Common facility

➤ -Nil-

Membership of Common facility (CF)

-Nil- (For waste water treatment) Simplified water balance diagram with reuse / recycle of waste water νii WATER BALANCE FOR PROPOSED - Water Blue Orange - Losses Fresh Water - Effluent Red | Requirement 55 KLD - Treated 19 KLD 18 KLD 5 KLD 2 KLD 32 KLD 27KLD Fire Water Dometic Cooling DM Plant Green Belt Makeup Use 32 KLD 10 KLD 5 KLD 37 KLD 2 KLD 208 KLD 10 KLD Septic Tank 4.5 KLD 3 20 KLD ETP 21 KLD 1.Total Water requirement 294 KLD Sludge to TSDF 2.Fresh Water Requirement 55 KLD 0.01 Kg/Day 3.Recycled Water 208+31=239 KLD TITLE CLIENT: NOTES: CONSULTANT: 1. Not To Scale. M/S. INDIAN OIL CORPORATION LTD. HECS(P)Ltd, CHENNAI 2. For Planning Purpose Only. WATER BALANCE DRAWING LPG IMPORT TERMINAL KANDLA. **GUJARAT** DWO No. DD - HECS - WBD - 002 Reuse/Recycle details (KLD) vii [Source of reuse & application area] Total reuse.....KLD Source of waste water Application area with Remarks regarding for reuse with quantity quantity in KLD feasibility to reuse i.e. in KLD w/w <characteristics (COD, BOD, TDS etc.) Treated water in ETP will TDS < 2000 Cooling Tower (10) Boiler (20) be used for fire water make up. Gardening and **DM Plant Regeneration** Cooling tower (2)Ε Air Flue gas emission details No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc. **Existing & Proposed**

SR.	emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel MT/Day	Type of emissions i.e. Air Pollutants	Measures
1	Existing DG sets Power backup (1 x 3125 kVA)	20	HSD	0.5 KL/	PM, SO ₂ 8 NOx	Adequate stack height as CPCB norms
	DG sets Power backup (1 x 725 kVA)	10	HSD	Month	PM, SO ₂ 8 NOx	Adequate stack height as CPCB norms
2	Boilers (2 x 14 TPH)	15	LPG	3TPD	PM, SO ₂ &	Adequate stack height as CPCB norms
3	Proposed DG (2 x 3125 kVA)	20	HSD	1KL / Month	PM, SO ₂ & NOx	Adequate stack height as CPCB norms
4	Proposed Boilers (1 x 28 TPH)	15	LPG	3TPD	PM, SO ₂ & NOx	Adequate stack height as CPCB norms
- Proce	Hot Flare	45 ollutant gas	LPG ses (SO _{2,}		or Emergency	usage
	IDD X PLODOCOD					
			Type o		ack/Vent ht (meter)	Air Pollution Control Measures (APCM)
Sr. no	Specific Source emission (Name of the Property) Process) Ethyl Mecpatan	oduct &	emissie Vent	on Heig		Control Measures
Fugiti Indivi HC e	Specific Source emission (Name of the Pro	with its mit n DG sets vate height	Vent igation m which are is provid gitive em	neasures. e used as poed. hissions fron	1.5	Control Measures (APCM) NA ource only.

	Existi	ing & Proposed						
	Sr.	Type/Name of	Source of	Cate	egory and	Quantity	Disposal Method	
	no.	Hazardous	generation	Sch	nedule as	(MT/Annu		
		waste		per	HW Rules.	m)		
		Existing					Collection, storage &	
	1	Used oil/spent	DG sets		5.1	4.46	disposal to authorized	
		oil					recyclers	
		Proposed					Collection, storage &	
	2	Used oil/spent	DG sets		5.1	10.4	disposal to authorized	
		oil					recyclers	
	-		I	ı				
	Memb	pership details of 1	SDF, CHWIF	etc.	-Nil-			
	(For H	HW management)					
i	Detail	s of Non-Hazardo	us waste & its	i	MSW - Local Bins			
	dispos	sal(MSW and othe	ers)		Sewage waste to Septic tanks/ Soak pits			
3	Solve	nt management,	VOC emissio	ns etc				
	Types	of solvents, Deta	ils of Solvent	recove	ery, % recov	ery. reuse of	recovered Solvents	
	Nil							
j	VOC	emission sources	and its mitiga	ation n	neasures			
	Fugiti	ve emissions are f	from DG sets	which	are used as	power backu	ip source only.	
	Fugitive emissions are from DG sets which are used as power backup source only. Individual stack with adequate height is provided.							

- During the meeting dated 13/11/2018, technical presentation made by project proponent.
- Salient features of the project submitted by PP are as mentioned above.

Observation:

- Total water consumption will be 294 KLD. Total wastewater generation will be 32 KLD. Total Industrial Wastewater (32 KLD) will be neutralized in into existing ETP and treated in proposed ETP, then reused in utilities.
- LPG will be used as fuel for existing & proposed Boilers.

regular intervals and leaks are controlled if any.

- Hazardous waste management will be as per the HW Rules.
- The baseline environmental quality has been assessed for various components of the environment

viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March 2015 to May 2015. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, and NOx at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AIRMOD. The resultant concentrations are within the NAAQS. The modelling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).

- Surface water samples are taken from Creeks as wells as Rivers & Lakes. SW1, SW2, SW3, SW4, SW5 are creek water. SW6,SW7 & SW8 are inland water bodies, which are compared with IS: 2296 :1992.
- In the present findings the TDS value varied from 2120 to 2991 mg/l for the ground water all samples exceeds the acceptable limits of IS 10500: 2012 and the permissible limit of IS 10500: 2012. The chloride concentration ranged from 641 mg/L to 1029 mg/L and is below the IS acceptable limit except Bharapur. The desirable limit of the chloride content is 250 mg/l and permissible limit is 1000 mg/l. The Total hardness ranges is between 743 mg/l 1237 mg/l. for ground water and for most of the samples, it exceed the permissible limit of the IS 10500: 2012.
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan has been covered in the RA report.

Discussions & Conclusion:

Committee asked the compliance of the CCA conditions for the existing unit. Process of LPG mixing, addition of ethyl mercaptan addition before supply/dispatch, storage of ethyl mercaptan, safety aspects of storage tanks, ethyl mercaptan tanks. Referring to the through put of the proposed and existing unit, committee deliberated on the available and proposed infrastructure associated with storage tanks and methodology for transport of mercaptan added LPG. It is further noted that propane and butane will be received through import and transported through pipeline to tank farm from jetty. For the proposed expansion, capacity of pipeline from jetty is adequate to cater the supply of butane and propane and no carrying capacity enhancement is required. For the proposed expansion regarding erection of new tanks, committee asked to address all safety measures in detail with present of company's own supervisor with detailed SOP during construction and erection phase. Details of upgraded safety changes adopted for the existing as well as proposed expansion to prevent safety hazard.Referring to the operational aspect, it is noted that during increased pressure condition of tanks which are associated with flare, it will be operated and excess pressure will be vented off to flares and under circumstances, auto ignition of flare will be there. Committee asked the detailed note on safety scenario when tanks becomes pressurized and flares operate.

Committee also asked PP to submit need based budgetary outlay of CER as per the OM of MOEF&CC dated 01/05/2018.

As the proposal include enhancing storage tank capacity of ethyl mercaptan, referring to the baseline data, emission of ethyl mercaptan and its impact is not included, hence PP is asked to submit the baseline study including ethyl mercaptan storage tanks considering one month study with GLC and its impact. Referring to the TOR, it is noted that public hearing is exempted. Committee deliberated the TOR issued to the PP.

After deliberation, PP was asked to submit following details and it was unanimously decided to consider the proposal in one of the upcoming SEAC meeting after submission of the said details.

- 1. Address applicability of CRZ Notification 2011 for the proposed expansion.
- 2. Baseline study including ethyl mercaptan storage tanks considering one month study with GLC and its impact and its mitigation measures including odor control measures
- 3. To address bleed liquor generating from the scrubber of ethyl mercaptan under the haz. waste Rules 2016 with adequate management
- 4. Need based budgetary outlay of CER as per the OM of MOEF&CC dated 01/05/2018.
- 5. Detailed plan for green belt development with budgetary provision
- 6. Revised EMP including capital and recurring expenditure for green belt development plan, environment monitoring recurring cost shall be readdressed.
- 7. Note on operational aspect of flare including safety measures when storage tanks for butane, propane becomes pressurized and venting occurs to flare

6.	SIA/GJ/IND2/2257/2017	M/s. Stride Industries	Appraisal
		Plot No. 7613/1, GIDC Estate, Ankleshwar,	
		Dist. Bharuch-393002, Gujarat.	

Project / Activity No.: 5(f)

......

Project status: Expansion

- PP has submitted online application vide no. SIA/GJ/IND2/28257/2017 dated 07/09/2018 for obtaining Environmental Clearance.
- MoEF&CC has issued TOR to PP vide letter J-11011/99/2017-IA-II(I) vide 30/05/2017.
- Project proponent has submitted EIA Report prepared by M/s. Aqua-Air Environmental Engineers

Pvt. Ltd., Surat based on the TOR issued by MoEF&CC.

• This is an expansion of synthetic organic chemicals plant and proposed for products as tabulated below:

Sr.	Name of the	CAS no. /	Quantity (MT/Month)		onth)	End-use of the products
no.	Products	CI no.	Existing	Proposed	Total	
1.	Potassium	7778-80-5	80.0	0.0	80.0	Fertilizers,
	Sulphate					Pharmaceutical
2.	Sodium Nitrate	7631-99-4	80.0	0.0	80.0	Fertilizers,
						Pharmaceutical
3.	Tri Sodium	7601-54-9	80.0	0.0	80.0	pH regulator, emusifier,
	Phosphate					water softener,
						Pharmaceutical
4.	Doxofylline and	69975-86-6	0.0			Bronchodilator, Treatment
	its Intermediates					of asthma
5.	Acebrophylline	179118-73-1	0.0			Bronchodilator, Treatment
	and its					of asthma
	intermediate					
6.	Levosulpride and	23672-07-3	0.0			Anti-psychotic
	its intermediate					
7.	Amisulpride and	71675-85-9	0.0			Anti-psychotic
	its intermediate					
8.	Duloxetine	136434-34-9	0.0			Anti-depressant
	Hydrochloride					Treat depression and anxi
	and its			10.0	10.0	ety
	Intermediate					
9.	Celecoxib and its	169590-42-5	0.0			Anti-inflammatory
	Intermediate					
10.	Lacosamide and	175481-36-4	0.0			Anti-epileptic
	its Intermediate					
11.	Diclofenac	15307-79-6	0.0			Anti-inflammatory
	Sodium and its					
	Intermediate					
12.	Pantoprazole	138786-67-1	0.0			Treat erosive esophagitis
	Sodium and its					
	Intermediate					
13.	Venlafaxine	99300-78-4	0.0			Anti-depressant

	Hydrochloride					Treat depression and anxi
	and Its					ety
	Intermediate					
14.	Sevelamar	152751-57-0	0.0			Hyperphosphatemia in
	Hydrochloride					chronic renal failure
	and its					
	intermediates					
15.	R&D		0.0	0.5	0.5	
		TOTAL	240.0	10.5	250.5	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 13/11/2018.
- Salient features of the project are as under:

Sr.	Particulars	Details
no		
Α	Total cost of Proposed Project	Existing: 1.0 Crores
	(Rs. in Crores):	Proposed:2.0 Crores
		Total: 3.0 Crores
В	Total Plot area	Existing: 1459.0Sq. m.
	(sq. meter)	Proposed: 0.0 Sq. m.
		Total: 1459.0 Sq. m.
	Green belt area	Existing: 100.0 Sq. m.
	(sq. meter)	Proposed: 359.0 Sq. m.
		Total: 459.0 Sq. m.
С	Employment generation	Direct
		Existing:05
		Proposed:10
		Total:15
		Indirect
		Existing:05
		Proposed:10
		Total:15
D	Water	,
i	Source of Water Supply (GIDC Bore well, Surface	Water requirement will be met through the
	water, Tanker supply etc)	GIDC Water Supply

			date: 20.03	3 2017				
			date: 20.0	3.2017				
Water consumption (KLD)								
	Existing	Proposed	Total after	Remarks				
	KLD	(Additional)	Expansion					
		KLD	KLD					
(A) Domestic	1.0	1.0	2.0					
(B) Gardening	0.3	0.5	0.8					
(C) Industrial								
Process	0.3	3.1	3.4					
Washing	0.0	0.5	0.5		7			
Boiler	0.2	3.8	4.0					
Cooling	0.15	0.85	1.0		=			
Scrubber/Others	0.0	1.0	1.0		1			
R&D	0.0	0.3	0.3		1			
		1		_	-1			
Industrial Total	0.65	9.55	10.2					
Grand Total (A+B+C) 1) Total water req 2) Quantity to be re	1.95 uirement for	11.05 or the project: 13	13.00					
Grand Total (A+B+C) 1) Total water req	1.95 uirement for ecycled: 0.0	11.05 or the project: 13	13.00					
1) Total water req 2) Quantity to be re 3) Total fresh water	1.95 uirement for ecycled: 0.0	11.05 or the project: 13	13.00	Remarks				
1) Total water req 2) Quantity to be re 3) Total fresh water	1.95 uirement for ecycled: 0.0 er requirement (KLD)	11.05 or the project: 13 O KLD ent: 13.0 KLD	13.00 3.0KLD Total after	Remarks				
1) Total water req 2) Quantity to be re 3) Total fresh water	1.95 uirement for ecycled: 0.0 er requirement (KLD) Existin	or the project: 130 KLD ent: 13.0 KLD	13.00 3.0KLD Total after	Remarks				
1) Total water req 2) Quantity to be re 3) Total fresh water	1.95 uirement for ecycled: 0.0 er requirement for (KLD) Existin g	or the project: 130 KLD ent: 13.0 KLD Proposed (Additional)	13.00 3.0KLD Total after Expansion	Remarks				
Grand Total (A+B+C) 1) Total water req 2) Quantity to be re 3) Total fresh water Vaste water generation Category	1.95 uirement for ecycled: 0.0 er requirement (KLD) Existin g KLD	nr the project: 130 KLD ent: 13.0 KLD Proposed (Additional) KLD	Total after Expansion KLD	Remarks				
Grand Total (A+B+C) 1) Total water req 2) Quantity to be re 3) Total fresh water Vaste water generation Category (A) Domestic	1.95 uirement for ecycled: 0.0 er requirement (KLD) Existin g KLD	nr the project: 130 KLD ent: 13.0 KLD Proposed (Additional) KLD	Total after Expansion KLD	Remarks				
Grand Total (A+B+C) 1) Total water req 2) Quantity to be re 3) Total fresh water Vaste water generation Category (A) Domestic (B) Industrial	1.95 uirement for ecycled: 0.0 er requirement for (KLD) Existin g KLD 0.4	nr the project: 130 KLD ent: 13.0 KLD Proposed (Additional) KLD 0.8	Total after Expansion KLD 1.0	Remarks				
Grand Total (A+B+C) 1) Total water req 2) Quantity to be re 3) Total fresh water Vaste water generation Category (A) Domestic (B) Industrial Process	1.95 uirement for ecycled: 0.0 er requirement for (KLD) Existin g KLD 0.4	11.05 or the project: 13 O KLD ent: 13.0 KLD Proposed (Additional) KLD 0.8	Total after Expansion KLD 1.0	Remarks				
Grand Total (A+B+C) 1) Total water req 2) Quantity to be re 3) Total fresh water Vaste water generation Category (A) Domestic (B) Industrial Process Washing	1.95 uirement for ecycled: 0.0 er requirement for (KLD) Existin g KLD 0.4	r the project: 130 KLD ent: 13.0 KLD Proposed (Additional) KLD 0.8	13.00 3.0KLD Total after Expansion KLD 1.0 2.5 0.5 0.2 0.1	Remarks				
1) Total water req 2) Quantity to be re 3) Total fresh water Vaste water generation Category (A) Domestic (B) Industrial Process Washing Boiler	1.95 uirement for ecycled: 0.0 er requirement for (KLD) Existin g KLD 0.4 0.0 0.0 0.0	r the project: 130 KLD ent: 13.0 KLD Proposed (Additional) KLD 0.8 2.5 0.5 0.2	Total after Expansion KLD 1.0 2.5 0.5 0.2	Remarks				
Grand Total (A+B+C) 1) Total water req 2) Quantity to be re 3) Total fresh water Vaste water generation Category (A) Domestic (B) Industrial Process Washing Boiler Cooling *Scrubber/Others R & D	1.95 uirement for ecycled: 0.0 er requirement for (KLD) Existin G KLD 0.0 0.0 0.0 0.0 0.0 0.0	r the project: 130 KLD ent: 13.0 KLD Proposed (Additional) KLD 0.8 2.5 0.5 0.2 0.1	13.00 3.0KLD Total after Expansion KLD 1.0 2.5 0.5 0.2 0.1 1.0* 0.2	Remarks				
Grand Total (A+B+C) 1) Total water req 2) Quantity to be re 3) Total fresh water Vaste water generation Category (A) Domestic (B) Industrial Process Washing Boiler Cooling *Scrubber/Others	1.95 uirement for ecycled: 0.0 er requirement for (KLD) Existin g KLD 0.4 0.0 0.0 0.0 0.0 0.0	r the project: 130 KLD ent: 13.0 KLD Proposed (Additional) KLD 0.8 2.5 0.5 0.2 0.1 1.0*	13.00 3.0KLD Total after Expansion KLD 1.0 2.5 0.5 0.2 0.1 1.0*	Remarks				

	Note-1:	Industrial waste wa	ter will be sent to Common	MEE of M/s. Ankleshwar Cleaner	,				
	Process	s Technology Centr	e Limited, Ankleshwar afte	er giving primary treatment in ETP.					
	Note-2:	Domestic waste wa	ater will be disposed of throu	igh septic tank or soak pit.					
	Note-3	: Worst case scenario	o for wastewater generation	is based on considering Duloxetine	;				
	Hydroch	nloride and its Interm	ediate						
	Note-4	: Scrubber Waste Wa	ater are converted into valua	ble product which is send to end us	ser				
	having F	Rule-9 permission.							
iv	Treatme	ent facility within pren	nises with capacity [For ex	isting and Proposed]					
	[In-hous	se ETP (Primary, Sec	condary, Tertiary), MEE, Stri	pper, Spray Dryer, STP etc					
	> 1	ETP-4.0 KL							
٧	Mode of	f Disposal & Final me	eeting point						
	Domestic: Domestic effluent (1.2 KL/Day) will be sent to septic tank/soak pit								
	Industrial: Total wastewater generation will be 4.7 KL/Day (Existing: 0.4 KL/Day + Additional:								
		4.3 KL/Day).	Industrial effluent 3.5 KL/Da	ay will be sent to ETP consists of page 1	primary				
		facility to trea	t the effluent and then treat	ed effluent shall be sent to Commo	n MEE				
		facility of M/s.	ACPTCL.						
vi	In case	of Common facility (0	CF) like CETP, Common Sp	ray dryer, Common MEE, CHWIF e	etc.				
	Name o	of Common facility							
	> 1	M/s. ACPTCL.							
	Membei	rship of Common fac	ility (CF)						
	(For wa	ste water treatment	t)						
	Commo	on MEE of M/s. ACP	TCL, Ankleshwar						
vii	Simplifi	ied water balance o	liagram with reuse / recyc	le of waste water					
No	Reuse								
vii	Reuse/F	Recycle details (KLD))						
	[Source	of reuse & application	on area]						
	Total re	euse 0.0 KLD							
	S	ource of waste	Application area with	Remarks regarding					
	w	ater for reuse	quantity in KLD	feasibility to reuse i.e.					
	w	rith quantity in		w/w characteristics (COD,					
	K	LD		BOD, TDS etc.)					
	-								
Е	Air								

i Flue gas emission details

No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc.

Existing & Proposed

-

Sr.	Source	Stack	Type	Quantity	Type of	Air Pollution
no.	of	Height	of	of Fuel	emissions	Control
	emission	(meter)	Fuel	el MT/Day i.e.		Measures
	With				Pollutants	(APCM)
	Capacity					
1	IBR	11.0	Wood	500	PM	Adequate
	Boiler			kg/Day	SO2	Height
	600 kg/hr				NOx	provided

- Proposed

Sr.	Source	Stack	Type	Quantity	Type of	Air Pollution
no.	of	Height	of Fuel	of Fuel	emissions	Control
	emission	(meter)		MT/Day	i.e. Air	Measures
	With				Pollutants	(APCM)
	Capacity					
	Steam	30.0	Agro	1500	PM	Multicyclone
2	Boiler		Waste/		SO2	Separator,
	(1.5T/Hr.)		coal	kg/Day	NOx	Bag Filter
3	D.G set	11.0	Diesel	100	PM	Adequate
	(150 kva)			Lit/Day	SO2	·
					NOx	Height

Note: After proposed expansion Wood will discontinue.

ii Process gas i.e. Type of pollutant gases (SO₂, HCl, NH₃, Cl₂, NO_x etc.)

Existing & Proposed

-

Sr. no.	Specific Source of emission (Name of the Product & Process)	Type of emission	Stack/Vent Height (meter)	Air Pollution Control Measures (APCM)
1	Reaction Vessel -1	HCI	15 m	Two Stage Scrubber (water + Water)

					Two Stage	
	2	Reaction Vessel -2	HBr	15 m	Scrubber	
					(water + alkali)	

iii Fugitive emission details with its mitigation measures.

- → Minimum number of flanges, joints and valves in pipelines
- → Selection / use of state-of-the art leak proof valves
- → Provision of mechanical seals in pumps
- → Proper preventive maintenance of roofs and seals for tanks
- → Monitoring and preventive maintenance of valves, flanges, joints, etc.
- → Fugitive emission over reactors, formulation areas, centrifuges, chemical loading, transfer area, shall be collected through hoods and ducts by induced draft and controlled by dust collector.

For particulate / dust emissions from the coal handling system: Water will be sprinkled to control particulate / dust emission from coal storage area.

F Hazardous waste

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

Existing & Proposed

i

Sr	Type/Na	Specific	Categor		Quantity		Management of HW
	me of	Source of	y and	(1	/IT/Annum)	
no	Hazardou	generation	Schedul				
	s waste	(Name of	e as per	Existin	Propose	Total	
		the	HW	g	d		
		Activity,	Rules.				
		Product					
		etc.)					
1	Used oil	From plant	Sch-	12	2.4	14.4	Collection, storage,
		machinery	1/5.1				transportation & sale to
							GPCB authorized
							recycler
2	Discarded	From raw	Sch-	12.288	12.0	24.28	Collection, storage,
	containers	material	1/33.1			8	transportation,
	/ bags/						decontamination & sell
	carboys						to GPCB authorized

							vendors
3	ETP sludge	From ETP	Sch- 1/35.3	0.0	36	36	Collection, storage transportation 8 disposal to TSDF site
4	Organic residue	From mfg. Process	Sch- 1/28.1	0.0	48	48	Collection, storage, transportation & given to cement industries for coprocessing or disposal at common incineration site
5	Inorganic solid waste	From mfg. Process	Sch- 1/28.1	0.	36	36	Collection, storage transportation & disposal at nearest TSDF site
6	Spent carbon	From mfg. Process	Sch- 1/28.3	0.0	6.0	6.0	Collection, storage, transportation & given to cement industries for coprocessing or disposal at TSDF site
7	Dil.HCL (30 %)	From Scrubber		0.0	180.0	180.0	Collection, storage, transportation & send to end user having rule-9 permission
8	Sodium bromide soln. (18-20 &)	From scrubber		0.0	180.0	180.0	Collection, storage, transportation & send to end user having rule-9 permission.
9	Spent solvents	From mfg. Process	Sch- 1/20.2	0.0	1620.0	1620. 0	Collection, storage, & in house distillation plant to recovered solvents.
10	Distillation residue	From solvent recovery plan	Sch- 1/20.3	0.0	24.0	24.0	Collection, storage, transportation & given to cement industries for co- processing or disposal at common incineration site

Membership details	of TSDF ,	CHWIF etc.	. M/s.	M/s. BEIL			
(For HW managem	ent)		BEIL	BEIL/ANK/2017			
			DAT	E: 23.03.2017	7		
Details of Non-Haza	rdous was	ste & its	Ther	e is no non ha	azardous w	vaste	
disposal(MSW and	others)						
Solvent manageme	ent, VOC e	emissions e	tc.				
Types of solvents, D	Details of S	Solvent reco	very, % re	covery. reus	e of recove	ered Solver	nts
Collection, storage	and transp	ortation to I	n house D	istillation or o	utside job	work.	
Name of Solvent	B.P	V.P	Total	Qty of	Qty of	%	%
			Solvent	Solvent	Losse	Recove	Los
			Input	Recycled	s	ry	s
			МТ	MT	MT		
Dichloromethane	39.75°	46.5	40.0	39.32	0.68	98.3	1.7
	С	kPa (@					
		20°C)					
DMF	153°C	0.3 kPa	10.0	9.62	0.38	96.2	3.8
		(@					
		20°C)					
Toluene	110.6°	3.8 kPa	40.0	38.12	1.88	95.3	4.7
	С	(@					
		25°C)					
Methanol	64.5°C	12.3	135.0	129.6	5.4	96.0	4.0
		kPa (@					
		20°C)					
Monoethylene	197.6°	06	20.0	19.18	0.82	95.9	4.1
glycol	С	mmHg					
		@ 20 C					
Acetone	56.2°C	24 kPa	30.0	29.16	0.84	97.2	2.8
		(@					
		20°C)					
Isopropyl alchol	82.5°C	4.4 kPa	10.0	9.92	0.08	99.2	0.8
		(@					
		20°C)					
Ethyl acetate	77°C	12.4	120.0	114.84	5.16	95.7	4.3

			kPa (@							
			20°C)							
ii	VOC emission sources and its mitigation measures									
	Enclosed process,									
	-Pumps will be having double mechanical seals									
	-Proper ventilation w	ith hood								
	-Regular maintenance & monitoring									
	-Adequate PPE's									

- During the meeting dated 13/11/2018, technical presentation made by project proponent.
- Salient features of the project submitted by PP are as mentioned above.

Observation:

- This proposal is for expansion of existing unit and for now proposes for synthetic organic chemical product. This unit is having valid CC&A for existing unit. Copy of CC&A, CC&A compliance report is submitted.
- Total water consumption will be 13 KLD. Total wastewater generation will be 3.5 KLD. Industrial effluent will be treated in Primary Treatment Plant and sent to Common MEE of M/s. ACPTCL.
- Agrowaste/ Coal will be used as fuel for proposed boiler. After expansion wood will be discontinue.
- Multi Cyclone and Bag filter as APCM will be provided with boiler.
- Water and alkali scrubber as APCM will be provided with each reaction vessels.
- Hazardous waste management will be as per the HW Rules.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March 2017 & May 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, O3, Pb, As, Ni, C6H6, NH3, HC, CO and VOC at nine locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST 3. The resultant concentrations are within the NAAQS. The modelling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan has been covered in the RA report.

Discussions & Conclusion:

The proposal is for expansion. Compliance of CCA conditions, action taken by GPCB were deliberated at

length. PP mentioned that a closure direction was issued during the month of February 2017 and subsequently revoked after compliance. PP was asked to discontinue wood as fuel in existing facilities. It is proposed to send treated waste water having COD: 24000 mg/litre, BOD: 6000 mg/litre, TDS: 28000 mg/litre, Ammonical Nitrogen: 50 mg/litre to ACPTCL for evaporation and following zero liquid discharge. Details of EMP and budget allocation for the activities were discussed at length. It is noted that budget allocation for green belt and plantation is to be revised. Also PP was asked to conduct need base analysis for following CER and submit the detailed outlay of CER for the coming years after performing need based analysis. PP also proposed R&D products where in unit processes involved are not addressed. Committee asked PP to address the all possible unit processes for conducting R&D and submit the details. Committee deliberated the TOR issued to the PP.

After deliberation, PP was asked to submit following details and it was unanimously decided to consider the proposal in one of the upcoming SEAC meeting after submission of the said details.

- 1. Need based budgetary outlay of CER as per the OM of MOEF&CC dated 01/05/2018.
- 2. Detailed plan for green belt development with budgetary provision.
- 3. Revised EMP including capital and recurring expenditure for green belt development plan, environment monitoring recurring cost shall be readdressed.
- 4. Undertaking for discontinuing the wood as a fuel.
- 5. Submit details of all possible unit processes for conducting R&D and submit the details.

7.	IA/GJ/IND2/62346/2017	M/s. Mahrshee Laboratories Pvt. Ltd. Appraisal
		(Unit-1)
		Plot No. 3014-3015 , Phase-III, GIDC, Panoli
		– 394 116, Dist: Bharuch, Gujarat

Project / Activity No.: 5(f)

Project status: Expansion

- PP has submitted online application vide no. IA/GJ/IND2/62346/2017 dated 07/09/2018 for obtaining Environmental Clearance.
- MoEF&CC has issued TOR to PP vide letter no J-11011/90/2017-IA.II(I) vide dated 31/05/2018.
- Project proponent has submitted EIA Report prepared by M/s. Aqua Air Environmental Engineering
 Pvt. Ltd based on the TOR issued by MoEF&CC.
- This is an expansion of synthetic organic chemicals plant and proposed for products as tabulated below:

Sr.	Name of the Products	CAS no. /CI	Quantity (MT/Month)	End-use of
-----	----------------------	-------------	---------------------	------------

No.		no.	Existing	Additional	Total	products
				Proposed		
1	Metoclopramide HCI	7232-21-5	0.5			Antieimetic
2	Cyproheptadine HCI	969-33-5	0.1			Appetite stimulant
3	Amitryptiline HCI	50-48-6	0.2			Antidipressant
4	Chlorpheniramine	113-92-8	2.5	50	50	Anti-histamine
	Maleate					
5	Diphenhydramne HCl	147-24-0	1			Anti-histamine
6	Pheniramine Maleate	86-21-5	-			Anti-histamine
7	Cetirizine 2HCl	130018-87-0	-			Anti-histamine
8	Miconazole	22916-47-8	-			Antifungal
9	Miconazole Nitrate	22832-87-7	-			Antifungal
10	Econazole Nitrate	68797-31-9	-			Antifungal
11	Dexchlorpheniramine	2438-32-6	-			Anti-histamine
	Maleate					
12	Brompheniramine	32865-01-3	-			Anti-histamine
	Maleate					
13	Domperidone	57808-66-9	-			Antieimetic
14	Dimethyl amino ethyl	4584-46-7	-			In Organic Synthesis
	chloride HCL					
15	Ondansetron HCL	103639-04-9	-			Antieimetic
16	α-Phenyl-2-Pyridyl	5005-36-7	-			In Organic Synthesis
	Acetonitrile					
17	α-Phenyl-2-Pyridyl	7251-52-7	-			In Organic Synthesis
	Acetamide					
	TOTAL	•	4.3	50	50	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 13/11/2018.
- Salient features of the project are as under:

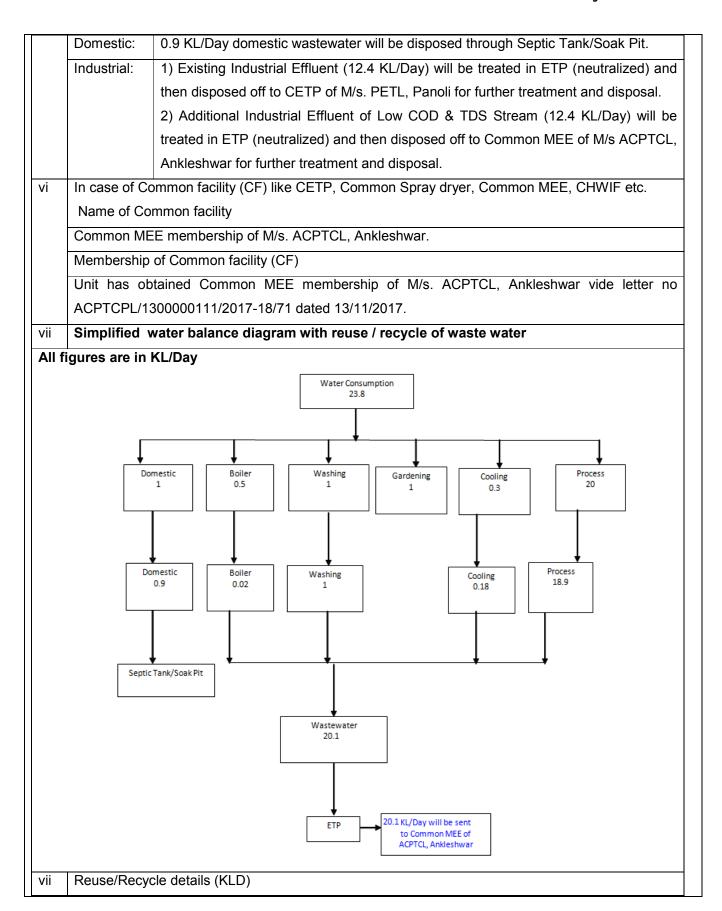
Sr.	Particulars	Details
no.		
Α	Total cost of Proposed Project	Existing: 3.80
	(Rs. in Crores):	Proposed: 3.70
		Total: 7.50

В	Total Plot area			Existing: 2000 S	sq. m.		
	(sq. meter)			Proposed:			
				Total: 2000 Sq.	m.		
	Green belt area			Existing: 280 Sc	η. m.		
	(sq. meter)			Proposed: 260 Sq. m.			
			Total: 540 Sq. n	٦.			
2	Employment generation	Employment generation					
				Proposed: 20			
				Total: 50			
D	Water		·				
	Source of Water Supply			GIDC Water Su	pply		
	(GIDC Bore well, Surface water	er, Tanker s	supply etc)				
	Status of permission from the	concern au	thority.	Unit has obtain	ed permission	from GIDC	
				for water s	upply vide	letter no	
			NO/GIDC/DEE/	PNL/1358	dated		
				21/01/2017.			
	Water consumption (KLD)						
ii	water consumption (KLD)						
i	water consumption (KLD)	Existing	Proposed	Total after	Remarks		
ii 	water consumption (KLD)	Existing KLD	Proposed (Additional)		Remarks		
ii 	water consumption (KLD)		-		Remarks		
ii	(A) Domestic		(Additional)	Expansion	Remarks		
ii 		KLD	(Additional)	Expansion KLD	Remarks		
ii 	(A) Domestic	KLD 0.5	(Additional) KLD	Expansion KLD	Remarks		
ii 	(A) Domestic (B) Gardening	KLD 0.5	(Additional) KLD	Expansion KLD	Remarks		
ii 	(A) Domestic (B) Gardening (C) Industrial	KLD 0.5 Nil	(Additional) KLD 0.5	Expansion KLD 1	Remarks		
ii 	(A) Domestic (B) Gardening (C) Industrial Process	0.5 Nil	(Additional) KLD 0.5 1	Expansion KLD 1 1	Remarks		
ii	(A) Domestic (B) Gardening (C) Industrial Process Washing	0.5 Nil 1.4 0.1	(Additional) KLD 0.5 1 18.6 0.9	Expansion KLD 1 1 20 1	Remarks		
	(A) Domestic (B) Gardening (C) Industrial Process Washing Boiler	0.5 Nil 1.4 0.1 0.4	(Additional) KLD 0.5 1 18.6 0.9 0.1	Expansion KLD 1 1 20 1 0.5	Remarks		
i	(A) Domestic (B) Gardening (C) Industrial Process Washing Boiler Cooling	0.5 Nil 1.4 0.1 0.4 0.1	(Additional) KLD 0.5 1 18.6 0.9 0.1 0.2	Expansion KLD 1 1 20 1 0.5 0.3	Remarks		

Category	Existin	Proposed	Total after	Remarks
	g	(Additional)	Expansion	
	KLD	KLD	KLD	
(A) Domestic	0.4	0.5	0.9	
(B) Industrial	1	1	ı	
Process	1.82	17.08	18.9	
Washing	0.1	0.9	1.0	
Boiler	0.02	0	0.02	
Cooling	0.06	0.12	0.18	
Others	Nil	Nil	Nil	
Total Industrial	2.0	18.1	20.1	
waste water				

iv Treatment facility within premises with **capacity** [For existing and Proposed]
[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc..

ETP DETAILS


M/s. Maharshee Laboratories Pvt. Ltd. (Unit-1) shall have an Effluent treatment plant consisting of primary unit. The details of ETP are as follows:

Stream I (Low COD & TDS Stream) = 20.1 KL/Day

First all non-toxic and biodegradable streams (low & medium COD & TDS) of wastewater shall pass through Screen Chamber where floating material shall be removed with help of Screen. Then effluent shall be passed through Oil & Grease Removal Tank. Automatic mechanical Oil Skimmer shall be provided in the OGRT to remove floating oil and grease from the wastewater to Oil & Grease Collection Tank. Then effluent shall be collected in Collection cum Equalization tank-1. Pipe grid is provided at bottom of the CET-01 to keep all suspended solids in suspension and to provide proper mixing. 2 nos. of Air Blowers (1W+1 stand-by) shall supply air through to pipe grid.

Then after, equalized wastewater shall be pumped to Neutralization Tank-1 where the continuous addition and stirring of Caustic solution is done to maintain neutral pH of wastewater from Caustic Dosing Tanks as per requirement by gravity. Then after, neutralized wastewater shall go to Flash Mixer-1 by gravity. Alum and Polyelectrolyte shall be dosed from Alum Dosing Tank and Polyelectrolyte Dosing Tank respectively by gravity into FM-1 to carry out coagulation by using a Flash Mixer. Then after, coagulated wastewater shall be settled in Primary Clarifier. Treated effluent will be sent to CMEE of M/s. ACPTCL, Ankleshwar for further treatment.

Mode of Disposal & Final meeting point

[Source of reuse & application area]

Total reuse 0 KLD

Source of waste	Application area with	Remarks regarding
water for reuse	quantity in KLD	feasibility to reuse i.e.
with quantity in		w/w characteristics
KLD		(COD, BOD, TDS etc.)

We shall explore the possibility of recycle or reuse

-

E Air

i Flue gas emission details

No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc.

Existing & Proposed

-

Sr. no.	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel MT/Day	Type of emissions i.e. Air Pollutants	Air Pollution Control Measures (APCM)
1	Boiler (1 TPH)	15	Natural Gas	600 Nm³/day	SPM, SO2, NOx	Adequate Stack Height
2	DG Set (62 KVA)	8	LDO	500 Lit/day	SPM, SO2, NOx	Adequate Stack Height

ii Process gas i.e. Type of pollutant gases (SO₂, HCl, NH₃, Cl₂, NO_x etc.)

Existing & Proposed

-

	Sr. no.	Specific Source of emission (Name of the Product & Process)	Type of emission	Stack/Vent Height (meter)	Air Pollution Control Measures (APCM)
•	1	Process Vent-1 (Sulphonation)	SO2, HCI	11	Alkali Scrubber
:	2	Process Vent-2 (Ammonation)	NH3	11	Acid Scrubber

			i .	1 -	• ,	
	io. Nam		Source of	ry and	(MT/Annum)	
S	r. Type	'	Specific	Catego	Quantity	Management of HW
E	cisting & F	ropo	ed			
	116.	· · ·				
`	•	azar	dous and Other \	vastes (Ma	nagement and Transb	oundary Movement) Rules
	azardous			Nt (N.		augustam, Marramant D. Liv
			of Gujarat Facto	ry Kules.		
			•		e carried out to check	the fugitive emission as per
	,		ventilation will be	•		
			dust collector to		l.	
			•	_	•	nduced draft, and control by
				_		sion from loading of raw
	10. Minin	num r	number of flange	s, joints and	d valves in pipelines.	
	be co	nnec	ted to vent chille	rs.		
	9. Close	feed	ding system will b	e provided	for centrifuges. Centri	fuge and filtrate tank vents wi
	at all	solve	ent pumps.			
						echanical seal will be provide
			alves will be prov			C
	•		•	area will b	e carried out to check t	he fugitive emission.
		-	and temperature.			
	•			_	•	with proper maintenance of
	•				the fugitive emissions	
	any. 4 Regu	lar m	aintenance of va	lves numn	s flanges joints and o	ther equipment will be done to
		WIII	Je laken to store	: constructi	on material properly to	p prevent fugitive emissions, i
			_	_	will be done in covered	
	•	•	enclosures.			
				s operation	s/ points will be contro	lled either by spraying water o
Fo	ollowing n	eası	res will be ado	oted to pre	vent and control fugi	tive emissions
	_		n details with its	•		
	- Wors	t Cas	e Scenario for H	Cl gas emis	ssion is CYPROHEPTA	DINE HYDROCHLORIDE
	- Wors	t Cas	e Scenario for N	H₃ gas emi	ssion is BROMPHENIF	RAMINE MALEATE

	us	(Name of the	ule as	Exist	Propo	Total	
	waste	Activity,	per HW	ing	sed		
		Product etc.)	Rules.				
1	ETP Sludge	ЕТР	Sch-I/ 35.3	0.48	53.52	54	Collection, Storage, Transportation & Sent to TSDF site of M/s. PSWML, Panoli or M/s. BEIL, Ankleshwar
2	Used Oil	Equipment and Machinery	Sch-I/ 5.1		180	180	Collection, Storage, Transportation & Sale to registered re-processor or used for lubrication within premises
3	Spent Carbon	Process (Cetirizine Dihydrochlorid e)	Sch-I/ 28.3		30	30	Collection, Storage, Transportation & co- processing in cement industries or Send to M/s. BEIL, Ankleshwar for incineration
4	Discarde d Containe rs	Raw material and Storage	Sch-I/ 33.1	1.08	9.72	10.8	Collection, Storage, Transportation, Decontamination & given to registered vendors
5	Discarde d Liners	Raw material and Storage	Sch-I/ 33.1	2.4	15.6	18	Collection, Storage, Transportation, Decontamination & given to registered vendors
6	Distillatio n Residue	Distillation Unit	Sch-I/ 36.1	0.01	119.9 9	120	Collection, Storage, Transportation & Sent to Co-Processing in Cement Industries or Common Incineration of M/s. BEIL, Ankleshwar
7	Ammoni um	Scrubber	Sch-I/ 28.1	-	300	300	Collection, Storage & Sold to re-processors or end

	Sulphate						users h	aving pern	nission
	Sodium	Process	Sch-II/	-	180	180	under F	Rule-9	
8	Bromide	(Diphenhydra	B-36						
		mine							
		Hydrochloride)							
9	Sodium	Scrubber	Sch-I/	-	540	540			
9	Sulfite		28.1						
	Sodium	Process	Sch-I/	-	240	240	Collecti	ion, Storag	je and
10	Chloride	(Pheniramine	28.1				sent to	ETP.	
		Maleate)							
	Spent	Process	Sch-I/	-	500	500	Collecti	ion, Storag	je, Re-
11	Solvent		28.6				process	s and Reus	se within
							premise	es.	
	•	ils of TSDF, CHW	/IF etc.	-	-		-		M/s. BEIL
(For H	HW manage	ement)		Ankles	hwar vio	le lette	r No. B	BEIL/ANK/2	2016 dated
				23/12/2	2016				
				20/ 12/2	_0.0.				
Detail	s of Non-Ha	zardous waste &	its		ch waste	will be g	generate	d.	
	s of Non-Ha sal(MSW an		its			will be (generate	d.	
dispos	sal(MSW an	d others) ment, VOC emiss	sions etc.	No suc	ch waste				
dispos	sal(MSW an	d others)	sions etc.	No suc	ch waste				S
dispos	sal(MSW an	d others) ment, VOC emiss	sions etc.	No suc	ch waste	euse of	recovere	ed Solvent	s
Solve Types	sal(MSW an	d others) ment, VOC emiss , Details of Solver	sions etc. nt recover	No suc	covery. re	euse of	recovere	ed Solvent	S
Solve Types	sal(MSW anent manage	d others) ment, VOC emiss , Details of Solver	sions etc. nt recover Qty. c	y, % rec	covery. ro	euse of	recovere	ed Solvent	S
Solve Types	sal(MSW and managers of solvents arme of Solvents	d others) ment, VOC emiss , Details of Solver Total ent Input	sions etc. nt recover Qty. o	y, % rec	covery. re Qty. of Losses	euse of	recovere	ed Solvent	S
Solve Types Na	ent manage of solvents ome of Solvents	d others) ment, VOC emiss , Details of Solver Total ent Input (Kg)	sions etc. nt recover Qty. o Recove Solvent	y, % red f red I	covery. ro Qty. of Losses (Kg)	euse of % Reco	recovere %	ed Solvents % Losses	S
Solve Types Na Acet	ent manage of solvents ome of Solvents	d others) ment, VOC emiss , Details of Solver Total ent Input (Kg) 365	ont recover Qty. of Recover Solvent (y, % rec	covery. re Qty. of Losses (Kg)	euse of % Reco	recovere % overy	ed Solvents % Losses 1.37	S
Solve Types Na Acet Tolue IPA	ent manage of solvents ome of Solvents	d others) ment, VOC emiss , Details of Solver Total ent Input (Kg) 365 9454	Qty. of Recover Solvent (y, % rec	covery. re Qty. of Losses (Kg) 5	euse of % Recc 98 91 92	recovere 63	ed Solvents % Losses 1.37 8.72	S
Na Acet	ent manage of solvents ame of Solvene	d others) ment, VOC emiss , Details of Solver Total lnput (Kg) 365 9454 3320	Qty. of Recover Solvent (360) 8630	y, % rec	covery. re Qty. of Losses (Kg) 5 824 235	98 991 92	recovere 60 63 28	ed Solvents % Losses 1.37 8.72 7.08	S
Na Acet	ent manage s of solvents ame of Solv one ene nanol I Acetate	d others) ment, VOC emiss , Details of Solver Total Input (Kg) 365 9454 3320 2450	Recove Solvent 360 8630 3085	y, % rec	covery. re Qty. of Losses (Kg) 5 824 235 140	98 91 92 94 93	recovere 6 63 28 92	% Losses 1.37 8.72 7.08 5.71	S
Solve Types Na Acet Tolue IPA Meth Ethy	ent manage s of solvents me of Solv one ene nanol I Acetate	d others) ment, VOC emiss , Details of Solver Total Input (Kg) 365 9454 3320 2450 1100	360 8630 3085 2310	y, % rec	covery. re Qty. of Losses (Kg) 5 824 235 140 70	98 91 92 94 93	recovere 63 28 92 29 64	% Losses 1.37 8.72 7.08 5.71 6.36	S
Na Acet Toluc IPA Meth Ethy MCB	ent manage s of solvents ame of Solvene ene hanol I Acetate	d others) ment, VOC emiss , Details of Solver Total Input (Kg) 365 9454 3320 2450 1100 500	360 8630 3085 2310 1030 470	y, % rec	Covery. re Covery	98 91 92 94 93	recovere 6 63 28 92 29 64	ed Solvents % Losses 1.37 8.72 7.08 5.71 6.36 6	S
Na Acet Toluc IPA Meth Ethy MCB DMF	ent manage s of solvents me of Solvent one ene hanol I Acetate	d others) ment, VOC emiss , Details of Solver Total Input (Kg) 365 9454 3320 2450 1100 500 140	Recover 360 8630 3085 2310 1030 470 130 igation me	y, % rec	covery. re Qty. of Losses (Kg) 5 824 235 140 70 30 10	98 91 92 94 93 9 92	recovere 63 28 92 29 64 4 86	ed Solvents % Losses 1.37 8.72 7.08 5.71 6.36 6 7.14	
Na Acet Toluc IPA Meth Ethy MCB DMF	ent manage s of solvents ame of Solv one ene hanol I Acetate s emission so	ment, VOC emiss , Details of Solver Total Input (Kg) 365 9454 3320 2450 1100 500 140 burces and its mit	Recover 360 8630 3085 2310 130 igation methrough value of through value of	y, % red f red I (Kg) easures	covery. re Qty. of Losses (Kg) 5 824 235 140 70 30 10	98 91 92 94 93 92 8age an	recovere 6 63 28 92 29 64 4 86	% Losses 1.37 8.72 7.08 5.71 6.36 6 7.14 ion from op	pen drum

- Solid raw material charging will be done through closed system.
- Entire process will be carried out in the closed reactors with proper maintenance of pressure and temperature.
- Close feeding system will be provided for centrifuges. Centrifuge and filtrate tank vents will be connected to vent chillers.
- Fugitive emission over reactors, formulation areas, centrifuges, chemical loading, transfer area, will be collected through hoods and ducts by induced draft and controlled by scrubber/dust collector.
- Emphasis will be given to solvent management/solvent loss prevention.
- Control by having proper scrubbing system.
- Condenser to trap VOC.
- Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber/dust collector to be ensured.
- Proper maintenance schedule will be adhered to avoid emissions through flange joints, pump seals etc.
- Minimum number of flanges, joints and valves in pipelines.
- Proper gland packing will be maintained for pumps and valves and to the extent possible pumps with mechanical seal.
- All the raw materials will be pneumatically transfer to the reactor.
- All rotating equipments like pumps will be installed with mechanical seals to arrest any sort of emissions.
- A regular preventive maintenance schedule will be in place to replace or rectify all gaskets and
 joints etc. as a part of ISO systems to ensure no fugitive emissions take place.
- Periodic monitoring of work area will be carried out to check the fugitive emission.
- Solvent tank vents will be connected to vent chillers.
- Adequate ventilation will be provided.
- Airborne dust at all transfers operations/ points will be controlled either by spraying water or providing enclosures.
- Breather valves will be provided on solvent tanks.
- During the meeting dated 13/11/2018, technical presentation made by project proponent.
- Salient features of the project submitted by PP are as mentioned above.

Observation:

• This proposal is for expansion of existing unit and for now proposes for synthetic organic chemical product. This unit is having valid CC&A for existing unit. Copy of CC&A, CC&A compliance report is

submitted.

- Total water consumption will be 23.8 KLD. Total wastewater generation will be 20.1 KLD. After proposed expansion, Industrial effluent will be treated in ETP and treated effluent will be sent to Common MEE of M/s ACPTCL for further treatment and disposal.
- Natural gas will be used as fuel for boiler.
- Adequate APCM will be provided with process vents.
- Hazardous waste management will be as per the HW Rules.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March 2017 to May 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, O3, Pb, NH3, CO, C6H6, BaP, As, Ni, HCl, Cl2, HBr, HC and VOC at nine locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST3. The resultant concentrations are within the NAAQS. The modelling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- The results of Ground Water Sample are found to be within the norms prescribed in GPCB Standards. The results of Surface Water Samples are found to be within the norms prescribed in GPCB Standards.
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan has been covered in the RA report.

Discussions & Conclusion:

The proposal is for expansion. Compliance of CCA conditions, action taken by GPCB were deliberated at length. PP mentioned that there is no SCN or closure issued by the GPCB. It is further noted that PP proposes to follow zero liquid discharge for existing as well as proposed industrial waste water generation. PP mentioned that existing steam boiler of 600 kg/hr capacity will be replaced by new steam boiler having capacity of 1000 kg/hour. Referring to the product profile, PP mentioned that spent HCL is generating from the product Cyproheptadine HCl which will be dropped hence there will not be generation of spent HCL. Committee deliberated for the hazardous chemicals storage methods with incompatibility criteria to prevent safety hazards. Further committee asked PP to submit the details of environmental cost benefits addressed under the TOR 44 under Air emission chapter of Rs 1,40,000 by pursuing the best available technology and revised EMP addressing budgetary provision of capital and recurring cost with details of each components. PP was asked to conduct need based analysis for following CER and submit the detailed outlay of CER for

the coming years after performing need based analysis. Committee deliberated the TOR issued to the PP.

After deliberation, PP was asked to submit following details and it was unanimously decided to consider the proposal in one of the upcoming SEAC meeting after submission of the said details.

- 1. Addendum to EIA mentioning surrendering of Cyproheptadine HCl and its associated impacts.
- 2. Revised EMP with details of environmental cost benefits addressed under the TOR 44 for Air emission chapter of Rs 1,40,000 by pursuing the best available technology and budgetary provision of capital and recurring cost with details of each components.
- 3. Need based budgetary outlay of CER as per the OM of MOEF&CC dated 01/05/2018.

8.	IA/GJ/IND2/62351/2017	M/s. Amar Pigments	Appraisal
		Plot No. 3012-3013 , Phase-III, GIDC, Panoli	
		– 394 116, Dist: Bharuch, Gujarat	

Project / Activity No.: 5(f)

Project status: Expansion

- PP has submitted online application vide no. IA/GJ/IND2/62351/2017 dated 07/09/2018 for obtaining Environmental Clearance.
- MoEF&CC has issued TOR to PP vide letter no J-11011/92/2017-IA.II(I) vide dated 10/07/2017.
- Project proponent has submitted EIA Report prepared by M/s. Aqua Air Environmental Engineering Pvt. Ltd based on the TOR issued by MoEF&CC.
- This is an expansion of synthetic organic chemicals plant and proposed for products as tabulated below:

	T		1			
Sr.	Name of the Products	CAS no. /CI Quantity				End-use of products
No.		no.		MT/Month		
			Existing	Additional	Total	
				Proposed		
1	Pigment Beta Blue	147-14-8	3.5			In Ink and Paints
2	α-Ph nyl-2 Pyridyl	5005-36-7		40	40	For organic preparation
	Acetonitrile					
3	α-Phenyl-2-Pyridyl	7251-52-7				For organic preparation
	Acetamide					
4	L-(+) 4-Nitro Tartranilic	60908-35-2				For organic preparation
	Acid					
5	9-Methyl-1,2,3,9-	27387-31-1				For organic preparation
	Tetrahydro-4H-					

	Carbazol-4-One					
6	2,2',4'-Trichloro	4252-78-2	-			For organic preparatio
	Acetophenone					
7	1-(2,4-Dichloro Phenyl)-	24155-42-8	-			For organic preparation
	2-(1H-Imidazol-yl)					
	Ethanol					
8	Ritanilic Acid	19395-41-6	-			For organic preparation
9	α-Phenyl-2-Piperidyl	19395-39-2	-			For organic preparation
	Acetamide					
10	P-Chloro	134-85-0	-			For organic preparation
	Benzophenone					
11	P-Chlorobenzhydryl	134-83-8	-			For organic preparation
	Chloride					
12	p-Chlorobenzhydryl	303-26-4	-			For organic preparation
	Piperazine					
13	2-[4-(4-	109806-71-5	-			For organic preparation
	Chlorobenzhydryl)-1-					
	Piperazinyl] Ethanol					
14	Lamotrigine	84057-84-1	-			Anticonvulsant
15	Roxithromycin EP/BP	80214-83-1	-			Antibacterial
	TOTAL		3.5	40	40	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 13/11/2018.
- Salient features of the project are as under:

Sr.	Particulars	Details
no.		
Α	Total cost of Proposed Project	Existing: 3.75
	(Rs. in Crores):	Proposed: 3.75
		Total: 7.50
В	Total Plot area	Existing: 1000 Sq. m.
	(sq. meter)	Proposed: 1000 Sq. m.
		Total: 2000 Sq. m.
	Green belt area	Existing: 160.32 Sq. m.
	(sq. meter)	Proposed: 39.68 Sq. m.

					Total: 200	Sa m		
	Fundament managetic				Total: 200 Sq. m.			
С	Employment generation	n			Existing: 40 Proposed: 10			
						10		
	10/-4				Total: 50	Total: 50		
D	Water	or Cupply			010014/1			
İ	Source of Water Supply	vater Supply e well, Surface water, Tanker supply etc)		,	GIDC Water Supply			
	,			c)				
	Status of permission from	n the conc	ern authority.			btained permissior		
						water supply vide letter n		
<u> </u>					NO/GIDC/I	NO/GIDC/DEE/PNL/1357 dated 21/01/2017.		
ii	ii Water consumption (KLD)							
		Existin	g Proposed	•	Total after	Remarks		
		KLD	(Additiona	(Additional)				
			KLD	ı	KLD			
	(A) Domestic	1	1		2		-	
	(B) Gardening	(B) Gardening Nil		1 1				
	(C) Industrial	(C) Industrial						
	Process	Process 1.5			21.5			
	Washing	11	1		12		-	
	Boiler	1.5	0.5		0.2			
	Cooling	Nil	0.5		0.5			
	Others	Nil	Nil		Nil			
	Industrial Total	14	22		36		-	
	Grand Total (A+B+C)	15	24		39		-	
	1) Total water requ	irement fo	or the project: 3	r the project: 39 KLD		D		
	2) Quantity to be rec	cycled: 0	KLD					
	3) Total fresh water	requirem	ent: 39 KLD					
iii	Waste water generation	ı (KLD)						
	Category	Existin	Proposed	Tot	al after	Remarks		
		g	(Additional)	Exp	pansion			
		KLD	KLD	KLI)			
	(A) Domestic	0.7	0.7		1.4		1	
	(B) Industrial		<u> </u>	1			-	
	Process	1.2	11		12.2		1	
	Washing	11	1		12		-	

Cooling Nil 0.3 0.3 Others Nil Nil Nil	Others Nil Nil Total Industrial 12.4 12.4
---	---

iv Treatment facility within premises with capacity [For existing and Proposed]

[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc..

M/s. Amar Pigments shall have an Effluent treatment plant consisting of primary unit. The details of ETP are as follows:

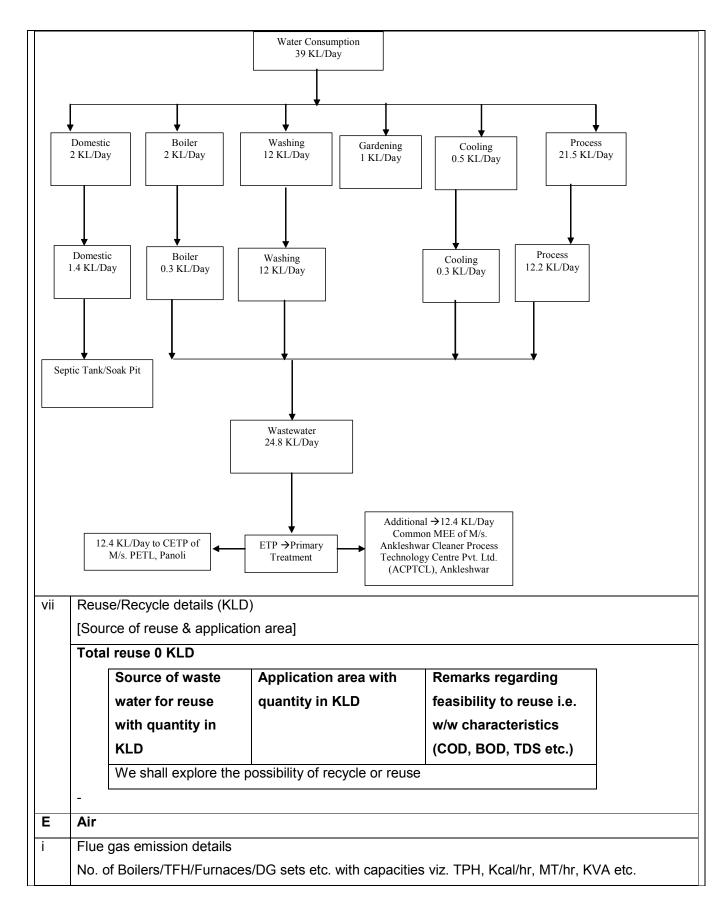
DETAILS OF EXISTING ETP

STREAM I (EXISTING LOW COD & TDS STREAM) = 12.4 KL/DAY

First all non-toxic and biodegradable streams (low & medium COD & TDS) of wastewater shall pass through Oil & Grease Trap(OGT-01)where floating oil and grease shall be removed from the wastewater from the top. Then effluent shall be collected in Equalization cum Neutralization Tank-1(ENT-01) where addition and stirring of Caustic solution is done to maintain neutral pH of wastewater from Caustic Dosing Tanks as per requirement by gravity. Mixer is provided in the Tank all suspended solids in suspension and to provide proper mixing. Then after, equalized wastewater shall be pumped to Flash Mixer-1 (FM-01) by gravity. Alum and Polyelectrolyte shall be dosed from Alum Dosing Tank and Polyelectrolyte Dosing Tank respectively by gravity into FM-1 to carry out coagulation by using a Flash Mixer. Then after, coagulated wastewater shall be settled in Primary Settling Tank. Clear supernatant is collected in Treated Effluent Sump-1 (TES-01) before sent to CETP of PETL, Panoli for further treatment.

DETAILS OF PROPOSED ETP

Stream II (Low COD & TDS Stream) = 12.4 KL/Day


Additional non-toxic streams of wastewater shall be collected Equalization cum Neutralization Tank-2 (ENT-02) where caustic is added from Caustic Dosing Tank to maintain neutral pH of wastewater. Mixer is provided in ENT-01 to keep all suspended solids in suspension and to provide proper mixing.

Then after, equalized wastewater shall be pumped to Flash Mixer-2where Alum and Polyelectrolyte shall be dosed from Alum Dosing Tank and Polyelectrolyte Dosing Tank respectively by gravity to carry out coagulation by using a Flash Mixer. Then after, coagulated wastewater shall be allow to settle in Primary Settling Tank-2(PST-02). Clear supernatant is collected in Treated Effluent Sump - 02 (TES-02) before sent to common MEE facility of M/s ACPTCL for further treatment and disposal.

v Mode of Disposal & Final meeting point

Domestic:	1.4 KL/Day domestic wastewater will be disposed through Septic Tank/Soak Pit.
Industrial:	1) Existing Industrial Effluent (12.4 KL/Day) will be treated in ETP (neutralized) and

vii	Simplified wa	ater balance diagram with reuse / recycle of waste water					
		00000111/2018-19/12 dated 13/05/2018.					
	29/12/2016 a	nd Common MEE membership of M/s. ACPTCL, Ankleshwar vide letter no					
	Unit has obtai	ned membership of CETP of M/s. PETL, Panoli vide letter no. PETL/17/2016 dated					
	CETP membership of M/s. PETL, Panoli and Common MEE membership of M/s. ACPTCL, Ankleshwar. Membership of Common facility (CF)						
	Name of Com	mon facility					
vi	In case of Con	nmon facility (CF) like CETP, Common Spray dryer, Common MEE, CHWIF etc.					
		Ankleshwar for further treatment and disposal.					
		treated in ETP (neutralized) and then disposed off to Common MEE of M/s ACPTCL,					
		2) Additional Industrial Effluent of Low COD & TDS Stream (12.4 KL/Day) will be					
		then disposed off to CETP of M/s. PETL, Panoli for further treatment and disposal.					

Existing & Proposed

-

Sr. no.	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel MT/Day	Type of emissions i.e. Air Pollutants	Air Pollution Control Measures (APCM)
1	Boiler (1 TPH)	15	Natural Gas	700 Nm³/day	SPM, SO2, NOx	Adequate Stack Height
2	DG Set (62 KVA)	8	LDO	500 Lit/day	SPM, SO2, NOx	Adequate Stack Height

_

ii Process gas i.e. Type of pollutant gases (SO₂, HCl, NH₃, Cl₂, NO_x etc.)

Existing & Proposed

-

Sr. no.	Specific Source of emission (Name of the Product & Process)	Type of emission	Stack/Vent Height (meter)	Air Pollution Control Measures (APCM)
1	Process Vent-1 (Chlorination)	HCI	11	Two Stage Water + Alkali Scrubber
2	Process Vent-2 (Amination)	NH3	11	Acid Scrubber

- Worst Case Scenario for HCl gas emission is p-CHLORO BENZOPHENONE
- Worst Case Scenario for NH3 gas emission is α-Phenyl-2-Pyridyl Acetonitrile
- iii **Fugitive emission** details with its mitigation measures.

Following measures will be adopted to prevent and control fugitive emissions...

- 1. Airborne dust at all transfers operations/ points will be controlled either by spraying water or providing enclosures.
- 2. Raw materials loading and unloading will be done in covered area
- 3. Care will be taken to store construction material properly to prevent fugitive emissions, if any.
- 4. Regular maintenance of valves, pumps, flanges, joints and other equipment will be done to

- prevent leakages and thus minimizing the fugitive emissions of VOCs.
- 5. Entire process will be carried out in the closed reactors with proper maintenance of pressure and temperature.
- 6. Periodic monitoring of work area will be carried out to check the fugitive emission.
- 7. Breather valves will be provided on solvent tanks.
- 8. To eliminate chances of leakages from glands of pumps, mechanical seal will be provided at all solvent pumps.
- 9. Close feeding system will be provided for centrifuges. Centrifuge and filtrate tank vents will be connected to vent chillers.
- 10. Minimum number of flanges, joints and valves in pipelines.
- 11. Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber / dust collector to be ensured.
- 12. Adequate ventilation will be provided.
- 13. Periodic monitoring of work area will be carried out to check the fugitive emission as per the norms of Gujarat Factory Rules.

F Hazardous waste

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

Existing & Proposed

Sr. Type/ no. Name of Hazardo		Name of Source of y and			Quar (MT/An	•	Management of HW
	us waste	(Name of the Activity, Product etc.)	e as per HW Rules.	Existin g	Prop ose d	Total	
1	ETP Waste	ETP	Sch-I/ 35.3	0.20	119. 8	120	Collection, Storage, Transportation & Ser to TSDF site of M/s. PSWML, Panoli or M/s. BEIL, Ankleshw
2	Used Oil	Equipment and Machinery	Sch-I/ 5.1	20.04	195. 96	216	Collection, Storage, Transportation &Sale to registered re-

							processor or used for
							lubrication within
							premises
		Process (α-			4.8	4.8	Collection, Storage,
	Cnont	`	Sch-I/		4.0	4.0	
3	Spent	Phenyl-2-					Transportation and
	Catalyst	Piperidyl	28.2				sent to registered
		Acetamide)	0 1 1/	40.0			regenerator
	Empty	Raw	Sch-I/	16.2	25.8	42	Collection, Storage,
	Bags	Material	33.1				Transportation,
4		and Storage					Decontamination &
							sale to registered
							vendors
	Discarde	Raw	Sch-I/		3.6	3.6	Collection, Storage,
	d	Material	33.1				Transportation,
5	Containe	and Storage					Decontamination &
	rs						sale to registered
							vendors
	Discarde	Raw	Sch-I/		6	6	Collection, Storage,
	d Liners	Material	33.1				Transportation,
6		and Storage					Decontamination &
							sale to registered
							vendors
	Distillatio	Distillation	Sch-I/		96	96	Collection, Storage,
	n	Unit	36.1				Transportation & Sent
	Residue						to Cement industries
_							for Co-Processing or
7							Common Incineration
							of M/s. SEPPL, Dahej
							or M/s. BEIL,
							Ankleshwar
	Aluminiu	Process (2,	Sch-II/		960	960	Collection, Storage &
	m	2', 4'-	B-10				Sold to end users
8	Chloride	Trichloro	-				having permission
	Soln.	Acetopheno					under Rule-9
	(25%)	ne)					5657 7.630 0
9	Ammoni	Scrubber	Sch-I/		168	1680	
9	7 1111110111	Colubbei	OU1-1/		100	1000	

Sulphate 10 Dil. HCl. Scrubber Sch-II/ 660 660 Collection, Storage and Sent to ETP Sodium Process (p- Sch-I/ 864 864 Collection, Storage and Sent to ETP			um		28.1		0							
Dil. HCl. Scrubber Sch-II/ 660 660 Collection, Storage and Sent to ETP Sodium Process (p- Sch-II/ 864 864 Collection, Storage and Sent to ETP Chloride Chlorobenz 28.1 hydryl Piperazine) Spent Process Sch-II/ 600 600 Collection, Storage, Re-process and Reuse within premises Spent Process Sch-II/ 1.08 1.08 Collection, Storage, Transportation & coprocessing in cement industries or Send to TSDF of M/s. PSWML, Panoli or M/s. SEPL, Jambusar or M/s. BEIL, Ankleshwar III Membership details of TSDF, CHWIF etc. (For HW management) Western Sch-III/ 1.08 1.08 Collection, Storage, Transportation & coprocessing in cement industries or Send to TSDF of M/s. PSWML, Panoli or M/s. SEPL, Jambusar or M/s. BEIL, Ankleshwar vide letter No. BEIL/ANK/2016 date 23/12/2016. Western Sch-II/ 660 660 Collection, Storage and Sent to ETP 10					20.1									
10 (23%) B-15 and Sent to ETP			-	Corubbor	Sob II/		660	660	Collection	Storago				
Sodium Process (p- Sch-I/ 864 864 Collection, Storage and Sent to ETP 11		10		Scrubbei			000	000		_				
Chloride Chlorobenz 28.1			` ′	D	_		004	004						
Spent Process Sch-I/ 600 600 Collection, Storage, Re-process and Reuse within premises							864	864						
Piperazine) Spent Process Sch-I/ 600 600 Collection, Storage, Re-process and Reuse within premises Spent Process Sch-I/ 1.08 1.08 Collection, Storage, Transportation & co-processing in cement industries or Send to TSDF of M/s. PSWML, Panoli or M/s. SEPL, Jambusar or M/s. BEIL, Ankleshwar Wembership details of TSDF, CHWIF etc. (For HW management) Wembership details of Non-Hazardous waste & its disposal(MSW and others) No such waste will be generated.		11	Chloride		28.1				and Sent to	EIP				
Spent Process Sch-I/ 600 600 Collection, Storage, Re-process and Reuse within premises Spent Process Sch-I/ 1.08 1.08 Collection, Storage, Transportation & coprocessing in cement industries or Send to TSDF of M/s. PSWML, Panoli or M/s. SEPL, Jambusar or M/s. BEIL, Ankleshwar II Membership details of TSDF, CHWIF etc. (For HW management) Membership details of Non-Hazardous waste & its disposal(MSW and others) No such waste will be generated.														
12 Solvent 28.6 Re-process and Reuse within premises														
Spent Process Sch-I/ 1.08 1.08 Collection, Storage, Transportation & coprocessing in cement industries or Send to TSDF of M/s. PSWML, Panoli or M/s. SEPL, Jambusar or M/s. BEIL, Ankleshwar ii Membership details of TSDF, CHWIF etc. (For HW management) Details of Non-Hazardous waste & its disposal(MSW and others) Reuse within premises Reuse subject to 1.08 Collection, Storage, Transportation & collection & collection & collection & collection & collection & collection			•	Process			600	600		•				
Spent Process Sch-I/ Carbon (DL-Ritanilic Acid) 13 Spent Process Sch-I/ 1.08 1.08 Collection, Storage, Transportation & coprocessing in cement industries or Send to TSDF of M/s. PSWML, Panoli or M/s. SEPL, Jambusar or M/s. BEIL, Ankleshwar ii Membership details of TSDF, CHWIF etc. (For HW management) Company has membership of TSDF of M/s. BEIL Ankleshwar vide letter No. BEIL/ANK/2016 date 23/12/2016. iii Details of Non-Hazardous waste & its disposal(MSW and others)		12	Solvent		28.6				•					
Carbon (DL-Ritanilic Acid) Transportation & coprocessing in cement industries or Send to TSDF of M/s. PSWML, Panoli or M/s. SEPL, Jambusar or M/s. BEIL, Ankleshwar Transportation & coprocessing in cement industries or Send to TSDF of M/s. PSWML, Panoli or M/s. BEIL, Ankleshwar Transportation & coprocessing in cement industries or Send to TSDF of M/s. PSWML, Panoli or M/s. BEIL, Ankleshwar Transportation & coprocessing in cement industries or Send to TSDF of M/s. PSWML, Panoli or M/s. BEIL, Ankleshwar Transportation & coprocessing in cement industries or Send to TSDF of M/s. PSWML, Panoli or M/s. BEIL, Ankleshwar Transportation & coprocessing in cement industries or Send to TSDF of M/s. PSWML, Panoli or M/s. BEIL, Ankleshwar To PSWML, Panol									Reuse with	in premises				
Acid) Acid) processing in cement industries or Send to TSDF of M/s. PSWML, Panoli or M/s. SEPL, Jambusar or M/s. BEIL, Ankleshwar ii Membership details of TSDF, CHWIF etc. (For HW management) Company has membership of TSDF of M/s. BEIL Ankleshwar vide letter No. BEIL/ANK/2016 date 23/12/2016. iii Details of Non-Hazardous waste & its disposal(MSW and others)			Spent	Process	Sch-I/		1.08	1.08	Collection,	Storage,				
industries or Send to TSDF of M/s. PSWML, Panoli or M/s. SEPL, Jambusar or M/s. BEIL, Ankleshwar - ii Membership details of TSDF, CHWIF etc. (For HW management) Company has membership of TSDF of M/s. BEIL Ankleshwar vide letter No. BEIL/ANK/2016 date 23/12/2016. iii Details of Non-Hazardous waste & its disposal(MSW and others)			Carbon	(DL-Ritanilic	28.3				Transporta	tion & co-				
ii Membership details of TSDF, CHWIF etc. (For HW management) Company has membership of TSDF of M/s. BEIL, Ankleshwar vide letter No. BEIL/ANK/2016 date 23/12/2016. iii Details of Non-Hazardous waste & its disposal(MSW and others)				Acid)					processing	in cement				
ii Membership details of TSDF, CHWIF etc. (For HW management) Company has membership of TSDF of M/s. BEIL/ANK/2016 date 23/12/2016. Company has membership of TSDF of M/s. BEIL/ANK/2016 date 23/12/2016. No such waste will be generated.									industries of	or Send to				
ii Membership details of TSDF, CHWIF etc. (For HW management) Company has membership of TSDF of M/s. BEIL/ANK/2016 date 23/12/2016. Details of Non-Hazardous waste & its disposal(MSW and others) M/s. SEPL, Jambusar or M/s. BEIL, Ankleshwar		13							TSDF of M	/s.				
ii Membership details of TSDF, CHWIF etc. (For HW management) Company has membership of TSDF of M/s. BEIL Ankleshwar vide letter No. BEIL/ANK/2016 date 23/12/2016. iii Details of Non-Hazardous waste & its disposal(MSW and others)									PSWML, P	anoli or				
ii Membership details of TSDF, CHWIF etc. (For HW management) Company has membership of TSDF of M/s. BEIL/ANK/2016 date 23/12/2016. Details of Non-Hazardous waste & its disposal(MSW and others) Ankleshwar vide letter No. BEIL/ANK/2016 date 23/12/2016.									M/s. SEPL	, Jambusar				
ii Membership details of TSDF, CHWIF etc. (For HW management) Ankleshwar vide letter No. BEIL/ANK/2016 date 23/12/2016. iii Details of Non-Hazardous waste & its disposal(MSW and others) No such waste will be generated.									or M/s. BE	L,				
(For HW management) Ankleshwar vide letter No. BEIL/ANK/2016 date 23/12/2016. iii Details of Non-Hazardous waste & its disposal(MSW and others) Ankleshwar vide letter No. BEIL/ANK/2016 date 23/12/2016.									Ankleshwa	r				
(For HW management) Ankleshwar vide letter No. BEIL/ANK/2016 date 23/12/2016. iii Details of Non-Hazardous waste & its disposal(MSW and others) Ankleshwar vide letter No. BEIL/ANK/2016 date 23/12/2016.		_	-											
23/12/2016. iii Details of Non-Hazardous waste & its disposal(MSW and others) 23/12/2016. No such waste will be generated.	ii	Memb	pership deta	ils of TSDF, CH	IWIF etc.	Comp	any has	membership	of TSDF of	of M/s. BEIL,				
iii Details of Non-Hazardous waste & its disposal(MSW and others) No such waste will be generated.		(For H	HW manage	ement)		Ankleshwar vide letter No. BEIL/ANK/2016 dated								
disposal(MSW and others)														
	iii	Detail	s of Non-Ha	zardous waste	& its									
G Solvent management VOC emissions etc		dispos	sal(MSW an	d others)										
Orivent management, voo omissions etc.	G	Solvent management, VOC emissions etc.			<u>I</u>									
i Types of solvents, Details of Solvent recovery, % recovery. reuse of recovered Solvents	i													
Total Qty. of Qty. of				Total	Qty.	of	Qty. of		0,					
Name of Solvent Input Recovered Losses		Na	me of Solv	ent Input	Recove	ered	Losses							
(Kg) Solvent (Kg) (Kg) Recovery Losses				(Kg)	Solvent	(Kg)	(Kg)	Recovery	Losses					
Toluene 3570 3380 190 94.68 5.32		Tolue	ene	3570	3380)	190	94.68	5.32					
IPA 300 270 30 90.00 10.00		IPA		300	270		30	90.00	10.00					
Methanol 2245 2135 110 95.10 4.90		11												
EDC 600 540 60 90.00 10.00		Meth	nanol	2245	2130	,	110	33.10		l				
MDC 600 540 60 90.00 10.00														

TEA	400	380	20	95.00	5.00
Acetic Acid	660	600	60	90.91	9.09
Iso Butanol	400	370	30	92.50	7.50

ii **VOC emission** sources and its mitigation measures

During operation stage, leakage through valves/pumps, leakage and emission from open drum containing chemicals, open feeding, storage tanks, etc. will be major sources of fugitive emissions and VOCs. Excess use of solvent/s may also results fugitive emission from the process vessels.

- Solid raw material charging will be done through closed system.
- Entire process will be carried out in the closed reactors with proper maintenance of pressure and temperature.
- Close feeding system will be provided for centrifuges. Centrifuge and filtrate tank vents will be connected to vent chillers.
- Fugitive emission over reactors, formulation areas, centrifuges, chemical loading, transfer area,
 will be collected through hoods and ducts by induced draft and controlled by scrubber/dust collector.
- Emphasis will be given to solvent management/solvent loss prevention.
- Control by having proper scrubbing system.
- Condenser to trap VOC.
- Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber/dust collector to be ensured.
- Proper maintenance schedule will be adhered to avoid emissions through flange joints, pump seals etc.
- Minimum number of flanges, joints and valves in pipelines.
- Proper gland packing will be maintained for pumps and valves and to the extent possible pumps with mechanical seal.
- All the raw materials will be pneumatically transfer to the reactor.
- All rotating equipments like pumps will be installed with mechanical seals to arrest any sort of emissions.
- A regular preventive maintenance schedule will be in place to replace or rectify all gaskets and
 joints etc. as a part of ISO systems to ensure no fugitive emissions take place.
- Periodic monitoring of work area will be carried out to check the fugitive emission.
- Solvent tank vents will be connected to vent chillers.
- Adequate ventilation will be provided.
- Airborne dust at all transfers operations/ points will be controlled either by spraying water or

providing enclosures.

- Breather valves will be provided on solvent tanks.
- During the meeting dated 13/11/2018, technical presentation made by project proponent.
- Salient features of the project submitted by PP are as mentioned above.

Observation:

- This proposal is for new unit proposes for a synthetic organic chemical product.
- Total water consumption will be 39 KLD. Total wastewater generation will be 24.8 KLD. Existing 12.4 KLD will be treated in ETP and sent to CETP of M/s. PETL, Panoli. Additional quantity of 12.4 KLD will be treated in ETP and sent to CMEE of M/s. ACPTCL.
- Natural gas will be used as fuel for proposed boiler.
- Two stage water scrubbers will be provided as APCM with process vents.
- Hazardous waste management will be as per the HW Rules 2016.

Discussions & Conclusion:

The proposal is for expansion. Compliance of CCA conditions, action taken by GPCB were deliberated at length. PP mentioned that there was a closure direction for making non-consented product during January 2016 which was revoked during March 2016. PP has proposed to discontinue Pigment beta blue of 3.5 MTPM and informed committee to follow zero liquid discharge for entire quantity of industrial effluent after treatment. Committee deliberated the TOR issued to the PP.

After deliberation, PP was asked to submit following details and it was unanimously decided to consider the proposal in one of the upcoming SEAC meeting after submission of the said details.

- Addendum to EIA mentioning total zero liquid discharge details for the industrial effluent of 24.80 KLPD instead of partly (12.40 KLPD) discharge to CETP and its associated changes in environmental impacts with mitigation measures.
- 2. Revised EMP with details of environmental cost benefits and budgetary provision of capital and recurring cost with details of each components.
- 3. Need based budgetary outlay of CER as per the OM of MOEF&CC dated 01/05/2018.

9.	SIA/GJ/IND2/28469/2018	Amita Chemical Industries	Screening and scoping
		Plot No 4784, GIDC ESTATE, Ankleshwar	
		Bharuch District, Gujarat-393002	

Project / Activity No.: 5(f)

Project status: Expansion

- This office has received an application vide their online proposal no. SIA/GJ/IND2/28469/2018 dated 29/08/2018 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- Project proponent (PP) has submitted Form-1, PFR and relevant details/information.
- This is an existing unit engaged in Synthetic Organic Chemicals and now proposes for expansion as tabulated below:

Sr.	Name of the Products	CAS no.	Qua	ntity MT/Mont	h	End-use of
no.			Existing	Proposed	Total	product
1	Alpha Blue	147-14-8	7	-2	5	
2	Beta Blue	147-14-8	7	8	15	
3	Azo pigments					
3	(Orange / Red / Yellow)					
	Pigment Red – 2	6041-94-7				
	Pigment Red – 3	2525-85-6				
	Pigment Red – 4	2814-77-9				
	Pigment Red – 5	6410-41-9				
	Pigment Red – 8	6410-30-6				
	Pigment Red – 12	6410-32-8				
	Pigment Red – 31	6448-96-0				
	Pigment Red – 32	6410-29-3				Used in
	Pigment Red 48 – 1	7585-41-3				Textile
	Pigment Red 48 – 2	7026-61-2	Nil	20	20	Printing.
	Pigment Red 48 – 3	15782-05-5				
	Pigment Red 48 – 4	5280-66-0				
	Pigment Red 53 – 1	5160-02-1				
	Pigment Red 57 – 1	5281-04-9				
	Pigment Red – 112	6535-46-2				
	Pigment Red – 146	5280-68-2				
	Pigment Red – 170	2786-76-7				
	Pigment Red – 210	61932-63-6				
	Pigment Orange – 5	3468-63-1				
	Pigment Orange – 13	3520-72-7				
	Pigment Orange – 34	15793-73-4				

Total		14	26	40
riginent renow – 191.1	7			
Pigment Yellow – 191:1	129423-54-			
Pigment Yellow – 183	65212-77-3			
Pigment Yellow – 168	71832-85-4			
Pigment Yellow – 83	5567-15-7			
Pigment Yellow – 74	6358-31-2			
Pigment Yellow – 65	6528-34-3			
Pigment Yellow – 62	12286-66-7			
Pigment Yellow – 17	4531-49-1			
Pigment Yellow – 14	5468-75-7			
Pigment Yellow – 13	5102-83-0			
Pigment Yellow - 12	6358-85-6			
Pigment Yellow – 3(10G)	6486-23-3			
Pigment Yellow – 1	2512-29-0			

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 05/09/2018.
- The project proponent along with their expert /consultant M/s. Ramans Enviro Services Pvt. Ltd,
 Ahmedabad attended the meeting and made presentation before the committee
- Salient features of the project are as under:

Sr.	Particulars	Details
no		
Α	Total cost of Proposed Project	Existing:0.33
	(Rs. in Crores):	Proposed:1.2
		Total: 1.5
В	Total Plot area	Existing: 1000 .Sq. m.
	(sq. meter)	Proposed: Nil.Sq. m.
		Total: 1000 Sq. m.
	Green belt area	Since our unit is located within GIDC
	(sq. meter)	estate, development of green belt within
		premises is not possible. However, we

				will active	ely participate in community				
					green belt development.				
С	Employment generation	า	Existing:	Existing:20					
			Proposed	d:5					
				Total:25					
D	Water								
	Source of Water Supply			GIDC Su	ipply				
	(GIDC Bore well, Surface	water, Ta	nker supply et	c)					
	Status of permission from	the conc	ern authority.	Will be in	ncorporated in REIA report				
i	Water consumption (KL	.D)							
		Existing	Proposed	Total after	Remarks				
		KLD	(Additiona						
			KLD	KLD					
	(A) Domestic	0.2	1.8	2.0					
	(B) Gardening	0	1	1					
	(C) Industrial								
	Process	9.0	13.58	22.58	10 KLD treated water				
	Washing				will be reused in process				
					& washing.				
	Boiler	0.8	4.2	5.0					
	Cooling								
	Others								
	Industrial Total	9.8	17.78	27.58					
	Grand Total (A+B+C)	10	20.58	30.58					
1) Total water requirement for the project: 30.58KLD 2) Quantity to be recycled:10 KLD 3) Total fresh water requirement: 20.58 KLD									
iii	Waste water generation (KLD)								
		Existing	Proposed	Total after	Remarks				
		KLD	(Additional)	Expansion					
			KLD	KLD					
	(A) Domestic	0.15	1.6	1.75					
	(B) Industrial								
	Process	7.6 13.53			Net disposal will be 11.6				

Was	shing					KLD.			
В	Boiler	0.2	0.3		0.5	7.8 KLD will disposed to			
Co	oling -	-				CETP & 3.83 KLD will be			
Ot	thers -	-				disposed through common			
Total Indus	strial	7.8	13.83		21.63	spray drier of Abad Group			
waste w	ater					of companies.			
						10 KLD will be reuse in the			
						plant.			
iv Treatment facility within premises with capacity [For existing and Proposed]									

Present System:

The present system consisting of

- 1. Collection cum equalization cum neutralization tank
- 2. Plate & frame type of filter press (1200 X 1200 X 48 plates)
- 3. Final treated collection tank for sending effluent to ETL

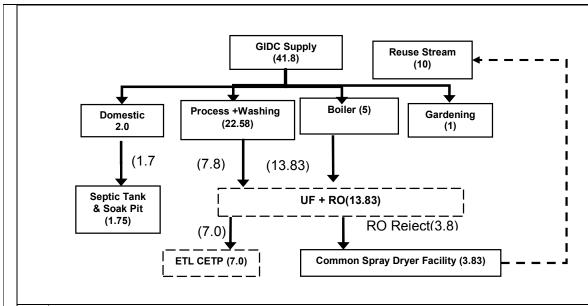
Proposed System:

Proposed system will include secondary & tertiary treatment followed by UF+RO.RO reject will be disposed through common spray drier of Abad Group of Companies.

v | Mode of Disposal & Final meeting point

Domestic:	Domestic sewage will continue to be disposed to septic tank/Soak pit system.
Industrial:	The currently consented wastewater quantity (@ 7.8 KLD) will continue to
	be subjected to primary treatment followed by disposal to CETP of ETL.
	• The additional wastewater quantity @ 13.83 KLD will be subjected to
	primary and secondary treatment, followed by tertiary treatment through
	ultrafiltration and RO.
	• The final treated water from the UF+RO, @ 10.0 KLD will be reused back
	within the plant.
	Balance concentrate from the treatment, @ 3.83 KLD will be collected and
	sent to common spray dryer facility.

vi In case of Common facility (CF) like CETP, Common Spray dryer, Common MEE, CHWIF etc.


Name of Common facility

Enviro Infrastructure Limited. Ankleshwar

Membership of Common facility (CF)

(For waste water treatment)

vii | Simplified water balance diagram with reuse / recycle of waste water

vii Reuse/Recycle details (KLD)

[Source of reuse & application area]

Total reuse:10 KLD

Source of waste	Application area with	Remarks regarding
water for reuse with	quantity in KLD	feasibility to reuse i.e.
quantity in KLD		w/w characteristics
		(COD, BOD, TDS etc.)
10 KLD secondary	To be mixed with fresh water	COD: Practically Nil
treated wastewater	being received from GIDC for	BOD: Practically Nil
followed by ACF,PSF &	various uses in	TDS:100-200 mg/L
UF+RO	manufacturing process and	
	Washing:18.5 KLD	

E Air

i Flue gas emission details

No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc.

Existing & Proposed

-

Sr.	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel MT/Day	Type of emissions i.e. Air Pollutants	Air Pollution Control Measures (APCM)	
-----	----------------------------------	----------------------------	-----------------	-------------------------------	---	---------------------------------------	--

1	Boiler (1 TPH)	11	Natural Gas		PM :150mg/NM3	
2	Thermic Fluid Heater (6 lakh kcal/hr)	6	Natural Gas	100 m3/hr	SO2:100 ppm NOx:50 ppm	

ii Process gas i.e. Type of pollutant gases (SO_{2,} HCl, NH_{3,} Cl_{2,} NO_x etc.)

Existing & Proposed

-

Sr.	Specific Source of emission (Name of the Product & Process)	Type of emission	Stack/Vent Height (meter)	Air Pollution Control Measures (APCM)
1	Air Classifier Mill Pulverizer)	PM	07	In-built bag Filter
2	Common fume extraction hood with reaction vessel	NOx	07	Caustic Scrubber

_

iii Fugitive emission details with its mitigation measures.

No fugitive emissions are envisaged due to proposed expansion project.

F Hazardous waste

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

Existing & Proposed

ı

Sr.	Type/Nam	Specific	Categor		Quantity		Management of HW
no	e of	Source of	y and	(MT/Annum)			
	Hazardou	generation	Schedul				
	s waste	(Name of	e as per	Existin	Propose	Tota	
		the	HW	g	d	1	
		Activity,	Rules.				
		Product					
		etc.)					
1	Discarded	Raw	33.1	1	4	5	Collection, storage,

		containers	Material					transportation and
		/ bags /						disposal to authorized
		liners						recycler.
	2	ETP	ETP Plant	35.1		50	50	Collection, storage,
		Sludge						transportation and
								disposal at TSDF.
	3	Used Oil	Plant &	5.1	0.07	7.63	7.7	Collection, storage,
			Machinerie					transportation and
			s					disposal to authorized
								recycler.
	4	Spent	Mfg.	26.3	960 KL	-240 KL	720	Collection, storage,
		Sulfuric	Process				KL	transportation and
		Acid						disposal to authorized
								recycler
	_							
ii	Mem	bership detail	s of TSDF, C l	HWIF etc.	At prese	ent, there is	no ET	P sludge generation in
	(For	HW managei	ment)		absence	e of physio	-chemic	cal treatment. However,
					after ex	pansion me	embers	hip of TSDF site will be
					obtaine	d for sludge	e dispo	sal.
iii	Deta	ils of Non-Haz	zardous waste	& its				
	dispo	osal(MSW and	d others)					
G	Solv	ent managen	nent, VOC em	issions etc.				
i	Туре	s of solvents,	Details of Sol	vent recove	ry, % reco	very. reus	e of rec	overed Solvents
	•	Not Applica	able					
ii	voc	emission so	urces and its r	mitigation m	easures			
	•	Not Applica	ahle					

- During the meeting dated 13/11/2018, technical presentation made by project proponent.
- At present unit is engaged in manufacturing of organic products for which they have obtained CC&A
 of the Board. The proposal is for expansion of Synthetic Organic Chemicals.
- Salient features of the project submitted by PP are as mentioned above.

Observation:

 This proposal is for expansion of existing unit and for now proposes synthetic organic chemical product. This unit is having valid CC&A for existing unit. Copy of CC&A, CC&A compliance report is submitted. PP ensured that there are no court cases pending and no public complaints against the project.

- Total water consumption will be 30.58 KLD. Total wastewater generation will be 21.63 KLD. Existing wastewater quantity (@ 7.8 KLD) will continue to be subjected to primary treatment followed by disposal to CETP of ETL. The additional wastewater quantity @ 13.83 KLD will be subjected to primary and secondary treatment, followed by tertiary treatment through ultrafiltration and RO. The final treated water from the UF+RO, @ 10.0 KLD will be reused back within the plant. Balance concentrate from the treatment, @ 3.83 KLD will be collected and sent to common spray dryer facility
- Natural gas will be used as fuel for boiler and thermic fluid heater.
- Adequate APCM will be provided as APCM with process gas emission.
- Hazardous waste management will be as per the HW Rules 2016.

Discussions & Conclusion:

The proposal is for expansion. Compliance of CCA conditions, action taken by GPCB were deliberated at length. PP mentioned that no closure is issued to the unit. The unit was issued show cause notice dated 28.03.2016 & 20.06.2018 for not obtaining CTE/CCA for installed NG based TFH & for not submitting MOU Copies for spent sulphuric acid & application under rule-9. Further PP mentioned that they have obtained CTE amendment & CCA amendment for the TFH & disposing of spent sulphuric acid to recyclers having permission under Rule 9.

PP mentioned that treated waste water disposal will be 11.6 KLD. Out of 11.60 KLPD, 7.8 KLD will disposed to CETP & 3.83 KLD will be disposed through common spray drier of **Abad Group** of companies. PP was asked to submit the CCA of Abad Group of companies along with details of spare capacity to accommodate the proposed unit's waste water for spray drying. Rest quantity of 10 KLD will be reused in the plant. Details of flue gas emission, process gas emission with APCM along with Hazardous waste management were deliberated at length.

Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering 10 Km radial distance from the project boundary.

- Compliance of MoEFCC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.
- Explore the use of renewable energy to the maximum extent possible. Details of provisions to make
 the project energy-efficient through energy efficient devices and adoption of modes of alternative
 eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for
 energy conservation.
- 3. Enlist all applicable statuary clearances for the proposed project in tabular form.

- 4. Permission of Board for utilization of spent sulphuric acid for Manganese e sulphate production under Rule- 9 of Hazardous Waste Rules-2016.
- 5. PP shall address spent solvent with details of storage, handling and re-use under the Hazardous and other Waste (Management and Transboundary Movement)Rules 2016.
- 6. Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including vapor pressure. LDAR shall endeavor prevention of losses of solvents to the best minimum extent.
- 7. Safety precautions including flame proof electric fittings to be taken to avoid fire hazard during unloading, storage, transportation, handling and processing of Solvents.
- 8. Submit status of compliance of Environmental norms of existing Common Infrastructure of M/s: Abad group of companies for the following details:
 - a) Compliance of CCA
 - b) Total capacity of the spray dryer.
 - c) Actual load at present (Qualitative and Quantitative KL per day).
 - d) Spare capacity of spray dryer

The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs available in the MoEFCC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006.

The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/ along with final EIA report.

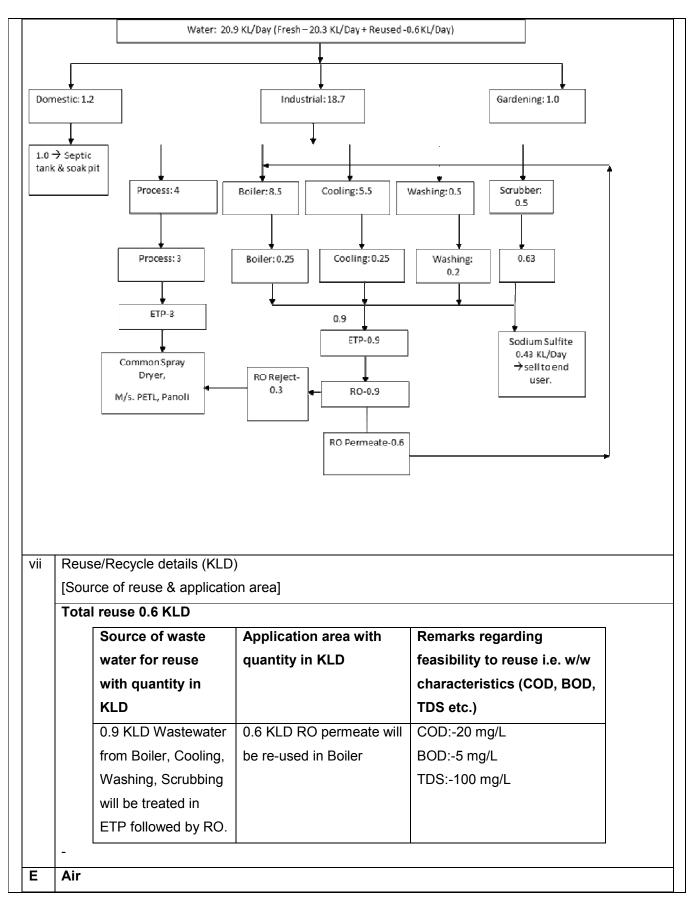
10.	SIA/GJ/IND2/29010/2018	M/s. Karunesh Remedies	Screening and scoping
		Plot No. 417/2, Phase-II, GIDC Industrial	
		Estate, Panoli-394 116, Tal: Ankleshwar,	
		Dist: Bharuch, Gujarat	

Project / Activity No.: 5(f)

Project status: Expansion

- This office has received an application vide their online proposal no. SIA/GJ/IND2/29010/2018 dated 21/09/2018 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- Project proponent (PP) has submitted Form-1, PFR and relevant details/information.
- This is an existing unit engaged in Synthetic Organic Chemicals and now proposes for expansion as tabulated below:

Sr.	Name of the Products	CAS no. /	Quantity (MT/Month)	End-use of the
-----	----------------------	-----------	---------------------	----------------


no.		Cl no.	Existing	Proposed	Total	products
1	Lamotrigine Intermediates	77668-42-9				Lamotrigine
	(2,3 Dishlorophenyl (oxo)					
	acetonitrile)					
2	Cetirizine Dihydrochloride	300543-56-0	=			Cetirizine
	Intermediates (4-					Dlhydrochloride
	Chlorophenyl		03	00	03	
	phenyl)methyl]piperazine					
3	Clopidogrel Bisulphate	141109-14-0	-			Clopidogrel
	Intermediates (Methyl					Bisulphate
	amino (2-					
	chlorophenyl)acetate)					
4	Cetirizine Dihydrochloride	83881-52-1	00	06	06	Anti-histamines
5	Clopidogrel Bisulphate	120202-66-6	00	02	02	Antiplatelet agent
6	Levocetirizine	130018-77-8	00	01	01	Sneezing, itching,
	Dihydrochloride					watery eyes
7	GLIMEPIRIDE	93479-97-1	00	0.2	0.2	Anti - Diabatic
8	Ivermectin	70288-86-7				Onchocerciasis
9	Isotretinoin	4759-48-2				Treatment of Acne
						Vulgaris
10	Tretinoin	302-79-4	00	01	01	To smooth rough
						facial skin
11	Betahistine Hydrochloride	5579-84-0	1			To treat dizziness
						(vertigo)
Total			3	10.2	13.2	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 13/11/2018.
- The project proponent along with their expert /consultant M/s. Aqua Air Environmental Engineers
 Pvt. Ltd.,Surat attended the meeting and made presentation before the committee
- Salient features of the project are as under:

Sr.	Particulars	Details
no.		
Α	Total cost of Proposed Project	Existing: 0.80
	(Rs. in Crores):	Proposed:3.5
		Total: 4.30

	Total Plot area			Existing:	1500 Sq. m.			
	(sq. meter)			Propose	Proposed: 00 Sq. m.			
				Total: 15	Total: 1500.Sq. m.			
	Green belt area		Existing:	300 Sq. m.				
	(sq. meter)		Propose	d: 00.Sq. m.				
				Total: 30	0 Sq. m.			
С	Employment generation			Existing:	15			
				Propose	d:20			
				Total:35				
D	Water							
i	Source of Water Supply			GIDC W	ater Supply			
	(GIDC Bore well, Surface	water, Tanl	ker supply etc)				
=	Status of permission from	the concer	GIDC W	ater Supply				
ii	Water consumption (KLI	0)		•				
		Existing	Proposed	Total after	Remarks			
		KLD	(Additional)	Expansion				
			KLD	KLD				
	(A) Domestic	0.05	1.15	1.2				
	(B) Gardening	0.00	1.00	1.00				
	(C) Industrial							
		1.0	3.0	4.00				
	Process	1.0	0.0	7.00				
	Process Washing	0.05	0.15	0.20		_		
	Washing	0.05	0.15	0.20		_		
	Washing Boiler	0.05 0.10	0.15 8.40	0.20 8.50				
	Washing Boiler Cooling	0.05 0.10 0.05	0.15 8.40 5.45	0.20 8.50 5.50		_		

	(A) Domestic	0.04	0.96	1.00						
	(B) Industrial									
	Process	0.765	2.235	3.00						
	Washing	0.05	0.150	0.20						
	Boiler	0.01	0.24	0.25						
	Cooling	0.01	0.24	0.25						
	Others	0.03	0.60	0.63						
	Total Industrial	0.865	3.465	4.33						
	waste water									
iv	Treatment facility within	Treatment facility within premises with capacity [For existing and Proposed]								
	[In-house ETP (Primary,	Secondar	y, Tertiary), ME	E, Stripper, Spra	ay Dryer, STP etc					
	In-house ETP (Primary	reatment)	- 5.5 KL/Day							
٧	Mode of Disposal & Fina	I meeting	point							
	Domestic: 1.0 KL/D	ay → Soak	(Pit							
	Industrial: 3.3 KL/D									
vi	In case of Common facil	ity (CF) like	e CETP, Comm	on Spray dryer,	Common MEE, CHWIF etc) .				
	Name of Common facili	ty								
	Common Spray Dryer Pl	ant of M/s.	PETL, Panoli (G.I.D.C.						
	Membership of Commor									
	·	• • •	<u>'</u>	G.I.D.C.						
	Common Spray Dryer Plant of M/s. PETL, Panoli G.I.D.C. Simplified water balance diagram with reuse / recycle of waste water									

	f Boilers/TFH/F ing & Propose		OG sets o	etc. with cap	oacities viz. T	PH, Kcal/hr, I	MT/hr, KVA etc
Sr. no.	Source of emission With Capacity e.g. Boiler	Stack Height (meter)	Name of the fuel	Quantity of Fuel MT/hr & MT/Day	Type of emissions i.e. Air Pollutants	APCM	NAAQS (National Ambient Air Quality Standards)
Exis	(8 TPH) sting						
1	Small Industrial Boiler	18	Wood	3 MT/Day	SPM SO2 Nox	Cyclone Separator	150 mg/Nm ³ 262 mg/Nm ³ 94 mg/Nm ³
Pro	posed	<u>I</u>	l				
1	Small Industrial Boiler	18	Agro Wast e	3 MT/Day	SPM SO2 Nox	Cyclone Separator	150 mg/Nm ³ 262 mg/Nm ³ 94 mg/Nm ³
2	Steam Boiler -1.5 TPH	18	Agro waste	5 MT/Day	SPM SO2 Nox	Cyclone Separator with bag filter	150 mg/Nm ³ 262 mg/Nm ³ 94 mg/Nm ³
3	Thermopack Fluid Heater (1 Lac Kcal/Hr)	18	LDO	1 MT/Day	SPM SO2 Nox	Adequate Stack Height	150 mg/Nm ³ 262 mg/Nm ³ 94 mg/Nm ³
4	D.G. Set (125 KVA)	11	HSD	25 Liter/Hr	SPM SO2 Nox	Adequate Stack Height	150 mg/Nm ³ 262 mg/Nm ³ 94 mg/Nm ³

Specific Source of emission Type of Stack/Vent Sr. **Air Pollution** (Name of the Product & Height no. emission Control

		Process)		(meter)	Measures
					(APCM)
	1	Process Vent -1 (Chlorination) (Betahistine Hydrochloride)	HCI	11	Water + Alkali Scrubber
	2	Process Vent -2 (Sulphonation) Cetirizine Dihydrochloride Intermediates (4-Chlorophenyl phenyl)methyl]piperazine	SO2	11	Two Stage Alkali Scrubber

iii **Fugitive emission** details with its mitigation measures.

Fugitive emissions are expected to be generated during construction and operation.

During construction stage, main source of fugitive emission is dust which is expected mainly due to movement of vehicles carrying construction material and vehicles used for construction.

- Mitigate by allowing the vehicles entering the premises under cover.
- Control by spraying water.
- Hosing down the wheels of the vehicles with water and providing washing troughs for them would further mitigate the amount of dust generated.

During operation stage, leakage through valves/pumps, leakage and emission from open drum containing chemicals, open feeding, storage tanks, etc. will be major sources of fugitive emissions and VOCs. Excess use of solvent/s may also results fugitive emission from the process vessels.

- Solid raw material charging will be done through closed system.
- Entire process will be carried out in the closed reactors with proper maintenance of pressure and temperature.
- Close feeding system will be provided for centrifuges. Centrifuge and filtrate tank vents will be connected to vent chillers.
- Fugitive emission over reactors, formulation areas, centrifuges, chemical loading, transfer area, will be collected through hoods and ducts by induced draft and controlled by scrubber/dust collector.
- Emphasis will be given to solvent management/solvent loss prevention.
- Control by having proper scrubbing system.
- Condenser to trap VOC.
- Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber/dust

collector to be ensured.

- Nitrogen blanketing will be provided, besides special care needs to be taken for control in respect of odorous chemicals.
- Proper maintenance schedule will be adhered to avoid emissions through flange joints, pump seals etc.
- Minimum number of flanges, joints and valves in pipelines.
- Proper gland packing will be maintained for pumps and valves and to the extent possible pumps with mechanical seal.
- All Flange joints of the pipe lines which carry solvents will be covered with flange guards.
- All rotating equipments like pumps will be installed with mechanical seals to arrest any sort of emissions.
- A regular preventive maintenance schedule will be in place to replace or rectify all gaskets and joints etc. as a part of ISO systems to ensure no fugitive emissions take place.
- Periodic monitoring of work area will be carried out to check the fugitive emission.
- Solvent tank vents will be connected to vent chillers.
- Stand by pumps will be provided on all scrubbers. Besides, scrubbers are equipped with online pH meter with hooter system for better operational control.
- Regular inspection of floating roof seals and proper preventive maintenance of roofs and seals for tanks.

Adequate ventilation will be provided.

F Hazardous waste

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

Existing & Proposed

ı

Sr.	Type/Name	Specific	Category		Quantity		Management of
no.	of	Source of	and	((MT/Annum)	HW
	Hazardous	generation	Schedule				
	waste	(Name of	as per	Existing	Proposed	Total	
		the	HW				
		Activity,	Rules.				
		Product					
		etc.)					
1	ETP	ETP	SCH-	0.24	35.76	36.00	Collection,
	Sludge		1/35.3				Storage,
							transportation

							and Disposal in
							TSDF
2	Used Oil	Machineries	SCH-I/5.1	0.06	0.24	0.30	Collection,
							Storage,
							transportation
							and Disposal by
							selling to
							registered
							reprocesser
3	Discarded	Raw	SCH-	2.5	8.5	11.00	Collection,
	container/	Materials/	I/33.1`				Storage,
	barrel/ liner/	Products					transportation
	bags						and Disposal by
							sale to authorized
							vendors
4	Distillation	Distillation	SCH-	0.18	50	50.18	Collection,
	Residue		1/20.3				Storage,
5.	Spent	Process	SCH-	0.048	48.00	48.048	transportation
	Carbon	(Product	1/28.2				and Disposal at
		No. 3,5)					co-processing,
							Cement
							industries or
							Common
							incinerator by
							M/s. BEIL,
							Ankleshwar.
6.	Spent	Process	SCH-	0.12	1800	1800.12	Collections,
	Solvent		1/28.6				Storage, distill
							and reuse in plant
							premises.
7.	Filter	Filter press	SCH-	0.036	0.036	0.072	Collection,
	material		I/35.1				Storage,
							transportation
							and Disposal at
							Common
							incinerator by

									M/s. Anklesl	BEIL, nwar.
	8.	Inorganic Waste	Process (Product No. 1)	SCH- I/28.1	0	0.000	60.00	60.00	Storage transpo	9,
	9.	Piperazine Solution (22%)	Process (Product No. 2, 4)	SCH- I/28.1	0	0.000	100.00	100.00	Storage	ertation ell to end who is Rule-9
	10.	NaCL solution	Scrubber	SCH- I/28.1	0	0.000	12.00	12.00	Collecti	on, e and send
	11.	HCI Solution (28%)	Scrubber	SCH-II	/B- 0	0.000	20.00	20.00	to ETP process	for further S.
	12.	Sodium Sulfite (18%)	Scrubber	SCH- I/28.1	0	0.000	18.00	18.00	Collecti Storage transpo	9,
	13.	Spent Sulphuric Acid (70- 80%)	Process (Product No. 2, 6, 11)	SCH-II 15	/B- 0	0.000	69.50	69.50		ell to end who is Rule-9
ii		bership details	•	HWIF etc.		Comp	-	tain the r	membersh	ip of TSDF
iii		ls of Non-Haz sal(MSW and		e & its		There	is no gene	erate non	– hazardo	us waste.
G		ent managem				recover	v reuse of	recovere	ed Solvent	9
1	Турез	Types of solvents, Details of Solvent			Total Qty. of Input Recovered (Kg) Solvent (K		Qty. of Losses		% ecovery	% Losses

Acetone	1700	1620	80	95.29	4.71
Acetone	1700	1020	60	95.29	4.71
Acetonitrile	12600	11970	630	95	5
Ethyl Acetate	16800	15960	840	95	5
Hexane	670	630	40	94.03	5.97
MCB	3000	2850	150	95	5
Methanol	700	660	40	94.28	5.72
Methylene dichloride	19950	18950	1000	94.98	5.02
Toluene	12900	12260	640	95.04	4.96

ii **VOC emission** sources and its mitigation measures

- Leakage through valves/pumps, leakage and emission from open drum containing chemicals, open feeding, storage tanks, etc. will be major sources of fugitive emissions and VOCs. Excess use of solvent/s may also results fugitive emission from the process vessels.
- During the meeting dated 13/11/2018, technical presentation made by project proponent.
- Salient features of the project submitted by PP are as mentioned above.

Observation:

- This proposal is for expansion of existing unit and for now proposes synthetic organic chemical product. This unit is having valid EC & CC&A for existing unit. Copy of EC, CC&A, CC&A compliance report is submitted. PP assured that Compliance report of EC from RO will be submitted during Appraisal. PP ensured that there are no court cases pending and no public complaints against the project.
- Total water consumption will be 20.9 KLD. Total wastewater generation will be 4.33 KLD. Industrial
 Effluent will be treated in ETP and then sent to Common Spray Dyer Plant of M/s. PETL for further
 treatment and disposal.
- Agro waste will be used as fuel for proposed boilers and LDO will be used as fuel for proposed thermopack.
- Adequate APCM will be provided with proposed boilers.
- Adequate APCM will be provided as APCM with each process vents.
- Hazardous waste management will be as per the HW Rules 2016.

Discussions & Conclusion:

The proposal is for expansion. Compliance of CCA conditions, action taken by GPCB were deliberated at length. No closure directions/SCN Issued by GPCB in last 3 years. After proposed expansion, 3.3 KL/Day of

treated waste water is proposed to be sent to Common Spray Dryer Plant of M/s. PETL, GIDC, Panoli. Reuse water of 0.6 KLPD will be having COD:20 mg/L, BOD:5 mg/L and TDS:100 mg/L. Details of flue gas emission, process gas emission with APCM along with Hazardous waste management were deliberated at length. PP was asked to replace wood with cleaner fuel.

Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering 10 Km radial distance from the project boundary.

- Compliance of MoEFCC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.
- Explore the use of renewable energy to the maximum extent possible. Details of provisions to make
 the project energy-efficient through energy efficient devices and adoption of modes of alternative
 eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for
 energy conservation.
- 3. Enlist all applicable statuary clearances for the proposed project in tabular form.
- 4. PP shall address spent solvent with details of storage, handling and re-use under the Hazardous and other Waste (Management and Transboundary Movement)Rules 2016.
- Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including vapor pressure. LDAR shall endeavor prevention of losses of solvents to the best minimum extent.
- 6. Safety precautions including flame proof electric fittings to be taken to avoid fire hazard during unloading, storage, transportation, handling and processing of Solvents.
- 7. Submit status of compliance of Environmental norms of existing Common Infrastructure of M/s: ACPTCL, Ankleshwar. Submit the following details of Common Facility (CF).
 - e) Total capacity of the CF.
 - f) Copy of CC&A of the CF.
 - g) Actual load at present (Qualitative and Quantitative KL per day).
 - h) Booked quantity & Spare capacity of CF
- 8. As HCl is proposed to be treated in ETP, Impact of high chloride content in waste water on spray drying during its evaporation and its mitigation measures
- 9. To discontinue wood in utility as fuel and explore clean fuel.

The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs

available in the MoEFCC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006.

The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/ along with final EIA report.

11.	SIA/GJ/IND2/28709/2018	M/s. ANMOL CHEMICALS (GUJ.) PVT.LTD	Screening and scoping
		PLOT NO: A-2/4006, GIDC ESTATE,	
		ANKLESHWAR, DIST:BHARUCH STATE:-	
		GUJARAT	

Project / Activity No.: 5(f)

Project status: Expansion

- This office has received an application vide their online proposal no. SIA/GJ/IND2/28709/2018 dated 21/09/2018 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- Project proponent (PP) has submitted Form-1, PFR and relevant details/information.
- This is an existing unit engaged in Synthetic Organic Chemicals and now proposes for expansion as tabulated below:

Sr.	Name of Products		Qua	antity (MT/Mo	nth)	End Use
No		CAS No.	Existing MT/Month as per AWH-88615	Proposed MT/Month	Total MT/Month	of Product
		L	IST OF PRODU	ICTS		
			AZO DYES			
1	ANASOL OIL RED-2B EITHER /OR	70223-61- 2	3	7	10 (MT/MONTH	
2	ANASOL OIL RED-RB EITHER /OR	1320-06-5	3	7) (Unit will	For
3	ANASOL OIL ORANGE-E EITHER /OR	8008-57-9	3	7	manufacturin g either individually	Petroleum , Plastic, 8 Soap Industries
4	ANASOL OIL ORANGE-A EITHER /OR	8008-57-9	3	7	10 MT/Month or Total 10	maddiled

	ANASOL OIL RED-G			_	MT/Month)	
5	EITHER /OR	1320-06-5	3	7		
	ANASOL OIL	12671-74-				
6	YELLOW-3G	8	3	7		
	EITHER /OR	0				
	ANSOL OIL YELLOW-					
7	2G	6359-98-4	3	7		
	EITHER /OR					
8	GARNET GBC	97-56-3	3	7		
	EITHER /OR	0. 00 0	,	•		
9	ACID YELLOW	6375-55-9	3	7		
	EITHER /OR		•			
10	ACID ORANGE	633-96-5	3	7		
			SOLVENT DY			
1	SOLVENT BROWN 1	6416-57-5	0	40		
	EITHER /OR					
2	SOLVENT ORANGE 7	3118-97-6	0	40		
	EITHER /OR					
3	SOLVNET YELLOW 72	61813-98-	0	40		
	EITHER /OR	7			40	
4	SOLVENT RED 27	1320-06-5	0	40	(MT/MONTH	
	EITHER /OR	0.4=0.=0.0		10		
5	SOLVENT RED 25	3176-79-2	0	40	(Unit will	For
	EITHER /OR	4477 70 0		10	manufacturin	Petroleum
6	SOLVENT RED 26	4477-79-6	0	40	g either	, Plastic, &
	EITHER /OR	4000 55 0	•	40	individually	Soap
7	SOLVENT RED 1	1229-55-6	0	40	40	Industries
	EITHER /OR	440074	0	40	MT/Month or	
8	SOLVENT YELLOW 16 EITHER /OR	119371-	0	40	Total 40	
		24-3	0	40	MT/Month)	
9	SOLVENT ORANGE 1 EITHER /OR	2051-85-6	0	40		
	SOLVENT PINK	E00 24 2	0	40		
10	EITHER /OR	509-34-2	U	40		
	SOLVENT YELLOW 56	2481-94-9	0	40	_	
11	EITHER /OR	2401-34-3	U	40		
	LITTER /UR					

12		SOLVENT YELLOW	34432-92-	0	40		
13 SOLVENT YELLOW 18	12	124	3				
13		EITHER /OR					
EITHER /OR SOLVENT ORANGE 2 2646-17-5 0	12	SOLVENT YELLOW 18	6407-80-3	0	40		
14	13	EITHER /OR					
EITHER /OR	11	SOLVENT ORANGE 2	2646-17-5	0	40		
15	14	EITHER /OR					
EITHER/OR 2	15	SOLVENT BLUES	17354-14-	0	40	_	
16	15	EITHER /OR	2				
SITHER /OR	16	FLUORESCEIN	2321-07-5	0	40	_	For Paper
17	10	EITHER /OR					Industry
EITHER /OR	47	ACID YELLOW 73	518-47-8	0	40	1	,Ink etc
18	17	EITHER /OR					
EITHER /OR		ACID YELLOW 73	518-47-8	0	40	-	
EOSINE	18	LIQUID					
19		EITHER /OR					
EITHER /OR	10	EOSINE	17372-87-	0	40		
20	19	EITHER /OR	1				
EITHER /OR		TETRA CHLORO	6262-21-1	0	40		
21 ERYTHROCINE 114-07-8 0 40	20	FLUORESCEIN					
21		EITHER /OR					
EITHER /OR	21	ERYTHROCINE	114-07-8	0	40		
COOLANT DYES COOLANT RED COOLANT PINK COOLANT ORANGE COOLANT ORANGE COOLANT ORANGE COOLANT PINK COOLANT PI	21	EITHER /OR					
COOLANT DYES	22	ACID DED 02	18472-87-	0	40		
1 COOLANT RED EITHER /OR 0 10 10 For Radiator (MT/MONTH) Radiator Coolant 2 COOLANT YELLOW EITHER /OR 0 10) (Unit will manufacturin g either 3 COOLANT GREEN EITHER /OR 0 10 individually individually moderate individually 10 4 COOLANT ORANGE EITHER /OR 0 10 MT/Month or	22	ACID RED 92	2				
1 EITHER /OR				COOLANT DY	ES		
EITHER /OR COOLANT YELLOW EITHER /OR COOLANT GREEN EITHER /OR COOLANT ORANGE EITHER /OR COOLANT ORANGE EITHER /OR COOLANT PINK COOLANT P	1	COOLANT RED		0	10	10	For
2 EITHER /OR (Unit will manufacturin g either 3 EITHER /OR 0 10 manufacturin g either individually 4 COOLANT ORANGE EITHER /OR 0 10 10 5 COOLANT PINK 0 10 MT/Month or	'	EITHER /OR				(MT/MONTH	Radiator
COOLANT GREEN 0 10 manufacturin g either	2	COOLANT YELLOW		0	10)	Coolant
3 EITHER /OR g either 4 COOLANT ORANGE 0 10 individually 10 10 10 10 10 10 10 10 10 10 10 10 10 1	2	EITHER /OR				(Unit will	
COOLANT ORANGE 0 10 individually 10	2	COOLANT GREEN		0	10	manufacturin	
4 EITHER /OR 10 COOLANT PINK 0 10 MT/Month or	3	EITHER /OR				g either	
EITHER /OR 10 COOLANT PINK 0 10 MT/Month or	4	COOLANT ORANGE		0	10	individually	
5	4	EITHER /OR				10	
S EITHER /OR Total 10		COOLANT PINK		0	10	MT/Month or	
)	EITHER /OR				Total 10	

	IOIAL	MT/MONTH	MT/MONTH	MT/MONTH	
TOTAL		3	57	60	
7	SOAP YELLOW	 0	10		
O	EITHER /OR				
6	COOLANT BLUE	 0	10	MT/Month)	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 13/11/2018.
- The project proponent along with their expert /consultant M/s. Jyoti Om Chemical Research Centre Pvt. Ltd. attended the meeting and made presentation before the committee
- Salient features of the project are as under:

Sr.	Particulars				Details		
no.							
Α	Total cost of Propos	ed Project			Existing: 50 lacs		
	(Rs. in Crores):				Proposed: 182 lacs		
					Total: 232	lacs	
В	Total Plot area				Existing: 1	1804.43 Sq. m.	
	(sq. meter)				Proposed	: Sq. m.	
				Total: 180	4.43 Sq. m.		
	Green belt area,/Tree	Plantation area		Existing: 1	162.10 Sq. m.		
	(sq. meter)			Proposed	:Sq. m.		
				Total: 162.10 Sq. m.			
С	Employment genera	tion			Existing:1	9	
					Proposed	:15	
					Total:34		
D	Water						
i	Source of Water Supp	oly			GIDC water will be source of water.		
	(GIDC Bore well, Surf	ace water, Tanke	er supply etc)				
	Status of permission f	rom the concern	authority.				
ii	Water consumption	(KLD)					
		Existing	Proposed	То	tal after	REMARKS	
		KLD	pansion				
		As per CCA-	KL/Day	K	(L/Day		
		AWH-88615					
	DOMESTIC	1	1		2	Unit will use 2 KLD fresh	

GARDENING		3	3	Unit will use 3 KLD fr
				water for this purpose
	INDUSTI	I RIAL WATER CO	NSUMPTIO	
PROCESS	5.2	12.8	18	Unit will use 13 KLD
				permeate water for the
				purpose. Unit will use
				KLD fresh water.
WASHING	0.8	1.2	2	Unit will use 2 KLD fr
				water for washing.
BOILER	1	2	3	Unit will use 3 KLD R
				Permeate water.
COOLING	1	6	7	Unit will use 7 MEE 8
				ATFD condensate wa
TOTAL	8	22	30	Total water requirem
(INDUSTRIAL)				for industrial purpose
				30 KLD. Unit will use
				only 7 KLD fresh wa
				Remaining 23 KLD
				water will be from RO
				permeate and MEE 8
				ATFD condensate.
GRAND TOTAL	9	26	35	Total Water requirem
				of industrial, Domest
				and Gardening purpo
				will be 35 KLD.

Total after

Expansion

KL/Day

REMARKS

Proposed

(Additional)

KL/Day

Existing

KLD

As per CCA-

	AWH-88615			
DOMESTIC	0.8	1.2	2	Domestic effluent generation
				will be 2 KLD. It will be treated
				in unit's own effluent treatment
				plant.
	INDU	JSTRIAL WATE	R CONSUMP	TION
PROCESS	4.8	17.2	22	Process effluent generation
				will be 22 KLD. It will be
				treated in unit's own effluent
				treatment plant.
WASHING	0.8	1.2	2	Washing will be 2 KLD. It will
				be treated in unit's own
				effluent treatment plant.
BOILER	0.2	2.3	2.5	Boiler blow down will be 2.5
				KLD. It will be treated in unit's
				own effluent treatment plant.
COOLING	0.2	1.3	1.5	Cooling blow down will be 1.5
				KLD. It will be treated in unit's
				own effluent treatment plant.
TOTAL	6	22	28	Total Industrial effluent
(INDUSTRIAL	-			generation will be 28 KLD. It
)				will be treated in unit's own
				effluent treatment plant along
				with 2 KLD Domestic effluent.
				Total 6.8 KLD effluent will be
				discharged into M/s. ETL after
				primary, secondary & tertiary
				treatment. Remaining 23.2
				KLD effluent will be subjected
				to RO & MEE where 23.2 KLD
				effluent will be became ZLD.
GRAND	6.8	23.2	30	Total Industrial effluent
TOTAL				generation will be 28 KLD. It
				will be treated in unit's own
				effluent treatment plant along

					with 2 KLD Domestic effluent.				
					Total 6.8 KLD effluent will be				
					discharged into M/s. ETL after				
					primary, secondary & tertiary				
					treatment. Remaining 23.2				
					KLD effluent will be subjected				
					to RO & MEE where 23.2 KLD				
					effluent will be became ZLD.				
iv	Treatment fa	icility within premises	with capacity [or existing ar					
		P (Primary, Seconda		•	· -				
	Total Industr	ial effluent generation	will be 28 KLD.	It will be treate	d in unit's own effluent treatment				
	plant along v	vith 2 KLD Domestic	effluent. Total 6.8	KLD effluent v	vill be discharged into M/s. ETL				
	after primary	, secondary & tertiary	treatment. Rem	aining 23.2 KLI	D effluent will be subjected to RC				
	& MEE wher	e 23.2 KLD effluent w	vill be became ZL	.D. Capacity of	the RO is 30 KLD. Capacity of				
	MEE is 10 K	LD.							
٧	Mode of Disp	oosal & Final meeting	point						
	Domestic:	Total Industrial efflu	uent generation v	vill be 28 KLD.	It will be treated in unit's own				
		effluent treatment plant along with 2 KLD Domestic effluent. Total 6.8 KLD effluent							
		will be discharged i	nto M/s. ETL afte	er primary, sec	ondary & tertiary treatment.				
		Remaining 23.2 KL	D effluent will be	subjected to F	RO & MEE where 23.2 KLD				
		effluent will be beca	ame ZLD.						
	Industrial:	Total Industrial efflu	uent generation v	vill be 28 KLD.	It will be treated in unit's own				
		effluent treatment p	plant along with 2	KLD Domestic	effluent. Total 6.8 KLD effluent				
		will be discharged i	nto M/s. ETL afte	er primary, sec	ondary & tertiary treatment.				
		Remaining 23.2 KL	D effluent will be	subjected to F	RO & MEE where 23.2 KLD				
		effluent will be beca	ame ZLD.						
vi	In case of Co	ommon facility (CF) lik	ke CETP, Comm	on Spray dryer	, Common MEE, CHWIF etc.				
	Name of Co	mmon facility							
	M/s.ETL & M	1/s.BEIL							
	Membership	of Common facility (0	CF)						
	M/s.ETL & M	1/s.BEIL							
vii	Reuse/Recy	cle details (KLD)							
	23 KL								
Е	Air								
i	Flue gas em	ission details							
	No. of Boiler	s/TFH/Furnaces/DG	sets etc. with cap	acities viz. TPI	H, Kcal/hr, MT/hr, KVA etc.				

	EXIS	TING FLU	E GAS EM	ISSION AS	PER CONS	ENT AWH-8861	5		
Sr.	Stack	Stack	Type of	Quantity	Type of	Permissible	APCM		
No.	attached	Height	fuel	of fuel	emissio	Limit			
	to	(m)		MT/Day	n				
1.	Boiler	12	Natural	40	PM	150 mg/NM ³	Adequate		
	(400 Kg/hr)		Gas	NM ³ /Day	SO ₂	100 ppm	stack		
					NOx	50 ppm	height		
2.	Hot Air	12	Natural	40	PM	150 mg/NM ³	Adequate		
	Generator		Gas	NM ³ /Day	SO ₂	100 ppm	stack		
	(1 Lac				NOx	50 ppm	height		
	Kcal)								
3.	D.G.Set	9	Diesel	5 Lit/Hr	PM	150 mg/NM ³	Adequate		
					SO ₂	100 ppm	stack		
					NOx	50 ppm	height		
FLUE GAS EMISSION AFTER PROPOSED EXPANSION									
1.	Boiler	12	Natural	80	PM	150 mg/NM ³	Adequate		
	(600 Kg/hr)		Gas	NM ³ /Day	SO ₂	100 ppm	stack		
					NOx	50 ppm	height		
2.	Hot Air	12	Natural	80	PM	150 mg/NM ³	Adequate		
	Generator		Gas	NM ³ /Day	SO ₂	100 ppm	stack		
	(1 Lac				NOx	50 ppm	height		
	Kcal)								
3.	D.G.Set	9	Diesel	10 Lit/Hı	PM	150 mg/NM ³	Adequate		
					SO ₂	100 ppm	stack		
					NOx	50 ppm	height		
	ss gas i.e. Typ ng & Propose	-	ant gases (SO _{2,} HCI, N	IH _{3,} Cl _{2,} NO _x e [,]	tc.)			
Sr.	Stack Atta	ached To	Sta	ck A	r Pollution	Parameter	Permissible		
No.			Heigh		Control		Limit		
_			J	` '	System		-		
		NO	EXISTING	PROCES	S GAS EMISS	SION.			
	DD					D EXPANSION			
J.	L IZ	OCLOS G	AS EIVIISS		K PRUPUSE	DEVLUISION			

				SCRUBBER	l ₂	
*Note	: - During the manufa	acturing activ	vity, there wi	II be no proces	ss gas emissi	on. It will be
	ated during the charg	Ū	•	•	Ū	
•	le Alkali Scrubber to			_		
plant.						
Fugitiv	ve emission details w	ith its mitiga	tion measur	es.		
Unit w	vill install alkali scrubb	per to curb th	ne process g	as emission.		
Hazar	dous waste					
(as pe	er the Hazardous and	Other Wast	es (Manage	ment and Trai	nsboundary M	lovement) Rules
2016.						
Existi	ng & Proposed					
Sr.	Type of Waste	Category	Existing	As per	Quantity	Mode of
No.			as per	Proposed	after	Disposal
			CCA	Expansio	Expansion	
			AWH-	n	(MT/Year)	
			88615			
1.	ETP sludge	35.3	5	7	12	Collection,
			MT/Year	MT/Year	MT/Year	Storage,
						Transportation,
						Disposal at TSDI
						M/s. BEIL.
2.	Used Oil	5.1		200 lit	200 lit	Collection,
						Storage,
						Transportation,
						Reused, Disposa
						at by
						Selling registered
						refiners.
3.	Discarded	33.1	6	6 MT/Year	12	Collection,
	containers/		MT/Year		MT/Year	Storage,
	Empty					Disposal by send
	barrels/Liners					it to authorized
	contaminated with					decontamination
	hazardous					facility/ recycler
	chemicals/wastes					or reuse or send

							back to supplier
	4.	MEE Sludge	35.3		65	65	Collection,
					MT/Year	MT/Year	Storage,
							Transportation,
							Disposal at TSDF
							M/s. BEIL.
	5	Spent Carbon	36.2		1 MT/Year	1 MT/Year	Collection,
							Storage,
							Transportation,
							and send to M/s.
							BEIL for
	1 1						
							incineration or for
							incineration or for co-processing.
ii	Memb	pership details of TS D	DF, CHWIF 6	etc.	Unit will obtain	in it.	
ii		pership details of TSD s of Non-Hazardous	•		Unit will obtai	in it.	
	Detail	•	•		Unit will obtai	in it.	
	Detail (MSW	ls of Non-Hazardous	waste & its o	disposal	Unit will obtai	in it.	
iii	Detail (MSW	ls of Non-Hazardous value value of Non-Hazardous value of Non-Hazard	waste & its o	disposal			co-processing.
iii G	Detail (MSW Solve Types	ls of Non-Hazardous value value of Non-Hazardous value of Non-Hazard	waste & its o	disposal			co-processing.
iii G	Detail (MSW Solve Types No so	Is of Non-Hazardous of And others) ent management, VC of sof solvents, Details of	waste & its of OC emissions of Solvent re	disposal s etc. ecovery, % r	ecovery. reus		co-processing.

- During the meeting dated 13/11/2018, technical presentation made by project proponent.
- Salient features of the project submitted by PP are as mentioned above.

Observation:

- This proposal is for expansion of existing unit and for now proposes a new synthetic organic chemical product. This unit is having valid CC&A for existing unit. Copy of CC&A, CC&A compliance report is submitted.
- Total water consumption will be 35 KLD. Total wastewater generation will be 30 KLD. It will be treated in ETP. Existing 6.8 KLD effluent will be discharged into M/s. ETL. Remaining 23.2 KLD effluent will be subjected to RO & MEE where 23.2 KLD effluent will be became ZLD.
- Natural gas will be used as fuel for boiler and hot air generator.

- Adequate APCM will be provided as APCM with each process reactors.
- Hazardous waste management will be as per the HW Rules 2016.

Discussions & Conclusion:

The proposal is for expansion. Compliance of CCA conditions, action taken by GPCB were deliberated at length. PP mentioned that show cause notices were issued by the GPCB and corrective measures are taken by the PP. IT is noted that total water requirement for the project is 35 KLD. After treatment, quantity to be recycled is 23 KLD and total fresh water requirement is 12 KLD

Total Industrial effluent generation will be 28 KLD. It will be treated in unit's own effluent treatment plant along with 2 KLD Domestic effluent. Total 6.8 KLD effluent will be discharged into M/s. ETL after primary, secondary & tertiary treatment. Remaining 23.2 KLD effluent will be sent to RO & MEE. After /expansion there will be no change in existing treated waste water quality being sent to CETP.PP was asked to address bleed liquor containing bromine and iodine compound as per the HWR 2016 and address its management.

Details of flue gas emission, process gas emission with APCM along with Hazardous waste management were deliberated at length.

Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering 10 Km radial distance from the project boundary.

- Compliance of MoEFCC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.
- Explore the use of renewable energy to the maximum extent possible. Details of provisions to make
 the project energy-efficient through energy efficient devices and adoption of modes of alternative
 eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for
 energy conservation.
- 3. Enlist all applicable statuary clearances for the proposed project in tabular form.
- 4. PP shall address spent solvent with details of storage, handling and re-use under the Hazardous and other Waste (Management and Transboundary Movement)Rules 2016.
- 5. Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including vapor pressure. LDAR shall endeavor prevention of losses of solvents to the best minimum extent.
- 6. Safety precautions including flame proof electric fittings to be taken to avoid fire hazard during

unloading, storage, transportation, handling and processing of Solvents.

7. To address bleed liquor containing lodine and Bromine compound under the HWR 2016.

The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs available in the MoEFCC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006.

The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/ along with final EIA report.

12.	SIA/GJ/IND2/29049/2018	A.S. INDUSTRIES	Screening and scoping
		Plot No.1114 Phase-III, GIDC Estate, Vatva,	
		Ahmedabad, Gujarat – 382415.	

Project / Activity No.: 5(f)

Project status: New

- This office has received an application vide their online proposal no. SIA/GJ/IND2/29049/2018 dated
 17/09/2018 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- Project proponent (PP) has submitted Form-1, PFR and relevant details/information.
- This is a new unit proposes for Synthetic Organic Chemicals plant as tabulated below:

Sr.	Name of the	CAS no. / CI	Quantity	End-use of the
no.	Products	no.	MT/Month	products
			Proposed	
1	Acid Black 194	61931-02-0	20	Dyes Manufacturing
2	Acid Blue 193	12392-64-2		
3	Direct Red 239	60202-35-9	5	Dyes Manufacturing
TOTAL	_	1	25	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 13/11/2018.
- The project proponent along with their expert /consultant **M/s B. S. Rana** attended the meeting and made presentation before the committee
- Salient features of the project are as under:

Α	Total cost of Proposed Project (Rs. in Crores):	150 lac	
no.			
Sr.	Particulars	Details	

В	Total Plot a	rea (sq. meter)		500	O Sq. m	۱.		
	Green belt a	area (sq. meter)		45	Sq. m.			
С	Employmen	nt generation		Pro	posed	: 14		
				Tot	tal:14			
D	Water			1				
i	Source of W	ater Supply		Vat	tva GIE	OC .		
	(GIDC Bore	well, Surface water, Tan	ker supply etc)					
	Status of per	rmission from the concer	n authority.	-				
ii	Water cons	umption (KLD)						
			Water		Rema	arks		
			Consumption					
			quantity					
			KLD					
		(A) Domestic	1		GID	C supply		
		(B) Gardening	0.1					
		(C) Industrial						
		Process	3.5		GID	C supply		
		Washing	1.5					
		Boiler / Cooling	1					
		Others	1					
		Industrial Total	7					
		Grand Total (A+B+C)	8.1					
	1) Tota	I water requirement for	the project: 8.1 KI	_D		_		
	,	ntity to be recycled: 0.0.						
	-	fresh water requiremen	nt: 8.1 KLD					
lii	Waste wate	r generation (KLD)						
		Category	Waste water			Remarks		
			generation q	uant	tity			
			KLD					
		(A) Domestic	0.4			-		
		(B) Industrial	1			1		
		Proce	ss 0.7			-		
		Washir	ng 1.5			-		
		Boiler / coolin	ng 0.1			-		
		Othe	ers 1.0			-		

	Total Industrial 3.3					
	Generated domestic effluent will be discharged to the soak pit.					
	Generated industrial effluent will be treated in ETP and spray dried in own spray dryer in premi	ises.				
iv	Treatment facility within premises with capacity [In-house FTP (Primary Secondary Tertiary) MFF Stripper Spray Dryer STP etc.					
	[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc					
	ETP Capacity: 3.3 KLD					
	ETP Treatment: Primary					
	Spray Dryer: 1.5 KL/Hr.					
V	Mode of Disposal & Final meeting point					
	Domestic: Sock Pit					
	Industrial: ZLD by means of spray drying of primary treated effluent in premise					
vi	In case of Common facility (CF) like CETP, Common Spray dryer, Common MEE, CHWIF etc.					
	Name of Common facility					
	Self spray dryer of capacity 1.5 KL/Hr.					
	Membership of Common facility (CF)					
	(For waste water treatment)					
vii	Simplified water balance diagram with reuse / recycle of waste water					
	INTAKE (8.1)					
	1.0 0.1 7.0					
	DOMESTIC GARDENING INDUSTRIAL					
	0.4					
	SOAK PIT					
	3.5 \ 1.0 \ 1.5 \ 1.0 \					
	PROCESS BOILER / COOLING SCRUBBER					
	0.7 0.1 1.6 1.0					
	ETP (3.3)					
	SPRAY DRYING PREMISES					
Not	te: All figures are in KLD					
viii	Reuse/Recycle details (KLD)					
	[Source of reuse & application area]					
	Total reuse 0.0 KLD					
	-					
Е	Air					
i	Flue gas emission details					

No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc.

_

Sr.	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel MT/Day	Type of emissions i.e. Air Pollutants	Air Pollution Control Measures (APCM)
1.	Hot air Generator (9 lac Kcal)	12	Natural Gas	300 SCM	PM/NO _{x-} /SO ₂	Adequate Stack Height
2	Boiler (500 kg) (No-1)	12	Natural gas	500 SCM	PM/NO _{x-} /SO ₂	Adequate Stack Height

-

Process gas i.e. Type of pollutant gases (SO₂, HCl, NH₃, Cl₂, NO_x etc.)

-

Sr. no.	Specific Source of emission (Name of the Product & Process)	Type of emission	Stack/Vent Height (meter)	Air Pollution Control Measures (APCM)
1	Spray Dryer(1500 Lit / Hr)	PM/NO _{x-} /SO ₂	12	Cyclone Venture Scrubber Secondary Stage Scrubber

_

iii **Fugitive emission** details with its mitigation measures.

As below:

Proposed project is of manufacturing of S. O. Dyes. Followings measures will take for existing & proposed project.

- Maintaining the house keeping regularly
- Transferring the liquid materials by pump
- To carry out regular leak detection and repair activities

Proper routine maintenance of equipment reduces the likelihood of leaks

Sr.	Type/Name	ame Specific Cat		egory	Quant	Management of HW	
no.	of	Source of	and		ity of		
	Hazardous	generation	Sch	edule	Waste		
	waste	(Name of the	_	er HW			
		Activity,	Rule	es.			
		Product etc.)					
	Discarded	Raw material	Ca	tegory		Collection, storage,	
1.	Containers	and products		.33.1	3.5	transportation, disposal at the	
		packing				approved TSDF site .	
				tegory		Collection, storage,	
2	ETP sludge	ETP process	No	0.35.3	2	transportation, disposal at the	
						approved TSDF site	
	U 1 O'I	d Oil D.G. Set		tegory		Collection, storage,	
3.	Used Oil	D.G. Set	N	0.5.1	0.016	transportation, disposal by	
	On any Daile d	Ones Davis a of				selling to Registered recycle	
4	Spray Dried	Spray Drying of		-	6	Collection, Storage, Reuse in	
_	Waste	waste water				Blending / Mixing of Dyes	
Membership details of TSDF, CHWIF etc. Member						TSDF site of	
(For	HW manageme	ent)		M/S Ecocare Infrastructures Pvt. Ltd at Parshwa			
				Kutir, S	Survey No	o. 11, Village: Ghaspur (Patdi),	
				Dasad	a (Patdi),	Dist: Surendranagar will be Ob	
				at a time of CTE Application / before CTE			
				applica	ation.		
Detai	ls of Non-Hazar	dous waste & its		Paper	and plast	ic will be sold to the actual	
dispo	sal(MSW and o	thers)		authorized users			
Solve	ent manageme	nt, VOC emissions	etc.				
Types	s of solvents, Do	etails of Solvent re	cover	y, % rec	overy. re	euse of recovered Solvents	
No us	se of solvent						

leakages.

- During the meeting dated 13/11/2018, technical presentation made by project proponent.
- Salient features of the project submitted by PP are as mentioned above.

Observation:

- Total water consumption will be 8.1 KLD. Total wastewater generation will be 3.3 KLD. It will be treated in ETP and treated wastewater will be sent to in-house spray dryer.
- Natural Gas will be used as fuel for boiler and hot air generator.
- Adequate APCM will be provided as APCM with each process reactors.
- Hazardous waste management will be as per the HW Rules 2016.

Discussions & Conclusion:

Proposal is new. Committee noted that plot area is 500 sq. meter. Generation of industrial effluent is 3.3 KLPD which after treatment will be spray dried within premises. Natural gas will be used as fuel. Details of flue gas emission, process gas emission with APCM along with Hazardous waste management were deliberated at length.

During presentation, PP mentioned that capacity of spray dryer is 800 litre/hour and that was mentioned in presentation was 1200 litre/hour. PP was asked to address the actual capacity of spray dryer for evaporation. Pp also mentioned that a tank of 25 KL capacity will be installed for holding treated waste water. Committee asked PP not to store the treated waste water instead it should be evaporated on daily basis and a proposal in this regard shall be submitted along with undertaking. Details of flue gas emission, spray dryer emission with APCM along with Hazardous waste management were deliberated at length.

After deliberation, PP was asked to submit the following details and it was decided to consider the proposal after submission of the said details.

- 1. Adequacy of area for erection of in-house spray dryer and its capacity.
- Revised proposal with undertaking of not storing treated waste water in 25 KL tank and to be spray dried on day to day basis.

ADDITONAL AGENDA

1.	SIA/GJ/IND2/22262/2017	ZCL Chemicals Limited, P NO: 3102/B,	TOR Amendment
		GIDC, Ankleshwar, Dist: Bharuch	

The aforementioned proposal is for amendment in TOR for exempting the public hearing as the proposed unit is located within GIODC, Ankleshwar. PP mentioned that standard TOR under category 5 (f) were issued from MOEF&CC vide letter IA-J-11011/585/2017–IA-II(I) on 14/08/2017 including public hearing. Further PP mentioned that for the amendment in TOR for exempting public hearing, they applied to

MOEF&CC for exemption of public hearing to which MOEF&CC asked them to apply for the said amendment to SEIAA. Henceforth they have made application for TOR amendment for exemption of public hearing. Committee deliberated the proposal for amendment in TOR in detail and noted that proposed location is within GIDC, Ankleshwar which is existing before 14/09/2006.

Considering the above and referring to the clause 7 III (i) b of EIA Notification 2006 dated 14/09/2006, Committee unanimously decided to recommend for grant of TOR amendment for exemption of public hearing for the aforementioned proposal

Meeting ended with thanks to the Chair and the Members.

Minutes approved by:

1.	Dr. Dinesh Misra, Chairman, SEAC	
2.	Shri S. C. Srivastav, Vice Chairman, SEAC	
3.	Shri V. N. Patel, Member, SEAC	
4.	Shri. R. J. Shah, Member, SEAC	
5.	Dr. V. K. Jain, Member, SEAC	
6.	Shri K.C. Mistry, Secretary, SEAC	

APPROVED ON: