Minutes of the 612thmeeting of the State Level Expert Appraisal Committee(SEAC) held on 18/03/2020 at Committee Room, Gujarat Pollution Control Board, Sector 10A,Gandhinagar.

The 612thmeeting of the State Level Expert Appraisal Committee (SEAC) was held on 18th March 2020 at Committee Room, Gujarat Pollution Control Board, Sector 10A, Gandhinagar. Following members attended the meeting:

- 1. Dr. Dinesh Misra, Chairman, SEAC
- 2. Shri S. C. Srivastav, Vice Chairman, SEAC
- 3. Shri V. N. Patel, Member, SEAC
- 4. Shri. R. J. Shah, Member, SEAC
- 5. Shri A. K. Muley, Member, SEAC
- 6. Dr. V. K. Jain, Member, SEAC
- 7. Shri A. V. Shah, Secretary, SEAC

The regular agenda of Appraisal, Screening & Scoping/ToR / EC – Reconsiderationcases were taken up. The Committee considered the applications made by project proponents, additional details submitted as required by the SEAC/SEIAA and details furnished in the Form-1, PFR, EIA-EMP reports.

	Proposal No.	Name and Address of the Unit	Remarks
1	SIA/GJ/IND2/27657/2018	M/s. Lincoln Pharmaceutical Limited	Appraisal
		Block No. 176 (old Block No. 95/5-B), At -	
		Khatraj, Ta. Kalol, Dist. Gandhinagar.	

Category of the unit: 5(f)

Project status: New

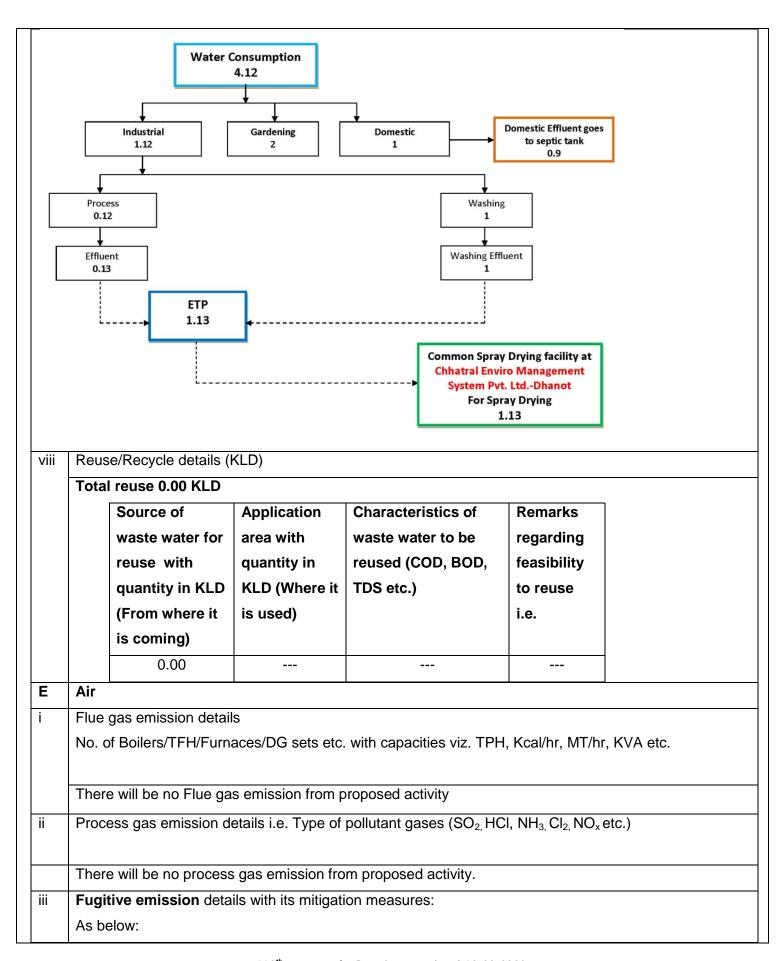
- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/27657/2018 on dated 05/11/2019 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 30/10/2018.
- Project proponent has submitted EIA Report prepared by M/s. Bhagwati Enviro Care Pvt. Ltd., Ahmedabad based on the TOR issued by SEIAA.
- Public Hearing of the Project was conducted by Gujarat Pollution Control Board at Project Site of M/s.
 Lincoln Pharmaceutical Limited, Block No. 176 (old Block No. 95/5-B), At Khatraj, Ta. Kalol, Dist.
 Gandhinagar dated 13/11/2019.
- This is new unit proposes for manufacturing of synthetic organic chemical as tabulated below:

Sr. No.	Product Name	CAS NO.	Quantity Kg/Month	Final Application of Product
	Caroverine Hydrochloride			Pharmaceuti
	(1-[2-(Diethylamino)ethyl]-3-[(4-			cals Raw
	methoxyphenyl)methyl]-2(1H)-			Material
1	quinoxalinone monohydrochloride)	55750-05-5	100	(For Capsule
				Manufacturin
				g
)

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 18/03/2020.
- Salient features of the project are as under:

Sr.	Particulars	Details
no.		
Α		
Α	Total cost of Proposed Project	0.49 Crores
	(Rs. in Crores):	
	Details of EMP	

	T _	T -	Г .	
Sr.	System	Approximate	Approximate	Basis for cost estimates
No		Capital cost	Recurring	
		per annum	cost per	
		(in Lac)	year (Rs. In	
			Lac)	
1	Air pollution	0.0	0.5	The capital cost will be zero for Air Pollution control
	control			because there will be no flue gas emission & process
				gas emission from the unit. The recurring cost will
				include control of fugitive emission.
2	Water	10.0	10.2	Capital cost would include cost of ETP, In capital
	pollution			cost civil work, mechanical work, Electrical work and
	control			piping work is included. Recurring cost is for
				operational phase regarding Evaporation cost of


				Spray Drying etc.
3	Noise	0.0	0.25	The recurring cost would include cost of noise
	pollution			monitoring.
	monitoring			
4	Solid and	1.5	1.0	Capital cost would include cost of providing storage
	hazardous			space for hazardous waste and membership of
	waste			TSDF Fee. Recurring cost would include cost of land
	management			filling and transportation.
5	Environment	1.5	1.0	The recurring cost would be incurred on hiring of
	monitoring			consultants and payment of various statutory fees to
	and			regulatory agencies.
	management			
6	Green belt	2.0	1.0	Development of Greenbelt including Gardening and
				Plantation.
7	Occupational	1.0	1.0	Occupational health check up of Employees and
	health (OHC)			workers
	Total	16.0	14.95	

Details of CER as per OM dated 01/05/2018	2% of Total Project Cost
	1.02 Lac for 2 Year (2.06 % of total Plot Area)

M/s. Lincoln Pharmaceuticals Limited	CER Budget: 1.02 Lacs (For Two Year)					
Propose Planning for CER Activity (2020-2021)						
Cost in L	Cost in Lacs/Yr					
2020	2021					
 - 0.51 Lacs give to Gram Panchayat Khatraj Village as per his requirement (mention in letter) i.e. provide RO plant for drinking water, help in Education Sector, Infrastcture Development. 	 - 0.51 Lacs give to <u>Gram Panchayat</u> <u>Sanavad Village</u> as per his requirement (mention in letter) i.e. provide RO plant for drinking water, help in Education Sector, Infrastcture Development. 					
Total: 0.51 Lacs	Total: 0.51 Lacs					
B Total Plot area (sq. meter)	1049 sg. m.					

	Green belt area			361.05 Sq	. m.	
	(sq. meter)					
С				08		
	generalien					
D	Water	Water				
i	Source of Water Su	apply		Water tank	(er	
	•	urface water, Tanker su				
	Status of permissio	on from the concern auth	ority.	Yes		
ii	Water consumption					
		Category	Quantity		Remarks	
			KLD			
		(A) Domestic		1		
	(B) Gardening		2			
		(C) Industrial				
		Process	0	.12		
		Washing		1		
		Industrial Total	1	.12		
		Total (A + B + C)	4	.12		
		L	<u> </u>		I	I
		requirement for the pro	oject: 4.12 K	LD		
		be recycled : 0.00 KLD				
	3) Total fresh water requirement: 4.12 KLD					
	(Total water requi					
	(4.12= 4.12 + 0.00)	1				
iii	Waste water gene	ration (KLD)				
		Category	Waste wate	r	Remarks	
			KLD			
		(A) Domestic	0	.9		
		(B) Industrial				

	 Common Spray dryer – CEMSPL Simplified water balance diagram with reuse / recycle of waste water 								
		(For waste water treatment)							
	·	of Common facility (CF)							
	Common Spray dryer – CEMSPL								
√İ		mmon facility (CF) like CETP, Cor	nmon Spray drye	r, Common MEE et	c. Name of CF				
	Dhanot For spray drying.								
		Spray Drying facility at Cl	hhatral Environm	nent management	system Pvt. Ltd.				
		(Having Primary Treatment	Unit) and after	treatment it will be	e send to Comm				
	Industrial:	Industrial effluent generation	n will be 1.13 KL	PD . That will be pri	mary treated in E				
	Domestic:	0.9 KLPD discharge to soak pit	via septic Tank.						
V	Mode of Disp	osal & Final meeting point							
	Unit will achieve zero liquid discharge by discharge proposed effluent to common spray dryer.								
	Brief note on adequacy of ZLD (In case of Zero Liquid Discharge):								
	Not Applicable								
	(Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP.								
	Management of waste water keeping in view direction under section 18 (1) (b) of the Water								
	Note: (In case of CETP discharge):								
		onment management system Pvt. I			3 3				
		Treatment of Industrial effluent, It		ommon Sprav Drvir	ng facility at Chhati				
		heme including segregation at sou							
		P (Primary, Secondary, Tertiary), N Cap-5 KL having Primary Treatme		oray Dryer, STP etc.	•				
V		cility within premises with capacity		arou Druger CTD ata					
	<u> </u>	Total [A + B]	2.03						
		waste water							
		Total Industrial	1.13						
		Washing	1						
		Process	0.13						

Fugitive emission could occur from the storage yard of raw materials and finished products. Due to smaller batch size of the product, The storage quantity is low maintained at site and proper handling methods will be adopted. Emissions from transport of vehicles would occur to a certain extent. The emissions from traffic movements will be controlled by proper planning of the transport of raw materials and finished products to and fro from the factory premises. All the roads inside the plant will be concreted to reduce any dust emissions.

Proper planning and maintenance will control the extent of fugitive emissions. During the production, the industry will carry out regular monitoring of fugitive emissions as per the factories Act.

Measures taken for fugitive emission control:

- Proper storage of raw materials and products.
- Ensuring closed feeding and sampling.
- Establishing SOPs for start-up, shut down and maintenance operational procedures.
- Regular work place monitoring and ambient air quality monitoring as per post project monitoring plan.

F Hazardous wastes

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

	Sr. No.	Type of Waste	Category	Quantity	Management
	1	ETP Waste	35.3	12 MT/Annum	Collection, Storage, Transportation & Disposal at approved TSDF site.
	2	Spent Oil/Used Oil	5.1	72 Lit./Yr.	Collection, Storage, Transportation & Disposed by selling to Registered refiners or reuse as lubricant.
	3	Discarded Containers (Bag, Barrel, Drum)	33.1	2.4 MT/Yr	Collection, Storage, Transportation & Disposed by selling to authorized recycler.
	Membership details of TSDF, CHWIF etc. (For HW management)			TSDF - D	etox India PVT LTD
D	etails of	Non-Hazardous waste	e & its disposal	Not Applic	able

	<u> </u>		d others) nanagement, VOC	emissions etc	<u> </u>				
		plicabl		CITIOSIONS CIC	,.				
	Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details								
	Table Format)								
				T				Γ	
				Quantity					
						Kg/Batch	1		
							Remaining	Solvent	
		Sr.	Product Name	Solvent			Qty. carry	Recovery	
		No.		Name			forward	(%)	
					Use	Use Recovered	with	(70)	
							product		
							mass		
		1	Caroverine	Toluene	24	24	00	100	
		'	Hydrochloride	Di ethyl ethe	er 20	19.5	0.5	97.5	
	\/0	0	aine an mana and it						
	VO		sion sources and it						
			e will measure level		-		nateriai storage	area we will	
			work place monitor		• •				
		<i>,</i> De	Storage details			jor Hazardous	Remarks		
			Otorage actains		chemicals	joi Hazaraous	rtomanto		
			Storage tanks						
			Otorago tarmo						
			Drum/Barrel storage Di			r	200 KG		
					Sodium Hyd	roxide	200 KG		
					Toluene		200 KG		
	1		Carboy Hy				250 KG		

During the meeting dated 18/03/2020, technical presentation made by project proponent.

Due to less storage quantity PESO permission was not required.

 During the meeting, the project was appraised based on the information furnished in the EIA Report, various issues raised during the public hearing and details presented during the meeting.

- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the January 2019 to March 2019. Ambient Air Quality monitoring was carried out for PM2.5, PM10, SO2, NOx, Benzene, Toluene, Xylene, CO& HC at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD. The resultant concentrations are within the NAAQS.
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan
 has been covered in the RA report.
- Committee deliberated on the Minutes of the Public Hearing dated **13/11/2019** along with the representation made by the Public & Point wise Compliance Submitted by Project Proponent.
- Committee noted that proposal is new in Village: Khatraj. Source of water is Tanker. PP mentioned that
 effluent generated from process and washing will be treated in in-house primary ETP and treated effluent
 will be disposed into Common Spray Dryer of Chhatral Environment management system Pvt. Ltd. Dhanot
 for final treatment and disposal. PP mentioned that there is no any process or flue gas stack as the fuel used
 is electricity. PP has addressed Hazardous Waste as per HWR 2016. Committee noted that PP has
 addressed EMP & CER satisfactorily.
- Compliance of ToR found satisfactory.
- After detailed discussion, Committee unanimously decided to recommend the project to SEIAA, Gujarat for grant of Environment Clearance.

2	SIA/GJ/IND2/35802/2019	M/s. Tejika Labs Private Limited	Appraisal
		Plot No. D-2-CH-151-1, Dahej-II, Industrial	
		Estate, Dahej.Taluka: Vagra, Dist.: Bharuch.	

Category of the unit: 5(f)

Project status: New

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/35802/2019 on dated 05/11/2019 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 04/11/2019.
- Project proponent has submitted EIA Report prepared by M/s. Jyoti Om Chemical Research Centre Pvt. Ltd,
 Surat based on the TOR issued by SEIAA.
- This is new unit proposes for manufacturing of synthetic organic chemical as tabulated below:

Sr.	Name of the Products	CAS No.	QUANTITY in	End-use of the
no.			MT/MONTH	products

1.	2,3,4,5-bis-O-[1-Methyl Ethyl	20880-92-6	100	For Topiramate
	idene]B-D-Fructopyranose			(API)
2.	Di Methyl Formamide Di Methyl	4637-24-5		For Imatinib (API)
	Acetal			
3.	4-Methyl Catechol Di-acetic acid	52589-39-6		For Watermelone
	Dimethyl ester			Ketone
				(FRAGRANCE)
	GROUP-2 (Sr No:-4 to 8) (Not More	than 50 MT/Mon	th)	
4.	4-Methyl Catechol	452-86-8	50	For Watermelon
				Ketone
				(FRAGRANCE)
5.	Methylene dioxy phenol	533-31-3		For Paroxetine (API)
6.	4-Chloro-4'Hydroxy Benzophenone	42019-78-3		For Fenofibrate (API)
7.	2-Bromo Veratryl Bromide	53207-004		For Pinaverium
	2 Brome verally Bromide			Bromide (API)
8.	7-Ethyl tryptophol	41340-36-7		For Etodolac (API)
	GROUP-3 (Sr No:-9 to 53) (Not More	than 30 MT/Mor	nth)	
9.	Di Methyl Formamide Di Iso Propyl Acetal	18503-89-4	30	For Cocaine (API)
10.	4-Methoxy Benzaldehyde dimethyl	2186-92-7		For
	Acetal			Paclitaxel/Octinoxate
				(API)
11.	Benzaldehyde dimethyl Acetal	1125-88-8		For Rosuvastatin
				(API)
12.	Dimethyl Acetamide Dimethyl Acetal	018871-66-4		For Zaleplon (API)
13.	O-Benzyl hydroxyl amine	2687-43-6		For Larsartan(API)
	Hydrochloride			
14.	Endo-9-methyl-9-	76272-56-5	_	For Granisetron (API)
	azabicyclo[3,3,1]nonane 3-amine			
15.	2 3 Dihydrofuran	1191-99-7		For Etodolac

			(API)
16.	2-Amino-4-fluoro Benzophenone	3800-06-4	For Pitavastatin (API)
17.	2-(2-ethoxy phenoxy)ethyl amine HCL	64464-07-9	For Tamsulosin (API)
18.	2-(2-ethoxy phenoxy)ethyl amine	6781-17-5	For Tamsulosin (API)
19.	N-(4-cyanophenyl)-glycin	42288-26-6	For Dabigatran (API)
20.	1-(2,'5' Dimethoxy phenyl amino ethanol)	3600-87-1	For Midodrine (API)
21.	Guanidine hydrochloride	50-01-1	For Triazine (API)
22.	Guanidine Nitrate	506-93-4	For Trimethoprim (API)
23.	Guanidine thiocyante	593-84-0	For Triazine (API)
24.	O-benzyl hydroxyl amine	2687-43-6	For Azaindoles (API)
25.	Syringaldazine	14414-32-5	For Cholrine Test (API)
26.	3-amino-2-thiophenecarboxylic acid	55341-87-2	For Tenoxicam (API)
27.	ethyl 2-(3-cyano-4-isobutoxyphenyl)- T-oxo-N,B- diphenylbenzenebutanamide	125971-96-2	For Atorvastatin (API)
28.	Sulfamerazine	127-79-7	For Antibiotic & Antimicrobial (API)
29	2-amino-4-methylpyrimidine	108-52-1	For Sulfamerazine (API)
30	Methyl-2-amino-3-nitrobenzoate	57113-91-4	For Candesartan (API)
31.	Guanidine carbonate	593-85-1	For Triazine (API)
32.	N-hydroxy phthalimide	524-38-9	For Catalyst Oxidation Reaction

Alpha Proma 2 Chlora Phanul	85259-19-4	For Clopidogrel (API)
Acetic Acid Metriyi Ester		
4-Methoxy-3-	592542-51-3	For Oncology
nitrobenzylsulfonylacetic acid		(API)
0.4 Bit 1 B 1 A 11	99-50-3	For Protochuic Acid
3,4-Dinydroxy Benzoic Acid		(API)
3 4- Dibydroxy Benzoic Acid Methyl	2150-43-8	For Erlotinib
		(API)
estei		
Piperonylic Methyl Ester	326-56-7	For Fragrance
		Intermediate
Ethyl 3-[(pyridin-2-yl)-amino]-	103041-38-9	For Dabigatran (API)
' '		
3-nitro-4-methylamino benzoic acid	41263-74-5	For Dabigatran (API)
Hydroguinone dimethyl ester	150-78-7	For Midodrine (API)
Trydroquinone dimetryr ester		
Malonic Acid Methyl Ester	38330-80-2	For Gycosylation
Potassium salt		(API)
(1P 2P) 1.2 Cycloboxano	46022-05-3	For LurasidonHcl
		(API)
Dicarboxylic Acid		
1-Methylindazole-3-Carboxylic	50890-83-0	For GarnisetronHcl
acid		(API)
	645-08-9	For Galantamine
Isovanillic Acid		(API)
O Mathad O Core Bandanasta	759-66-0	For Etodolac (API)
2-Methyl-3-Oxo-Pentanoate		,
2-(2-ethoxy phenoxy)-mesvlate	106463-17-6	For TamsilosinHCl
, , , , , , , , , , , , , , , , , , , ,		(Speciality Chemical)
3-(((2-methoxy-2-oxoethyl)amino)-	106820-63-7	For Tenoxicam (API)
sulfonyl)-2-thiopenecarboxylic acid		
	3,4-Dihydroxy Benzoic Acid 3,4- Dihydroxy Benzoic Acid Methyl ester Piperonylic Methyl Ester Ethyl 3-[(pyridin-2-yl)-amino]-propanoate 3-nitro-4-methylamino benzoic acid Hydroquinone dimethyl ester Malonic Acid Methyl Ester Potassium salt (1R,2R)-1,2 Cyclohexane Dicarboxylic Acid 1-Methylindazole-3-Carboxylic acid Isovanillic Acid 2-Methyl-3-Oxo-Pentanoate 2-(2-ethoxy phenoxy)-mesylate	Acetic Acid Methyl Ester 4-Methoxy-3- nitrobenzylsulfonylacetic acid 3,4-Dihydroxy Benzoic Acid 99-50-3 3,4-Dihydroxy Benzoic Acid Methyl ester Piperonylic Methyl Ester Ethyl 3-[(pyridin-2-yl)-amino]- propanoate 3-nitro-4-methylamino benzoic acid 41263-74-5 Hydroquinone dimethyl ester 150-78-7 Malonic Acid Methyl Ester 938330-80-2 Potassium salt (1R,2R)-1,2 Cyclohexane Dicarboxylic Acid 1-Methylindazole-3-Carboxylic acid 1sovanillic Acid 645-08-9 2-Methyl-3-Oxo-Pentanoate 759-66-0 2-(2-ethoxy phenoxy)-mesylate 106463-17-6

48	Methyl-6-methylnicotinate	2519-37-1		For Etoricoxib (API)
49	4-[(4-Methyl-1-piperazinyl)-methyl]- benzoic acid	106261-48-7		For Lematinib (API)
50	2-(((2'-cyano-(1,1'biphenyl)-4-yl)-methyl)amino)-3-nitro benzoic acid)	139481-28-0		For Cilexetile (API)
51	Ndlic anhydride (endo- cis- bicyclo-(2.2.1)-5-heptane-2,3- dicarboxylic acid)	3853-88-1		For Lurasidone Hcl (API)
52	4- Methoxy-3-(3-methoxypropoxy) benzoic acid	895240-50 -3		For Aliskiren (API)
53	3- cyclopropyl-3-oxo Propionic Acid Methyl Ester	32249-35-7		For Pitavastatin (API)
	GROUP-4 (Sr No:-54To 127) (Not Mo	re Than 30 MT/N	Month)	
54	4-Hydroxy Benzyl Alcohol	623-05-2	30	For Bisoprolol Fumarate (API)
55	2,4,6 TrimethoxyBenzaldehyde	830-79-5		For Oncology (API)
56	4-Isopropyl catechol	2138-43-4		For Fragrance Intermediate
57	3-Methoxy Phenol	150-19-6		For Antioxidants (API)
58	Veratryl Alcohol	93-03-8		For Pinaverium Bromide (API)
59	3,4 Dihydroxy Benzaldehyde	139-85-5		For Protochuic Acid (API)
60	4-Propyl Catechol	2525-02-2		For Fragrance Intermediate
61	(3S,4R)-4-(4-Fluorophenyl)-3- hydroxymethyl-1-methylpiperidine(- alcohol)	105812-81-5		For Paroxetine (API)

62	3 –MethoxyPropiophenone	37951-49-8	For Tapentadol (API)
63	4-Hydroxy Benzaladehyde	123-08-0	For Bisoprolol
64	Piperonyl Alcohol	495-76-1	Fumarate (API) Antioxidants (API)
65	3,4-Dimethoxy phenol	2033-89-8	For Thalicarpine
66	4- Methyl Guaiacol	93-51-6	(API) For Fragrance Intermediate
67	Isovanillyl Alcohol	4383-06-6	Aliskiren (API)
68	3-Methoxy benzyl alcohol	6971-51-3	Sarpogrelate (API)
69	2,5-dimethoxy Benzaldehyde	93-02-7	Midodrine (API)
70	5-Nitrovanillin	6635-20-7	Entacapone (API)
71	4-Hydroxy Anisole	150-76-5	For Fragrance Intermediate
72	Salicylaldehyde	090-02-8	Midodrine (API)
73	Isovanillin	621-59-0	For Galantamine (API)
74	Watermelone ketone	28940-11-6	For Perfumes (Fragrance)
75	(1R,2R)-1,2-cyclohexanedimethanol	65376-05-8	For Lurasidone Hcl
76	3',4'-(methylenedioxy)- acetophenone	3162-29-6	For Paroxetine Hcl (API)
77	3,4-dihyroxy-5-nitro-benzaldehyde	116313-85-0	For Enatcapone (API)
78	2,4- di Hydroxy Benzophenone	131-56-6	For Antioxidants (API)
79	2-hydroxy benzyl alcohol	90-01-7	For Fragrance Intermediate
80	N-benzyl-4-	22065-85-6	For Donepezil (API)

	piperidinecarboxaldehyde		
81	5,6- Dimethoxy indanone	2107-69-9	For Donepezil (API)
82	3-(1-Piperaziny)-1,2-	87691-87-0/	For Ziprasidone (API)
	Benzisoxazole/Hydrochloride	87691-88-1	
83	5-Chloroethyl-6-Chloro-2-Oxindole	118289-55-7	For Ziprasidone (API)
84	4-[(4-Methyl-1-piperazinyl)-methyl]- benzoyl chloride dihydrochloride	106261-64-7	For Imatinib (API)
85	1-(Benzo (d)(1,3)dioxol-5-yl))ethanol	6329-73-3	For Proline (API)
86	2 -Bromo 2',5' – dimethoxyacetophenone	1204-21-3	For Midodrine (API)
87	(1R,2R)-1-2-bis (methane	186204-35-3	For Lurasidone Hcl
	sulfonyloxy methyl) cyclohexane		(API)
88	Tert-butyl(4-bromophenyl)	639520-70-0	For Protecting Group
	Methylcarbamate		
89	(2-cyclopropyl-4-(4- fluorophenyl)quinolone-3yl)methanol	121660-11-5	For Pitavastatin (API)
90	1 371 37	34911-51-8	For Punranian Hal
90	2-Bromo-3'-Chloro –Propiophenone	34911-31-6	For Bupropion Hcl (API)
91	3- Bromo- 4-Hydroxy	2973-78-6	For Bromoxynil (API)
	Benzaldehyde		
92	3,4-(methylenedioxy) bromo	2635-13-4	4-Bromo 1,2-
	benzene		Methylene
	20.720.13		DioxyBenzene
			(Speciality Chemical)
93	3-Methoxy Benzyl chloride	824-98-6	Sarpogrelate (API)
94	4- Chloro Guaiacol	16766-30-6	For Fragrance
			Intermediate

95	4- Chloro Veratrole	16766-27-1	For Reactant
			(Speciality Chemical)
96	2-Bromo-4- Chloro Phenol	695-96-5	For Reactant
			(Speciality Chemical)
97	4- Bromo Anisole	104-92-7	4-Bromo –(3-Methyl
			Phenol)
			Methanamine
			(Speciality Chemical)
98	4-BromoPhenetole	588-96-5	For irritability
			(Fragrance)
99	Endo-9-methyl-9-	135906-03-5	For GranisetronHcl
	azabicyclo[3,3,1]nonane 3-amine 2		Int. (API)
	HCL		
100		82380-17- 4	For 2-Bromo -4-
100	2-Bromo-4-Cyanophenol	02300-17-4	Hydroxy -Benzonitrite
			(Speciality Chemical)
101		3140-73 -6	For Pemetrexed
101	2-Chloro-4,6-dimethoxy-[1,3,5]-	3140-73-0	Disodium (API)
	triazine		Disodium (AFI)
102	Bicyclo[2.2.1]hep-tane-2,3-exo-	14805-29-9	For Lurasidone (API)
	dicarboximide		
400		400.44.0	For Other Desertion
103	4-Bromo Phenol	106-41-2	For Stilled Reaction
404		2050.00.0	(Speciality Chemical)
104	2-(2-ethoxy phenoxy) ethyl bromide	3259-03-8	For Tamsulosin (API)
105	Ethyl-3[1-(3 amino-4-(methyl	212322-56-0	For Dabigatran (API)
	amino)-phenyl)-n-(pyridine-2-yl)-		
	foramido)proponate]		
	Тоганнаоургоронасој		
106	Ethyl-n-[2-((4-cyanophenyl)-amino)-	211915-84-3	For Dabigartan (API)
	methyl-1-methyl-1H-benzimidazol-5-		
	yl)-carbonyl-n-pyridine-2-yl-b-		
	alanimate		
107	6-chloro 2-oxindole	56341-37-8	For Ziprasidone (API)
	0-GINOIO 2-OXIIIUOIE		

108	6-chloro-5-(chloroactyl)-1-3-dihydro-	118307-04-3	For Ziprasidone (API)
	2H-indole-2-one		
109	3,4-(methylenedioxy)-toluene	7145-99-5	For Sitaxentan
	c, i (meany) endanes, y terderic		(API)
110	2-chloro-4,6-	18093-05-5	For Fenoldopam
	dimethoxybenzaldehyde		Mesylate (API)
111	2-chloro-2',5'-dimethoxy	1204-22-4	For Midodrine (API)
	Acetophenone		
112	4-fluoro-alpha-(2-methyl-1-	125971-96-2	For Atorvastatin (API)
	oxopropyl)-t-oxo-		
	N,B,Diphenylbenzenebutanamide		
113	5-Bromo-6-bromomethyl-1,3-	5434-47-9	For Iloperidone (API)
	benzodioxole		
114	6-Fluoro-3-(4-piperidinyl)1,2-	84163-77-9	For Resperidone
	benzisoxazole		(API)
115	2,4-dimethoxy benzyl chloride	55791-52-1	For Coumestan
			(Speciality Chemical)
116	methyl-4-(Bromomethyl)-benzoate	2417-72-3	For Eprosartan (API)
117	1,2,3,4- tetrahydro-9-methyl-4H-	27387-31- 1	For Ondansetron
	carbazol-4-one		(API)
118	4,5-dimethoxy-2- nitro toluene	7509-11-7	For Chemical
			Ingredient (Speciality
			Chemical)
119	Alpha-bromo-ortho-chloro-phenyl	29270-30 -2	For Clopidogrel (API)
	acetic acid		
120	3,4-(Dimethoxy)-6-methylbenzyl	34523-76-7	For Antibiotics (API)
	chloride		
121	Anisole	100-66-3	For Fragrance
			Intermediate

122	Veratrol	91-16-7		For Salmeterol Int.
				(API)
123	Vanillin	121-33-5		For Vanilla Bean
				(API)
124	Ethyl Vanillin	121-32-4		For Chocolate
				&Antioxidants (API)
125	3,4-methylenedioxy Benzaldehyde	120-57-0		For Tadalafil Int.
	(piperonal)			(API)
126	1-[3-(benzyloxy)propyl]-5-	1375180-30-5	-	For Silodosin (API)
	formylindoline-7-carbonitrile			
127	Dimethylformamide di-tert-butyl	36805-97-7		For Int. Veterinary
	Acetal			Uses (API)
	GROUP-5 (Sr No:- 128 to 209) (Not	More than 20 MT/I	Month)	1
128	AfatinibDimaleate	850140-73-7	20	For Metastatic
				(pharma)
129	Arbutin	497-76-7		For Glycoside
				(pharma)
130	Agomelatine	138112-76-2		For Antidepressant
				(pharma)
131	Apixaban	503612-47-3		For Anticoagulant
				(pharma)
132	Aripiprazole	129722-12-9		For Antipsychotic
				(pharma)
133	Asenapine	65576-45-6		For Schizophrenia
				(pharma)
134	Axitinib	319460-85-0		For Carcinoma
				(pharma)
135	Azilsartan	147403-03-0	1	For Hypertension
				(pharma)
136	Abacavir Sulfate	188062-50-2	_	For HIV Medications
				(pharma)
137	Atorvastatin Calcium	134523-03-8		For Cardiovascular
				Diesease (pharma)
138	Bupropion HCL	31677-93-7	7	For Depressive Orde
				(pharma)

139	Bisoprolol Fumarate	104344-23-2	For Antihypertensive
			(pharma)
140	Bazedoxifene	198481-32-2	For Cancer (pharma)
141	Canagliflozin	842133-18-0	For Diabetes
			(pharma)
142	Candesartan Cilexetil	145040-37-5	For Angiotensin
			(pharma)
143	Celecoxib	169590-42-5	For Non-Steroidal
			&Anti-inflammatory
			(pharma)
144	Clopidogrel sulphate	120202-66-6	For Antiplatelet
			(pharma)
145	Dabigatran	211915-06-9	For Anticoagulant
			(pharma)
146	Dapagliflozin	461432-26-8	For Glycemia
			(pharma)
147	Darifenacin	133099-04-4	For Overative
			Bladder (pharma)
148	Donepezil	120014-06-4	For Dementia
			(pharma)
149	Dronedarone	141626-36-0	For atrial fibrillation
			(pharma)
150	Desvenlafaxine Succinate	386750-22-7	For Depressive
	monohydrate		Disorder (pharma)
151	Duloxetine Hydrochloride	136434-34-9	For Depression
			&Anxiety (pharma)
152	Erlotinib	183321-74-6	For Cancer (pharma)
153	Etoricoxib	202409-33-4	For Pain &Swelling
			(pharma)
154	Etodolac	41340-25-4	For Arthritis (pharma)
155	Escitalopram oxalate	219861-08-2	For Depression
			&Anxiety (pharma)
156	Febuxostat	144060-53-7	For Arthritis (pharma)
157	Felodipine	72509-76-3	For Hypertension
			(pharma)
158	Fluconazole	86386-73-4	For Antifungal

			(pharma)
159	Fenofibrate	49562-28-9	For High Good And
			loco cholesterol
			(pharma)
160	Granisetron HCI	107007-99-8	For Cancer (pharma)
161	Gefitinib	184475-35-2	For Lung Cancer
			(Pharma)
162	Gabapentin	60142-96-3	For Neurontin
			(Pharma)
163	ILoperidone	133454-47-4	For Proton Pump
			(Pharma)
164	Irbesartan	138402-11-6	For Hypertension
			(Pharma)
165	Itopride Hydrochloride	122892-31-3	For Dyspepsia
			(Pharma)
166	Lapatinib	388082-78-8	For Cancer (Pharma)
167	Lurasidone Hydrochloride & its	367514-88-3	For Schizophrenia
	intermediate		(Pharma)
168	Losartan Potassium	124750-99-8	For Hypertension
			(Pharma)
169	Mem Chloride	3970-21-6	For API (Antibiotics)
170	Minodronic Acid	155648-60-5	For osteoporosis
			(Pharma)
171	Moclobemide	71320-77-9	For Depression
			&Anxiety (Pharma)
172	Modafinil	68693-11-8	For Sleep apnea&
			narcolepsy (Pharma)
173	Metoprolol Tartrate	37350-58-6	For Hypertension
			(Pharma)
174	Nisoldipine	63675-72-9	For Hypertension
			(Pharma)
175	Omeprazole	73590-58-6	For Antacids and
			Peptic Ulcer(Pharma
176	O Des Venlafexine	93413-62-8	For Major Depression
			Disorder (Pharma)
177	Olmesartan	144689-63-4	For Hypertension

			(Pharma)
178	Pitavastatin	147511-69-1	For High & Low
			Cholesterol (Pharma)
179	Piperonylic Acid	94-53-1	For Piperonal (API)
180	PramipexoleDihydrochloride	191217-81-9	For Renal Liver
	Monohydrate		(Pharma)
181	Prasugrel Hydrochloride	389574-19-0	For Heart Disease
			(Pharma)
182	Paroxetine hcl	61869-08-7	For Depression
			(Pharma)
183	Pinaverium Bromide	53251-94-8	For Irritable Bowel
			Syndromes (Pharma)
184	Pioglitazone HCI	112529-15-4	For Diabetes
			(Pharma)
185	QuetiapineFumarate	111974-72-2	For Schizophrenia
			(Pharma)
186	Rabeprazole Sodium	117976-90-6	For
			Gastroesophageal
			Reflux Disease
			(Pharma)
187	Rivaroxaban	117976-90-6	For Atrial fibrillation
			(Pharma)
188	Ropinirole Hydrochloride	91374-20-8	For Restless Legs
			Syndrome (Pharma)
189	Resperidone	106266-06-2	For Schizophrenia
			(Pharma)
190	Sertraline Hydrochloride	79559-97-0	For Depression
			(Pharma)
191	Solifenacin Succinate	242478-38-2	For Urination
			&incontinentia
			(Pharma)
192	Tadalafil	171596-29-5	For Erectile
			DysFunction
			(Pharma)
193	Ticagrelor	274693-27-5	For Angioplasty
			(Pharma)

194	Topiramate	97240-79-4	For Seizures
			(Pharma)
195	Vilazodone Hydrochloride	163521-08-2	For (Pharma)
196	Valsartan	137862-53-4	For Hypertension
			(Pharma)
197	Vortioxetine Hydrbromide	960203-27-4	For Depression
			(Pharma)
198	Vemurafinib	1029872-54-5	For Melonoma
			(Pharma)
199	Warfarin Sodiumclatharte	67430-45-9	For AntiCoagulant
			(Pharma)
200	Ziprasidone HCl	138982-67-9	For Schizophrenia
			(Pharma)
201	Vildagliptin	274901-16-5	For Diabetes
			(Pharma)
202	Memantine HCL	41100-52-1	For Alzeheimer
			(Pharma)
203	Linezolid	165800-03-3	For Infections
			(Pharma)
204	Ramelteon	96597-26-9	For Insomnia
			(Pharma)
205	Timolol maleate	26839-75-8	For Antibiotic
			(Pharma)
206	Salmeterol Xinafoate	94749-08-3	For Adrenergic
			(Pharma)
207	Ezetimibe	163222-33-1	For Primary
			Hypercholesterolemi
			(Pharma)
208	Ritonavir	155213-67-5	For HIV Protease
			Inhibitors (Pharma)
209	Glimepiride	93479-97-1	For Diabetes
			(Pharma)
GROL	IP- 6R&D PRODUCTS	1	<u>l</u>
	Various New Product developed by		1
	In-House R & D		

	TOTAL PRODUCTION CAPACITY	 231	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 18/03/2020.
- Salient features of the project are as under:

Sr. no.	Particulars	Details
Α		
Α	Total cost of Proposed Project	20 Crores
	(Rs. in Crores):	
	Details of EMP	As given below

COMPONENT	CAPITAL COST OF EMP	RECURRING COST OF EMP (per Month)
TOTAL COST	610 lacs	1350.33 Lacs

Bifurcation of EMP Cost

Sr. No	Unit	Installed Capacity	Capital Cost	Operating Cost (Lacs /Month)	Maintenance Cost (Lacs	Total Recurring Cost (Lacs
		(KLD)	(Rs. in Lacs)		/Month)	/Month)
1	Air pollution control		40	1.25	0.42	1.66
2	Water pollution control	50 KLD ETP	150	30.04	31.27	61.31
3	Noise pollution monitoring	-	1	0.09	0.07	0.16
4	Solid and hazardous waste management	-	20	19.36	9.53	28.89
5	Environment monitoring and management	-	300	12.99	3.67	16.66
6	Green belt	-	10	0.46	0.20	0.66
7	Occupational	-	9	0.46	0.20	0.66

	health (O	HC)							
8	Water po	llution		80	1.48		1.03	2.5	
	control								
•	Det	ails of Cl	ER as per OM	dated 01/0	05/2018	As	given below		
The u	ınit has plar	ned to s	pend 2% of th	e total cost	of the project ov	ver a	period of five ye	ears towards C	CER
activi	ty. So, as p	er the pr	oject cost Rs.	40 Lakhs u	sed in the CER	activi	ties.		
В	Tota	al Plot ar	ea (sq. mete	r)		89	84.55 Sq. m.		
		en belt a	area			29	68.32		
		. meter)				1-			
С	Em	ploymen	t generation			15	0		
<u> </u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	tor							
D	Wa		Jotor Cupply				DC		
ı	500	irc e or vv	ater Supply			GI	DC		
	(GII	C Bore	well, Surface	water Tanl	kar sunnly				
	etc.		Well, Sulface	water, ram	Kei Suppiy				
	Cio.	•••)							
	Sta	tus of pe	rmission from	the concer	n authority.	Water permission letter from GIDC			OC
				olon nom the concern dutherky.			Dahej is attached as Annexure-VIII in		
							EIA Report.		
li	Wa	ter consu	umption (KLD)						
		Cat	egory		Quantity		Р		
					KLD			emarks	
					5		U	nit will use	
			(D) Domestic		J		fr	esh water for	
							it.		
					11			nit will use	
		(E) Gardening					esh water for		
					it.				
			(F) Industrial						
									-
			Process		75				

		Washing		10					
		Boiler		15					
		Cooling		42					
		Others		15		Process scrubber (3)+ Boiler scrubber (12) Boiler Blow Down water will be used for this purpose			
		Industrial Total	1	157					
		Total (A + B +	C)	173		Fresh water requirement:- 161 KLD + Recycled water requirement:- 12 KLD			
	1)	1) Total water requirement for the project: 173 KLD							
	2)	Quantity to be r Total fresh water							
	(Total	water requireme	nt = Fresh wa	ater + Recycle	d water)				
iii	Waste	water generation	n (KLD)						
		Category	Waste wa	ter	Remarks				
	((C) Domestic	5		Unit will treat do	mestic effluent along with			
	1 1		1		I "I'ddollidi Ollidoll	**			

Process	80	Unit will bifurcate industrial effluent into 2
		steams based on characteristics.
		STEAM 1:- High Ammonical Nitrogen
		Steam + High COD Steam (32 KLD)
		STEAM 2:- LOW COD steam (48 KLD) -
		treated in unit's own effluent treatment
		plant.
Washing	10	10 KLD WASHING WATER will be
		treated in unit's own effluent treatment
		plant.
Boiler	12	Total 12 KLD Boiler Blow Down will be
		generated. Unit will use this Boiler Blow
		Down water in the water scrubber of
		Boiler. Total 6 KLD effluent will be lost in
		to atmosphere. Remaining 6 KLD
		saturated Water will be used in Coal
		Handling and Ash quenching. So unit will
		use entire BOILER BLOW DOWN water
		with in premises.
Cooling	6	6 KLD Cooling Tower Blow Down water
		will be subjected to unit's own effluent
		treatment plant.
Others	3	3 KLD washing water will be subjected to
		unit's own effluent treatment plant.
	111	Total 111 KLD effluent will be generated
Total Industrial waste		from Industrial activity.
water		STREAM 1:- High Ammonical Nitrogen
		Steam + HIGH COD steam – send to
		incinerator of M/s. BEIL after
		neutralization. (32 KLD)
		STREAM 2:- LOW COD steam (67 KLD)
		- treated in unit's own effluent treatment
		plant.
		Unit will use 12 KLD Boiler Blow Down
		water within the premises.

	Total [A + B]	116	Total 116 KLD effluent will be generated
			from unit. Total 72 KLD effluent will be
			treated in unit's own effluent treatment
			plant along with (5 KLD Domestic effluent
			+ 67 KLD Industrial Effluent).
			1 KLD ETP effluent chemical will also be
			added with treatment.
			Total 3 KLD water will be going along
			with ETP Sludge.
			Hence total 70 KLD effluent will be
			discharged to U/G drainage of GIDC
			Dahej.
	-	<u> </u>	

iv Treatment facility within premises with capacity

[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc.

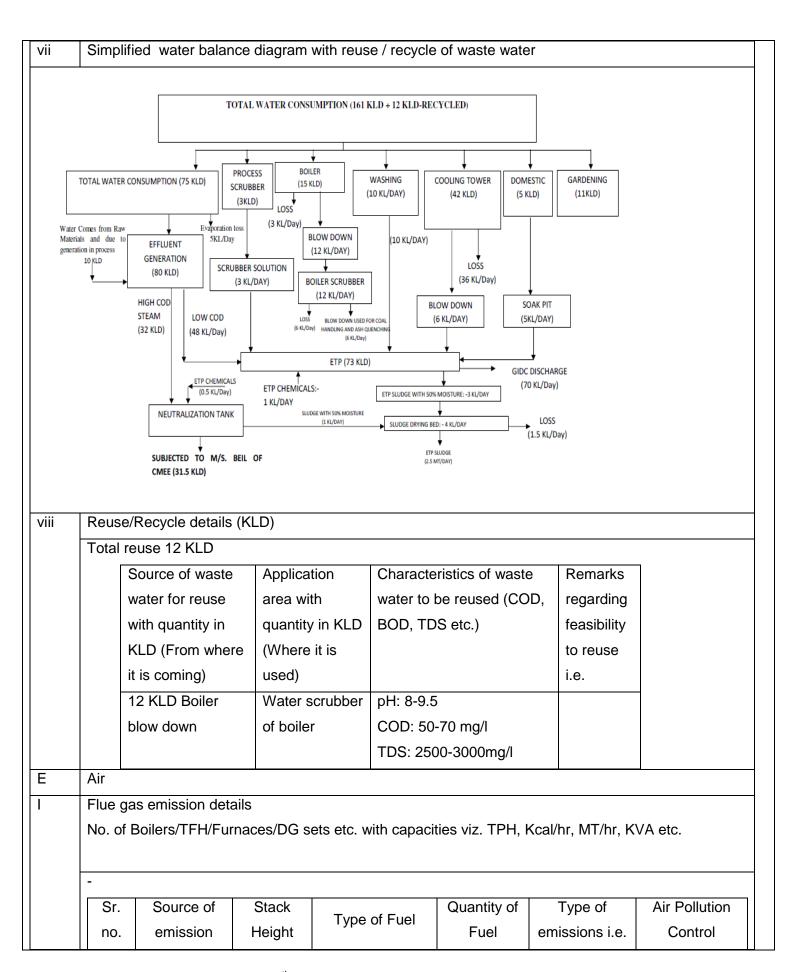
Unit is having primary, secondary and tertiary treatment.
High COD+ High TDS+ Ammonical nitrogen steam will be subjected to CMEE of M/s.
BEIL.

Treatment scheme including segregation at source.

➤ High COD, High TDS and High Ammonical nitrogen stream will be segregated at the source and sent to CMEE of M/s. BEIL after neutralization and LOW COD and LOW Ammonical nitrogen steam will be treated in units own effluent treatment plant and subjected to sea through GIDC pipeline.

ETP DESCRIPTION:

Total 2 types of streams will be generated during the manufacturing process.


- 1) HIGH COD STREAM- (> 10,000 mg/l) + HIGH AMMONICAL NITROGEN STREAM- (> 100 mg/l)
- 2) LOW COD AND LOW TDS STREAM (FROM PROCESS + WASHING+ BOILER BLOW DOWN + COOLING TOWER BLOW DOWN + DOMESTIC + SCRUBBER)

 MANAGEMENT OF STREAMS
- 1) STREAM NO:-1:- HIGH COD STREAM

Unit will segregate HIGH COD stream-stream which is having more than 10,000 mg/l COD-& HIGH Ammonical Nitrogen Stream- Stream more than 100 mg/l-from the source. It will be directly subjected to CMEE of M/s. BEIL after neutralization.

2) STREAM NO:-3:- LOW COD AND LOW TDS STREAM

This stream will be treated in conventional effluent treatment plant along with Cooling Tower Blow Down, Washing, and Scrubber Solution and with Domestic effluent. Unit will develop primary, secondary and tertiary treatment to achieve the stipulated norms of GPCB. DIAGRAM OF HIGH COD, HIGH TDS & HIGH AMMONICAL EFFLUENT TREATMENT **PLANT** HIGH COD STEAM & HIGH AMMONICAL NITROGEN STEAM NEUTRALIZATION CHEMICALS FILTER PRESS COLLECTION TANK TO CMEE OF M/s. BEIL Sludge to Sludge Drying Bed Note: (In case of CETP discharge): Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP. > 18(1)-B is not applicable Brief note on adequacy of ZLD (In case of Zero Liquid Discharge): Not applicable. Mode of Disposal & Final meeting point Domestic: GIDC Discharge Industrial: GIDC Discharge In case of Common facility (CF) like CETP, Common Spray dryer, Common MEE etc. Name of CF νi ➤ M/s. BEIL, CMEE Membership of Common facility (CF) (For waste water treatment) TSDF BEIL certificate is attached as Annexure-XII in EIA Report.

		With	(meter)		MT/Day	Air Pollutants	Measures
		Capacity					(APCM)
		Boiler-1	30	Natural Gas /	2800	PM	Adequate
		(2 MT/Hr.)		Furnace Oil	m³/Day	SO ₂	Height.
	1				OR	Nox	
					2000		
					lit/Day		
		Boiler-2	30	Coal/Briquette	13 MT/Day	PM	Bag Filter,
		(5 MT/Hr.)			OR	SO ₂	Multi Cyclone
	2				15 MT/Day	Nox	Separator and
							Water
							Scrubber.
		Thermic	30	Natural Gas /	2000	PM	Adequate
		Fluid Heater		Furnace Oil	m3/Day	SO ₂	Height
	3	(4 Lacs			OR	Nox	
		Kcal/Hr)			1500		
					Lit/Day		
		D.G.Set	12	Diesel	50 Lit/Hr	PM	Adequate
	4	(750 KVA)				SO ₂	Height
		(2 Nos)				Nox	
i P	Process	s gas emission	details i.e	. Type of pollutant o	gases (SO _{2,} HCI,	NH ₃ , Cl ₂ , NO _x etc	.)
	Sr. no	. Specific So	urce of	Type of emission	Stack/Vent	Air Pollu	tion Control
		emission			Height (meter)	Measure	es
		(Name of th	10		Ticigni (meter)	(APCM)	
		Product & F					
		1 Toddot & T	100033)				
	1	Process Ve	ssels	HCI	15	Water S	crubber followed
		attached to line.	header	SO ₂		by Alkali	Scrubber
				Br ₂			
				HBr			

	2		s Vessels ed to header	Ammonia		15		Ac	id Scrubber
ii	As belo	ow: as proposed on.					ali scrubbe	r and aci	d scrubber to curb the
		lous waste: the Hazar		er Wastes (N	/lanagen	nent an	d Transbo	undary M	lovement) Rules 2016.
	Sr. No	Type of Waste ETP sludge Process Salt	From ETP From manuf Product 10,11,17,18	c Source of gothe Activity, I	Product	etc.)	Categor y and Schedul e as per HW Rules 35.3	Quanti ty (MT/A nnum) 920	Management of HW Collection, Storage, Transportation, Disposal at TSDF site authorized by the GPCB.
	3	Used Oil	9,195,196,2	ricate of	9,174,17 plant	75,17 and	5.1	6	Collection, Storage, And internally reused in the lubrication of plant and machinery or sell it to authorized re- refiners/recycler.

<u> </u>				1		
	4	Discard	Packing of raw materials.	33.1	60	Disposal, by send
		ed				it to authorized
		contain				decontamination
		ers/Emp				facility/ recycled
		ty				or reuse or send
		barrels/				back to supplier.
		Bags/				
		Liners				
	5	Spent	From manufacturing Process	28.2	30	Collection,
		Catalyst	Product no:- 14,33,54,81,99,102,			Storage, and
			106,119,130,140,146,182,198,206,20			send to
			7			authorized units
						for regeneration
						who are having
						rule-9 permission.
	6	Spent	From manufacturing Process	28.3	36	Collection,
		Carbon	Product no:-			Storage, and
			132,133,148,164,168,171180,192			send for co-
	7	Distillati	From manufacturing Process	26.3	360	processing or for
	,	on	Product no:-			incinerator.
		Residue	56,60,126,130,132,133,140,141,145,1			
		1100.000	46,147,155,159,162,168,172,178,191			
	8	Formic	From manufacturing Process	26.3	1765	Collection,
		acid	Product no:- 5,27	20.0		Storage,
		solution	, , , , , , , , , , , , , , , , , , , ,			And sell to those
		(50 to				units who are
		60%				having permission
		soln);				of RULE-9 or who
						have applied
						under RULE-9.
	0	Zinc	From manufacturing Process	26.3	3876	Collection,
	9	chloride	Product no:- 5,76,83,86,117	20.0	3070	Storage,
		Solution	1 10000t 110 3,70,03,00,117			And sell to those
		(20 to				units who are
		22%				having permission

1		1	T			(D) II = 5
		soln);				of RULE-9 or who
						have applied
						under RULE-9.
	10	Sodium	From manufacturing Process	26.3	6180	Collection,
		Bromide	Product no:- 4,56,60,69,71,206			Storage,
		Solution				And sell to those
		(10 to				units who are
		12%				having permission
		soln);				of RULE-9 or who
						have applied
						under RULE-9.
	11	Alumini	From manufacturing Process	26.3	3710	Collection,
		um	Product no:-			Storage,
		Chloride	6,16,43,59,62,65,78,108,111,156,			And sell to those
		Solution				units who are
						having permission
						of RULE-9 or who
						have applied
						under RULE-9.
	12	Acetic	From manufacturing Process	26.3	972	Collection,
		Acid	Product no:- 35			Storage,
		(35% to				And sell to those
		40%				units who are
		solu)				having permission
		,				of RULE-9 or who
						have applied
						under RULE-9.
	13	Scrubbe	From Scrubber		1080	It will be treated in
	'	r				unit's own effluent
		Solution				treatment plant.
		201011011				(HCI solution :-
						548 MT/Annum,
						SBS Solution:-
						250 MT/Annum,
						, i
						HBr solution:-200
						MT/Annum,

					Sodium Bromide solution:-40 MT/Annum, Ammonium Sulfate Solution:- 42 MT/Annum)
14	Off Specific ation Product s		28.4	2	Collection, Storage, And send to co- processing or to incinerator of M/s.
15	Date Expired Product s		28.5	2	BEIL.
16	Spent Solvent s	Product no:- 9,15,30,60,139,	28.6	560	Collection, Storage and send for co-processing or incinerator of M/s. BEIL. Or sale to sell to those units who are having permission of RULE-9 or who have applied under RULE-9.
17	Sodium sulfate salt	Product no:- 2,36.,40, 43, 44,63,69,72,	35.3	960	Collection, Storage and sell to those units who are having permission of rule-9 or who have applied under rule-9 or

										spose thro SDF site.	ugn
		18	Recover able Solvent s	From all the	process			8400		will be reu the unit.	sed
	-										
	M	1embe	rship detail	s of TSDF, Cl	Membership certificate from BEIL is						
	(F	or HV	V managem	nent)			attached a	as Anne	xure-X	KII, and LOI	are
			-				attached a	as Anne	xure-X	(VI, XVII, XV	/III,
							XIX& XX.				
	D	etails	of Non-Haz	ardous waste	& its disp	osal					
	(1)	MSW a	and others)								
	S	olvent	manageme	ent, VOC emis	ssions etc						
ı											
ı											
, 		ypes	of solvents,	Details of Sol	vent reco	very, % recove	ry, reuse of r	ecovere	ed Solv	vents etc. (D	etails
	T		of solvents, e Format)	Details of Sol	vent reco	very, % recove	ry, reuse of r	ecovere	ed Solv	vents etc. (D	etails
	T		e Format)	Details of Sol	vent reco	very, % recove	ry, reuse of r	ecovere	ed Solv	·	etails
	T	Table	e Format)						Quar	·	%
	T	Name	e Format)	Name of	Boilin	Vapour	Total	Qua	Quar	ntity	% Rec
1	T	Name	e Format)	Name of	Boilin g	Vapour	Total Quantity	Qua ntity	Quar	ntity vered	% Rec
	T	Name	e Format)	Name of	Boilin g	Vapour	Total	Qua ntity Fres	Quar	ntity	% Rec
1	T	Name	e Format)	Name of	Boilin g	Vapour	Total Quantity	Qua ntity Fres h	Quar	ntity vered	% Rec
	T	Name Prod	e Format) e of uct	Name of Solvent	Boilin g Point	Vapour Pressure	Total Quantity (MT/MT)	Qua ntity Fres h	Quar	ntity vered (MT/MT)	% Rec over
	T	Name Prod	e Format) e of uct 5-bis-O- ethyl Ethyl	Name of Solvent	Boilin g Point	Vapour Pressure	Total Quantity (MT/MT)	Qua ntity Fres h	Quar	ntity vered (MT/MT)	% Rec ove
	T	Name Prod	e Format) e of uct 5-bis-O- ethyl Ethyl	Name of Solvent Acetone	Boilin g Point	Vapour Pressure 30.6 kPa (25 °C)	Total Quantity (MT/MT) 2	Qua ntity Fres h (MT/M	Quar	ntity vered (MT/MT) 1.9	% Rec over
	T	Name Prod	e Format) e of uct 5-bis-O- ethyl Ethyl e]B-D- opyranose	Name of Solvent Acetone	Boilin g Point	Vapour Pressure 30.6 kPa (25 °C) 2.8 kPa	Total Quantity (MT/MT) 2	Qua ntity Fres h (MT/M	Quar	ntity vered (MT/MT) 1.9	% Rec over
	T	Prod 2,3,4 [1-Me idene Fruct 4-Me	e Format) e of uct 5-bis-O- ethyl Ethyl e]B-D- opyranose	Name of Solvent Acetone Toluene	Boilin g Point	Vapour Pressure 30.6 kPa (25 °C) 2.8 kPa (20 °C)	Total Quantity (MT/MT) 2 0.6	Qua ntity Fres h (MT/M 0.1	Quar	(MT/MT) 1.9 0.56	% Rec ove y 95
	T	2,3,4 [1-Meidene Fructi 4-Me	e Format) e of uct ,5-bis-O- ethyl Ethyl e]B-D- opyranose thyl	Name of Solvent Acetone Toluene	Boilin g Point	Vapour Pressure 30.6 kPa (25 °C) 2.8 kPa (20 °C) 13.02 kPa	Total Quantity (MT/MT) 2 0.6	Qua ntity Fres h (MT/M 0.1	Quar	(MT/MT) 1.9 0.56	% Rec ove y 95
	T	Prod 2,3,4 [1-Meidene Fructi 4-Mei Cated	e Format) e of uct 5-bis-O- ethyl Ethyl e]B-D- opyranose thyl chol Di-	Name of Solvent Acetone Toluene Methanol	Boilin g Point 56	Vapour Pressure 30.6 kPa (25 °C) 2.8 kPa (20 °C) 13.02 kPa (at 20 °C)	Total Quantity (MT/MT) 2 0.6	Quantity Fresh (MT/M) 0.1	Quar	(MT/MT) 1.9 0.56	% Rec over y 95 94 97
	T	Prod 2,3,4 [1-Meidene Fructi 4-Mei Cated	e Format) e of uct 5-bis-O- ethyl Ethyl e]B-D- opyranose thyl chol Di- c acid thyl ester	Name of Solvent Acetone Toluene Methanol	Boilin g Point 56	Vapour Pressure 30.6 kPa (25 °C) 2.8 kPa (20 °C) 13.02 kPa (at 20 °C) 2.8 kPa	Total Quantity (MT/MT) 2 0.6	Quantity Fresh (MT/M) 0.1	Quar	(MT/MT) 1.9 0.56	% Rec over y 95 94 97
	T	2,3,4, [1-Meidene Fructor 4-Meidene acetic Dime	e Format) e of uct 5-bis-O- ethyl Ethyl BB-D- opyranose thyl chol Di- c acid thyl ester thyl	Name of Solvent Acetone Toluene Methanol	Boilin g Point 56 111 54	Vapour Pressure 30.6 kPa (25 °C) 2.8 kPa (20 °C) 13.02 kPa (at 20 °C) 2.8 kPa (20 °C)	Total Quantity (MT/MT) 2 0.6 5	Qua ntity Fres h (MT/M 0.1 0.04	Quar	(MT/MT) 1.9 0.56 4.85	% Rec over y 95 94 97
	T	2,3,4, [1-Meidene Fruct 4-Meidene Cated Dime 4-Meidene Cated	e Format) e of uct 5-bis-O- ethyl Ethyl BB-D- opyranose thyl chol Di- c acid thyl ester thyl	Name of Solvent Acetone Toluene Methanol Toluene N-butanol	Boilin g Point 56 111 54	Vapour Pressure 30.6 kPa (25 °C) 2.8 kPa (20 °C) 13.02 kPa (at 20 °C) 2.8 kPa (20 °C) 6 mmHg	Total Quantity (MT/MT) 2 0.6 5	Qua ntity Fres h (MT/M 0.1 0.04	Quar	(MT/MT) 1.9 0.56 4.85	% Rec over y 95 94 97

	Toluene	111	2.8 kPa (20 °C)	3.3	0.08	3.22	97
	Methanol	54	13.02 kPa (at 20 °C)	0.6	0.02	0.58	98
4-Chloro-	1,2 Di	180.19	1 mmHg	1.6	0.06	1.54	96
4'Hydroxy	Chloro	°C	(20° C)				
Benzophenone	benzene						
2-Bromo	Methelyen	39.8	2 kPa (-40	1	0.5	0.95	95
Veratryl	dichloride		°C)				
Bromide	Toluene	111	2.8 kPa	1	0.08	0.92	92
			(20 °C)				
7-Ethyl	Toluene	111	2.8 kPa	1	0.1	0.9	90
tryptophol			(20 °C)				
2 -Bromo 2',5'-	Methelene	39.8	2 kPa (-40	1.2	0.1	1.1	92
dimethoxyaceto	chloride		°C)				
phenone							
4-Methoxy	Methanol	54	13.02 kPa	1.4	0.07	1.33	9
Benzaldehyde			(at 20 °C)				
Dimethyl Acetal							
Benzaldehyde	Methanol	54	13.02 kPa	1.4	0.07	1.33	9
dimethyl Acetal			(at 20 °C)				
4-Hydroxy	Methanol	54	13.02 kPa	2	0.08	1.92	96
Benzyl Alcohol			(at 20 °C)				
O-Benzyl	Methelene	39.8	2 kPa (-40	3	0.15	2.85	9
hydroxyl amine	dichloride		°C)				
Hydrochloride	Toluene	111	2.8 kPa	1.6	0.05	1.55	97
			(20 °C)				
	Methanol	54	13.02 kPa	2	0.1	1.9	9
			(at 20 °C)				
Alpha –Bromo -	Toluene	111	2.8 kPa	4	0.2	3.8	9
2-Chloro Phenyl			(20 °C)				
Acetic Acid	Methanol	54	13.02 kPa	1.4	0.1	1.3	93
Methyl Ester			(at 20 °C)				
	Chloro	131 °C	9 mmHg	2	0.1	1.9	95
	benzene						
	Methelene	39.8	2 kPa (-40	1	0.1	0.9	90

	dichloride		°C)				
3-(1-	Methanol	54	13.02 kPa	7	0.1	6.9	97.5
Pleperazinuyl)-			(at 20 °C)				
1,2	Toluene	111	2.8 kPa	8	0.5	7.5	94
Hydrochloride			(20 °C)				
5-Chloroethyl-6-	Methelene	39.8	2 kPa (-40	1.4	0.1	1.3	93
Chloro-2-	dichloride		°C)				
Oxindole	DIMETHY	189 °C	0.46 mm Hg	2	0.1	1.9	95
	L		@ 20 deg C				
	SULFOXI						
	DE						
	(DMSO)						
	Methanol	54	13.02 kPa	2	0.05	1.95	97.5
			(at 20 °C)				
2,4,6	Methanol	54	13.02 kPa	2	0.1	1.9	95
Trimethoxy			(at 20 °C)				
Benzaldehyde	-						
4-Methoxy-3-	Chloroben	131 °C	9 mmHg	3.8	0.12	3.68	97
nitrobenzylsulfo	zene						
nylacetic acid	Methanol	54	13.02 kPa	3	0.3	2.87	96
			(at 20 °C)				
(1R,2R)-1-2-bis	Methelyen	39.8	2 kPa (-40	2	0.2	1.8	90
(methane	dichloride		°C)				
sulfonyloxy	Tetrahydro	66 °C	132 mmHg	1	0.04	0.96	96
methyl)	furan						
cyclohexane	(THF)						
4-Isopropyl	Methelyne	39.8	2 kPa (-40	2	0.1	1.9	95
catechol	dichloride		°C)				
	N-Butanol	116	6 mmHg	2.8	0.06	2.74	98
			(20 °C)				
	Copper	decom		2	0.1	1.9	95
	sulfate	poses					
3-Methoxy	Toluene	111	2.8 kPa	2	0.1	1.9	95
Phenol			(20 °C)				
Veratrol Alcohol	Toluene	111	2.8 kPa	3.76	0.26	3.5	93
			(20 °C)				

	Methanol	54	13.02 kPa	2	0.1	1.9	95
			(at 20 °C)				
	Methelyen	39.8	2 kPa (-40	1	0.1	0.9	90
	dichloride		°C)				
4-Propyl	N-Butanol	116	6 mmHg	2.8	0.06	2.74	98
Catechol			(20 °C)				
	Methelyen	39.8	2 kPa (-40	2	0.1	1.9	95
	dichloride		°C)				
Dimethyl	Methanol	54	13.02 kPa	1	0.02	0.98	98
Acetamide			(at 20 °C)				
Dimethyl Acetal							
Tert-butyl(4-	Dimethyl	152 to	516 Pa	1	0.05	0.95	95
bromophenyl)	Formamid	154 °C					
	e (DMF)						
Methylcarbamat	Methelyen	39.8	2 kPa (-40	3	0.2	2.8	94
е	dichloride		°C)				
4-[(4-Methyl-1-	Methelyen	39.8	2 kPa (-40	1	0.05	0.95	95
piperazinyl)-	dichloride		°C)				
methyl]-benzoyl	Thionyl	76	4.7 kPa	4	0.1	3.9	97.
chloride	chloride						
dihydrochloride	chloroforo	61.15°	7.89 kPa (0	2	0.1	1.9	95
	m	С	°C)				
(2-cyclopropyl-	Methanol	54	13.02 kPa	1.2	0.05	1.15	96
4-(4-			(at 20 °C)				
fluorophenyl)qui	Toluene	111	2.8 kPa	4	0.1	3.9	97.
nolone-			(20 °C)				
3yl)methanol	Cyclohaxe	80.74 °	78 mmHg	1	0.05	0.95	95
	n	С	(20 °C)				
(-) Alcohol	Iso propyl	82.6 °	44 hPa (20	2	0.1	1.9	95
	alcohol	С	°C)				
	DIMETHY	152 to	516 Pa	0.4	0.02	0.38	95
	L	154 °C					
	FORMAMI						
	DE (DMF)						

3 –Methoxy	EDC	84 °C	65mmHg	2	0.1	1.9	95
			@29 deg C				
Propiophenone	DIMETHY	152 to	516 Pa	0.6	0.05	0.55	9
	L	154 °C					
	FORMAMI						
	DE (DMF)						
	Toluene	111	2.8 kPa	2	0.1	1.9	9
			(20 °C)				
AfatinibDimalat	Methanol	54	13.02 kPa	1.29	0.3	1.26	9
е			(at 20 °C)				7
Arbutin	MDC	39.8	2 kPa (-40	2	0.1	1.9	9
			°C)				
	Methanol	54	13.02 kPa	1.6	0.08	1.52	9
			(at 20 °C)				
Agomelatine	Methanol	54	13.02 kPa	3	0.1	2.9	9
			(at 20 °C)				6
Apixaban	Ethyleglyc	135 °C	4 mmHg	2	0.1	1.9	0
	oal		(20°C)				
Aripiprazole	Dimethylfo	152 to	516 Pa	1.7	0.06	1.64	9
	rmamide	154 °C					7
	Iso Propyl	82.6 °	44 hPa (20	3.1	0.14	2.96	9
	Alcohol	С	°C)				8
Asenapine	Methanol	54	13.02 kPa	2.4	0.1	2.3	9
			(at 20 °C)				3
	MDC	39.8	2 kPa (-40	2.4	0.1	2.3	9
			°C)				3
	Butanol	116	6 mmHg	2	0.1	1.9	9
			(20 °C)				
	N-Butyl	117.7°	6 mmHg	1.4	0.1	1.3	9
	alcohol	С	(20 °C)				5
Azilsartan	MDC	39.8	2 kPa (-40	1.6	0.1	1.5	9
			°C)				5
	Acetone	56	30.6 kPa	2	0.1	1.9	9
			(25 °C)				
	Ethyl	77.1 °	73 mmHg	2	0.1	1.9	9
	acetate	С	(9.7 kPa) at	I			

			20 °C				
Abacavir	Iso Propyl	82.6 °	44 hPa (20	6	0.3	5.7	95
Sulfate	Alcohol	С	°C)				
	Triethyl	146 °C	10 hPa @	4	0.1	3.9	97.
	ortho		40 °C				
	formate						
	Acetone	56	30.6 kPa	0.4	0.02	0.38	95
			(25 °C)				
Atorvastatin	Cyclohexa	80.74 °	78 mmHg	1	0.05	0.95	95
Calcium	ne	С	(20 °C)				
	Ethyle	77.1 °	73 mmHg	1	0.05	0.95	95
	acetate	С	(9.7 kPa) at				
			20 °C				
	Methyl	79.64 °	78 mmHg	1	0.05	0.95	95
	ethyl	С	(20 °C)				
	ketone						
	T-butanol	116	6 mmHg	0.5	0.05	0.45	90
			(20 °C)				
	Methanol	54	13.02 kPa	1.5	0.09	1.41	94
			(at 20 °C)				
Bupropion HCI	Iso Propyl	82.6 °	44 hPa (20	1	0.05	0.95	95
	Alcohol	С	°C)				
	Methelene	39.8	2 kPa (-40	2	0.1	1.9	95
	dichlorie		°C)				
	Ethlye	77.1 °	73 mmHg	1	0.05	0.95	95
	acetate	С	(9.7 kPa) at				
			20 °C				
Bazedoxifene	Acetone	56	30.6 kPa	1.8	0.1	1.7	94.
			(25 °C)				4
Canagliflozin	Methanol	54	13.02 kPa	2.4	0.1	2.3	95.
			(at 20 °C)				3
	Ethyle	77.1 °	73 mmHg	2.4	0.1	2.3	95.
	acetate	С	(9.7 kPa) at				3
			20 °C				
	Toluene +	111	2.8 kPa	2	0.1	1.9	95
	Heptane		(20 °C)				

Candesartan	Methelene	39.8	2 kPa (-40	4.6	0.2	4.4	95
Cilexetil	dichloride		°C)				5
	Acetone	56	30.6 kPa	2	0.1	1.9	95
			(25 °C)				
	Methanol	54	13.02 kPa	2	0.1	1.9	95
			(at 20 °C)				
	Acetonitrile	81.6	9.71 kPa (at	2	0.1	1.9	95
			20.0 °C)				
Clopidogrel bi	Methanol	54	13.02 kPa	3	0.2	2.8	93
sulfate			(at 20 °C)				3
Dabigatran	Acetone	56	30.6 kPa	3	0.1	2.9	96
			(25 °C)				6
Dapagliflozin	Methanol	54	13.02 kPa	2.2	0.1	2.1	95
			(at 20 °C)				5
Darifenacin	Dimethyl	152 to	516 Pa	2	0.1	1.9	95
	formamide	154 °C					
	Acetone	56	30.6 kPa	2	0.1	1.9	96
			(25 °C)				
	Methelene	39.8	2 kPa (-40	2	0.2	1.8	90
	dichloride		°C)				
Donepezil	Methelye	39.8	2 kPa (-40	2.2	0.1	2.1	95
	dichloride		°C)				5
	Methanol	54	13.02 kPa	2.2	0.1	2.1	95
			(at 20 °C)				5
	Di	68.5	119 mmHg	2	0.1	1.9	95
	isopropyl	°C	(20°C)				
	ether						
Dronedarone	Methelye	39.8	2 kPa (-40	4.2	0.1	4.1	98
	dichloride		°C)				
	Ethyl	77.1 °	73 mmHg	4.2	0.1	4.1	98
		С	(9.7 kPa) at				
	acetate	C		1	i	1	
	acetate		20 °C				
Desvenlafaxine	acetate Acetonitrile	81.6	20 °C 9.71 kPa (at	2	0.1	1.9	95
Desvenlafaxine Succinate				2	0.1	1.9	95
			9.71 kPa (at	2	0.1	1.9	95

		°C					
	Dimethyl	189 °C	0.46 mm Hg	1	0.05	0.95	95
	sulfoxide		@ 20 deg C				
	(DMSO)						
Duloxetine	Methanol	54	13.02 kPa	3	0.15	2.85	9:
Hydrochloride			(at 20 °C)				
	Dimethyl	189 °C	0.46 mm Hg	1	0.05	0.95	9
	Sulfoxide		@ 20 deg C				
	(DMSO)						
	Diisopropyl	68.5	119 mmHg	1	0.05	0.95	9
	e amine	°C	(20°C)				
	Acetone	56	30.6 kPa	1	0.05	0.95	9
			(25 °C)				
Erlotinib	Methelyen	39.8	2 kPa (-40	1.6	0.1	1.5	9
	е		°C)				
	dichloride						
	Methanol	54	13.02 kPa	2.95	0.35	2.6	9
			(at 20 °C)				
Etoricoxib	Tetrahydro	66 °C	132 mmHg	1.8	0.1	1.7	9
	furan						4
	Toluen	111	2.8 kPa	2.2	0.1	2.1	9:
			(20 °C)				5
	IPA-	82.6 °	44 hPa (20	2	0.1	1.9	9:
	Hexane	С	°C)				
Etodolac	Methanol	54	13.02 kPa	2	0.1	1.9	9
			(at 20 °C)				
Escitalopram	Iso propyl	82.6 °	44 hPa (20	2	0.1	1.9	9
oxalate	alcohol	С	°C)				
	Methanol	54	13.02 kPa	2	0.1	1.9	9
			(at 20 °C)				
	MDC	39.8	2 kPa (-40	1.5	0.1	1.4	9:
			°C)				3
	Toluene	111	2.8 kPa	2	0.1	1.9	9
			(20 °C)				
Febuxostate	Methanol	54	13.02 kPa	2.4	0.1	2.3	9
			(at 20 °C)				3

	Acetone	56	30.6 kPa (25 °C)	1	0.05	0.95	95
Felodipine	Cyclo	80.74 °	78 mmHg	1	0.05	0.95	95
·	hexane	С	(20 °C)				
	Isopropyl	82.6 °	44 hPa (20	1	0.05	0.95	95
	alcohol	С	°C)				
Fluconazol	Ethyle	77.1 °	73 mmHg	2	0.1	1.9	95
	acetate	С	(9.7 kPa) at				
			20 °C				
	Methanol	54	13.02 kPa	3	0.1	2.9	96
			(at 20 °C)				
Granisetron HCI	MDC	39.8	2 kPa (-40	2	0.1	1.9	95
			°C)				
Gefitinib	Iso propyl	82.6 °	44 hPa (20	1.6	0.1	1.5	93.7
	alcohol	С	°C)				5
	N-	97 to	1.99 kPa (at	2	0.1	1.9	95
	Propanol	98 °C	20 °C)				
Gabapentin	Iso propyl	82.6 °	44 hPa (20	1	0.05	0.95	95
	alcohol	С	°C)				
	Acetone	56	30.6 kPa	1	0.1	0.9	90
			(25 °C)				
	Methanol	54	13.02 kPa	1	0.05	0.95	95
			(at 20 °C)				
Irbesartan	Iso propyl	82.6 °	44 hPa (20	2	0.1	1.9	95
	alcohol	С	°C)				
	Methyl-T-	55.2 °	268 mbar @	2	0.1	1.9	95
	Butyl ether	С	20 °C				
	Xylene	138.5 °	6.7 - 8.7	2	0.1	1.9	95
		С	hPa				
Itopride	Toluene	111	2.8 kPa	2	0.05	1.95	97.5
Hydrochloride			(20 °C)				
	Acetone	56	30.6 kPa	2	0.05	1.95	97.5
			(25 °C)				
Lapatinib	Tetrahydro	66 °C	132 mmHg	2	0.1	1.9	95
	furan						
Lurasidone	IPA	82.6 °	44 hPa (20	3	0.1	2.9	96.6

Hydrochloride		С	°C)				6
	Acetone	56	30.6 kPa	0.4	0.04	0.36	90
			(25 °C)				
	Toluene	111	2.8 kPa	2	0.1	1.9	95
			(20 °C)				
	N-Xylene	138.5 °	6.7 - 8.7	0.4	0.04	0.36	90
		С	hPa				
Losartan	Methanol	54	13.02 kPa	2.4	0.1	2.3	96
Potassium			(at 20 °C)				
Mem Chloride	1,3,5	115 °C	7.5 mbar @	1	0.1	0.9	90
	Trioxane		20 °C				
Moclobemide	Toluene	111	2.8 kPa	2	0.1	1.9	95
			(20 °C)				
	IPA	82.6 °	44 hPa (20	2	0.1	1.9	95
		С	°C)				
Modafinil	Acetic acid	117.9	2.09 kPa at	2	0.1	1.9	95
			25°C				
Metoprolol	Acetone	56	30.6 kPa	1	0.1	0.9	90
Tartrate			(25 °C)				
	Toluene	111	2.8 kPa	2	0.05	1.95	97
			(20 °C)				
Nisoldipine	Acetone	56	30.6 kPa	1	0.05	0.95	95
			(25 °C)				
	Toluene	111	2.8 kPa	1.6	0.1	1.5	93
			(20 °C)				5
Omeprazole	Methanol	54	13.02 kPa	1	0.05	0.95	95
			(at 20 °C)				
	Acetone	56	30.6 kPa	1	0.05	0.95	95
			(25 °C)				
O Des	DIMETHY	152 to	516 Pa	1.3	0.1	1.2	92
Venlafexine	L	154 °C					
	FORMAMI						
	DE (DMF)						
	Methanol	54	13.02 kPa	2	0.1	1.9	95
			(at 20 °C)				

	Toluene	111	2.8 kPa	2.2	0.1	2.1	95.4
			(20 °C)				5
Olmesartan	Methanol	54	13.02 kPa	2	0.1	1.9	95
			(at 20 °C)				
	Acetone	56	30.6 kPa	2	0.1	1.9	95
			(25 °C)				
Pitavastatin	Methanol	54	13.02 kPa	1	0.05	0.95	95
			(at 20 °C)				
	acetone	56	30.6 kPa	1	0.05	0.95	95
			(25 °C)				
PramipexoleDih	Methanol	54	13.02 kPa	4.9	0.2	4.7	95.9
ydrochloride			(at 20 °C)				1
Monohydrate							
Prasugrel	Ethyl	80 °C	105 mbar @	2	0.1	1.9	95
Hydrochloride	methyl		20 °C				
	ketone						
	IPA	82.6 °	44 hPa (20	2	0.1	1.9	95
		С	°C)				
Paroxetine	Dimethyl	152 to	516 Pa	1	0.05	0.95	95
	Formamid	154 °C					
	e (DMF)						
	Toluene	111	2.8 kPa	3	0.1	2.9	96.6
			(20 °C)				6
Pinaverium	IPA	82.6 °	44 hPa (20	2	0.1	1.9	95
Bromide		С	°C)				
	Acetone	56	30.6 kPa	2	0.1	1.9	95
			(25 °C)				
Pioglitazone	Toluene	111	2.8 kPa	3	0.2	2.8	93.3
HCI			(20 °C)				3
	Dimethyl	189 °C	0.46 mm Hg	0.5	0.04	0.46	92
	Sulfoxide		@ 20 deg C				
	(DMSO)						
	Ethanol	78 °C	59.3 mm Hg	1	0.05	0.95	95
	2		@ 20 deg C		3.00	0.00	
QuetiapineFum	Toluene	111	2.8 kPa	3	0.2	2.8	93.3
arate	I OIUCIIC		(20 °C)	3	0.2	2.0	3
aialt			(20 0)				٥

	Ethanol	78 °C	59.3 mm Hg	2	0.1	1.9	95
			@ 20 deg C				
	Dimethyl	189 °C	0.46 mm Hg	0.5	0.04	0.46	92
	Sulfoxide		@ 20 deg C				
	(DMSO)						
Rabeprazole	Methanol	54	13.02 kPa	2	0.1	1.9	95
Sodium			(at 20 °C)				
	Toluene	111	2.8 kPa	2	0.1	1.9	95
			(20 °C)				
Rivaroxaban	Acetic acid	117.9	2.09 kPa at	2	0.1	1.9	95
			25°C				
Ropinirole	Ethyl	77.1 °	73 mmHg	2	0.1	1.9	95
Hydrochloride	Acetate	С	(9.7 kPa) at				
			20 °C				
	Methanol	54	13.02 kPa	2.5	0.1	2.4	96
			(at 20 °C)				
	MDC	39.8	2 kPa (-40	2	0.1	1.9	95
			°C)				
Resperidone	Dimethyl	152 to	516 Pa	2	0.05	1.95	97.5
	Formamid	154 °C					
	e (DMF)						
Sertraline	Ethyl	77.1 °	73 mmHg	1	0.05	0.95	95
Hydrochloride	Acetate	С	(9.7 kPa) at				
			20 °C				
	Methanol	54	13.02 kPa	1	0.05	0.95	95
			(at 20 °C)				
	Acetonitrile	81.6	9.71 kPa (at	2	0.1	1.9	95
	1		20.0.00				
			20.0 °C)				
1-[3-(benzyloxy)	Dimethyl	152 to	516 Pa	2	0.1	1.9	95
1-[3-(benzyloxy)	Dimethyl Formamid	152 to 154 °C	,	2	0.1	1.9	95
1-[3-(benzyloxy)	•		,	2	0.1	1.9	95
1-[3-(benzyloxy) propyl]-5-	Formamid		,	2	0.1	1.9	95
	Formamid e (DMF)	154 °C	516 Pa				
propyl]-5-	Formamid e (DMF)	154 °C	516 Pa 13.02 kPa				
propyl]-5- formaylindoline-	Formamid e (DMF)	154 °C	516 Pa 13.02 kPa				

	(DMSO)						
Dimethylforma	t-butanol	116	6 mmHg	3	0.1	2.9	
mide di-tert-			(20 °C)				
butyl Acetal							
Tadalafil	Methanol	54	13.02 kPa	2.4	0.1	2.3	
			(at 20 °C)				
	IPA	82.6 °	44 hPa (20	2	0.06	1.94	
		С	°C)				
Ticagrelor	Methanol	54	13.02 kPa	2	0.1	1.9	
			(at 20 °C)				
	Cyclohexa	80.74 °	78 mmHg	2	0.1	1.9	
	ne	С	(20 °C)				
Topiramate	O-Xylene	144 °C	6.62 mm Hg	2	0.1	1.9	
			at 25°C				
	Tetrahydro	66 °C	132 mmHg	3	0.1	2.9	
	furan						
	(THF)						
	N-Hexane	68.5 to	17.60 kPa	6	0.3	5.7	
		69.1 °	(at 20.0 °C)				
		С					
Valsartan	Ethyl	77.1 °	73 mmHg	2.4	0.1	2.3	
	Acetate	С	(9.7 kPa) at				
			20 °C				
	Di	68.5	119 mmHg	2	0.1	1.9	
	isopropyl	°C	(20°C)				
	ether						
Vortioxetine	Tetrahydro	66 °C	132 mmHg	2	0.1	1.9	
Hydrbromide	furan						
	(THF)						
Vemurafinib	Acetonitrile	81.6	9.71 kPa (at	2	0.1	1.9	
			20.0 °C)				
Vemurafinib	Acetonitrile	81.6	9.71 kPa (at	2	0.1	1.9	
			20.0 °C)				
Ziprasidone HCI	IPA	82.6 °	44 hPa (20	1	0.05	0.95	
		С	°C)				

Sr.	Source		Probable	Control	Measures/ APCM
No.			Pollutant		
			Emission		
1	Flange jo	ints of pipeline,	Air pollutant	• Rou	tine & periodic inspection to chec
	pump & n	notors	(VOC)	leak	age
				• Prev	ventive maintenance, follow SOP fo
				mair	ntenance
				• Pum	nps & motors mechanical seal type
				• LDA	R program is followed.
2	Liquid	raw material	Air pollutant	• Fee	ding of liquid raw material is carried ou
	transferrir	ng to reactor	(VOC, Acid	by	closed pipeline and mechanical sea
			fumes)	pum	p.
3	Loading	/unloading at	Air pollutant	• Unio	pading through pipeline to tank in
	storage a	rea	(VOC)	clos	e system.
>	Details rega	arding storage of	Hazardous cher	micals	
Stora	age details	Name of majo	r Hazardous che	emicals	Remarks (Storage Capacity)
Stora	age tanks				
Dı	rum/Barrel	Hydrogen Gas	s Cylinder		7 M ³ Cylinder
	storage	Trimethyl ami	ne		50 Kg. Cylinder
		Bromine			18 Kg Glass Bottle
		Ammonia Sol	ution.		2 MT
		Sulphric acid			2 MT
					ONT
		Acetone			2 MT
		Acetone Toluene			2 MT
			amide		
		Toluene			2 MT
		Toluene Dimethyl form Dimethyl sulp		on	2 MT 2 MT
		Toluene Dimethyl form Dimethyl sulp	hate (DMS)	on	2 MT 2 MT
		Toluene Dimethyl form Dimethyl sulp Sodium Metho	hate (DMS) oxide 25% solution	on	2 MT 2 MT 2 MT
		Toluene Dimethyl form Dimethyl sulp Sodium Metho (SMO)	hate (DMS) oxide 25% solution	on	2 MT 2 MT 2 MT 2 MT
		Toluene Dimethyl form Dimethyl sulp Sodium Metho (SMO) Hydrochloric a	hate (DMS) Dixide 25% solution acid (HCL)	on	2 MT 2 MT 2 MT 2 MT 2 MT
		Toluene Dimethyl form Dimethyl sulp Sodium Metho (SMO) Hydrochloric a	hate (DMS) oxide 25% solution acid (HCL)	on	2 MT 2 MT 2 MT 2 MT 2 MT 2 MT

Butanol	2 MT
Methylene dichloride (MDC)	2 MT
Zinc Chloride	2 MT
Acetic Anhydride	2 MT
Formic Acid	2 MT
Ethyl Acetate	2 MT
Iso Propyl Alcohol	2 MT
Tri Ethyl Amine	2 MT
Acetic Acid	2 MT
Cyclohexane	2 Mt
Benzaldehyde	2 MT
Nitric Acid	2 MT
Thionyl Chloride	2 MT
Phenol	2 MT
Phosphoric Acid	2 MT
Acetonitrile	2 MT
Cyclohexane	2 MT
Xylene	2 MT

- Applicability of PESO :
- > Unit will obtain the permission.
- During the meeting dated 18/03/2020, technical presentation made by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the March 2019 to May 2019. Ambient Air Quality monitoring was carried out for PM2.5, PM10, SO2, NO2, NH3, HCl, Br2, HBr&VOC at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST. The resultant concentrations are within the NAAQS.
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan
 has been covered in the RA report.
- Committee noted that proposal is new in GIDC Dahej. Source of water is GIDC. PP mentioned that high COD effluent generated from process will be treated in in-house neutralization tank and treated effluent will be sent to CMEE of BEIL, Dahej for final treatment and disposal however Low COD effluent generated from

process will be treated in in-house ETP consisting of Primary, Secondary & Tertiary treatment along with scrubber solution, boiler blow down, washing, cooling tower blow down and domestic sewage and treated effluent and sewage will be disposed into deep sea via GIDC pipeline. Committee asked PP to clarify about disposal of Hazardous Waste of the Category Class C inorganic Acid into ETP and further into deep sea. PP could not reply satisfactorily for the same. PP has proposed two steam boiler and one TFH. Fuel used will be Natural Gas/Coal/Briquette. Committee noted PP has not addressed Process gas emission properly. Committee noted PP has not addressed Hazardous Waste as per HWR – 2016.

• <u>After detailed discussion, Committee unanimously decided to consider the proposal only after submission of the following documents.</u>

- 1. Membership Certificate from Common Facility (mentioning total capacity, consented quantity, occupied capacity and spare capacity and norms of acceptance of effluent from member units) in-line with the direction given by GPCB vide Letter No. GPCB/P-1/8-G (5)/550706 dated 08/01/2020.
- 2. Clarification as to why Hazardous Waste of Class C Inorganic Acid along with SBS Solution, HBr solution, Sodium Bromide solution and Ammonium Sulfate Solution is taken into ETP instead of reuse/recycle or selling under rule 9 as a valuable material and finally disposing into deep sea via GIDC pipeline which is having trace contaminants of API.
- 3. Revised Water Balance Diagram along with its Characteristic with Proper stream segregation.
- 4. Process gas emission Matrix along with its adequate APCM.
- Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including vapor pressure. LDAR shall endeavor prevention of losses of solvents to the best minimum extent.
- 6. Undertaking regarding not using FO as Fuel as per GPCB Notification dated 12th December, 2019.
- 7. Hazardous Waste Matrix as per HWR 2016 along with its proper source of generation, treatment and disposal mechanism.
- 8. Revised Need based CER as per MoEF&CC's OM dated 01/05/2018 along with EMP with Fixed Capital Cost and Recurring Cost.

3	SIA/GJ/IND2/29454/2018	M/s. Dishman Carbogen Amcis Limited	EC – Reconsideration
		Plot No.Z/111/C & Z/111/D Dahej SEZ-II, Ta: Vagra, Dist: Bharuch – 392130.	

Category of the unit: 5(f)

Project status: New

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/29454/2018 on dated 05/02/2020 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 25/03/2019.

- Project proponent has submitted EIA Report prepared by Excel Enviro Tech, Ahmedabad based on the TOR issued by SEIAA.
- This is new unit proposes for manufacturing of synthetic organic plant tabulated as below:

Format

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 05/03/2020.
- Salient features of the project including water, air and hazardous waste management as below:

Format

- During the meeting dated 05/03/2020, technical presentation made by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the March to May 2019. Ambient Air Quality monitoring was carried out for PM2.5, PM10, SO2, NOx, CO & TVOC at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD. The resultant concentrations are within the NAAQS.
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan
 has been covered in the RA report.
- higher side and asked PP to clarify the same on which PP replied that they will reduce the R & D production to 1 MT/Month or 12 MT/Annum. Committee asked PP to submit revised product profile for the same with the decrease in production along with its subsequent details. Committee noted that PP has not addressed water balance diagram properly along with stream segregation. Committee further noted that characteristic shown for decrease in pollution concentration does not have authentic data source and no were proper technical support is shown for the reduction in pollution concentration stream wise for Low and High COD stream. Committee asked PP to justify the data source from where it has been taken to which PP could not reply satisfactorily. Committee further noted that PP has not properly address the ToR relating to Best Available Technology (BAT) as to how the Air Pollution, Water Pollution and Hazardous Waste will be reduce by using the best available technology and asked PP to address the same in Tabular Form. Committee further noted that PP has not properly address the ToR pertaining to Need based CER and EMP along with Fixed Capital Cost and Recurring Cost and asked them to address the same properly with proper justification. PP mentioned they have proposed two steam boiler and one incinerator. Fuel used will be Briguettes/LDO. Committee noted that PP has proposed FO as fuel in the incinerator with LDO and asked

PP to drop FO as per the Notification Published by GPCB dated 12th December, 2019. Committee noted PP has not address LDAR program satisfactorily and asked to submit the same with proper calculation of loss and mitigation measures to control the same. Committee noted that PP has not address the Hazardous Matrix properly along with its disposal and asked to address the same in-line with the exact source of generation/activity and its final disposal as per HWR – 2016.

- After detailed discussion, it was decided to defer the proposal and call the project proponent for presentation only after submission of the following details.
- Revised Product Profile with decrease in Production from 200 MT/Annum to 12 MT/Annum.
- Technical Justification as to why no any water consumption and waste water generation is calculated for R & D activity and what will be the final disposal mechanism of waste water/hazardous waste if any batch of R & D activity fails.
- Revised Water Balance Diagram with Proper Stream Segregation and Characteristic for Stage Wise Reduction along with Authentic Data Source for Input of Data along with Decrease in Pollution Potential.
- Readdress ToR Pertaining to Best Available Technology (BAT) as to how the Air Pollution, Water Pollution and Hazardous Waste will be reducing by using the Best Available Technology.
- Revised Hazardous Matrix along with its sound management (disposal) in-line with the exact source of generation.
- Undertaking for not using FO as Fuel in Incinerator.
- Leak Detection and Repairing Programme (LDAR) for all the solvents/volatile organic chemicals proposed with detailed chemical properties including vapor pressure. LDAR with all mitigation measures shall endeavor prevention of losses of solvents/Volatile organic compounds to the best minimum extent.
- Revised EMP along with Fixed Capital Cost & Recurring Cost and revised need based CER as per OM dated 01/05/2018 of MoEF&CC's.
- Revised EIA Report Incorporating all the above mentioned correction.
- Project proponent made presentation for the above mentioned query dated 18/03/2020 for the above mentioned points.
- PP presented replied as below:
- PP presented Revised Product Profile with decrease in Production from 200 MT/Annum to 12 MT/Annum.
- PP mentioned that they have considered total process water consumption as 160 KL/day and process wastewater generation as 145 KL/day (100 KL/day Dilute stream and 45 KL/day concentrated stream); against stoichiometric process water consumption of regular products 121 KL per month and process wastewater generation from regular products 112 KL/day. Further PP clarified that the difference of water consumption considered for R&D is 2 KL/day and the wastewater generation considered for R&D activities is around 2 KL/day. So, they have already considered the water consumption and wastewater generation in water Balance diagram.
- PP presented revised water balance diagram with Proper Stream Segregation and Characteristic for Stage

Wise Reduction along with Authentic Data Source for Input of Data along with Decrease in Pollution Potential.

- PP presented ToR Pertaining to Best Available Technology (BAT) incorporating Air Pollution, Water Pollution and Hazardous Waste that will be reducing by using the Best Available Technology.
- PP presented Revised Hazardous Matrix along with its sound management however did not mention exact source of generation.
- PP submitted undertaking for not using FO as Fuel in Incinerator.
- PP presented Leak Detection and Repairing Programme (LDAR) for all the solvents/volatile organic chemicals proposed with detailed chemical properties including vapor pressure. LDAR with all mitigation measures shall endeavor prevention of losses of solvents/Volatile organic compounds to the best minimum extent.
- PP presented revised EMP along with Fixed Capital Cost & Recurring Cost and revised need based CER as per OM dated 01/05/2018 of MoEF&CC's.
- PP did not submit revised EIA report incorporating all the above mentioned correction.
- Committee deliberated on the reply submitted by PP and noted that PP has not satisfactorily address water balance diagram, LDAR, Hazardous Waste Matrix, EMP and Need based CER and asked to address the same in-line with the earlier query.
- After detailed discussion, it was decided to consider the proposal only after submission of the following documents.
 - Revised Water Balance Diagram with Proper Stream Segregation and Characteristic for Stage Wise Reduction along with Authentic Data Source for Input of Data along with Decrease in Pollution Potential.
 - 2. Revised Hazardous Matrix along with its sound management (disposal) in-line with the exact source of generation.
 - Leak Detection and Repairing Programme (LDAR) for all the solvents/volatile organic chemicals
 proposed with detailed chemical properties including vapor pressure. LDAR with all mitigation
 measures shall endeavor prevention of losses of solvents/Volatile organic compounds to the best
 minimum extent.
 - 4. Revised EMP along with Fixed Capital Cost & Recurring Cost and revised need based CER as per OM dated 01/05/2018 of MoEF&CC's.
 - Addendum to EIA Report Incorporating all the above mentioned correction.

4	SIA/GJ/IND2/50683/2019	M/s. Rushap Pharmachem Pvt. Ltd.	Appraisal
		Plot No. C-238, GIDC Sayakha, Tal: Vagra, Dist. Bharuch-392140, Gujarat.	
Category	of the unit: 5(f)		·

Category of the unit: 5(f)

Project status: New

- Project proponent (PP) submitted online application vide no. SIA/GJ/IND2/50683/2019dated 13/11/2019 for obtaining Environmental Clearance.
- SEIAA issued TOR to PP vide their letter dated 24/05/2019.
- Project proponent has submitted EIA Report prepared by Green Leaf Envirotech Pvt. Ltd, Surat based on the TOR issued by SEIAA.
- This is an expansion project for manufacturing of synthetic organic chemical as tabulated below.

Sr. No.	Name of the Products	CAS no. / CI	Quantity	End-use of the	
or. No.	Name of the Products	no. MT/Month		products	
	G	ROUP- A		<u>I</u>	
	2- Chloromethyl Ethyl- 3,5- Dimethyl- 4-				
1.	Methoxypyridine Hydrochloride	86604-75-3		Omeprazole	
	(Ome Prazole Chloro)				
	2-(chloromethyl)-3-methyl-4-(2,2,2-		-		
2.	trifluoroethoxy)pyridinehydrogen chloride	127337-60-4		Lansoprazole	
	(Lanso Chloro)				
	3,5-Dimethyl-4-Nitro Pyridine -N- Oxide	4.40.40.00.0	-	Omeprazole	
3.	(Ome Prazole Nitro)	14248-66-9	0.5	intermediates	
		37699-43-7	65	Lansoprazole &	
4.	2,3-Dimethyl-4-Nitro Pyridine -N- Oxide (Lanso Nitro/Rabi Nitro)			Rabeprazole	
				intermediates	
5.	2-(chloromethyl)-4-(3-methoxypropoxy)-3-	452050 24 5	-	(Daha Chlara)	
	methylpyridine—hydrogen (Rabe Chloro)	153259-31-5		(Rabe Chloro)	
	5-methoxy-2-{[(4-methoxy-3,5-		-		
6.	dimethylpyridin-2-yl)methyl]sulfanyl}-1H-	73590-85-9		(Omeprazole Sulfide)	
	benzimidazole (Omeprazole Sulfide)				
	AND	GROUP- B	I.		
7	1, 7'- dimethyl-2'- propyl- 1H, 3'H-2, 5'-	152629 02 0		Telmisartan	
7.	bibenzimidazole (Telmisartan Int.)	152628-02-9		intermediates	
	4-Fluoro-a-(2-methyl-1-oxopropyl)-y-oxo-		1		
8.	N,B-diphenyl-benzene butanebutanamide	125971-96-2	0.5	Atorvastatin	
	(Di Ketone)		65		
9.	2,3,4- trimethoxybenzaldehyde	2103-57-3	1	Trimethoprim	
10.	2-Ethoxybenzoic Acid	134-11-2	1	Sildenafil Citrate	
44	3,4-dimethoxybenzoic acid	02.07.0	-	Antipyretic & Analgesic	
11.	(Veratric Acid)	93-07-2		Agent	

4-(difluoromethoxy)-2-nitroaniline	007440 00 4		Pantoprazole
	887412-09-1		intermediates
4 methylhenzene 1 2 diel	452.96.9		Fragrance
4-methylberizerie- i ,z-dioi	1,2-dioi 452-86-8		Intermediates
14. 1,1-dimethoxy-N,N-dimethylmethanamine			Imatinib Itraconazole,
1,1-dimenioxy-iv,iv-dimeniyimenianamine	innetifyimetrianamine 4037-24-3		Elvitegravir
Or			
4-Mothovy-2-Nitroppiling (MNA)	06-06-8	50	Basic Pharma and
4-Methoxy-2-Mitoarilline (MINA)	90-90-8	30	pigments
*R & D		10 Kg/Month	
		(65 + 65 or	
TOTAL (A) + (B Or C)		50	
		respectively)	
	4-methylbenzene-1,2-diol 1,1-dimethoxy-N,N-dimethylmethanamine Or (4-Methoxy-2-Nitroaniline (MNA) *R & D	4-methylbenzene-1,2-diol 452-86-8 1,1-dimethoxy-N,N-dimethylmethanamine 4637-24-5 Or GROUP- C 4-Methoxy-2-Nitroaniline (MNA) 96-96-8 *R & D	4-methylbenzene-1,2-diol 452-86-8 1,1-dimethoxy-N,N-dimethylmethanamine 4637-24-5 Or GROUP- C 4-Methoxy-2-Nitroaniline (MNA) 96-96-8 50 *R & D 10 Kg/Month (65 + 65 or 50)

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 18/03/2020.
- Salient features of the project are as under:

S	Particulars	Details	
r			
n			
0			
-			
Α		·	
Α	Total cost of Proposed Project	4.153 Crores	
	(Rs. in Crores):		
		<u>_</u>	

Details of EMP (Capital Cost & Recurring Cost)

Brief details of EMP

COMPONENT	CAPITAL COST OF EMP	RECURRING COST OF EMP (per Month)
Cost	Rs. 169.3 Lakhs	Rs. 91.07 Lakhs

Bifurcation of EMP Cost

Sr.	Unit	Installed	Capital	Operating Cost	Maintenance	Total Recurring
No		Capacity	Cost	(Lacs/Month)	Cost	Cost
		(KLD)	(Rs. in		(Lacs/Month)	(Lacs/Month)

			Lakhs)			
1	Effluent	56 KLD	140.5	70.0	3.0	73.08
	Treatment					
	Plant					
2.	APCM		20.0	0.1	0.025	0.125
3.	Hazardous		5.0	17.3		17.33
	Waste					
	(Expense)					
4.	AWH		1.0	0.16		0.17
	Monitoring					
	Cost					
5.	OH & Safety		1.0	0.03	0.011	0.041
6.	Greenbelt		1.80	0.25	0.07	0.32
	Total		169.3			91.07

Details of CER as per OM dated 01/05/2018

As per OM no. 22-65/2017 on dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER), Greenfield projects have to contribute 2% of the Additional Capital Investment, the company will contribute Rs. 0.08 Cr as funds for CER activities

Component	Project Cost As per Norms		Allocation
CER	4.153 Cr	Rs. 0.083 Cr (2 %)	Rs. 0.083 Cr (2 %)
	(Green field)		

Activities to be carried out under CER:

CER Activities	Phase Wise Budget			
	st 2 nd			
	1 st Year	Year	TOTAL	
As per discussion with Sarpanch, we will give contribution towards school bags, uniform, water bottles, Notebooks, toilet blocks for primary school of Village: Sayakha.				
School Bag, Uniform, Water Bottles, Notebook Set - 1 X 100 Students =100 Set	0.03	0.023	0.053	
INR 3500/ Student = 3500 X 100 = 3,50,000/-				
Toilet Block in Primary School, Saykha Village.				

	2 Nos Toilet Block – 1.8 Lakh	1					
	As per discussion with Sa	rpanch, we will give contributio	n				
	towards setting up of LED lig	hts in Sayakha Village.					
	LED Light = 4 Nos/House = 4	X 231 Houses = 924 LED Lights					
	Budget – INR 220/ LED = 22	0 X 924 = 2 Lakhs					
				045	0.04	· F	0.02
	As per discussion with Sa	rpanch, we will give contributio		.015	0.01	15	0.03
	towards construction of To	ilet Block in Anganvadi, Saykh	a				
	1 Nos Toilet Block – 1 Lakh						
	Total Cost		Approx	.INR	0.08	3 Crore	
В	Total Plot area (sq. meter)			75 Sq. m.			
	, , , ,				1965.04 Sq. m. (39.34%)		
	(sq. meter)				(0010	, -,	
С				Direct = 15 Employees			2
	Employment generation			Indirect = 10 Employees			
D	Water			mairect = 10 Employees			
				LCIDC	Motor C.	n n lu . A	
i	Source of Water Supply	(T		GIDC Water Supply Authority			
	(GIDC Bore well, Surface wa			<u> </u>			
	Status of permission from the	concern authority.			ssion for v	water s	supply
				Vide letter No.			
				GIDC/EE(W/D)/BRH/348 Date-			348 Date-
				30/04/2	2019.		
ii	Water consumption (KLD)						
	0-1	Proposed			Remark		
	Category	(KL/Day)					
	Domestic	2.0			-		
	Gardening	2.0			-		
	Industrial		GIDC Water Supply Authority				
	_		Wo	rst Case	: Lanso C	Chloro:	16 &
	Process	32.0	2,3,4	2,3,4- trimethoxybenzaldehyde: 16			
	Washing	1.5			-	-	
	Boiler	6.0			-		
	5.0						

Cooling	1.5	-
Others (Scrubber)	2.0	-
Total Ind.	43.0	-
Total (A+B+C)	47.0	-

1) Total water requirement for the project: 47.0 KLD

2) Quantity to be recycled: 0 KLD

3) Total fresh water requirement: 47.0 KLD

(Total water requirement = Fresh water + Recycled water)

ii Waste water generation (KLD)

Category	Proposed (KL/Day)	Mode of disposal
Domestic	1.8	Septic tank & Soak pit
Gardening	-	
Industrial		
Process	56.0	Worst Case: Rabe Chloro: 24 &
Flocess	30.0	2,3,4- trimethoxy benzaldehyde: 32
Washing	1.5	
Boiler	1.0	
Cooling	0.5	
Scrubbing	1.0	To ETP
Scrubbling	1.0	To End User
Total Ind.	61.0	
Total (A+B+C)	62.8	

I Treatment facility within premises with capacity

/ In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc.

- Hydraulic Load 56.0 KLD (Concentrated Effluent), 4.0 (Dilute Effluent)
- In-house ETP (Primary Treatment) Capacity 60.0 KLD, 7 KLD
- In-house MEE Capacity 60 KLD
- Secondary and Tertiary ETP Hydraulic Load 37 KLD
- Secondary and Tertiary ETP Capacity 41 KLD

Treatment scheme including segregation at source.

> 56.0 KLD from Process is sent to primary treatment and then the effluent stream shall be subjected to solvent stripper. 55.2 KLD effluent from solvent stripper is sent to In-house MEE, from where 22.2

- KLD of MEE bottom is sent to Drum Dryer and the remaining 33.0 KLD of condensate is mixed with dilute stream.
- ➤ 1.5 KLD from Washing, 1.0 KLD Boiler, 0.5 KLD Cooling Blow Down, 1.0 KLD from Scrubber = 4.0 KLD Waste Water will be treated in In-house Primary ETP.
- ➤ Both concentrated stream @ 33 KLD and dilute stream @ 4 KLD shall be combined and sent for secondary and tertiary treatment.
- Final treated Waste Water will be sent to common ETP of M/s. GIDC Sayakha.
- ➤ High COD range from 81254 mg/L (2,3,4-Trimethoxy Benzaldehyde) to 56846 mg/L (4-Fluoro-a-(2-methyl-1-oxopropyl)-y-oxo-N, B-diphenyl-benzene butane butanamide (Di Ketone))
- Low COD range from Boiler Blowdown 100 mg/L to Washing Section 2298 mg/L.

Note: (In case of CETP discharge):

y Mode of Disposal & Final meeting point

Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP.

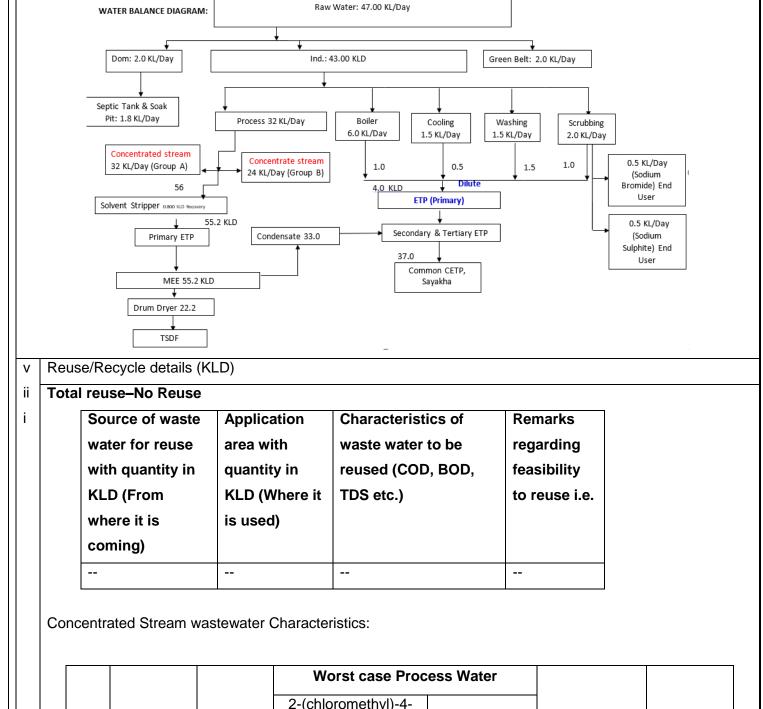
> Treated Effluent 37.0 KLD will be sent to Common ETP, M/s. GIDC - Sayakha.

Brief note on adequacy of ZLD (In case of Zero Liquid Discharge):

Not Applicable

V	I wode of Disposal & Final meetin	у роли
	Domestic:	Domestic wastewater will be discharged through Septic Tank/ Soak Pit
		System
	Industrial:	Total industrial waste water @ 37 KLD will be sent to Common CETP

- Total industrial waste water @ 37 KLD will be sent to Common CETP
 (M/s. GIDC Sayakha) after primary treatment.
- Scrubbing solution Sodium Bromide @ 0.5 KLD will be sold to end users having permission under Rule 9.
- Scrubbing solution Sodium Sulphite @ 0.5 KLD will be sell to end users having permission under Rule 9.
- Scrubbing solution NaCl @ 0.5 KLD will be treated with dilute stream.
- Scrubbing Solution Sodium Nitrite @ 0.5 KLD will be treated with dilute stream.
- In case of Common facility (CF) like CETP, Common Spray dryer, Common MEE etc. Name of CF
 - > Common ETP of M/s. GIDC Sayakha


Membership of Common facility (CF)

(For waste water treatment)

Unit has obtained Membership of M/s. GIDC - Sayakha Vide letter no.: GIDC/BRH/DEE (DRG)325 dated: 10-06-2019.

v | Simplified water balance diagram with reuse / recycle of waste water

ij

			Worst case Prod	ess Water			
SR. No.	Para	Unit	2-(chloromethyl)-4- (3-methoxy propoxy)-3- methylpyridine — hydrogen (Rabe Chloro)	2,3,4- trimethoxy benzaldehyde	Combined Effluent	After Solvent Stripper	
	Quantity (KLD)		24	32	56	55.2	
1	pН	pH Unit	3-5	2-3	2-5	2-5	

2	TSS	mg/L	312	330	322	<250
3	TDS	mg/L	25023	27624	26509	26509
4	BOD	mg/L	30125	33215	31890	19134
5	COD	mg/L	77585	81254	79681	39840
6	Ammo. Nitrogen	mg/L	100	Nil	<50	Nil

SR.			After		MEE Bottom
No.	Para	Unit	Primary	MEE Condensate	subjected to
INO.			Treatment		Drum Dryer
	Quantity (KL	.D)	55.2	33.0	22.2
1	рН	pH Unit	7-8	7-8	7-8
2	TSS	mg/L	<100	<30	>100
3	TDS	mg/L	28158	<1250	>57500
4	BOD	mg/L	14357	6777	>13000
5	COD	mg/L	31872	16932	>37000
6	Ammo.	mg/L	Nil	Nil	Nil
	Nitrogen	g/ L		1411	. 411

Dilute Stream wastewater Characteristics:

SR.	Para	Unit	Di	lute Stream	from other u	tilities	Combined	After
No.				Char	acteristics		Effluent	Primary
			Boiler	Cooling	Washing	Scrubber	-	Treatment
Quantity (KLD)			1.0	0.5	1.5	1.0	4	4
1	рН	рН	6-8	6-8	6-8	6-8	6-8	7-8
		Unit						
2	TSS	mg/L	56	87	150	68	98	30
3	TDS	mg/L	840	1150	2500	500	1900	2090
4	BOD	mg/L	50	80	487	190	252	214
5	COD	mg/L	100	250	2298	524	1049	891
6	Ammo.	mg/L	Nil	Nil	Nil	Nil	Nil	Nil
	Nitrogen							

	SR.	Para	Unit	Dilute	Concentrated	Combin	After	After
11								

No.			Stream	Stream	ed	Secondary	Secondary
			After Primary	MEE Condensate	Effluent	Treatment	Treatment
			Treatment			(Stage I)	(Stage II)
	Quantity (KL	D)	4.0	33.0	37.0	37.0	37.0
1	pН	pH Unit	7-8	7-8	7-8	7-8	7-8
2	TSS	mg/L	30	30	30	<30	<30
3	TDS	mg/L	2090	1250	1654	1600	<1600
4	BOD	mg/L	214	6777	7483	1497	<90
5	COD	mg/L	891	16932	18744	3749	<250
6	Ammo.	mg/L	Nil	Nil	Nil	Nil	Nil
	Nitrogen	ilig/L	1411	1411	INII	1411	1 411

E Air

Flue gas emission details

No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc.

Steam Boiler	18	Bio Coal / Briquette / Agro Waste / Coal	3.5 MT/Day <u>OR</u>	MCS + Water	DM - 450
	18		1		DM : 450
Boiler	18	Waste / Coal	OR	Water	DM . 450
		II		1.30	PM < 150
(1.5 TPH)		<u>OR</u>	2.0 MT/Day	Scrubber	mg/Nm ³
		Imp. Coal			SO ₂ < 100 ppm
D.C. Sot				Adequate	NO _X < 50 ppm
	11	Diesel	20.0 lit/Hr.	Stack	
(0.5 NW)				Height	
	D.G. Set (0.5 MW)	(0.5 MW)	(0.5 MW) 11 Diesel	(0.5 MW) 11 Diesel 20.0 lit/Hr.	D.G. Set 11 Diesel 20.0 lit/Hr. Stack

Sr.	Vent attached to	Type of	APCM	Stack / Vent
No.	vent attached to	emission		Height (meter)
1.	Reaction Vessel (Sulphonation) (2- Chloromethyl Ethyl- 3,5- Dimethyl- 4- Methoxypyridine Hydrochloride (Ome Prazole Chloro) & (2-(chloromethyl) -3- methyl-4-(2,2,2-trifluoroethoxy)pyridine hydrogen chloride (Lanso Chloro))	SO ₂ < 40 mg/Nm3	Two Stage Alkali Scrubber	9.0 m
2.	Reaction Vessel (Nitration) (MNA)	NO ₂ < 25 mg/Nm3	Two Stage Alkali Scrubber	9.0 m
3.	Reaction Vessel (Bromination) (4-methylbenzene-1,2-diol)	HBr < 30 mg/Nm3	Two Stage Alkali Scrubber	9.0 m
4.	Reaction Vessel (Chlorination) (4-(difluoromethoxy)-2-nitroaniline)	HCl < 20 mg/Nm3	Two Stage Alkali Scrubber	9.0 m

ii Fugitive emission details with its mitigation measures:

i As below:

- Whole process will be carried out in close loop.
- Pipe line will be having minimum flange.
- Pump with double mechanical seals
- Proper ventilation.

F Hazardous wastes

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

i	Sr. no.	Type /Name of Hazardous waste	Specific Source of generation (Name of the Activity, Product etc.)	Category and Schedule as per HW Rules.	Quantity (MT/Annum)	Management of HW
	1	Used oil	Utility	5.1/ SCH-I	0.050	Collection, Storage, Transportation & Disposal by selling

					to Authorised re-
					refiners or reused
					as lubricant within
					premises.
					Collection,
		Mfg Process			Storage, & recove
		Mfg. Process	28.6/ SCH-I	31700.0	by distillation &
		(Omeprazole Sulfide & Telmisartan Int.)	20.0/ SCH-I	31700.0	Reuse in process
		reimsartan mi.)			within the
					premises.
					Collection,
2	Spent Solvent				Storage, & recove
					by distillation &
			28.6/SCH-I	300	Reuse in proces
		Stripper			within the
					premises. OR
					send to pre/ co
					processing unit/
					send to CHWIF.
		Mfg. Process	28.6/SCH-I		Collection,
		2-(chloromethyl)-3-		4300	Storage, &
3	Acetic Acid	methyl-4-(2,2,2-			transportation 8
3	(70%)	trifluoroethoxy)			sell to end users
		pyridinehydrogen chloride			having permissio
		(Lanso Chloro)			under Rule 9.
	Discarded				Collection,
	containers,			60.0	Storage,
4	barrels, Liners,	Raw material Supply	33.1/ SCH-I	(3600 Drums,	Transportation
	plastic Bags			1.200 Bags)	Sale to Authorise
	plastic bags				Recyclers
					Collection,
					Storage,
5	ETP Sludge	ETP	35.3/ SCH-I	316.0	Transportation 8
	ETT Oldage	L11	00.0/ 00H-1	310.0	Disposal at TSD
					(M/s. BEIL, Dahe
					OR send to

					cement industries
					as Gypsum.
					Collection,
	Inorganic Salt	Mfg. Process			Storage,
6	(Ammonium	(3,5-Dimethyl-4-	28.1/SCH-I	4250	Transportation &
	Sulphate)	Nitro Pyridine -N- Oxide)			sell to end user
	,	,			under Rule 9.
		Mfg. Process			Collection,
		{1, 7'- dimethyl-2'- propyl-			Storage,
7	Organic Waste	1H, 3'H-2, 5'-	28.1/SCH-I	385	Transportation
		bibenzimidazole			send to pre/ co
		(Telmisartan Int.)}			processing unit
8	Spent Carbon	Mfg. Process	36.2/ SCH-I	2.0	(cement
	'	3			industries) Or
	9 Distillation residue	Distillation	36.1/ SCH-I	936.0	send to CHWIF
9					(M/s. SEPPL-
					` Kutch).
					,
10	NaNO ₂ (10% Solution)	Scrubbing system (4-Methoxy-2-Nitroaniline)	28.1/SCH-I	180.0 KL	
					Collection,
	Sodium	Scrubbing system (4-			Storage,
11	chloride	(difluoromethoxy)-	28.1/SCH-I	180.0 KL	Treatment in ETP
''	(10%)	2-nitroaniline)	20.1/0011-1	100.0 KL	
	(1078)	2-minoariiine)			Callection
					Collection,
	C a divers	Scrubbing system			Storage,
12	Sodium	(Ome Prazole Chloro &	28.1/SCH-I	180.0 KL	Transportation
	Sulphite (30%)	Lanso Chloro)			Sell to End Users
					having permission
					under Rule-9.
	0 "	O-mak Li			Collection,
40	Sodium	Scrubbing system	00.4/00!!!	400.010	Storage,
13	bromide (40-	(4-methylbenzene-1,2-	28.1/SCH-I	180.0 KL	Transportation
	48%)	diol)			Sell to End Users
					having permission

									under	Rule-9.
	14	MEE Salt	MEE		3	5.3/SCH-I		500.0	Colle	ction,
									Stor	age,
									Transpo	rtation &
									Disposal	at TSDF
									(M/s. BE	IL-Dahej)
ii	Memb	ership details of TSD	F, CHWIF etc.					Unit has got	NOC of	Common
	(For F	IW management)						TSDF of M/s	. BEIL D	ahej, Vide
								letter no.: BE	IL/ANK/20)19 dated:
								07-10-2019. 8	& CHWIF	of SEPPL
								of DETOX, Ku	itch on let	ter Dated :
								07/06/2019		
ii	Details	s of Non-Hazardous v	vaste & its dispo	osal				No such waste	will gene	rate
i	(MSW	and others)								
G	Solve	nt management, VO	C emissions etc) .						
i	Types	of solvents, Details of	f Solvent recov	ery, % ı	recove	ry, reuse o	of reco	vered Solvents	etc. (Deta	ils in
	Table	Format)								
					Va.	Vapour	Qty	· ·	Total	Solvent
	Sr.	Product Name	Solvent	B.P.	Pr.	Densit	Use		(A TO	Recover
	No.			°C	Кра	У	MT/N		D)	y (%)
					'	kg/m3	Т	MT/MT		, ,
		2- chloro methyl-	Methanol	64.5	0.3	2.51	8.08	7.82	0.2634	97
		3,5- dimethyl- 4-							1	
	1	methoxy pyridine	Isopropyl						0.1747	
		hydrochloride (ome	alcohol	82.5	3.8	3.1	3.2	3.07	2	96
		prazole chloro)							0.0470	
			MIBK	117	2.13	3.5	3.75	3.56	0.3172	95
		2-(chloromethyl)-3-							5	
		methyl-4-(2,2,2-	Methanol	64.5	0.3	2.51	1.63	1.58	0.0531	97
	2	trifluoroethoxy) pyridinehydrogen							4 2220	
			Toluene	111	12.3	1.11	12.7	.75 12.11	1.3336 5	95
		chloride (Lanso Chloro)							0.0223	
		Officio)	Acetone	56	4.4	2.07	0.5	0.49	0.0223	97
	3	2,3-Dimethyl-4-	MDC	39.6	12.3	1.11	5.1	4.93	0.1662	97
	J	2,0 Dimotry: 4-	IVIDO	00.0	12.0	1.11	J. 1	7.55	0.1002	57

	Nitro Pyridine -N-							6	
	Oxide	Toluene	111	12.3	1.11	1.2	1.14	0.1255	95
	2-(chloromethyl)-4- (3-	IPA	82.5	12.4	3.04	2.67	2.56	0.1457 8	96
4	methoxypropoxy)- 3-methylpyridine—	Toluene	111	12.3	1.11	2	1.90	0.2092	95
	hydrogen chloride (Rabe Chloro) CAS	Acetone	56	4.4	2.07	0.67	0.65	0.0298 8	97
	5-methoxy-2-{[(4- methoxy-3,5-	Toluene	111	12.3	1.11	7.4	7.03	0.7740 4	95
5	dimethyl pyridin-2- yl) methyl] sulfanyl}-1H- benzimidazole (Omeprazole Sulfide)	Acetone	56	4.4	2.07	0.4	0.39	0.0178	97
		Methanol	64.5	0.3	2.51	10.57	10.23	0.3445 8	97
6	1,7'- dimethyl-2'- propyl- 1H,3'H-2,5'-	MDC	39.6	12.3	1.11	2.9	2.81	0.0945 4	97
	bibenzimidazole	Toluene	111	12.3	1.11	5.71	5.42	0.5972 7	95
		Acetone	56	4.4	2.07	0.4	0.39	0.0178 4	97
7	4-Fluoro-a-(2- methyl-1- oxopropyl)-y-oxo- N,B-diphenyl- benzene butane butanamide	IPA	82.5	12.4	3.04	1.14	1.09	0.0622	96
8	2,3,4- trimethoxybenzald ehyde	EA	77	3.8	3.1	4	3.88	0.1784 0	97
9	3,4-	EDC	83.6	10.2	4.1	1.25	1.20	0.0932	96

		dimethoxybenzoic acid							5	
	10	4- (difluoromethoxy)- 2-nitroaniline	Chloroform	60.5	22.3	4.1	10.77	10.33	0.4803 4	96
	11	4-methylbenzene- 1,2-diol	Butanol	116	0.5	2.56	5.56	5.28	0.6371 8	95
	''		Toluene	111	12.3	1.11	2.78	2.64	0.2907 9	95
	12	1,1-dimethoxy- N,N- dimethylmethanam ine	DMF	153	3.8	3.1	0.65	0.62	0.0809	95
	13	4-Methoxy-2- Nitroaniline (MNA)	MDC	39.6	12.3	1.11	4	3.87	0.1304	97

ii VOC emission sources and its mitigation measures

Sources - Charging Materials

Measures

- Enclose Process
- Minimum flanges & joints
- Handled by pump with double mechanical seals
- Proper Ventilation
- Adequate PPEs

H > Details regarding storage of Hazardous chemicals

Storage details	Name of major Hazardous chemicals	Remarks
Storage tanks	Toluene, Ethylene Dichloride,	Storage at ATP
	Methanol, Sulphuric Acid, Nitric Acid	
	(98%), Hydrochloric Acid, MDC,	
	Chloroform	
Drum/Barrel storage	Acetonitrile, Acetone, Acetic acid,	Storage at ATP
	Triethylamine, Isopropyl Alcohol,	
	Dimethyl Sulphate, Dimethyl	
	Formamide, Ethyl acetate	
Cylinder	Dry HCI	Under Pressure
Bank	Hydrogen	Under Pressure

> Applicability of PESO : Will be obtained

- During the meeting dated 18/03/2020, technical presentation made by the Project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect for the study area of 10 km radial distance from project site for the period October 2018 to December2018. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOX, NH3, VOC, HCI &HBr at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST 3. The resultant concentrations are within the NAAQS. The modeling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan
 has been covered in the RA report.
- Committee noted that proposal is new in GIDC Sayakha. Source of water is GIDC. PP mentioned that high COD effluent generated from process will be first subjected to solvent stripper followed by primary ETP 1 and in-house MEE, Condensate from MEE will be treated in secondary and tertiary ETP 2 while concentrate will be subjected to dryer and salt generated will be disposed at approved TSDF while effluent generated from washing, scrubber, boiler blow down and cooling tower blow down will be treated in in-house ETP 2 consisting of primary, secondary and tertiary treatment units and treated effluent will be sent to CETP Sayakha for further treatment and disposal. PP has proposed one steam boiler. Fuel used will be Bio Coal /Briquette / Agro Waste / Coal/Imp. Coal. PP has addressed Hazardous Waste as per HWR 2016. Committee noted that PP has addressed EMP & CER satisfactorily.
- Compliance of ToR found satisfactory.
- After detailed discussion, Committee unanimously decided to recommend the project to SEIAA,
 Gujarat for grant of Environment Clearance.

5	SIA/GJ/IND2/49661/2019	M/s. Mentor Pharma Chem	Appraisal
		Plot No. D2-CH-319, GIDC - Dahej,	
		Tal: Vagra, Dist. Bharuch-392130 Gujarat.	

Category of the unit: 5(f)

Project status: New

- Project proponent (PP) submitted online application vide no. SIA/GJ/IND2/49661/2019 dated 13/11/2019 for obtaining Environmental Clearance.
 - SEIAA issued TOR to PP vide their letter dated 24/05/2019.

- Project proponent has submitted EIA Report prepared by Green Leaf Envirotech Pvt. Ltd, Surat based on the TOR issued by SEIAA.
- This is an expansion project for manufacturing of synthetic organic chemical as tabulated below.

Sr.	Name of the Dreducts	CAS no.	Quantity	End-use of the
No.	Name of the Products	/CI no.	MT/Month	products
1	Bronopol	52-51-7		Antimicrobial
2	Diacereine	13739-02-1		Anti-Osteoarthritis
3	Glimepiride	93479-97-1		Anti-Diabetic
4	Perindropil erbumine	107133-36-8		Anti-Hypertensive
5	Bis-(2-chloroethyl amine)hydrochloride	821-48-7		Phenyl Piper zine
6	2-Diethyl amino ethyl chloride hydrochloride	869-24-9		Clomifen Citret
7	2-Dimethyl aminoethylchloride hydrochloride	4584-46-7		Diltizem HCI
8	4-(2- Chloro Ethyl) morpholine hydrochloride	3647-69-6		Nimorazol
9	N 2-chloroethyl piperidine hydrochloride	2008-75-5		Pitofenone
10	Piperidine hydrochloride	106266-04-0		Tolperisone
11	2-chloro ethyl amine hcl	870-24-6		Ifosfamide
12	4 CHLORO BUTYRYL CHLORIDE	4635-59-0	50	Antibiotic
13	3-amino acetophenone	99-03-6		Phenylephedrine
14	(R)-(-)-3-(Carbamoyl methyl)-5-methyl hexanoic acid (R-CMH)	181289-33-8		Pregabaline
15	2-n-Butyl-3(4-Hydroxy Benzoyl) Benzofuran	1951-26-4		Intermediate
16	Sulphonamide	63-74-1] [Antibiotics
17	Etoricoxib	202409-33-4] [Arthritis
18	Tolperisone hydrochloride	3644-61-9	 	Muscle Relaxant
19	Prilocaine	721-50-6	1	Anaesthetics
20	Terbinafine	91161-71-6	 	Antifungal
21	Ketosulfone	202409-33-4	 	Intermediate
22	Luliconazole	187164-19-8		Antifungal
23	Palenesetron hydrochloride	135729-62-3		Anti Nauseant
24	Lercanidipine	100427-26-7	†	Anti-Hypertensive
25	Voriconazole	137234-62-9	†	Anti-Fungal

Anti Nauseant
Amiodarone
Anti Nauseant
Intermediate
Anti-Bacterial
Trazadon
Citalopram Hbr
Pregabaline
Antimalarial
Anti-Allergic
Phenyl Ephidrine
Anti-Epileptic
Hydrochlorothizde
Month
onth
0

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 18/03/2020.
- Salient features of the project are as under:

Sr.	Particulars		Details					
no.								
Α								
Α	Total cost of Propo	sed Project	4.00 Crores					
	(Rs. in Crores):							
	Details of EMP (Cap	pital Cost & Recurring Cost)						
	Brief details of EMI							
	COMPONENT CAPITAL COST OF EMP RECURRING COST OF EMP							
	(per Month)							
	Cost	Rs. 39.0 Lakhs	Rs. 9.88 Lakhs					

Bifurcation of EMP Cost

Sr. No	Unit	Installed	Capital	Operating	Maintenance	Total Recurring
		Capacity	Cost (Rs.	Cost	Cost	Cost
		(KLD)	in Lakhs)	(Lacs/Mon	(Lacs/Month)	(Lacs/Month)
				th)		
1	Effluent	20 KLD	3.5	4.0	1.21	5.21
	Treatment					
	Plant					
2.	APCM		30.0	0.16	0.09	0.25
3.	Hazardous		1.0	4.17		4.17
	Waste					
	(Expense)					
4.	AWH		1.5	0.008		0.008
	Monitoring					
	Cost					
5.	OH & Safety		2.0	0.05	0.03	0.08
6.	Greenbelt		1	0.10	0.07	0.17
	Total		39.0			9.888

Details of CER as per OM dated 01/05/2018

As per OM no. 22-65/2017 on dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER), Greenfield projects have to contribute 2% of the Additional Capital Investment, the company will contribute Rs. 0.08 Cr as funds for CER activities

Component	Project Cost	As per Norms	Allocation
CER	4.0 Cr	Rs. 0.08 Cr (2 %)	Rs. 0.08 Cr (2 %)
	(Green field)		

Activities to be carried out under CER:

CER Activities	Phase Wise Budget		
<u> </u>	st		
	1 st Year	2 nd	TOTAL
		Year	
Drinking Water Supply– (On basis of Needs Assessment)	0.01	0.01	0.02
Common Drinking Water Facility Village Atali @ 1.0 Lakh			
Filtration Unit			
Common Drinking Water Facility Village Galenda @ 1.0			
Lakh Filtration Unit			

	Plantation / Greenhelt in Com	munity Area- (On basis of Need	le l	<u> </u>			
	Assessment)	indinity / ilod (On baolo of Nooc					
	<u> </u>	e approach road to the premises					
	and outside:						
	•Plantation along the Pe	riphery of the plant along wit	h 0.005	0.005	0.01		
	plantation around habi	tation area with various locatio	n				
	areas as – Villages – .	Jolva, Ambetha & Vav : cost of	1				
	plant – 500/- with dig	ging, fertilizer & maintenance o	of				
	water. (200plants)						
	Road & Infrastruture Develop	ment – (On basis of Needs	0.025	0.025	0.05		
	Assessment)						
	Construction of wall around the						
	a fulld Shed at boundary wall a fav @ 0.80 Lacs	round the pond periphery -Village	ge				
	Build a wall around it on t	he outside of the pond-Villa	ge				
	Samatpor @ 1.85 Lacs						
	nstallation of ovaro for cloth v	ashing at pond-Village Samatp	or				
	2 0.65 Lacs						
	Total Cost		Approx.IN	0.08 Cr	ore		
В	Total Plot area (sq. meter)		4149	.007 Sq. m.			
	Green belt area		1381	.61 Sq. m. (33.0	30%)		
	(sq. meter)						
С	Employment generation		Direc	t = 20 Employe	es		
			Indire	ect = 10 Employ	rees		
D	Water						
i	Source of Water Supply		GIDO	Water Supply	Authority		
	(GIDC Bore well, Surface water	* * *					
	Status of permission from the	concern authority.	Pern	nission for water	supply		
		11010	letter No.	r No.			
			GIDC/DEE(WS)/BRH/562 Da				
			23/0	7/2019.			
ii	Water consumption (KLD)						
	Catamari	Proposed		Remark			
	Category	(KL/Day)					
	Domestic	2.0					

Gardening	2.0	-
Industrial		GIDC Water Supply Authority
Process	12.0	Mfg. Process (5-Chloro Aniline- 2,4 -
1 100000	12.0	Disulphonamide (CADS))
Washing	2.0	-
Boiler	4.0	-
Cooling	1.0	-
Others (Scrubber)	5.0	-
Total Ind.	24.0	-
Total (A+B+C)	28.0	-

1) Total water requirement for the project: 28.0 KLD

2) Quantity to be recycled: 0 KLD

3) Total fresh water requirement: 28.0 KLD

(Total water requirement = Fresh water + Recycled water)

iii Waste water generation (KLD)

Catagory	Proposed	Mode of disposal
Category	(KL/Day)	Mode of disposal
Domestic	1.8	Septic tank & Soak pit
Gardening	-	
Industrial		
Process	12.0	Mfg. Process (5-Chloro Aniline- 2 -Disulphonamide (CADS))
Washing	1.5	
Boiler	0.3	
Cooling	0.2	
Others (10% NaCl)	1.0	1.0 KLD NaCl Salt in ETP
Scrubbing Solution (NaBr/HBr)	2.0	To End User
Scrubbing Solution (Na ₂ SO ₃)	1.0	To End User
Scrubbing Solution (Liq. Ammonia)	1.0	Reuse within premises
Total Ind.	19.0	
Total (A+B+C)	20.8	

Treatment facility within premises with capacity lν [In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc. Hydraulic Load – 15.0 KLD In-house ETP (Primary Treatment) Capacity – 20.0 KLD Treatment scheme including segregation at source. 12.0 KLD from Process, 1.5 KLD from Washing, 0.3 KLD Boiler, 0.2 KLD Cooling Blow Down 5.0 KLD from Scrubber (1.0 KLD NaCl Salt in ETP, 1 KLD Liq. Ammonia Reuse within Premises and Other Sell to End user) =15.0 KLD Waste Water will be treated in in-house ETP. Final treated (Primary ETP) Waste Water will be sent to common MEE of M/s. BEIL-Dahej. ➤ High COD range from 59590 mg/L (2-n-Butyl-3(4-Hydroxy Benzoyl) Benzofuran) to 70600 mg/L (5-Chloro Aniline- 2,4 -Disulphonamide (CADS)) Low COD range from Boiler Blowdown 100mg/L to Washing Section 2298 mg/L. Note: (In case of CETP discharge): Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP. Not Applicable Brief note on adequacy of ZLD (In case of Zero Liquid Discharge): Not applicable Mode of Disposal & Final meeting point Domestic wastewater will be discharged Domestic: through Septic Tank/ Soak Pit System Industrial: Total industrial waste water@ 15 KLD will be sent to Common MEE (M/s. BEIL- Dahej) after primary treatment. Scrubbing solution Liq. Ammonia @ 1.0 KLD will be reuse in process. • Scrubbing solution HBr/NaBr @ 2.0 KLD will be sell to end users having permission under Rule 9. • Scrubbing solution Na₂SO₃ @ 1.0 KLD will be sell to end users having permission under Rule 9. νi In case of Common facility (CF) like CETP, Common Spray dryer, Common MEE etc. Name of CF Common MEE of M/s. BEIL, Dahei Membership of Common facility (CF) (For waste water treatment)

Unit has obtained Membership of M/s. BEIL, Dahej Vide letter no.: BEIL/ANK/11 dated: 18-07-2019. vii Simplified water balance diagram with reuse / recycle of waste water Raw Water: 28 KL/Day Dom: 2.0 KL/Day Ind.: 24 KL/Day Green Belt: 2.0 KL/Day Septic Tank & Soak Pit: 1.8 KL/Day Scrubbing Boiler Cooling Washing **Process** 5.0 KL/Day 4.0 KL/Day 1.0 KL/Day 2.0KL/Day 12 KL/Day 2.0 KLD 1.0 KLD 1.0 KLD Liq. 0.3 0.2 1.5 1.0 NaCl Salt 12 NaBr/HBr Na2So3 Ammonia (18-20%) (20-22%)(18-20%) Sent to authorized Sent to solution will authorized 15 KL/Day be reused end users end users **ETP (Primary Treatment)** registered registered premises. Common MEE M/s. BEIL Dahei viii Reuse/Recycle details (KLD) Total reuse-No Reuse Source of waste **Application** Characteristics of **Remarks** water for reuse area with waste water to be regarding with quantity in reused (COD, BOD, feasibility to quantity in KLD (From where KLD (Where it TDS etc.) reuse i.e. it is coming) is used) Combine **Process** Stream from utilities Characteristics d Effluent Water 5-Chloro S **After** R. Aniline-Para Unit Total **Primary** Ν 2,4 -Scrubbing **Trade** treatment Boiler Cooling Washing Disulph 0. effluent onamide (CADS) Quantity (KLD) 0.3 0.2 1.5 1.0 11.17 15.0 15.0 pН 1 pН 6-8 6-8 2-5 6-8 6-8 6-8 6-8

		Unit							
2	TSS	mg/L	56	40	150	68	250	205	145
3	TDS	mg/L	800	1000	2500	500	25120	19065	22100
4	BOD	mg/L	<50	50	487	190	21200	15850	12500
5	COD	mg/L	<100	100	2298	524	70600	52845	45500
6	Ammo. Nitrogen	mg/L	Nil	Nil	Nil	Nil	100	100	< 100

E Air

i Flue gas emission details

No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc.

-

Sr. No.	Stack attached to	Stack Height/Dia . (Meter)	Fuel Consumpti on	Fuel Qty.	APCM	Permissible limit
1.	Steam Boiler (1.0 TPH)	25/0.35	Bio Coal/ Briquette OR Coal	2.5 MT/Day OR 2.0 MT/Day	MCS + Water Scrubber	$PM < 150$ mg/Nm^3 $SO_2 < 100 ppm$ $NO_X < 50 ppm$
2.	Thermic Fluid Heater (2 Lac KCal/Hr.)	25/0.5	Bio Coal/ Briquette OR Coal	1.0 MT/Day OR 0.8 MT/Day	MCS + Water Scrubber	$PM < 150$ mg/Nm^3 $SO_2 < 100 ppm$ $NO_X < 50 ppm$
3	D.G. Set (40 KVA) 11/0.25 Diesel		Diesel	11.0 lit/Hr.	Adequate Stack Height	$PM < 150$ mg/Nm^3 $SO_2 < 100 ppm$ $NO_X < 50 ppm$

Sr. No.	Vent attached to	Type of emission	APCM	Stack / Vent Height (meter)							
1.	Prilocaine - Reaction Vessel (Bromination)	HBr: 20 mg/Nm ³	Two Stage Alkali Scrubber	11 m/0.35							
2.	(Bis-(2-chloroethyl amine)hydrochlorid e) - Reaction Vessel (Sulphonation)	SO ₂ : 40 mg/Nm ³	Two Stage Alkali Scrubber	11 m/0.35							
3.	Bis-(2-chloroethyl amine) Hydro chloride Reaction vessel (Chlorination)	HCI < 20 mg/Nm ³	Two Stage Alkali Scrubber	11 m/0.35							
4.	5-chloroaniline-2,4- disulphonamide (CADS) Reaction vessel	NH ₃ <175 mg/Nm ³	Two Stage Water Scrubber	11 m/0.35							
	ve emission details with	its mitigation measures	:								
As be	low: le process will be carried	Lout in close loop									
	line will be having minim										
· ·	•	with double mechanical seals									
- Prop	er ventilation.										

Sr.	Type/Name of Hazardous waste	Specific Source of generation (Name of the Activity, Product etc.)	Category and Schedule as per HW Rules.	Quantity (MT/Annum)	Management of HW
1	Used oil	Maintenance Activities	5.1/ SCH-I	0.200	Collection, Storage, Transportation & Disposal by selling to Authorised re- refiners
2	Spent Solvent	Mfg. Process ((R)-(-)-3-(Carbamoyl methyl)-5-methyl hexanoic acid (R-CMH))	28.6/ SCH-I	24282.0	Collection, Storage, & recover by distillation & Reuse in process within the premises.
3	Discarded containers, barrels, Liners, plastic Bags	Used containers, drums, Liners	33.1/ SCH-I	60.0 (3600 Drums, 1.200 Bags)	Collection, Storage, Transportation Sale to Authorised Recyclers having permission under Rule-9.
4	ETP Sludge	ETP	35.3/ SCH-I	36.0	Collection, Storage, Transportation & Disposal at TSDF (M/s. DIPL, Kutch) OR send to cement industries as

					Gypsum.
5	Spent Carbon	Mfg. Process	36.2/ SCH-I	2.0	Collection, Storage, Transportation send for Pre/co processing OR send to CHWIF. (M/s. SEPPL, Kutch)
6	Distillation residue	Distillation	36.1/ SCH-I	48.0	Collection, Storage, Transportation send to cement industries for Pre/co processing OR send to CHWIF (M/s. SEPPL, Kutch)
7	Process Residue & Waste	Mfg. Process (1-(3-Chlorophenyl)-4-(3-Chloropropyl) Piperazine Hydrochloride (T2. HCl))	28.1/ SCH-I	60.0	Collection, Storage, Transportation send to cement industries for Pre/co processing OR send to CHWIF (M/s. SEPPL, Kutch)
8	Scrubbing Solution 30% NaCl	Scrubber	Sch-II-Class B (15)	365.00 KL	Collection, Storage and allow for Neutralization in ETP.
9	Hydrogen Peroxide	Mfg. Process (Etoricoxib)	28.1/ SCH-I	156.0 KL	Collection, Storage,

		[H ₂ O ₂]				Transportation	
		[i i ₂ O ₂]				Sell to End Users	
						having permission under Rule-9.	
						Collection,	
		Sodium	Mfg. Process			Storage,	
	10	Acetate	(Palenesetron	28.1/ SCH-I	547.0 KL	Transportation	
		Solution	hydrochloride)			Sell to End Users	
			,			having permission	
						under Rule-9.	
						Collection,	
						Storage,	
	11	Pthalic acid	Mfg. Process	28.1/ SCH-I	313.0	Transportation	
	''	T trialic acid	(Linzolide)	20.17 0011-1	313.0	Sell to End Users	
						having permission	
						under Rule-9.	
						Collection,	
						Storage,	
	12	Acetic Acid	Mfg. Process	28.1/ SCH-I	432.0	Transportation	
	12		(2 –n- butyl Benzofuran)	26.1/ SCH-I	432.0	Sell to End Users	
						under Rule-9.	
						Collection,	
		Scrubbing				Storage,	
		Solution	Scrubber	Sch-II-Class		Transportation	
	13	NaBr/HBr (18-	Mfg. Process	B (15)	730.0 KL	Sell to End Users	
		20%) Solution	(Prilocaine)			having permission	
		,				under Rule-9.	
						Collection,	
		Sodium	Scrubber			Storage,	
		Sulphite	Mfg. Process			Transportation	
	14	Solution	(Bis-(2-chloroethyl amine)	28.1/ SCH-I	366.0 KL	Sell to End Users	
		[20-22%]	hydrochloride)			having permission	
						under Rule-9.	
	Sodium thio-		Mfg. Process			Collection,	
	15	sulphate	(3-amino acetophenone)	28.1/ SCH-I	3600.0	Storage,	
		2 3.12 1.00.0	(= 2)				

											Transportation Sell to End Users having permission
											under Rule-9.
											Collection,
		Scrubbing									Storage & Reuse
		Solution			ıbber						in Mfg. Process of
	16	Liq. Ammonia		_	rocess		28.1	/SCH-I	;	365.0 KL	5-chloroaniline-
		Solution	,		niline-						2,4-
		(18-20%)	Disulp	honan	nide (C	ADS))					disulphonamide
		(10 20 70)									(CADS) (1266
											KL/Annum)
									Collection,		
											Storage,
		Spent		Mfg. Process							Transportation
	17	H2SO4		(Pregabaline)			Sch-I / 28.1		1200	and sell to end	
				. •	ŕ						users having
											permission under
											Rule-9*.
ii		pership details of		HWIF	etc.					_	NOC of Common
	(For I	HW managemen	t)							TSDF of M/s	
											o.: BEIL/ANK/11
	D (''	()		0 ''	1.					dated: 18-07	
iii		s of Non-Hazardo	ous waste	e & its	aispos	aı				No such was	ste will generate
G	`	/ and others)	VOC or	niccior	oc oto						
i		ent management				n/ 0/ ==	001/05	rouge	of roos	word Calver	to eta (Detaile in
		Format)	3115 UI 30	iv e ni i	ecover	y, 7⁄o i e	covery	, reuse (JI I C CC	vereu Soiven	ts etc. (Details in
	Table	i oimat)					Ι		1		
				Qty.							
	s				Vap our	Qty.	Rec				
	r.	Product	Solven	F.P	B.P.	Va.	Den	Used	ove		Losses
	N N	Name	t	•	°C	Pr.	sity	MT/M	red		
	О.			°C		Kpa	kg/	Т	MT/		
							m3		МТ		

									nt Loadi ng (A)	Solve nt Handl ing (B)	Solve nt Opera tion (C)	Dis ati Lo (E
1	Diacereine	Methan ol	12	64.5	12.3	1.11	0.208	0.20	0.000	0.000 06	0.000	0.0
	Ol'er aminino	Aceton e	-9	56.2	24	2	0.073	0.07	0.000	0.000 02	0.000	0.0
2	Glimepiride	Methan ol	12	64.5	12.3	1.11	0.146	0.14	0.000	0.000	0.000	0.0
	Perindropilerb	IPA	-24	82.5	4.4	2.07	0.097	0.09	0.000	0.000	0.000	0.0
3	umine	MDC	-	39	35	2.93	0.058	0.05	0.000	0.000	0.000	0.0
4	Bis-(2- chloroethyl	Aceton e	-9	56.2	24	2	0.050	0.04	0.000	0.000	0.000	0.0
4	amine)hydroc hloride	EDC	13	84	8.13	1.25	0.350	0.34	0.000 14	0.000 11	0.000 56	0.0
5	2-Diethyl amino ethyl	Aceton e	-9	56.2	24	2	0.100	0.09 7	0.000	0.000	0.000 16	0.0 5
5	chloride hydrochloride	Toluen e	6	111	3.8	3.1	0.150	0.14 4	0.000	0.000 05	0.000 24	0.0
6	2-Dimethyl aminoethylchl	EDC	13	84	8.13	1.25	0.050	0.04 9	0.000	0.000 02	0.000	0.0
ь	oride hydrochloride	IPA	-24	82.5	4.4	2.07	0.200	0.19	0.000	0.000 06	0.000	0.0
7	4-(2- Chloro Ethyl) morpholine hydrochloride	EDC	13	84	8.13	1.25	0.294	0.28 5	0.000	0.000	0.000 47	0.0
8	N 2- chloroethyl piperidine hydrochloride	EDC	13	84	8.13	1.25	0.294	0.28	0.000	0.000	0.000 47	0.0

9	2-chloro ethyl amine hcl	EDC	13	84	8.13	1.25	0.375	0.36	0.000 15	0.000	0.000 60	0.018 75	
1 0	(R)-(-)-3- (Carbamoyl methyl)-5- methyl hexanoic acid (R-CMH)	Chlorof	-	61	20.9	1.7	4.063	3.92	0.001 63	0.001	0.006 50	0.121 90	
1 1	2-n-Butyl-3(4- Hydroxy Benzoyl) Benzofuran	Methan ol	12	64.5	12.3	1.11	0.120	0.11	0.000 05	0.000	0.000	0.003 59	
1 2	Sulphonamide	Toluen e	6	111	3.8	3.1	0.072	0.06 9	0.000	0.000 02	0.000 12	0.006 47	(
1 3	Etoricoxib	Toluen e	6	111	3.8	3.1	0.064	0.06	0.000	0.000	0.000	0.005 77	(
	Tolperisone	Toluen e	6	111	3.8	3.1	0.108	0.10	0.000	0.000	0.000 17	0.009 75	(
4	hydrochloride	IPA	-24	82.5	4.4	2.07	0.048	0.04	0.000	0.000	0.000	0.003	(
1 5	Prilocaine	Toluen e	6	111	3.8	3.1	0.073	0.07	0.000	0.000	0.000	0.006 55	(
6	Terbinafine	MDC	-	39	35	2.93	0.064	0.06	0.000	0.000 02	0.000 10	0.001 60	(
1 7	Ketosulfone	THF	- 14. 5	65	20	1	0.112	0.10 7	0.000	0.000	0.000	0.004 48	(
1 8	Luliconazole	Methan ol	12	64.5	12.3	1.11	0.128	0.12 4	0.000 05	0.000 04	0.000 21	0.003 85	(
		IPA	-24	82.5	4.4	2.07	0.107	0.10	0.000	0.000	0.000 17	0.008 56	(
1 9	Palenesetron	Hexane	7.6	62	20	2.97	0.107	0.10	0.000 04	0.000	0.000 17	0.005 13	(
9	hydrochloride	THF	- 14. 5	65	20	1	0.107	0.10	0.000 04	0.000	0.000	0.004	

1	T	· - ·	ı		ı	1	ı						ı I
		Toluen	6	111	3.8	3.1	0.090	0.08	0.000	0.000	0.000	0.008	
		е						7	04	03	14	12	
2	Lercanidipine	Methan	12	64.5	12.3	1.11	0.068	0.06	0.000	0.000	0.000	0.002	1
0		ol						5	03	02	11	03	i
		MDC	_	39	35	2.93	0.045	0.04	0.000	0.000	0.000	0.001	(
		III.DO				2.00	0.010	4	02	01	07	13	
		MDC	_	39	35	2.93	0.066	0.06	0.000	0.000	0.000	0.001	(
2		WIDO				2.00	0.000	4	03	02	11	64	
1	Voriconazole		-					0.05	0.000	0.000	0.000	0.002	
'		THF	14.	65	20	1	0.055	3	0.000	0.000	0.000	19	, `
			5						02	02	03	13	
2		EDC	13	84	8.13	1.25	0.107	0.10	0.000	0.000	0.000	0.005	(
2	Topiramate	LDC	13	04	0.13	1.20	0.107	4	04	03	17	35	
2	Ondansetron	IPA	-24	82.5	4.4	2.07	0.356	0.34	0.000	0.000	0.000	0.028	(
3	hydrochloride	" ^	-24	02.5	4.4	2.07	0.550	2	14	11	57	46	
		Toluen	6	111	3.8	3.1	0.179	0.17	0.000	0.000	0.000	0.016	(
2	Metocloprami	е	0	111	3.0	3.1	0.179	1	07	05	29	07	
4	de base	IPA	-24	82.5	4.4	2.07	0.179	0.17	0.000	0.000	0.000	0.014	(
		IFA	-24	02.3	4.4	2.07	0.179	1	07	05	29	29	
		EDC	13	84	8.13	1.25	0.100	0.09	0.000	0.000	0.000	0.004	(
2	I in a link	EDC	13	04	0.13	1.23	0.100	7	04	03	16	98	
5	Linzolide	Ethyl	4	77	400	2.04	0.075	0.07	0.000	0.000	0.000	0.004	(
		Acetate	-4	77	103	3.04	0.075	2	03	02	12	15	
	1-(3-	Methan		24-	100			0.31	0.000	0.000	0.000	0.009	(
	Chlorophenyl)	ol	12	64.5	12.3	1.11	0.323	2	13	10	52	69	
	-4-(3-	Toluen		444	0.0	0.1	0.075	0.07	0.000	0.000	0.000	0.006	(
2	Chloropropyl)	е	6	111	3.8	3.1	0.075	2	03	02	12	77	
6	Piperazine	A = 1						0.00	0.000	0.000	0.000	0.000	+
	Hydrochloride	Aceton	-9	56.2	24	2	0.009	0.00	0.000	0.000	0.000	0.000	, '
	(T2.HCI)	е						89	00	00	01	23	
	3-Dimethyl												\dagger
2	aminopropylch	Toluen	_	444	2.0	0.4	0.050	0.24	0.000	0.000	0.000	0.022	(
7	loride	е	6	111	3.8	3.1	0.250	0	10	08	40	50	
	hydrochloride												
2	(±)-3-	Toluen	_	444	0.0	0.1	0.4.17	0.14	0.000	0.000	0.000	0.013	1
8	(Carbamoyl	е	6	111	3.8	3.1	0.147	1	06	04	24	22	
				l	l	1		1	l				

		methyl)-5-												ĺ
		methyl												
		hexanoic acid												
		(CMH)												
		N,N-Diethyl												+
	2	Ethylene	Toluen	6	111	3.8	3.1	0.200	0.19	0.000	0.000	0.000	0.018	
	9	Diamine	е	U	111	3.0	J. 1	0.200	2	80	06	32	00	
		Diamino	Toluen						0.09	0.000	0.000	0.000	0.009	
			e	6	111	3.8	3.1	0.103	8	0.000	0.000	16	23	
									0.11	0.000	0.000	0.000	0.002	-
			MDC	-	39	35	2.93	0.115	2	0.000	0.000	18	88	
	3	Levo cetirizine								05	00	10	00	+
	0	Levo cemizme	Triethyl	-	00.0	68.9	2 40	0.051	0.04	0.000	0.000	0.000	0.004	
			amine	14.	88.8	9	3.49	0.051	9	02	02	08	10	
				99					2.40	2.222	2 222	2.222	2.204	\downarrow
			Aceton	-9	56.2	24	2		0.18	0.000	0.000	0.000	0.004	
			е					0.195	9	08	06	31	87	
	3	3-Hydroxy	Toluen	6	111	3.8	3.1		0.19	0.000	0.000	0.000	0.018	Ī
	1	Acetophenone	е	J	111	0.0	0.1	0.200	2	80	06	32	00	
	3		IPA	-24	82.5	4.4	2.07		0.43	0.000	0.000	0.000	0.036	Ì
	2	Pregabaline	IFA	-24	02.5	4.4	2.01	0.454	5	18	14	73	29	
ii	VOC	emission source	s and its r	nitigat	ion me	asures				<u> </u>				

Sources - Charging Materials

Measures

- Enclose Process
- Minimum flanges & joints
- Handled by pump with double mechanical seals
- Proper Ventilation
- Adequate PPEs

> Details regarding storage of Hazardous chemicals Н

Storage details	Name of major Hazardous chemicals	Remarks
Storage tanks	Caustic Iye, Liq. Ammonia,	Storage at ATP
	Hydrochloric Acid, Acetone, IPA,	
	Toluene, Methanol.	
Drum/Barrel storage	MDC, Hexane, Thionyl Chloride, Acetic	Storage at ATP
	Anhydride, THF, Diethyl Amine,	

		Morpholine, Triethyl amine, Diethylene	
		Glycol Acrylamide.	
	Cylinder	Ammonia gas, HCl gas, Chlorine gas,	Under Pressure
		Hydrogen gas.	
	Carboys	Chloroform, Ethyl acetate, EDC,	Storage at ATP
		Piperidine, p-formaldehyde.	
	Glass Bottle	Bromine.	Storage at ATP

> Applicability of PESO : Will be obtained

- During the meeting dated 18/03/2020, technical presentation made by the Project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect for the study area of 10 km radial distance from project site for the period March 2019 to May 2019. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOX, NH3 & VOCat eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST 3. The resultant concentrations are within the NAAQS. The modeling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan
 has been covered in the RA report.
- Committee noted that proposal is new in GIDC Sayakha. Source of water is GIDC. PP mentioned that
 effluent generated from process, washing, scrubber, boiler blow down and cooling tower blow down will be
 treated in in-house ETP consisting of primary treatment and treated effluent will be sent to Common MEE of
 BEIL, Dahej for further treatment and disposal. PP has proposed one steam boiler and one TFH. Fuel used
 will be Bio Coal /Briquette /Coal. PP has addressed Hazardous Waste as per HWR 2016. Committee
 noted that PP has addressed EMP & CER satisfactorily.
- Compliance of ToR found satisfactory.
- After detailed discussion, Committee unanimously decided to recommend the project to SEIAA,
 Gujarat for grant of Environment Clearance.

6	SIA/GJ/IND2/49298/2019	M/s. Ketul Chem Pvt. Ltd. Plot No. D2/CH/132, GIDC Dahej-II, Dist:	EC – Reconsideration
		Bharuch.	

Category of the unit: 5(f)

Project status: New

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/49298/2019 on dated 21/01/2020 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 16/11/2019.
- Project proponent has submitted EIA Report prepared by M/s. Aqua Air Environmental Engineers Pvt. Ltd.
 based on the TOR issued by SEIAA.
- This is new unit proposes for manufacturing of synthetic organic chemical as tabulated below:

	s is new unit proposes for manuf	acturing or synth		inical as labulated below.
SR.N	NAME OF PRODUCTS	CAS NO.	Quantity	END USE
0			(MT/Month)	
Pharm	a Intermediate Group-1			
1	1, 1-Cyclohexane diacetic acid monomide	99189-60-3		Pharma Intermediate/Gabapentin
2	1,1- Cyclohexane diacetic acid (Di-Acid)	11/7/4355		Pharma Intermediate/Gabapentin
3	2-Cyanoacetamide	107-91-5		Pharma Intermediate/pregablin
4	Ethyl cyanoacetate	105-56-6		Pharma Intermediate/pregablin
5	Methyl cyanoacetate	105-34-0		Pharma Intermediate/pregablin
6	± 3-(Carbamoyl methyl)-5- methyl hexanoic acid (CMMHA)	181289-15-6	70	Pharma Intermediate/pregablin
7	3R-(-)-3-(Carbamoyl methyl)- 5-methyl hexanoic acid	181289-33-8		Pharma Intermediate/pregablin
8	2-Cyano pyrazine	19847-12-2		Pharma Intermediate/pyrazinamide
9	2-Cyano pyridine	100-70-9		Pharma Intermediate/bromazepine
10	4-Cyano pyridine	100-48-1	_	Pharma Intermediate/bromazepine
11	Cyanoacetic acid	372-09-8	_	Pharma Intermediate/pregablin
Pharm	a Intermediate Group-2			
12	4-hydroxy Acetophenone	99-93-4		Pharma Intermediate/atenolol
13	4-Hydroxy phenyl acetamide	17194-82-0		Pharma Intermediate/atenolol
14	2-(4-Hydroxyethyl)phenol	56718-71-9	75	Pharma Intermediate/Metoprolol
15	2-{4-(2-Methoxy ethyl) phenoxy} methyl oxirane	56718-70-8		Pharma Intermediate/Metoprolol

16	4-(2-Methoxy ethyl Phenol) OR MEP	501-94-0	Pharma Intermediate/Metoprolol
17	2-Chloro ethanol	107-07-3	pharma intermediate/ thiodiglycol
18	4'-Methyl-2-cyanobiphenyl	114772-53-1	pharma intermediate/ losartan
19	4'-(bromomethyl)-[1,1'- biphenyl]-2-carbonitrile	114772-54-2	Pharma Intermediate/losartan
20	4'-methyl-2-biphenyl carboxylic acid methyl ester	114772-34-8	pharma intermediate/ valsartan
21	2-(Thiophen-2yl) ethanol	5402-55-1	Pharma Intermediate/clopidogrel
22	4-Hydroxy benzaldehyde	123-08-0	pharma intermediate/ Pioglitazone
23	2,4-Dichloro-5-fluoro acetophenone	704-10-9	Pharma Intermediate/ketaconazole
24	2',4'-dichloroacetophenone	2234-16-4	Pharma Intermediate/ketaconazole
25	Ethyl ethoxy methylene malonate	87-13-8	Pharma Intermediate/glibenclamide
26	N-Acetyl thiazolidine-4- caboxylic acid	id 5025-82-1	Pharma Intermediate/ Folcisteine
27	Methyl Isobutyryl acetate		Pharma Intermediate/ atorvastatin
28	D (-) P-Hydroxyphenyl glycine methyl ester	57591-61-4	Pharma Intermediate/amoxicillin
29	5-Methyl-2-pyrazine carboxylic acid	5521-55-1	Pharma Intermediate/glipizide
30	Iminostilbene carbonyl chloride	33948-22-0	Pharma Intermediate/carbamazepine
31	10-Methoxy Iminostilbene	4698-11.7	Pharma Intermediate/oxcarbamezepine
32	2-Chloro-4-(4-chloro phenoxy) acetophenone.	119851-28-4	Pharma Intermediate/difenoconazole
33	2-Amino-4-Hydroxy Acetophenone	90033-64-0	Pharma Intermediate/ractopamine
34	2-Bromo-4'-hydroxy Acetophenone	2491-38-5	Pharma Intermediate/ractopamine
35	2-Chloro-4'-hydroxy Acetophenone	6305-04-0	Pharma Intermediate/ractopamine
Bulk [Drugs Group-1		

36	Pregabalin	148553-50-8		api/anti covulsant
37	Albendazole	54965-21-8	1	api/anti worm
38	Atenolol	29122-68-7		api/beta bocker
39	Atorvastatin Calcium	134523-00-5	1	api/cardiovascular
40	Carbamazepine	298-46-4		api/anti epileptic
41	Gabapentin	60142-96-3	1	api/anti covulsant
42	Ketoconazole	65277-42-1	1	api/anti fungal
43	Losartan potassium	124750-99-8		api/hypertension
44	Metoprolol Succinate	98418-47-4		api/hypertension
45	Metoprolol Tartrate	37350-58-6		api/hypertension
46	Oxcabazepine	28721-07-5		api/anti epileptic
47	Pantaprazol Sodium	138786-67-1		api/anti ulcer
48	Ractopamine hydrochloride	90274-24-1		api/beta agonist
49	Ritonavir	155213-67-5	30	api/antiretroviral
50	Rivaroxaban	366789-02-8		api/anticoagulant
51	Salmeterol xinafoate	94749-08-3	1	api/anti asthamatic
52	Saxagliptin Monohydrate	945667-22-1		api/anti diabetic
53	Soterenol	13642-52-9		api/anti asthamatic
54	Sitagliptin	486460-32-6		api/anti diabetic
55	Valsartan	137862-53-4		api/hypertension
56	Glipizide	29094-61-9		api/anti diabetic
57	Rosuvastatin Calcium	147098-20-2	-	api/cardiovascular
58	Sofosbuvir	1190307-88-0		api/anti viral
59	Telmisartan	144701-48-4	1	api/hypertension
60	Mirtazapine	61337-67-5	-	api/anti histamine
61	Nevirapine	129618-40-2	-	api/HIV/AIDS curing
62	Octopamine	104-14-3		api/veternary
63	Tranexamic acid IP	1197-18-8		api/antifibrinolytics
Speci	alty Chemicals	•		
64	p-Chloro phenol	106-48-9		Raw material for
	p comercipations	1.22.12		4,2(Methoxyethyl)phenol
65	o-Chloro phenol	95-57-8	120	Raw material for 2- Chlorobenzaldehyde
66	2,6-Dichloro toluene	118-69-4		Raw material for 2 methyl 3 biphenyl methanol

67	Hydrazine hydrate	10217-52-4		Raw material for 1,2,4-Triazole
68	1,2,4-Triazole	288-88-0		Raw material for 1-Methyl-1,2,4- Triazole
69	3-Cyano pyridine	100-54-9		Raw material for nictonic acid/nictonamide
70	Phenyl Ethyl Alcohol (PEA)	60-12-8		Raw material for Phenyl Methyl Alcohol
71	Phenyl ethyl methyl ether (PEME)	3558-60-9		Raw material for Phenyl ethyl methyl ether
72	Triclosan	5-34-3380		Raw material for Irgasan
73	2–Amino–4, 4' – Dichloro Diphenyl Ether	121-27-7		Raw material for Yellow acid
74	2–Hydroxy–4, 4'–Dichloro Diphenyl Ether	3380-44-7		Raw material for Tinosan
75	Decabromo diphenyl oxide	1163-19-5		Raw material for Saytex
76	Alpha phenyl ethyl amine dl	618-36-0		Raw material for R+ 1 phenylethylamine
77	(R)-(+)-1-Phenylethylamine	3886-69-9		Raw material for R- carbommoyl methyl 5 methyl hexanoic acid
78	(S)-(-)-1-Phenylethylamine	2627-86-3		Raw material for (S)-3-Cyano-5- methylhexanoic acid
79	L-(+)-Mendelic acid	17199-29-0		Raw material for Dulexotine Hydrochloride
80	Malononitrile	109-77-3		Rawmaterial for 2 chlorobenzaldehyde malononitrile
81	2,4-Difluoro aniline	367-25-9		Raw material for 2,4-difluoro-5-chloronitrobenzene
82	2,2-Dibromo-2- Cyanoacetamide	10222-01-2		Raw material for Bioban (dbnpa)
83	2-(4-tert-butyl)phenyl) ethanol	5406-86-0		Raw material for 2-Benzoxazol-2-yl-1- (4-tert-butylphenyl)ethanol
	Total		295	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 18/02/2020.
- Salient features of the project are as under:

_			
	Sr.	Particulars	Details

no.		
Α		
Α	Total cost of Proposed Project	22.0 Crores
	(Rs. in Crores):	
	Details of EMP	

Environment	Remedial Measures	Component	Capital Cost of	Recurring Cost
Issue/			EMP	of EMP
Component				
Hazardous waste generation & disposal	Proper collection, Safe Handling, Storage within premises and disposal	Cost of TSDF/CHWIF membership letter of M/s. SEPPL, Dahej	Rs. 75,000/-	
	of waste at approved TSDF, incineration facility, re-cyclers, re-	Construction of Hazardous waste storage yard	Rs. 15,00,000/-	
	processors.	Cost for TSDF disposal		Rs. 1,53,60,000/- per year
		Cost for incineration disposal		Rs. 3,74,40,000/- per year
Effluent generation and treatment	Low COD effluent from ETP will be sent to inhouse RO & High COD	Construction cost Effluent treatment plant & RO	Rs. 1,00,00,000/-	
	effluent will be treated in in-house MEE.	Treatment cost of effluent/ year		Rs. 4,38,60,000/- per year
Details of Air Emission	Adequate pollution control system will be	Cost of stack installation	Rs. 2,00,000/-	
	provided for control of gaseous emission. • Adequate stack height for better	Cost of multi-cyclone separator with bag filter and Water Scrubber	Rs. 8,00,000/-	
	dispersion of	Cost of scrubber	Rs. 8,00,000/-	
	pollutants Dust Control During Construction	Cost of maintenance of APCM System	Rs. 75,000 /-	Rs. 5,00,000/- per year

			1,85,10,000/-	per Year
TOTAL			Rs.	Rs. 9,75,30,000/-
	control system.			
	effectiveness of the			
	carried out to check the	parameters		
parameters	parameters will be	environmental		
Environmental	various environmental	various		year
Monitoring of	Regular monitoring of	Cost of monitoring of	Rs. 35,00,000/-	Rs. 3,00,000/-pe
				year
	greenbelt.	Cost of maintenance		Rs. 1,00,000/- pe
	will be developed as	plantation		
Plantation	30 % of the plant area	Cost of tree	Rs. 15,60,000/-	

Details of CER as per OM dated 01/05/2018

As per OM no. 22-65/2017 on dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER), Brownfield projects have to contribute 2% of the Additional Capital Investment, the company will contribute Rs 44.0 Lakhs as funds for CER activities

Activities to be carried out under CER:

- > Education,
- > Health,
- > Environment,
- Agriculture

В	Total Plot area (sq. meter)	13,923 Sq. m.
	Green belt area	4,177 Sq. m.
	(sq. meter)	
С	Employment generation	150
D	Water	
i	Source of Water Supply	GIDC Water Supply
	(GIDC Bore well, Surface water, Tanker supply etc)	
	Status of permission from the concern authority.	GIDC/DEE(WS)/BRH/235

	Category		Quanti	ity	Remarks	
	(C) Dom	astic	KLD 10.0			
	. ,	(G) Domestic (H) Gardening				
	(I) Indus		2.0			
	Proce		136.4			
	Washing		20.0			
	Boiler		40.0			
	Cooling		10.0			
	Scrubber		4.0			
	Industrial To	tal	210.4			
	Total (A + B	3 + C)	222.4			
2) Quanti 3) Total fi (Total water r	vater requirement ty to be recycled: resh water require equirement = Fre	9.6 KLD ment: 212	2.8 KLD			
2) Quanti 3) Total fi (Total water r	ty to be recycled: resh water require equirement = Free generation (KLD)	9.6 KLD ment: 212 sh water Waste v	2.8 KLD + Recyc l			
2) Quanti 3) Total fi (Total water r Waste water g	ty to be recycled: resh water require equirement = Free generation (KLD)	9.6 KLD ment: 212 sh water	2.8 KLD + Recyc l	led water)		
2) Quanti 3) Total fi (Total water r	ty to be recycled: resh water require equirement = Free generation (KLD) pory	9.6 KLD ment: 212 sh water Waste v	2.8 KLD + Recyc l	led water)		
2) Quanti 3) Total fi (Total water r Waste water g Categ	ty to be recycled: resh water require equirement = Free generation (KLD) pory estic trial	9.6 KLD ment: 212 sh water Waste v	2.8 KLD + Recyc l	Remarks	k TDS: 103.8 KI	_D (ETP-1)
2) Quanti 3) Total fi (Total water r Waste water g (E) Dome	ty to be recycled: resh water require equirement = Free generation (KLD) pory estic trial	9.6 KLD ment: 212 sh water Waste v KLD 8.0	2.8 KLD + Recyc l	Remarks Low COD 8	k TDS: 103.8 KI	,
2) Quanti 3) Total fi (Total water r Waste water g (E) Dome	ty to be recycled: resh water require equirement = Free generation (KLD) pory estic trial	9.6 KLD ment: 212 sh water Waste v KLD 8.0	2.8 KLD + Recyc l	Remarks Low COD 8 High COD		D (ETP-2)
2) Quanti 3) Total fi (Total water r Waste water (Categorian (E) Dome (F) Indus Proces	ty to be recycled: resh water require equirement = Free generation (KLD) pory estic trial	9.6 KLD ment: 212 sh water Waste v KLD 8.0	2.8 KLD + Recyc l	Remarks Low COD 8 High COD 8	& TDS: 10.4 KL & TDS: 20.0 KLI	D (ETP-2)
2) Quanti 3) Total fil (Total water r Waste water (Categoria) (E) Dome (F) Indus Proces Washing	ty to be recycled: resh water require equirement = Free generation (KLD) pory estic trial	9.6 KLD ment: 212 sh water Waste v KLD 8.0 114.2	2.8 KLD + Recyc l	Remarks Low COD 8 High COD 8	& TDS: 10.4 KL & TDS: 20.0 KLI D, RO Reject of	D (ETP-2)
2) Quanti 3) Total fil (Total water r Waste water g (E) Dome (F) Indus Proces Washing Boiler	ty to be recycled: resh water require equirement = Free generation (KLD) pory estic trial	9.6 KLD ment: 212 sh water Waste v KLD 8.0 114.2 20.0 10.0	2.8 KLD + Recyc l	Remarks Low COD & High COD & Low COD & RO: 12 KLI with ETP-1	& TDS: 10.4 KL & TDS: 20.0 KLI D, RO Reject of	D (ETP-2) D (ETP-1) 2.4 KLD will be treate
2) Quanti 3) Total fit (Total water r Waste water g (E) Dome (F) Indus Proces Washing Boiler Cooling Scrubber	ty to be recycled: resh water require equirement = Free generation (KLD) pory estic trial	9.6 KLD ment: 212 sh water Waste v KLD 8.0 114.2 20.0 10.0 2.0	2.8 KLD + Recyc l	Remarks Low COD & High COD & Low COD & RO: 12 KLI with ETP-1	& TDS: 10.4 KL & TDS: 20.0 KLI D, RO Reject of	D (ETP-2) D (ETP-1) 2.4 KLD will be treate

ETP-1 (Primary, Secondary, Tertiary): 126.2 KLD

> ETP-2 (Primary) : **10.4 KLD**

> ETP-3 (RO): **12.0 KLD**

Treatment scheme including segregation at source.

Stream I (Low COD & TDS Stream) (123.8 KLD + 2.4 RO Reject)

- First all non-toxic and biodegradable streams (low & medium COD & TDS) of wastewater shall pass through oil & grease removal tank (ogrt-01) where floating o & g shall be removed manual from top and collected in o & g collection tank (ogct-01). Then effluent shall be collected in collection cum equalization tanks-01 (cets-01). Pipe grid is provided at bottom of the cets-01 to keep all suspended solids in suspension and to provide proper mixing. 2 nos. Of air blowers (1w+1 stand-by) shall supply air through to pipe grid.
- Then after, equalized wastewater shall be pumped to neutralization tank-1 (nt-01-b) where the continuous addition and stirring of lime solution is done to maintain neutral ph of wastewater from lime dosing tanks (ldt-01-a/b) as per requirement with help of lime dosing pumps. Then after, neutralized wastewater shall go to flash mixer (fm-01) by gravity. Alum shall be dosed from alum dosing tanks (adt-01-a/b) with help of dosing pumps. Then coagulated effluent shall be collected in flocculator (fl-01) where polyelectrolyte shall be dosed from polyelectrolyte dosing tank-1 (pedt-01) with help of pumps to carry out flocculation with help of flocculator mechanism. Then after, coagulated wastewater shall be settled in primary clarifier-1 (pcl-01).
- Clear supernatant from pcl-01 shall be passed in aeration tank-1 (at-01). Here, condensate from MEE and ATFT through condensate storage tank (cst-01) mix with effluent. Here, biodegradation of organic matter of the wastewater shall be carried out by bacteria (suspended growth) in the at-01 and for that oxygen shall be supplied by 2 nos. of air blowers (b-02) through diffusers. Air blowers also keep MLSS in suspension.
- ➤ Then after, wastewater shall go to secondary clarifier-1 (scl-01). Here, the suspended solids shall be settled. Sludge shall be removed from bottom of scl-01 and pumped to at-1 to maintain MLSS and excess activated sludge shall be sent to sludge sump (ss-01).
- Clear supernatant from scl-01 shall go to aeration tank-2 (at-02). Here biodegradation of left out organic matter of the wastewater shall be carried out by bacteria (suspended growth) and for that oxygen shall be supplied by two nos. Of blowers (b-03) with help of diffusers. Then after, wastewater shall go to secondary clarifier-2 (scl-02) from at-2. Here, the suspended solids shall be settled. Activated sludge shall be removed from bottom of scl-02 and pumped to at-02 to maintain MLSS and remaining will be sent to ss. Nutrients will be added from nutrient dosing tanks (ndts-01) to aeration tank-1 & 2 for growth of bacteria. Clear shall be collected in intermediate sump (is-01) by gravity.
- Thereafter, the wastewater shall be passed through multi grade filter (mgf-01) to remove left out

- TSS and activated carbon filter (acf-01) for final effluent polishing. After tertiary treatment, effluent shall be collected in treated effluent sump-01 (tes-01) before sent to CETP Dahej for further treatment.
- Sludge settled in pcl-01, pcl-02 and excess sludge from scl-01-b/02-b shall be collected in sludge sumps (sss-01-a/b) then sludge shall be pumped to centrifuge (cf-01) where poly shall be mixed from poly dosing tank-2 (pdt-02) with sludge to increase efficiency of centrifuge sludge dewatering. Then, dewatered sludge shall be stored in in HWSA and then ultimate disposal to TSDF. Leachate from cfs-01 and backwash from mgf-01 and acf-01 shall be collected in drain pit and pumped back to cet-01-a/b for further treatment.

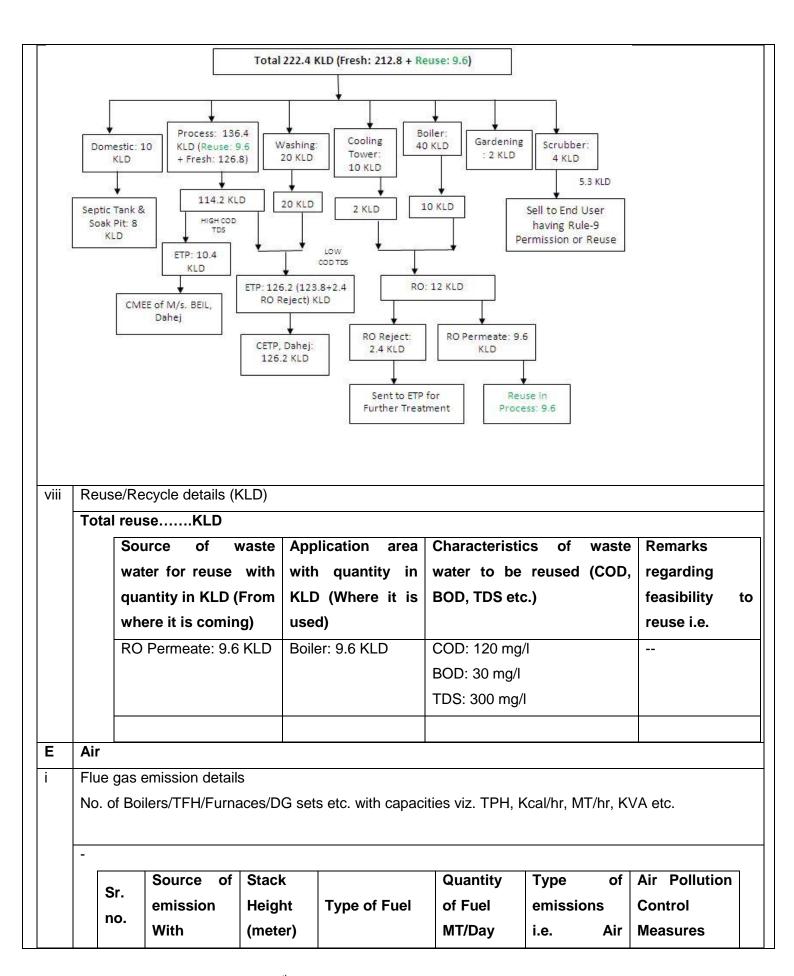
Stream II (High TDS stream) (10.4 KLD Process)

- All high TDS streams of wastewater shall be collected in equalization cum neutralization tank-01 (ent-01). Here caustic shall be added from ldt-01 by gravity. Mixer is provided at bottom of the ent-01 to keep all suspended solids in suspension and for proper mixing.
- Then, neutralized wastewater shall be pump to flash mixer-02 (fm-02) where alum and polyelectrolyte shall be dosed from alum dosing tank (adt-01) and polyelectrolyte dosing tank (pedt-01) respectively by gravity. Then it will go into pst-01 where solids are allowed to settle and clear supernatant from pst-01 shall be collected in treated effluent sump (tes-01) before sent to common MEE M/s. BEIL for further treatment.

Stream-III (12 KL)

All utilities streams of wastewater shall be passed through duel media filter (dmf-01) to remove left out TSS. After treatment, effluent shall be collected in RO feed tank (roft-01) before sent to RO-01 for further treatment. RO-01 permeate water shall be collected in RO permeate tank (ropt-01) before reuse in process & RO-01 reject shall be sent to ETP for further treatment.

Note: (In case of CETP discharge):


Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP.

> Unit has proposed ETP to achieve CETP norms, and then after unit will discharge the effluent to CETP, Dahej through Pipeline.

Brief note on adequacy of ZLD (In case of Zero Liquid Discharge):

Low COD & TDS effluent will be discharge into CETP, Dahej after treated in Primary, Secondary and tertiary treatment. High COD & TDS effluent will be treated in primary treatment and then sent to CMEE of BEIL, Dahej and waste water from Cooling and boiler will be treated in RO and reuse within premises.

	Domestic:	Septic tank/Soak Pit System					
	Industrial:	Low COD & TDS: Effluent will be treated in Primary, Secondary and tertiary treatment					
		after that sent to CETP, Dahej.					
		High COD & TDS: Effluent will be treated in in primary treatment and then sent to					
		CMEE of BEIL, Dahej.					
		Waste water from Cooling and boiler will be treated in RO and reuse within premises.					
		> 126.2 KLD Low COD & TDS effluent will be discharge into CETP, Dahej after					
		treated in Primary, Secondary and tertiary treatment.					
		> 10.4 KLD High COD & TDS effluent will be treated in primary treatment an					
		then sent to CMEE of BEIL, Dahej and waste water from Cooling and boiler wi					
		be treated in RO and reuse within premises.					
		RO Permeate of 9.6 KLD will be reuse in Process.					
		> Domestic waste water (8.0 KL/day) will be disposed by septic tank or soak p					
		system.					
vi	In case of Com	nmon facility (CF) like CETP, Common Spray dryer, Common MEE etc. Name of CF					
	> CETP,	Dahej, CMEE of BEIL,Dahej					
	Membership of	Membership of Common facility (CF)					
	(For waste wa	(For waste water treatment)					
	GIDC/BRH/DE	E (DRG)/362					

	Capacity				Pollutants	(APCM)
1	Boiler (4 TPH)	30	Coal	4	$SPM < 150$ mg/Nm^3 $SO_2 < 100$ ppm $NO_x < 50$ ppm	Multi Cyclone Separator with Bag Filter & Water Scrubber
2	D. G Set (750 KVA)	11	HSD	2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Adequate stack Height

ii Process gas emission details i.e. Type of pollutant gases (SO₂, HCl, NH₃, Cl₂, NO_x etc.)

-

Sr. no.	Specific Source of emission (Name of the Product & Process)	Type of emission	Stack/Vent Height (meter)	Air Pollution Control Measures (APCM)
1	Process Vent (Ketoconazole)	HCI	11	Two stage Water scrubber
2	Process Vent (Valsartan)	SO ₂	11	Two stage Alkali scrubber
3	Process Vent (Ketoconazole)	HBr	11	Two stage Water scrubber
4	Process Vent (4-Hydroxy Phenyl Acetamide)	NH ₃	11	Two stage Water scrubber

iii Fugitive emission details with its mitigation measures:

As below:

Following measures will be adopted to prevent and control fugitive emissions:

1. Airborne dust at all transfers operations/ points will be controlled either by spraying water or

providing enclosures.

- 2. Adequate ventilation will be provided.
- 3. Regular maintenance of valves, pumps, flanges, joints and other equipment will be done to prevent leakages and thus minimizing the fugitive emissions.
- 4. Entire process will be carried out in the closed reactors with proper maintenance of pressure and temperature.
- 5. Periodic monitoring of work area will be carried out to check the fugitive emission.
- 6. Stand by pumps will be provided on all scrubbers. Besides, scrubbers will be equipped with on-line pH meter with hooter system for better operational control.
- 7. Close feeding system will be provided for centrifuges. Centrifuge and filtrate tank vents will be connected to vent chillers.
- 8. Minimum number of flanges, joints and valves in pipelines.
- 9. Regular inspection of floating roof seals and proper preventive maintenance of roofs and seals for tanks.
- 10. Fugitive emission over reactors, formulation areas, centrifuges, chemical loading, transfer area will be collected through hoods and ducts by induced draft and controlled by scrubber/dust collector.
- 11. Dedicated scrubber will be provided are used for fugitive emissions to control.
- 12. For dust emissions bag filter will be provided.

Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber / dust collector to be ensured.

F Hazardous wastes

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

Sr. No.	Type Of Waste	Source Of Generation	Category	Quantity (MT/Annu	Mode Of Treatmen And Disposal
				m)	
1	Spent carbon	± 3-(Carbamoyl methyl)-5-	Schedule-	504	Collection, Storage
		methyl hexanoic acid	(I)-(28.3)		Transportation an
		(CMMHA),			sent for co-processin
		4-Hydroxy phenyl			in cement industries
		acetamide, Triclosan,			sent to Incineration
		Sitagliptin, Nevirapine			site.
2	Sulphuric Acid (50)- 1,1- Cyclohexane diacetic	Schedule-	13,629	Collection, Storag

	65%)	acid (Di-Acid), 2–Hydroxy-	·(I)-(28.1)		Transportation and
		4, 4'-Dichloro Diphenyl			Sell to end users
		Ether, Triclosan,			Having Rule-9
					permission.
3	HCI (30%)	4-hydroxy Acetophenone,	Schedule-	1,402	Collection, Storage
		2,6-Dichloro toluene,	(I)-(28.1)		and Reuse in 3R-(-)-3
		Saxagliptin Monohydrate			(Carbamoyl methyl)-5
		& Scrubber			methyl hexanoic aci
					(Reqd Qty. 571
					MT/Annum)
4	Dil. Formic Acid	1,2,4-Triazole	Schedule-	2,706	Collection, Storag
			(I)-(28.1)		and Reuse in 1,2,4
					Triazole (Reqd Qty
					2978.0 MT/Annum)
5	NaCl Salt	Cyanoacetic acid, 2-	Schedule-	1,872	Collection, Storage
		Amino-4, 4' - Dichloro	(I)-(28.1)		Transportation an
		Diphenyl Ether,			Disposal to TSDF site
		Malononitrile, Pregabalin			
6	Discarded	Raw Material and Storage	Schedule-	1,500 Nos.	Collection, Storage
	Drums/Bags/Liners		(I)-(33.1)		Decontamination,
					Reuse, Transportation
					and sale to authorize
					vendor.
7	Spent Catalyst	4-(2-Methoxy ethyl	Schedule-	72	Collection, Storage
		Phenol) OR MEP, Phenyl	(I)-(28.2)		Transportation an
		Ethyl Alcohol (PEA),			Sell to Regenerate
		Ritonavir			Having Rule-
					permission.
8	Organic Waste	Saxagliptin Monohydrate,	Schedule-	1,020	Collection, Storage
		Rosuvastatin Calcium	(I)-(28.1)		Transportation an
					sent for co-processin
					in cement industries of
					sent to commo
					incineration site.
9	Iron Sludge	2-Amino-4, 4' - Dichloro	Schedule-	756	Collection, Storage

		Diphenyl Ether	(I)-(28.1)		Transportation and
					Disposal to co-
					processing in cement
					industries or sent to
					TSDF site.
10	Inorganic Waste	2',4'-	Schedule-	3,372	Collection, Storage,
		dichloroacetophenone,	(I)-(28.1)		Transportation and
		Soterenol, Triclosan,			Disposal to co-
		Octopamine			processing in cement
					industries or sent to
					TSDF site.
11	Spent Solvent	Manufacturing Process	Schedule-	31,500	Collection, Storage
			(I)-(28.6)		and reuse within
					premises after
					distillation.
12	Distillation Residue	Distillation plant	Schedule-	948	Collection, Storage
			(I)-(20.3)		Transportation and
					sent for co-processing
					in cement industries or
					sent to common
					incineration site.
13	Off Specification	Failure of Batch	Schedule-	24	Collection, Storage
	Products		(I)-(28.4)		Transportation and
					sent for co-processing
					in cement industries or
					sent to common
					incineration site.
14	Used Oil	From Moving Machineries	Schedule-	12	Collection, Storage
			(I)-(5.1)		Transportation, Reuse
					and sale to authorized
					recycles.
15	Sodium Acetate	Atorvastatin Calcium	Schedule-	18	Collection, Storage
	(25%)		(I)-(28.1)		Transportation and
					Sell to end users
					Having Rule-9

					permission.
16	Sodium Sulphate	Ritonavir	Schedule-	45	Collection, Storag
	(95%)		(I)-(28.1)		Transportation a
					Sell to end use
					Having Rule
					permission.
17	Sodium Bromide	2,2-Dibromo-2-	Schedule-	144	Collection, Storag
	(95%)	Cyanoacetamide,	(I)-(28.1)		Transportation a
		Telmisartan			Sell to end use
					Having Rule
					permission.
18	Sodium Bisulfite (30-	Triclosan	Schedule-	726	Collection, Storag
	40%)		(I)-(28.1)		Transportation a
					Sell to end use
					Having Rule
					permission.
19	KCI (50%)	Sofosbuvir	Schedule-	492	Collection, Storage
			(I)-(28.1)		Transportation a
					Sell to end use
					Having Rule
					permission.
20	Ammonium Chloride	Sofosbuvir	Schedule-	15	Collection, Stora
	(10-15%)		(I)-(28.1)		and Reuse
					Sofosbuvir (Reqd C
					14.4 MT/Annu
					excess qty will be s
					to end users hav
					rule-9 permission.
21		1,2,4-Triazole & Scrubber	Schedule-	144	Collection, Stora
	Salt		(I)-(28.1)		and Reuse
					Sofosbuvir (Reqd C
					144 MT/Annum)
22	Liq. Ammonia (20-	1,2,4-Triazole & Scrubber	Schedule-	1,836	Collection, Stora
	25%)		(I)-(28.1)		and Reuse
					Hydrazine Hydra

					(Reqd Qty. 300 MT/Annum)
23	Potassium Acetate (50%)	Telmisartan	Schedule- (I)-(28.1)	72	Collection, Storag Transportation ar Sell to end use Having Rule- permission.
24	HBr (30-35%)	2-Amino-5-nitro thiazole	Schedule- (I)-(28.1)	84	Collection, Storag Transportation ar Sell to end use Having Rule permission.
25	Sodium Sulphite (28%)	Scrubber	Schedule - (II)-B36	504	Collection, Storag Transportation ar Sell to end use Having Rule- permission.
26	Dil. Hydrogen Bromide (25%)	Scrubber	Schedule - (II)-B36	480	Collection, Storag Transportation ar Sell to end use Having Rule permission.
27	ETP Sludge	ETP Treatment	Schedule- (I)-(35.3)	1,680	Collection, Storag Transportation ar Disposal to concessing in ceme industries or sent TSDF site.
	nbership details of TSD HW management)	F, CHWIF etc.	Proponen	t has appli	ed for membership
Deta	ails of Non-Hazardous v	vaste & its disposal	There will waste.	be no gen	eration of Non-Hazardo

 Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format)

Solvent	Boiling	Vapor	Input	Output	Loss	% Recovery	% Loss
Solveni	Point (°C)	Pressure	(MT)	(MT)	LUSS	% Recovery	70 LUSS
EDC	83.47	100 mm Hg @ 30°C	513	492	21	95.91	4.09
MDC	39.6	400 mm Hg @ 24.1°C	389	379	10	97.43	2.57
Toluene	111	22 mm Hg @ 20°C	654	629	25	96.18	3.82
Methanol	64.7	96 mm Hg @ 20°C	803	765	38	95.27	4.73
Phenol	181.7	0.4 mm Hg @ 20°C	615	597	18	97.07	2.93
IPA	82.2	82.2 mm Hg @ 20°C	356	346	10	97.19	2.81
Xylene	139.3	8.3 mm Hg @ 20°C	543	528	15	97.24	2.76
Ethyl Acetate	96.5	10 mm Hg @ 20°C	750	732	18	97.60	2.40
Acetone	76.4	11.1 mm Hg @ 20°C	687	663	24	96.51	3.49
DMF	153	3.7 mm Hg @ 25°C	369	353	16	95.66	4.34

ii VOC emission sources and its mitigation measures

During operation stage, leakage through valves/pumps, leakage and emission from open drum containing chemicals, open feeding, storage tanks, etc. will be major sources of fugitive emissions and VOCs. Excess use of solvent/s may also results fugitive emission from the process vessels.

- Solid raw material charging will be done through closed system.
- Entire process will be carried out in the closed reactors with proper maintenance of pressure and temperature.
- Close feeding system will be provided for centrifuges. Centrifuge and filtrate tank vents will be connected to vent chillers.
- Fugitive emission over reactors, formulation areas, centrifuges, chemical loading, transfer area,
 will be collected through hoods and ducts by induced

draft and controlled by scrubber/dust collector.

- Emphasis will be given to solvent management/solvent loss prevention.
- Control by having proper scrubbing system.
- Condenser to trap VOC.
- Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber/dust collector to be ensured.
- Proper maintenance schedule will be adhered to avoid emissions through flange joints, pump seals etc.
- Minimum number of flanges, joints and valves in pipelines.
- > Proper gland packing will be maintained for pumps and valves and to the extent possible pumps with mechanical seal.
- All the raw materials will be pneumatically transfer to the reactor.
- All rotating equipments like pumps will be installed with mechanical seals to arrest any sort of emissions.
- A regular preventive maintenance schedule will be in place to replace or rectify all gaskets and joints etc. as a part of ISO systems to ensure no fugitive emissions take place.
- Periodic monitoring of work area will be carried out to check the fugitive emission.
- Solvent tank vents will be connected to vent chillers.
- Adequate ventilation will be provided.
- Airborne dust at all transfers operations/ points will be controlled either by spraying water or providing enclosures.
- Breather valves will be provided on solvent tanks.

H Details regarding storage of Hazardous chemicals

Storage details	Name of	major	Remarks
	Hazardous cher		
Storage tanks	HCI, H ₂ SO ₄ ,	Methanol,	
	Toluene, Ethyle	ne Oxide,	
	Chloroform, Liq.		
Drum/Barrel storage	Ammonium	Chloride,	
	Chloro Acetyl	Chloride,	
	Phenol,	Methyl	
	Cynoacetate,		

	Cylinder	Chlorine, Nitrogen	Hydrogen,			
> Applicability of PESO : Yes Applicable						

- During the meeting dated 18/02/2020, technical presentation made by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the October 2018 to December 2018. Ambient Air Quality monitoring was carried out for PM10, PM2.5, Sulphur Dioxide, Nitrogen Oxide, CO, O3, NH3, VOC at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST3. The resultant concentrations are within the NAAQS.
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan
 has been covered in the RA report.
- Committee noted that this proposal is new in GIDC Dahej-II, Bharuch.
 - During SEAC meeting on 27/12/2019, committee noted that Source of water is GIDC. Committee noted that PP has mentioned green belt 30% of total area instead of as per CPCB guidelines. PP mentioned that Low COD effluent from Plant is treated in primary and secondary and tertiary ETP and will be used discharged into GIDC drainage leading to CETP. High COD and TDS effluent will be sent to CMEE, Dahej after primary treatment. Boiler and cooling blow down will be treated in RO plant while exhausted scrubbing media effluent will be sold to end users having Rule- 9 permission and reuse in plant. Committee insisted for segregation of stream like high COD/TDS, Low COD/TDS with distinctly mentioning characteristics of each segregated stream and its source and explores possibility for reuse of effluent rather than discharge. Committee asked PP to submit revised membership certificate of CMEE with mentioning total consented capacity, actual capacity, Booked load and spare capacity of CMEE. Committee noted that PP has addressed MCS and bag filter and water scrubber as APCM with coal fired boiler and two stage scrubber with process reactor. Committee noted that PP has not addressed Hazardous Waste table as per HWR -2016 along with MoU/LOI for selling of spent acid, scrubber bleed liquer disposal etc. Committee also insisted for explore possibility for reuse of hazardous waste like spent acid. Committee noted that PP has not properly addressed LDAR for each solvent with its technical details and its mitigation measures for curb solvent losses. Committee also noted that PP has not submitted need based CER activity for surrounding villages. Committee also asked PP to submit revised EMP with mentioning mitigation measures for dust control during construction phase as per MoEF &CC OM dated 25/01/2018. Committee deliberated on

baseline data, green belt and LDAR etc for proposed project

- After detailed discussion, Committee unanimously decided to defer the proposal and call the project proponent for presentation only after satisfactory submission of the following details.
 - 1. Segregation of stream like high COD/TDS and Low COD/TDS effluent with distinctly mentioning Characteristics of each segregated stream and its source.
 - Explore possibility for reuse of waste water rather than discharge and revised membership certificate for CMEE with mentioning total consented capacity, actual capacity, booked load capacity and spare capacity.
 - 3. Submit revised EMP with mentioning mitigation measures for dust control during construction phase as per MoEF & CC OM dated 25/01/2018.
 - 4. Submit need based CER activity for surrounding villages with budgetary provision for five years.
 - 5. Readdress LDAR for each solvent with its technical details and its mitigation measures for curb solvent losses in atmosphere.
 - 6. MoU/LOI for selling of Hazardous waste like spent acid, scrubber bleed liquor etc to end users having Rule- 9 permission and explore possibility for reuse of hazardous waste like spent acid.
- Project proponent made presentation for the above mentioned query dated 18/03/2020 for the above mentioned points.
- PP presented replied as below:
 - 1. PP presented Segregation of stream like high COD/TDS and Low COD/TDS effluent with distinctly mentioning Characteristics of each segregated stream and its source.
 - 2. PP presented that 32.0 KL/day Boiler, washing & Cooling Blow down water stream will be treated in RO plant. 25.6 KLD RO permeates will be reuse in process water. RO reject will be sent to ETP for further treatment. Further PP presented membership certificate for CMEE by mentioning total consented capacity, actual capacity, booked load capacity and spare capacity.
 - 3. PP presented revised EMP by mentioning mitigation measures for dust control during construction phase as per MoEF & CC OM dated 25/01/2018.
 - 4. PP submitted need based CER activity for surrounding villages with budgetary provision for five years.
 - 5. PP readdressed LDAR for each solvent with its technical details and its mitigation measures for curb solvent losses in atmosphere.
 - 6. PP submitted MoU/LOI for selling of Hazardous waste like spent acid, scrubber bleed liquor etc to end users having Rule- 9 permission.
- Committee deliberated on the reply submitted by PP and found it satisfactory.
- Compliance of ToR found satisfactory.
- After detailed discussion, Committee unanimously decided to recommend the project to SEIAA,
 Guiarat for grant of Environment Clearance.

7	SIA/GJ/IND2/47825/2019	M/s. Shivam Inchem	EC - Reconsideration

Plot No - D-2/CH/202, GIDC Ind Estate,	
Dahej-2, Ta - Vagra, Dist –Bharuch.	

Category of the unit: 5(f)
Project status: Expansion

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/47825/2019 dated 05/07/2017 for obtaining Environmental Clearance.
- SEIAA issued TOR to PP vide letter dated 03/10/2019.
- Project proponent has submitted EIA Report prepared by M/s: Aqua Air Environmental Engineering Pvt. Ltd based on the TOR issued by SEIAA.
- This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

Sr.				Quantity			Remark
_	Name Of The	CAS NO. /		MT/Month		End-Use Of	
No	Products	CI NO.	Existing	Propose	Total	the Products	
•				d			
EXIS	STING						
1	Ferrous Sulphate	7782-63-0	600	0	600	Hematinic	
2	Magnesium Sulphate	7487-88-9	600	0	600	Laxative	
3	Copper Sulphate	7758-98-7	100	0	100	Anti fungal	
4	Zinc Sulphate	7446-20-0	150	0	150	Pregnancy	
	(Heptahydrate &	&				Category	
	Monohydrate)	7446-19-7					
5	Sodium Thiosulphate	7772-98-7	300	0	300	Anti fungal	
PRC	POSED	ı	l			1	1
Gro	up-A						
6	7-(1,3-Dioxolan-2-	69975-86-				Anti	Unit is mfg
	ylmethyl)-1,3-dimethyl	6				Asthmatic	either
	purine-2,6-dione						individual o
	Doxofylline						total
7	2-[2-(4-dibenzo [b,f]	111974-	0	40	40	Antipsychotic	production o
	[1,4] Thiazepin -11-yl-	72-2					Group – A sha
	1-piperazinyl)ethoxy]-						not exceed 4
	ethanol Quetiapine						MT/Month.
	fumarate						

8	3-Ethyl 5-methyl 2-{(2-	113994-				Anti	
	aminoethoxy)methyl]-	41-5				Hypertensive	
	4-(2-chlorophenyl)-6-					S	
	methyl-1,4-						
	dihydropyridine-3,5-						
	dicarboxylate						
	Amlodipine besylate						
9	Aceclofenac	89796-99-				Anti	
		6				asthematic	
10	Diclofenac Sodium	15307-79-				Anti	
		6				Inflammatory	
11	Pregabalin	148553-				Pharma	
		50-8					
12	Atorvastatin Calcium	134523-				Anti	
		00-5				Cholesteremi	
						С	
13	Phenylephrine	61-76-7				Decongestant	
	Hydrochloride					Drug	
Gro	up-B						
14	Ethyl Peridone	28141-13-				Dyes	Unit is mfg
		1				Intermediates	either
15	Methyl Peridone	694-85-9				Dyes	individual or
			0	00	00	Intermediates	total
			0	80	80		production of
							Group-B shall
							not exceed 80
							MT/Month.
16	Synthetic Rubber		0	200	200	Auto Sector	
	Adhesive		U	200	200		
	1	Total	1750	320	2070		ı

- PP was called for presentation in the SEAC meeting dated 04/03/2020.
- Salient features of the project for Water, air and Hazardous waste management are as under:

Sr.	Particulars	Details
no.		

A Total cost of Proposed Project Existing:0.45 Crores

(Rs. in Crores): Proposed:4.05 Crores

Total: 4.50 Crores

ii EMP details (Capital cost & Recurring cost)

Brief details of EMP

COMPONENT	CAPITAL COST OF EMP	RECURRING COST OF EMP (per Month)
Cost	Rs.95 Lakhs	Rs. 27.179 Lakhs

Bifurcation of EMP Cost

Sr. No	Unit	Installed Capacit y (KLD)	Capital Cost (Rs. In Lakhs)	Operating Cost (Lacs/Month)	Maintenance Cost (Lacs/Month)	Total Recurring Cost (Lacs/Month)
1	Effluent	30 KLD	60.0	25.20		85.2
	Treatment Plant					
2	APCM		14.5		0.75	15.25
3	Hazardous Waste		9.5	6.02		15.52
4	AWH Monitoring Cost		5.0	0.062		5.06
5	Greenbelt		6.0		0.16	6.16
	Total		95.0	31.282	0.91	127.192

iii CER details (As per MoEF&CC OM dated 01/05/2018)

As per OM no. 22-65/2017 on dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER), Greenfield projects have to contribute 2% of the Capital Investment, the company will contribute Rs. 9.0 Lakhs as funds for CER activities

Component	As per Norms	Allocation
CER	Rs. 9.0 Lakhs (2 %)	Rs. 9.0 Lakhs (2 %)

Activities to be carried out under CER:

CSR Acti	vities	Fund (Rs.)
2020-2021		

	Diab	etics detection &, Senior C	itizen Health	Care Camps 8	& donate free	1,00,000/-			
		cine in Jolva village		'		, ,			
	2021-2022								
	Supp	ly & Fixing of CC Precas	t interlocking	paving blocks	in Prathamik	3,00,000/-			
	Scho	ol about 100 Sq. Meter in J	lolva Village						
	2022	-2023							
	Provi	ded Solar street light set w	vith battery ba	ackup (18W -10	Nos.204 KW	3,50,000/-			
	to 5 I	(W) in Glenda Village							
	2023	-2024							
	Тор	ovide fund for Road develo	pment in vac	dadla village		1,50,000/-			
					TOTAL	9,00,000 /-			
В	Total Plot a	ırea		Existing: 3	3832.49 Sq. m				
	(sq. meter)			Proposed	: 4500 Sq. m.				
			Total: 833	32.49 Sq. m.					
	Green belt	area	Existing: 5	Existing: 500 Sq. m.					
	(sq. meter)		Proposed	Proposed: 2250 Sq. m.					
			Total: 275	Total: 2750 Sq. m. (33 %)					
С	Employme	nt generation) Employees					
				20 Employees					
				Total - 30	- 30 Employees				
D	Water			0,-0					
i		/ater Supply			GIDC Water Supply				
	(GIDC Bore well, Surface water, Tanker supply etc) Status of permission from the concern authority. GIDC Water Supply								
ii	· ·		authority.	GIDC Wa	ter Supply				
11	vvater cons	sumption (KLD)	T	Proposed	Total after				
		Category	Existing	(Additional)	Expansion				
		Category	KLD	KLD	KLD				
		(J) Domestic	1.5	1.5	3.0	_			
		(K) Gardening	2.0	3.0	5.0	_			
		(L) Industrial		3.0					
		\ =,		1	33.5	\dashv			
		Process	6.5	27.0	აა.ე				
		Process Washing		27.0 1.0					
		Process Washing Boiler	0	27.0 1.0 5.0	1.0				

Others	0	1.5	1.5
Industrial Total	6.5	39.5	46.0
Grand Total	10	44	54
(A+B+C)			

- 1) Total water requirement for the project: 54 KLD
- 2) Quantity to be recycled:10KLD
- 3) Total fresh water requirement: 46KLD

iii Waste water generation (KLD)

	Existing	Proposed	Total after
		(Additional)	Expansion
	KLD	KLD	KLD
(A) Domestic	1.0	1.0	2.0
(B) Industrial	1		
Process	0	20	20
Boiler	0	0.5	0.5
Cooling	0	0.5	0.5
Washing	0	1.0	1.0
Others (Scrubber)	0	2.0	2.0
Industrial Total	0	24.0	24.0
Grand Total (A+B)	1.0	25.0	26.0

iv Treatment facility within premises with capacity

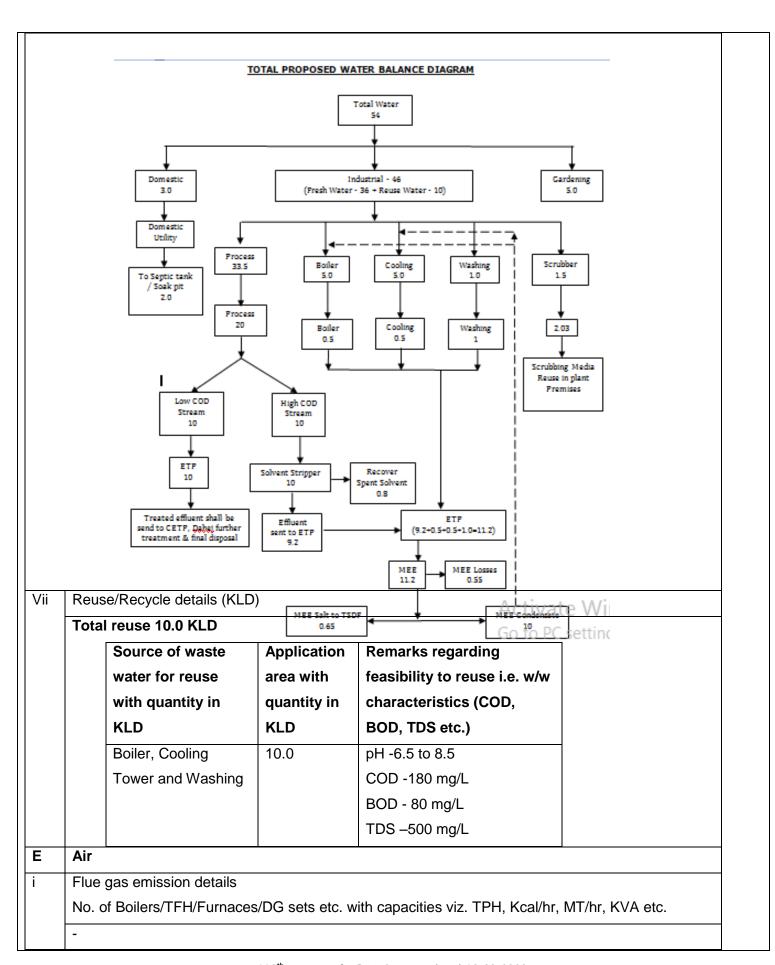
[In-house ETP (Primary & Secondary), MEE, Stripper, Spray Dryer, STP etc..

In-house ETP (Primary & Secondary) & MEE- 30 KLD Capacity

Treatment scheme including segregation at source.

Source of water will be met through Saykha GIDC Water Supply.

Total water requirement will be 54 m³/day (Fresh - 44 m³/day + Reuse - 10 m³/day).


Total 26.0 m³/day: Industrial + 2 m³/day: Scrubber + 2.0 m³/day: Domestic) of effluent shall be generated.

Company will be treated effluent 12 m³/day {10 m³/day High COD first treated into solvent stripper out of 9.2 m³/day & 2.0 m³/day Utility) shall be treated into ETP & In house MEE plant and MEE Condensate water shall be reused into boiler & cooling.

Scrubbing media (2.0 m³/day) will be reused in plant premises and sell to end user who is having

Rule-9 Permission. Domestic Waste water - 2.0 m³/day will be disposed by septic tank & soak pit. Note: (In case of CETP discharge): Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP. Applicable Brief note on adequacy of ZLD (In case of Zero Liquid Discharge): Not Applicable Mode of Disposal & Final meeting point ٧ Domestic: 2.0 m³/day domestic wastewater will be disposed through Septic Tank/Soak Pit. Unit shall propose solvent stripper, primary & MEE for high COD Industrial: & Utility effluent. And primary, secondary, tertiary treatment plant for low COD effluent will be treated into ETP and send to CETP, Dahej for further treatment & final disposal. In case of Common facility (CF) like CETP, Common Spray dryer, Common MEE, CHWIF etc. νi Name of CF Common MEE Facility Membership of Common facility (CF) (For waste water treatment) Common CETP Facility Unit have obtained membership of Common CETP of Dahej vide letter no. GIDC/Bharuch/DEE (Drg)/909 dated 18/11/2016

vii Simplified water balance diagram with reuse / recycle of waste water EXISITING WATER BALANCE DIAGRAM Total Water Domestic Industrial Gardening 1.5 6.5 2.0 Domestic Process Utility To Septic tank / Soak pit Not generated 1.0 from process Note: All figure in KL/Day

Sr. No.	Source Of Emission With Capacity	Stack Heigh t (Mete		e Of uel	Quantity Of Fuel MT/Day	Type Of Emissions I.E. Air Pollutants	Air Pollution Control Measures (APCM)
EXIS	STING:-						
1	Fire Heater	<u>11</u>	<u>wo</u>	<u>OD *</u>	1 MT/Day	SPM - 150 MG/NM ³ SO _{2 -} 100 ppm NO _{x -} 50 PPM	BAG FILTER
TOT	AL PROPOSED:-						
1	Fire Heater	11	<u>OF</u>	E BIO DAL	1 MT/Day		BAG FILTER
2	Boiler (Cap.:1.5 MT/Hr)	30 M	E OI	UETT BIO DAL	5 MT/Day	$\frac{\text{SPM - 150}}{\text{MG/NM}^3}$ $SO_2 \cdot 100 \text{ ppm}$ $No_x \cdot 50 \text{ ppm}$	MULTICYCLON E SEPARATOR WITH BAG FILTER
3	D.G. Sets (Stand by) (Cap -250KVA)	<u>9 M</u>	<u>H</u> :	<u>SD</u>	200 Liter/Day		Adequate Stack Height
woo	ote:- After the prop od in fire- heater ss gas i.e. Type of		-			·	Coal instead of
Sr. No.	STACK ATTACHED TO		ACK IGHT	CC	OLLUTION ONTROL YSTEM	PARAMETE R	PERMISSIBLE LIMIT
EXIS	TING:-						
	e is no process em	ission fro	m the n	nanufac	turing proces	SS	
TOT	AL PROPOSED:-						
	Process Vent -	4		Two	tage Water		

		Pregabli	•						
	2	Process Ve (Product No Pregabli	o. 11 - 11	m	Stage Alkali Scrubber	Br ₂	2	30 mg/Nm ³	
	3	Process Ve (Product No Diclofenac Se	o.10 - 11	m l	Stage Chilled er Scrubber	НС	:I	20 mg/Nm ³	
	gitiv belo		etails with its n	nitigation me	asures.				
Fo	llow	ing measure:	s will be adop	ted to preve	nt and con	trol fugitive	emissio	ons	
		• Enclosed	Processed						
		• Minimum	joints/flanges						
	Auto handling for charging Raw Materials								
	Pumps with double mechanical seals								
		• Proper Ve	entilation						
i									
		PPEs							
		dous waste	us and Other W	/astes (Mana	agement and	d Transboun	darv Mo	vement) Rules	
(As	s pei 16.	dous waste r the Hazardoเ					dary Mo	vement) Rules	
(As 20°	s pei 16.	dous waste r the Hazardou Type/Name	Specific	Category		Quantity	dary Mo	Management of	
(As	s pei 16. r.	dous waste r the Hazardou Type/Name of	Specific Source of	Category			dary Mo		
(As 20°	16. r.	the Hazardou Type/Name of	Specific Source of generation	Category and Schedule		Quantity	dary Mo	Management of	
(As 20°	16. r.	dous waste r the Hazardou Type/Name of	Specific Source of	Category	(N	Quantity IT/Annum)	dary Mo	Management of	
(As 20°	16. r.	the Hazardou Type/Name of	Specific Source of generation (Name of	Category and Schedule as per		Quantity		Management of	
(As 20°	16. r.	the Hazardou Type/Name of	Specific Source of generation (Name of the Activity,	Category and Schedule as per HW	(N	Quantity IT/Annum)		Management of	
(As 20°	r.	the Hazardou Type/Name of	Specific Source of generation (Name of the Activity, Product	Category and Schedule as per HW	(N	Quantity IT/Annum)		Management of	
(As 20°	r	r the Hazardou Type/Name of Hazardous waste	Specific Source of generation (Name of the Activity, Product etc.)	Category and Schedule as per HW Rules.	(N Existing	Quantity IT/Annum) Proposed	Total	Management of HW	
(As 20°	r.	Type/Name of Hazardous waste	Specific Source of generation (Name of the Activity, Product etc.) Raw	Category and Schedule as per HW Rules.	Existing	Quantity IT/Annum) Proposed	Total	Management of HW Collection,	
(As 20°	r.	Type/Name of Hazardous waste Discarded Drums/Bags/	Specific Source of generation (Name of the Activity, Product etc.) Raw Materials/	Category and Schedule as per HW Rules.	Existing	Quantity IT/Annum) Proposed	Total	Management of HW Collection, Storage,	
(As 20°	r.	Type/Name of Hazardous waste Discarded Drums/Bags/	Specific Source of generation (Name of the Activity, Product etc.) Raw Materials/	Category and Schedule as per HW Rules.	Existing	Quantity IT/Annum) Proposed	Total	Management of HW Collection, Storage, Transportation,	
(As 20°	r.	Type/Name of Hazardous waste Discarded Drums/Bags/	Specific Source of generation (Name of the Activity, Product etc.) Raw Materials/	Category and Schedule as per HW Rules.	Existing	Quantity IT/Annum) Proposed	Total	Management of HW Collection, Storage, Transportation, Decontamination	
(As 20°	r.	Type/Name of Hazardous waste Discarded Drums/Bags/	Specific Source of generation (Name of the Activity, Product etc.) Raw Materials/	Category and Schedule as per HW Rules.	Existing	Quantity IT/Annum) Proposed	Total	Management of HW Collection, Storage, Transportation, Decontamination & Sale to GPCB	

	O:I	1.143256 .		1.9	1.9	1.90	Otomoro II	
	Oil	Utility		Liter	Liter	Liter	Storage,	
							Transportation &	
							Sale to GPCB	
							Registered Re-	
		_					Processor.	
3	Inorganic	Process	SCH-	30	30	60	Collection,	
	Process	(Product No.	I/26.1				Storage,	
	Waste	18–					Transportation	
		Pregabalin)					and Disposal at	
							common TSDF	
							site of M/S BEIL,	
							Dahej.	
4	ETP Sludge	ETP	SCH-	NIL	40	40	Collection,	
			1/35.3				Storage,	
							Transportation	
							and Disposal at	
							common TSDF	
							site of M/S BEIL,	
							Dahej.	
5	Distillation	Distillation	SCH-	NIL	46	46	Collection,	
J	Residue	Distillation	1/20.3	INIE	40	40	Storage,	
	residue		1/20.5				Transportation	
							and sent for co-	
							processing in	
							cement	
							industries or (In	
							case of non –	
							operation of Co-	
							processing site	
)Disposal at	
							common	
							incineration site,	
							M/s.	

	1				<u> </u>	1	OFDDI /DIDI
							SEPPL/DIPL,
							Dahej.
6	Spent	Process	SCH-	NIL	1850	1850	Collections,
	Solvent		1/28.6				Storage, in
							house distillation
							and reuse in
							plant premises.
7	Organic	Process	SCH-	NIL	130	130	Collection,
	waste	(Product No.	1/28.1				Storage,
		18 –					Transportation
		Pregablin)					and sent for co-
							processing in
							cement
							industries or (In
							case of non -
							operation of Co-
							processing site
)Disposal at
							common
							incineration site,
							M/s.
							SEPPL/DIPL,
							Dahej.
8	Spent	Process	SCH-	NIL	83	83	Collection,
	Carbon	(Product No.	1/28.3				Storage,
		15 –					Transportation
		Amlodipine					and sent for co-
		Besylate)					processing in
							cement
							industries or (In
							case of non -
							operation of Co-
							processing site)
							Disposal at
							common
							incineration site,

							T	,
								M/s.
								SEPPL/DIPL,
								Dahej.
	9	Spent	Process	SCH-	NIL	150	150	Collection,
		Catalyst	(Product No.	1/28.2				Storage,
			19 –					Transportation
			Atorvastatin					and send to
			Calcium)					regenerator
								under Rule-9
								permission
	10	Sodium	Scrubber	SCH-	NIL	300	300	Collection,
		Bromide		1/28.1				Storage,
		solution						Transportation
		(25%)						and Sell to end
								user who is
								having Rule-9
								Permission.
	11	Liq.	Scrubber	SCH-	NIL	624	624	Collection,
		Ammonia		1/28.1				Storage and
		(24%)						reuse in plant
								premises.
								(Requirement of
								Liq. Ammonia in
								Product No 13
								i.e.
								Phenylephrine
								Hydrochloride -
								1521.6 MT/Year)
	12	Off	From mfg.	SCH-	NIL	2.0	2.0	Collection,
		Specification	Process	1/28.4				Storage,
		Products	(Batch					Transportation
			failure)					and Disposal at
			,					common
								incineration site.
1	13	Aluminum	Process	SCH-	NIL	240	240	Collection,
	13							

		T	T		Г	1	<u> </u>	
	Solution	Sodium)					Transportation	
							and Sell to end	
							user who is	
							having Rule-9	
							Permission.	
14	HCI (30%)	Scrubber	SCH-II/B-	NIL	120	120	Collection,	
			15				Storage and	
							reuse in plant	
							premises.	
							(Requirement of	
							HCL in Product	
							No 13 i.e.	
							Phenylephrine	
							Hydrochloride -	
							585.6 MT/Year)	
							,	
15	MEE Salt	MEE	SCH-	NIL	280	280	Collection,	
			1/35.3				Storage,	
							Transportation	
							and Disposal at	
							co-processing or	
							(In case of non –	
							operation of Co-	
							processing site)	
							common TSDF	
							site of M/S BEIL,	
							Dahej.	
							Danej.	
16	Spent	From	SCH-	NIL	288	288	Collection,	
	Solvent	Solvent	I/20.3	INIL	200	200		
	Suiveril		1/20.3				Storage,	
		stripper					Transportation	
							and Disposal at	
							common	
							incineration site,	

						M/s. SEPPL/ Dahej	DIPL,	
	Membership detai	•	CHWIF etc.		has membershi			
		,		Report				
i	Details of Non-Ha	zardous wa	ste & its	No such v	vaste will be gene	erated.		
	disposal (MSW ar	d others)						
)	_	Solvent management, VOC emissions etc.						
	Types of solvents,	Details of S	Solvent recover	y, % recove	ry, reuse of recov	vered Solvents		
			Solvent Reco	very Pattern	after LDAR			
	SOLVENT	INPU T	RECOVE	LOSS ES	%RECOVE	%LOSSE		
		(kg)	R (kg)	(kg)	R	S		
	Acetone	450	436.5	13.5	97.0	3.0		
	Methanol	218	210.15	7.85	97.25	2.75		
	Toluene	1300	1264.25	35.75 97.25 2.75				
	Dimethyl Formamide (DMF)	600	592	8	98.70	1.3%		
	Ethanol	823	804	19	97.69	2.31		
	Isopropyl alcohol	1319	1277	42	96.81	3.19		
	n-Hexane	428	413	15	96.5	3.5		
	VOC emission so	ources and i	ts mitigation me	easures	L			
	Enclosed FMinimum journal	Processed oints/flange	s					
	Auto hand	ing for char	ging Raw Mate	rials				
	Pumps wit	h double me	echanical seals					
	Proper Ver	ntilation						
	• PPEs							
1			rage of Hazard					
	Storage	e details	Name of major	Hazardous	chemicals	Remarks		

Storage tanks		
Drum/Barrel	Acetone , Formic Acid, Ethyl Acetate	
storage	Hydrochloric Acid, Toluene, Methanol, Ethyl	
	Acetate,	

> Applicability of PESO :

- Will apply after getting EC & CTE.
- During the meeting dated 04/03/2020, technical presentation made by technical expert M/s. Aqua Air Environmental Engineering Pvt. Ltd of project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report, and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period October 2018 to December 2018. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx,NH3,O3.HC, HCl and VOC at Eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST 3 model. The resultant concentrations are within the NAAQS. The modeling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan
 has been covered in the RA report.
- This unit is having valid CC&A for existing unit. Copy of CC&A, its compliance report is submitted. PP ensured that there are no court cases pending and no public complaints against the project.
- During SEAC meeting, Committee asked for adequacy of area expansion, PP informed that they have sufficient area for installation of proposed expansion project machinery, raw material storage etc. PP informed regarding SCN issued by the Board and PP had submitted compliance of conditions mentioned in SCN.
- Committee asked about product profile and PP informed that Existing is non EC, inorganic products and proposed products are pharama and its intermediate products as group—A and dyes intermediate and specialty chemicals as group—B. PP informed that existing inorganic products will be manufactured by using fresh acid as raw material instead of spent acid. Committee asked about waste water management, PP informed that effluent segregated in two stream, High COD and TDS and Low COD and TDS stream. High COD stream will be first neutralized and then passed through solvent stripper and then will be evaporated in

in-house MEE. Low COD stream after ETP will be sent to CETP, Dahej for further treatment and disposal. Committee insisted for submission of revised water balance diagram with mentioning high Cod stream first passing through solvent stripper and then primary ETP treatment along with stage wise reduction of BOD, COD, TDS and Ammonical nitrogen of high COD and Low Cod stream and revised high COD treatability report. Committee also asked PP for submission of revised membership certificate of CETP mentioning total consented capacity, actual capacity, booked load and spare capacity of CETP as per GPCB letter dated 08/01/2020. PP informed that briquettes of bio-coal will be used as fuel for proposed boiler and fire heater and MCS and bag filter as APCM with it. Two stage scrubber as APCM will be proposed with each process stack.

- PP addressed Hazardous waste management and committee insisted for submit adequacy of total reuse of spent solvent within premises with technical justification and mentioning spent solvent from solvent stripper as Hazardous waste.
- EMP, CER, safety aspects, baseline data are discussed in length. Committee insisted for submission of revised need based CER for surroundings villages with budgetary provision for five years. Upon asking regarding LDAR, Committee insisted for submission of adequate LDAR for each solvent with its chemical properties.
- After detailed discussion, it was decided to consider the proposal only after submission of the following documents:
 - 1. Submission of revised water balance diagram with mentioning high COD stream first passing through solvent stripper and then primary ETP treatment along with stage wise reduction of BOD, COD, TDS and Ammonical nitrogen of high COD and Low COD stream. Revised high COD treatability report.
 - 2. Submission of revised membership certificate of CETP mentioning total consented capacity, actual capacity, booked load and spare capacity of CETP as per GPCB letter dated 08/01/2020.
 - 3. Submit revised need based CER activity for surroundings villages with budgetary provision for five years.
 - 4. Submit adequacy of total reuse of spent solvent within premises with technical justification and mentioning spent solvent from solvent stripper as Hazardous waste.
 - 5. Submission of adequate LDAR for each solvent with its chemical properties.
- Project proponent made presentation for the above mentioned query dated 18/03/2020 for the above mentioned points.
- PP presented replied as below:
 - 1. PP presented revised water balance diagram with mentioning high COD stream first passing through solvent stripper and then primary ETP treatment along with stage wise reduction of BOD, COD, TDS and Ammonical nitrogen of high COD and Low COD stream. Revised high COD treatability report.
 - 2. PP submitted revised membership certificate of CETP mentioning total consented capacity, actual capacity, booked load and spare capacity of CETP as per GPCB letter dated 08/01/2020.
 - 3. PP presented revised need based CER activity for surroundings villages with budgetary provision for five

years.

- 4. PP submitted adequacy of total reuse of spent solvent within premises with technical justification and mentioning spent solvent from solvent stripper as Hazardous waste.
- 5. PP presented adequate LDAR for each solvent with its chemical properties.
- Committee deliberated on the reply submitted by PP and found it satisfactory.
- Compliance of ToR found satisfactory.
- After detailed discussion, Committee unanimously decided to recommend the project to SEIAA,
 Gujarat for grant of Environment Clearance.

8	SIA/GJ/IND2/47871/2019	M/s. Gokulendu Life Science	EC – Reconsideration
		Plot No: 1014, G.I.D.C Sarigam,	
		Umbergaon, Valsad-396155, Gujarat.	

Category of the unit: 5(f)

Project status: New

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/47871/2019 on dated 18/01/2020 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 04/11/2019.
- Project proponent has submitted EIA Report prepared by M/s. Unistar Environment & Research Labs
 Pvt. Ltd. based on the TOR issued by SEIAA.
- This is new unit proposes for manufacturing of synthetic organic chemical as tabulated below:

Group	Sr. No.	Name of the Products	CAS Number/CI no.	Qty. MT/Month	End-use of Product
Α	1.	Pantoprazole Sodium	138786-67-1	10.00	Gastroesophageal Reflux and Peptic Ulcer
	2.	Pantoprazole Sesquihydrate	164579-32-2		Gastroesophageal Reflux and Peptic Ulcer
	3.	Omeprazole	73590-58-6		Gastroesophageal Reflux and Peptic Ulcer
	4.	Lansoprazole	103577-45-3		Gastroesophageal Reflux and Peptic Ulcer
	5.	Rabeprazole Sodium	117976-90-6		Gastroesophageal Reflux and Peptic Ulcer
	6.	2,4-Dihydro-4-[4-[4-(4-hydroxyphenyl]-1-	106461-41-0		Intermediate of Itraconazole

		piperazinyl]phenyl]-2-(1-			
		methylpropyl)-3H-1,2,4-triazol-3-			
		one			
	7.	Sertaconazole Nitrate	99592-32-2		Anti-Fungal
	8.	cis-[2-(2,4-Dichlorophenyl)-2-(1H-			
		imidazol-1-ylmethyl)-1,3-dioxolan-	134071-44-6		Intermediate of Ketoconazole
		4-yl]methyl p-Tolylsulfonate			momodiate of recognication
	9.	1-Acetyl-4-(Hydroxyphenyl)			
		piperazine	67914-60-7		Intermediate of Ketoconazole
	10.	1-(2,3-Dichlorophenyl)piperazine	440500 00 0		
		Hydrochloride	119532-26-2		Intermediate of Aripiprazole
	11.	Methyl-2-Methoxy-5-	33045-52-2		Intermediate of Levosulpiride
		Sulfamoylbenzoate	33045-52-2		internediate of Levosulpinde
	12.	Trazodone Hydrochloride	19794-93-5		Antidepressant
	13.	Atazanavir Sulfate	229975-97-7		Antiretroviral
	14.	Pregabalin	148553-50-8		Epilepsy
	15.	TenofovirDisoproxilFumarate	202138-50-9		HIV infection (treat human
			202100 00 0		immunodeficiency virus)
	16.	Zolpidem Tartrate	99294-93-6		Insomnia
	17.	Vildagliptin	274901-16-5		Antidiabetic
	18.	Diphenhydramine Hydrochloride	147-24-0		Antihistamine
	19.	Fexofenadine Hydrochloride	83799-24-0		Antihistaminic
	20.	Sofosbuvir	1190307-88-0		Antiviral
	21.	Sildenafil Citrate	171599-83-0		Erectile dysfunction
	22.	Metaxalone	1665-48-1		Muscle Relaxant
	23.	Pirfenidone	53179-13-8		Idiopathic pulmonary fibrosis
			33179-13-0		(IPF)
	24.	2-Chloromethyl-3,4-dimethoxy	72830-09-2		Intermediate for Pantoprazole
В		pyridine hydrochloride	72030-09-2	10.00	intermediate for Fantoprazole
	25.	2-(Chloromethyl)-4-methoxy-3,5-			
		dimethylpyridine Hydrochloride	86604-75-3		Intermediate of Omeprazole
		(C ₉ H ₁₂ CINO.HCI)			
	26.	2-Chloromethyl-3-methyl-4-(2,2,2-			
		trifluoroethoxy)pyridine	127337-60-4		Intermediate of Lansoprazole
		Hydrochloride (C ₉ H ₉ CIF ₃ NO.HCl)			
	27.	2-Chloromethyl-4-(3-	153259-31-5		Intermediate of Rabeprazole

	Methoxypropoxy) -3-Methylpyridin	е	
	Hydrochloride (C ₁₁ H ₁₇ Cl ₂ NO ₂)		
28.	Ketoconazole	65277-42-1	Anti-Fungal
29.	Posaconazole	171228-49-2	Anti-Fungal
30.	Fluconazole	86386-73-4	Anti-Fungal
31.	Aripiprazole	129722-12-9	Atypical ant
32.	Levosulpiride	23672-07-3	Antipsycotic
33.	Rosuvastatin Calcium	147098-20-2	Antilipidemi
34.	Phenylephrine Hydrochloride	61-76-7	Decongesta
35.	Famotidine	76824-35-6	Gastroesop
			disease
36.	Fluphenazinedecanoate	5002-47-1	Chronic sch
37.	Clomipramine Hydrochloride	17321-77-6	Obsessive-
38.	Dabigatran	211914-51-1	Treat blood
39.	Teneligliptin	760937-92-6	Antidiabetic
10.	Doxofylline	69975-86-6	Asthma
41.	Pentoxifylline	6493-05-6	Intermittent
42.	Ondansetron Hydrochloride Dihydrate	99614-02-5	Anti-vomitin
43.	Zidovudine	30516-87-1	Antiviral
14.	Avanafil	330784-47-9	Erectile dys
45.	Agomelatine	138112-76-2	Anxiety
16.	Minoxidil	38304-91-5	Hair Growth
47.	Modafinil	68693-11-8	Wakefulnes
48.	Itraconazole	84625-61-6	Anti-Fungal
49.	Etiracetam	33996-58-6	Antiepileptio
50.	Levetiracetam	102767-28-2	Antiepileptio
51.	Loratadine	79794-75-5	Anti allergio
52.	Montelukast Sodium	151767-02-1	Antiasthmat
53.	Oxpentifylline	6493-05-6	Intermittent
54.	Piracetam	7491-74-9	Alzheimer's
55.	Sertraline Hydrochloride	79617-96-2	Antidepress
56.	Abacavir Sulfate	136470-78-5	Anti-HIV
57.	Brexpiprazole	913611-97-9	Antipsychot
58.	Lopinavir	192725-17-0	Anti-HIV

	59.	Ritonavir	155213-67-5		Anti-HIV
С	60.	R&D of APIs &Intermediates		0.20	
		TOTAL		20.20	

Note:

- Unit will manufacture campaign-based products as per market demand.
- At a time, company will manufacture three to four products from each group. The total manufacturing quantity will be within the group total.
- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 18/02/2020.
- Salient features of the project are as under:

Sr.	Particulars	Details
no.		
Α	Total cost of Proposed Project	6.06
	(Rs. in Crores):	
	Details of EMP	Capital Cost Provision for EMP- 115 lakhs
		Recurring Cost Provision for EMP- 47.32 lakhs
		(including 2% CER)
	Brief Details of EMP	

Capital Cost Provision for EMP/EMS:

Sr.	Particulars	Proposed
No.		Amount
		(In Lakhs)
1	Capital for EMP for Ambient Environment	10.75
	For Air	8.50
	Stacks for boiler & DG set	5.00
	APCD	3.50
	For Noise	2.25
	Foundation & Padding	2.25
2	Capital for EMP for Water & Wastewater Management	86.00
	Effluent Treatment Plant	30.00
	Rainwater Harvesting System	1.00
	CETP Membership	30.00
	Solvent Stripper followed by ATFD	25.00
3	Capital for EMP for Solid /Hazardous Waste Management	5.25

	Hazardous & non-hazardous Wastes handling system & facilities	5.00
	TSDF & CHWIF membership	0.25
4	Capital for EMP for Occupational Health & Safety	10.00
	Fire Fighting and other safety & emergency facilities	10.00
5	Capital for EMP for Greenbelt	3.00
	Sapling, Plantation, equipment & facilities	3.00
	TOTAL CAPTAL COST PROVISION FOR EMP/EMS	115.00

Recurring Cost Provision for EMP/EMS

Sr.	Particulars	Proposed
No.		Amount
		(In Lakhs)
1	Water and Wastewater Management	16.55
	Maintenance of ETP & Pipeline	12.00
	Maintenance of solvent stripper & ATFD	2.00
	Monitoring	0.50
	CETP Charges	1.50
	Maintenance of Rainwater Harvesting System	0.30
	Water quality Monitoring	0.25
2	Air Pollution and Noise Control	3.05
	For Air	2.75
	Maintenance of APCDs	1.50
	Chemicals for APCDs O&M	1.00
	Emission & Ambient Air Monitoring	0.25
	For Noise	0.30
	Maintenance works for Noise & Vibration reduction	0.20
	Ambient Noise & Vibration Monitoring	0.10
3	Solid/Hazardous Waste Management	24.55
	Maintenance works	0.30
	TSDF & CHWIF charges	24.00
	Waste Monitoring	0.25
4	Occupational Health & Safety	0.30
	Maintenance works for Safety equipment & facilities	0.20
	Work Place Monitoring	0.10

5	Greenbelt, soil & Ecological Conservation & Protection	0.45	
	Equipment & facilities	0.15	
	Sapling, Plantation & replantation	0.10	
	Soil Quality Monitoring	0.20	
6	ESR @2% of proposed capital	2.42	
	Activities in Villages every year as per CER Plan	2.42	
	TOTAL RECURRING COST PROVISION FOR EMP/EMS	47.32	

Details of CER as per OM dated 01/05/2018

Activity V	Vise CER Plan						
Sr.No.	Activities Planned & Particular	Cost (Rs.)					
1	Solar Street Lights for public lighting in Tribal/BPL Community Areas	600000.00					
2	Gram panchyat through providing drinking water facilities in the villages	125000.00					
	of the region. (R.O.Plant) and BPL family						
3	Development and renovation of infrastructure for Public use	487000.00					
TOTAL (TOTAL CER COST						

			Vill	age wise	Annı	ıal CE	R Plar	1		
Sr. Name Budget Allocation, Rs.										
No	of	Need of	Project	Total	1 st	2 nd	3 rd	4 th	5 th	Planned Activities
•	Village	Demand	Capital	CER	Yr.	Yr.	Yr.	Yr.	Yr.	
			Cost,	Cost						
			Rs.							
1	Daheli,	Planned	606.00	12.12						Solar Street Lights
	Kalgam	activities	Lakhs	Lakhs	0	0	0	0	0	for public lighting in
	,	are			1,20,400	1,20,400	1,20,400	1,20,400	1,20,400	Tribal/BPL
	Angam	schedule			1,2	1,2	1,2	1,2	1,2	Community Areas
		d As per								R.O. based water
		demand			25,000	25,000	25,000	25,000	25,000	Purifier to BPL
		raised in			25,0	25,0	25,	25,	25,	family
		FGD and								Development and
		meeting								renovation of
		with								infrastructure for
		Sarpanc			97,000	97,000	97,000	97,000	97,000	Public Use
		h			97,(97,(97,(97,(97,(

	Total Rs.		2,42,400	2,42,400	2,42,400	2,42,400	2,42,400	Various Activities as above	
В	Total Plot area (sq. met	er)	24	00.00	Sq. m	•			
	Green belt area		Th	ie gr	eenbe	lt wil	l be	developed in area	
	(sq. meter)			ot are antation Igam \ ea dev	ea). A n outs Village veloped	part f side th @100 d by th	rom ne con 00 sq. e con	Mt. (About 23% of total this company will do mpany premises i.e. at mt. The total greenbelt pany is 1540.56 sq. mt. e total plot area.	
С	Employment generation	l.	15	Nos.					
i	Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc)			GIDC water supply department.					
	Status of permission from	the concern authority	. Ot	Obtained					
ii	Water consumption (KL	•		a wa a wi s					
	Category (M) Domestic	Quantity KLD 2.00		Remarks					
	(N) Gardening	3.00	1	1.30 KLD reused from domestic wastewater after disinfection					
	(O) Industrial								
	Process	20.00							
	Washing	5.00							
	Boiler	4.50							
	Scrubber	2.50	1.1 KLD reused from ATFD condensation & 1.4 KLD from ETP after ultrafiltration and softening						
	Cooling	Cooling 5.00		3 KLD reused from ETP after ultrafiltration and softening					
	Others -								
	Industrial Total	37.00							

2) Quantity to be **recycled**: 6.80 KLD

3) Total fresh water requirement: 35.20 KLD

iii Waste water generation (KLD)

Category	Waste water KLD	Remarks
(G) Domestic	1.30	Wastewater to ST/SP then to disinfection
(H) Industrial		
Process	22.30	High TDS WW (@ 1.30 KLD) from process get
Washing	5.00	condensed through ATFD attached with solvent
Boiler	0.10	stripper & Low TDS wastewater 29.20 KLD to
Scrubbing	2.50	ETP and 5 KLD will go through Ultra filtration and
Cooling	0.60	softener and @4.40 KLD from it will be reused in
		Scrubbing and Cooling.
		24.20KL will be disposed to CETP after ETP.
Total Industrial waste	30.50	
water		
Total [A + B]	31.80	

-

Treatment facility within premises with capacity
 [In-house ETP (Primary, Secondary, Tertiary),
 MEE, Stripper, Spray Dryer, STP etc.

In-house ETP (Primary, Secondary and Tertiary treatment)

ETP Capacity: 35.00 KLD

➤ Solvent stripper followed by ATFD - 2.10 KLD

Treatment scheme including segregation at source.

High TDS WW (@ 1.30 KLD) from process get condensed through ATFD attached with solvent stripper and its reused in scrubber. Low TDS wastewater (29.20 KLD) to in-house ETP

Stream wise quality of waste water generation

Sr.	Parameters	Unit	Strea	Strea	Strea	Strea	Strea	Stream
No			m	m II	m III	m IV	m V	VI
			I					
1	Quantity/Flow	KLD	21.0	5.0	0.1	2.5	0.6	1.3
2	pH		5.49	7.12	7.34	7.05	7.25	6.5-9.0
3	Total Dissolved Solid	mg/lit	2250	1200	1200	2495	1200	15-120*
4	Total Suspended Solid	mg/lit	372	1372	425	1500	258	<5000
5	Chemical Oxygen Demand	mg/lit	9213	3713	150	3215	150	<65000

6	Biochemical Oxygen	mg/lit	3125	1252	20	1075	20	<18000
	Demand							

Note: * indicates unit of TDS concentration as gm/lit;

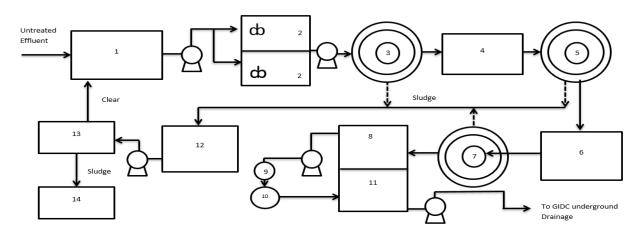
Stream I- Process (low COD & TDS), Stream II- Washing, Stream III- Boiler blow down, Stream IV-Scrubber Bleed-off, Stream V- Cooling, Stream VI- Concentrated Stream from Process to Stripper & ATFD

Stream wise quality of wastewater in Solvent Stripper & ATFD

Sr	Parameters	Unit	Inlet to Stripper	Outlet of Stripper &	Recovered
				Inlet to ATFD	Condensat
N					е
0					
1	рН		6.5-9.0	6.9-7.1	6.8-7.0
2	Total Dissolved Solid	mg/lit	15000-120000	14600-119000	<100
3	Total Suspended Solid	mg/lit	4800-5000	4700-4900	<50
4	Chemical Oxygen Demand	mg/lit	<65000	1800-2200	<100
5	Biochemical Oxygen	mg/lit	<18000	1200-1600	<20
	Demand				

- Stream I to Stream V will be collected & combined in collection cum equalization tank and will be sent to ETP for further treatment. The details of stream to ETP, Technical details of ETP and Efficiency of ETP are presented below.
 - Total proposed wastewater quantity to be treated in proposed ETP is 29.20 KLD.
 - Design criteria of ETP, stream wise quality and stage wise quality of wastewater are given below.
 - ❖ Design Criteria of ETP:
 - ✓ Source of Water Effluent: process, washing and utility etc.
 - ✓ Water Effluent Generation: 29.20 KL /Day Max.
 - ✓ Capacity of ETP: 35.00 KL/Day Max.

Stage wise quality of effluent in the proposed ETP


Sr. No	Parameters	Unit	I	II	III	IV
1	рН		6.0	7.3	7.2	7.5
2	Total Dissolved Solid	mg/lit	2070	2350	2200	2090
3	Total Suspended Solid	mg/lit	640	65	80	25
4	Chemical Oxygen Demand	mg/lit	7540	4900	750	590
5	Biochemical Oxygen Demand	mg/lit	2560	2050	310	245

Note: I. Untreated, II. Primary outlet, III. Secondary outlet, IV. Final outlet

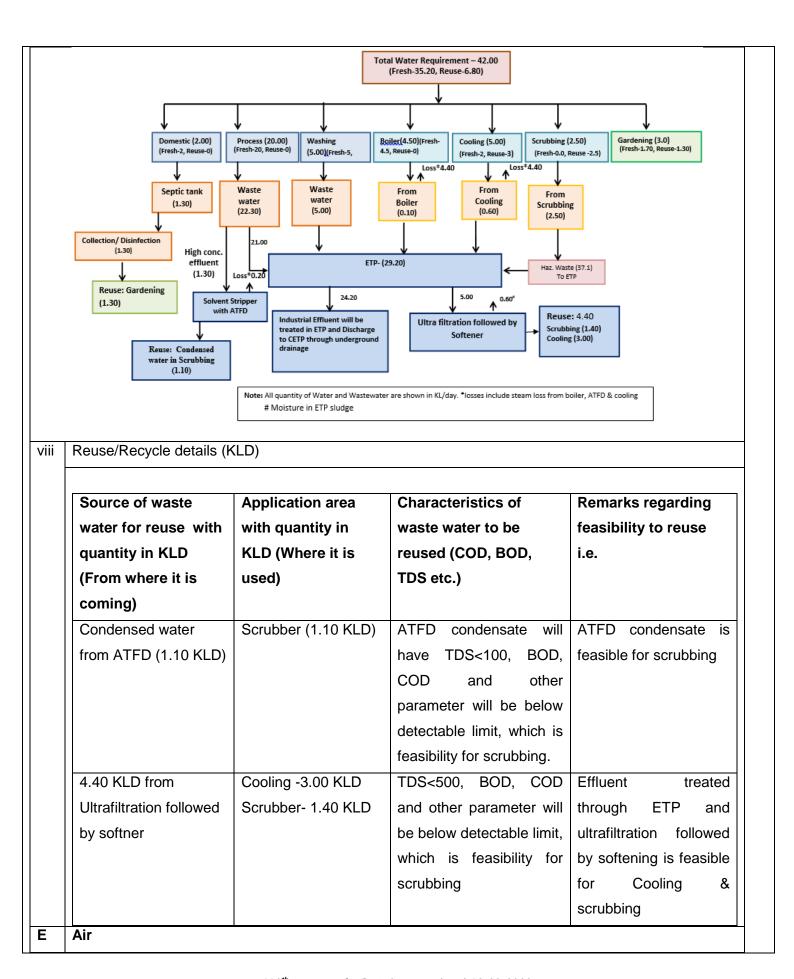
List of the ETP units

SR			
NO.	ITEM	CAPACITY	NOS
1	Collection Tank cum equalization tank	50 KL	1
2	Neutralization Tank	6 KL	2
3	Primary Settling Tank	6 KL	1
4	1 st stage Aeration tank	100 KL	1
5	1 st stage secondary settling tank	6 KL	1
6	2 nd stage aeration tank	50 KL 1	
7	2 nd stage secondary settling tank	6 KL	1
8	Holding Tank	10 KL	1
9	Dual Media Filter	3 KL/hr	1
10	Activated Carbon Filter	3 KL/hr	1
11	Treated water tank	30 KL	1
12	Sludge Holding Tank	5 KL	1
13	Filter Press	30 x 30 inch	1
14	Sludge storage area	10 m ²	1

Hydraulic Flow Diagram

Note: (In case of CETP discharge):

Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP.


Sr.	Parameter	Unit	Raw Effluent	Treated	Sarigam	
-----	-----------	------	--------------	---------	---------	--

No.				Quality/Value	Effluent	CETP
					Quality/Valu	Inlet
					e	Norms
1.	Flow		KL/ Day	29.20	29.00	-
2.	pH			5.0 - 8.0	6.5 - 8.5	6.5 - 8.5
3.	Biochemical Oxyge	en	mg/lit	200- 3500	<400	<400
	Demand					
4.	Chemical Oxygen I	Demand	mg/lit	800 - 9500	<1000	<1000
5.	Suspended Solids		mg/lit	300-400	<300	<300
6.	Fixed Dissolved Sc	olid	mg/lit	1000-2500	<2100	<2100
Mana and C	gement of wastewate Control of Pollution) a note on adequacy of	er keeping i ct, 1974 iss	n view direct sued by CPC	ion under section of the section of	. , . ,	•
Mana and C	gement of wastewate	er keeping i ct, 1974 iss ZLD (In cas	in view direct sued by CPC se of Zero Lic	ion under section of the section of	18 (1) (b) of the Wa	•
Mana and C	gement of wastewate Control of Pollution) a note on adequacy of Not Applicable of Disposal & Final r	er keeping ict, 1974 iss ZLD (In cas	in view direct sued by CPC se of Zero Lic	ion under section of the section of	18 (1) (b) of the Wa	•
Mana and Control Brief In Mode	gement of wastewate Control of Pollution) a note on adequacy of Not Applicable of Disposal & Final restic:	er keeping ict, 1974 iss ZLD (In case meeting poi	in view direct sued by CPC se of Zero Lic nt ater to ST/SP	ion under section of the section of	18 (1) (b) of the Wa ance of CETP.	ater (Prevention
Mana and C Brief I Mode Dome	gement of wastewate Control of Pollution) a note on adequacy of Not Applicable of Disposal & Final restic:	er keeping ict, 1974 iss ZLD (In case meeting point Wastewa	in view direct sued by CPC se of Zero Lic nt ater to ST/SP S WW (@ 1.	ion under section of B regarding compliquid Discharge): Of then to disinfection	18 (1) (b) of the Wa ance of CETP.	ater (Prevention
Mana and C Brief I Mode Dome	gement of wastewate Control of Pollution) a note on adequacy of Not Applicable of Disposal & Final restic:	er keeping ict, 1974 iss ZLD (In case meeting point Wastewal High TDS attached	in view direct sued by CPC se of Zero Lic nt ater to ST/SP S WW (@ 1.3	ion under section of B regarding compliquid Discharge): Of then to disinfection of the Box (1998) in	ance of CETP. on ess get condensed reused in scrub	d through ATF
Mana and C Brief I Mode Dome	gement of wastewate Control of Pollution) a note on adequacy of Not Applicable of Disposal & Final restic:	er keeping ict, 1974 iss ZLD (In case meeting point Wastewa High TDS attached wastewa	in view direct sued by CPC se of Zero Lic nt ater to ST/SP S WW (@ 1. with solver ter 29.20 KL	ion under section of B regarding complication of B regarding complication of B regarding complication of B regarding complete com	ance of CETP. on ess get condensed in scrub (LD will go throug)	d through ATFE
Mana and C Brief I Mode Dome	gement of wastewate Control of Pollution) a note on adequacy of Not Applicable of Disposal & Final restic:	meeting poi Wastewa High TD: attached wastewa and soft	in view direct sued by CPC se of Zero Lic nt ater to ST/SP S WW (@ 1. with solver ter 29.20 KL ener and @	ion under section of B regarding complication of B regarding complication of them to disinfection of the stripper and its LD to ETP and 5 km.	ance of CETP. on ess get condensed in scrub (LD will go throug will be reused in	d through ATFE
Mana and C Brief I Mode Dome	gement of wastewate Control of Pollution) a note on adequacy of Not Applicable of Disposal & Final restic:	meeting poi Wastewa High TD: attached wastewa and soft Cooling.	in view direct sued by CPC se of Zero Lic ater to ST/SP S WW (@ 1. with solver ter 29.20 KL ener and @ 24.20KL will	ion under section of B regarding compliquid Discharge): Then to disinfection of the stripper and its LD to ETP and 5 kts. 4.40 KLD from it be disposed to CE	ance of CETP. on ess get condensed reused in scrub (LD will go throug will be reused in	ater (Prevention through ATFI ber. Low TDS h Ultra filtration Scrubbing and
Mana and C Brief I Mode Dome	gement of wastewate Control of Pollution) ac note on adequacy of Not Applicable of Disposal & Final restic:	meeting poi Wastewa High TD: attached wastewa and soft Cooling.	in view direct sued by CPC se of Zero Lic int ater to ST/SP S WW (@ 1.: with solver ter 29.20 KL ener and @ 24.20KL will CETP, Comm	ion under section of B regarding compliquid Discharge): Then to disinfection of the stripper and its LD to ETP and 5 kts. 4.40 KLD from it be disposed to CE	ance of CETP. on ess get condensed reused in scrub (LD will go throug will be reused in	ater (Prevention through ATFI ber. Low TDS h Ultra filtration Scrubbing and
Mana and C Brief I Mode Dome Indus	gement of wastewater Control of Pollution) act note on adequacy of Not Applicable of Disposal & Final restic: strial:	meeting poi Wastewa High TD: attached wastewa and soft Cooling.	in view direct sued by CPC se of Zero Lic int ater to ST/SP S WW (@ 1.: with solver ter 29.20 KL ener and @ 24.20KL will CETP, Comm	ion under section of B regarding compliquid Discharge): Then to disinfection of the stripper and its LD to ETP and 5 kts. 4.40 KLD from it be disposed to CE	ance of CETP. on ess get condensed reused in scrub (LD will go throug will be reused in	ater (Prevention through ATFI ber. Low TDS h Ultra filtration Scrubbing and

CETP/SCI/PROCER/124/ Dated:7/11/2019

vii

Simplified water balance diagram with reuse / recycle of waste water

Flue gas emission details

No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc.

.

Sr. no.	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel MT/Day	Type of emissions i.e. Air Pollutants	Air Pollution Control Measures (APCM)
1	Steam Boiler - 1 No. (Capacity- 850 Kg/Hr)	11	NG	55.00 SCM/Hr	PM<150 mg/Nm3 SO2< 100 ppm NOx< 50 ppm	Adequate stack
2	D. G. Set - 2 Nos. (1 x 60 &1 x 25 KW)	5 & 4	Diesel	23.00 Lit/Hr.	1 NOX< 30 ppm	neigni

ii Process gas emission details i.e. Type of pollutant gases (SO₂, HCl, NH₃, Cl₂, NO_xetc.)

Sr. no.	Specific Source of emission (Name of the Product & Process)	Type of emission	Stack/Vent Height (meter)	Air Pollution Control Measures (APCM)
1	Process Reactor	SO ₂ , HCl	11	Two stage water- Alkali Scrubber
2	Process Reactor	NH ₃	11	Acid scrubber

iii **Fugitive emission** details with its mitigation measures:

As below:

Fugitive emissions are expected to be generated during installation and operational stages of the project. During installation stage, main source of fugitive emission is dust which is expected mainly due to the movement of vehicles carrying machineries and equipment used for installation.

During operation stage, leakage through valves, pumps, emission from open drum containing chemicals, open feeding; storage tanks, etc. are the major sources of fugitive emissions of organic chemicals and VOCs. Excess use of solvent may also results fugitive emission from the process vessels.

Following measures will be adopted to prevent and control fugitive emissions:

- > Airborne dust at all transfers operations/ points will be controlled either by spraying water or providing enclosures.
- > Raw materials loading and unloading will be done in covered area.
- All the raw materials will be pneumatically transfer to the reactor.
- Care will be taken to store construction material properly to prevent fugitive emissions, if any.

- Plantation will be done around the project area and along the roads.
- Adequate ventilation will be provided.
- Regular maintenance of valves, pumps and other equipment will be done to prevent leakages and thus minimizing the fugitive emissions of VOCs.
- > Entire process will be carried out in the closed reactors with proper maintenance of pressure and temperature.
- > Periodic monitoring of work area will be carried out to check the fugitive emission as per the norms of Gujarat Factory Rules.
- Breather valves will be provided on solvent tanks.
- > To eliminate chances of leakages from glands of pumps, mechanical seal will be provided at all solvent pumps.

Storage,

authorized site

F **Hazardous wastes**

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

Specific Source Category of generation Type/Name of and Sr. Quantity Hazardous Schedule as **Management of HW** (Name of the (MT/Annum) no. per HW waste Activity, Product etc.) Rules. Collection, Transportation, 1 ETP Sludge **ETP Operation** (Sch.I: 35.3) 25.00

Disposal at **TSDF** site(located outside CEPI area). Collection, Storage, **Empty** Handling of Raw Decontamination, 2 barrels/container 500.00 (Sch.I: 33.1) materials Disposal by selling to s/liners registered vendor. Collection, Storage, From plant and Transportation, 3 Used oil (Sch.I: 5.1) 0.10 disposal by selling to machinery registered recyclers. disposal by Co-Mfg. Process Process Residue processing or 4 (From most of (Sch.I: 28.1) 48.00 and wastes Incineration at

the products)

					(located outside CEPI
					area)
5	Spent Carbon	From ETP &Mfg. Process (From most of the products)	(Sch.I: 28.3)	5.4	Collection, storage, transportation, disposal by Co- processing or Incineration at authorized site (located outside CEPI area)
6	Off specification products	Mfg. Process	(Sch.I: 28.4)	0.1	Disposal byCo- processing or common incineration at authorized site (located outside CEPI area).
7	Date-expired products	Mfg. Process	(Sch.I: 28.5)	0.4	Disposal by Co- processing or common incineration at authorized site (located outside CEPI area).
8	Spent solvent	Mfg. Process (From most of the products) (Sch.I: 28.6) 2480.00	Collection, sale to Registered recycler under Rule no.9 of the Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016.		
9	Used Filter Cloths	Mfg. Process (From most of the products)	(Sch.I: 33.2)	99.20	Collection, Storage, Transportation,
10	Evaporation Residue	From ATFD	(Sch.I: 37.3)	15.00	Disposal at TSDF site.

	11	Scrubber bleed off waste	From scrubber	(Sch.I: 37.1)	792.00	Will be treathouse ETF		
İ	Mem	bership details of T \$	SDF, CHWIF etc.	TSDF Mem	bership Letter	No (Detox Ir	ndia Pvt. Ltd	
	(For	HW management)		Kutch)- DIP	L/130000031 ²	1/2019-20/10	9. Dated:	
		- ,		23/11/2019				
				CHWIF Mei	mbership Lette	er No (SEPPI	_, Kutch)-	
				SEPPL/130	SEPPL/1300000311/2019-20/114. Dated:			
				23/11/2019				
ii	Detai	ls of Non-Hazardou	s waste & its dispos	al -				
	(MSV	V and others)						
G	Solve	ent management, \	OC emissions etc.					
	Туре	s of solvents, Detail	s of Solvent recover	y, % recovery, reu	use of recover	ed Solvents e	etc. (Details	
	in Ta	ble Format)						
	Sr.		Co	nsumption	Recovery	per Month	Recover	
	no	Name of So	vent	onth (KL/Month)	(KL/M	-	y %	
	.		per wic		(17.7/4)	·•····· <i>)</i>	y /0	
	1.	Acetone		12.42353		11.75354	94.27	
	2.	Toluene		15.59971		14.93397	95.82	
	3	Dichloromethane		20 04653		27 90072	96 24	

Sr. no	Name of Solvent	Consumption per Month (KL/Month)	Recovery per Month (KL/Month)	Recover y %
1.	Acetone	12.42353	11.75354	94.27
2.	Toluene	15.59971	14.93397	95.82
3.	Dichloromethane	29.04653	27.90072	96.24
4.	Methanol	28.72538	27.57079	96.15
5.	Chloroform	1.33355	1.26725	95.11
6.	Isopropyl Alcohol	7.66037	7.30423	95.20
7.	Methyl Isobutyl Ketone	3.05313	2.91127	95.54
8.	Dimethyl Sulfoxide	0.44436	0.42427	96.11
9.	Dimethyl Formamide	8.04297	7.72034	95.94
10.	1,4-Dioxane	2.16815	2.11047	97.09
11.	Ethyl Acetate	10.09926	9.70782	96.40
12.	N-Butanol	0.7128	0.70308	98.48
13.	N-Hexane	0.5113	0.50062	98.18

14.	Xylene	0.91907	0.90599	97.38
15.	Cyclohexane	1.16411	1.11208	95.75
16.	Monoethylene Glycol	0.32856	0.29304	89.18
17.	N-Methyl-2-Pyrrolidone	0.618	0.60564	98.00
18.	T-Butanol	0.04538	0.04286	94.44
19.	Petrolium Ether	0.45325	0.42842	96.34
20.	Heptane	0.83276	0.79723	96.20
21.	Ethanol	4.02291	3.82565	96.17
22.	Tetra Hydrofuran	1.42979	1.36268	97.04
23.	Acetonitrile	0.15437	0.14307	91.52
24.	Methyl Tert-Butyl Ether	0.0296	0.02948	99.59
25.	Isopropyl Acetate	0.04385	0.0395	90.07

ii VOC emission sources and its mitigation measures

During operation stage, leakage through valves, pumps, emission from open drum containing chemicals, open feeding; storage tanks, etc. are the major sources of fugitive emissions of organic chemicals and VOCs.

Following measures will be adopted to prevent and control fugitive emissions:

- > Regular maintenance of valves, pumps and other equipment will be done to prevent leakages and thus minimizing the fugitive emissions of VOCs.
- > Entire process will be carried out in the closed reactors with proper maintenance of pressure and temperature.
- Periodic monitoring of work area will be carried out to check the fugitive emission as per the norms of Gujarat Factory Rules.

H > Details regarding storage of Hazardous chemicals

Storage details	Name of major Hazardous chemicals	Remarks
Tank	Acetone, Methanol, Toluene, Hexane	
Drum/Barrel storage	Methylene chloride, Isopropyl alcohol,	
	Nitric Acid, Hydrochloric acid, Mono	
	chlorobenzene, Methyl isobutyl ketone,	
	Cyclohexane, Acetonitrile, Heptane,	
	Methyl tert-butyl ether (MTBE),	
	Bromobenzene, Tetra hydrofuran	
	(THF), Hydrogen peroxide, Acetic acid	

Total 80 hazardous chemicals are present in the proposed project. The major hazardous chemicals mentioned above which are more toxic and flammable as well as more quantity of storage.

> Applicability of PESO : Applicable

- During the meeting dated 18/02/2020, technical presentation made by project proponent.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the December 2018 to February 2019. Ambient Air Quality monitoring was carried out for PM10, PM2.5, Sulphur Dioxide, Nitrogen Oxide, CO, O3, NH3, Pb, As, Ni, Benzene, BaP, HCl at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD. The resultant concentrations are within the NAAQS.
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan
 has been covered in the RA report.
- Committee noted that this proposal is new in GIDC Sarigam.
- During SEAC meeting, Committee asked about R & D production mentioned 1 MT/Month in product profile which is not justify as R and D purpose, PP informed that they will submit revised product profile with curtail R and D production. Committee informed PP about green belt area proposed only 20% of total project area which is not as per CPCB guideline. Upon asking regarding waste water management, Committee insisted for submission of revised water balance diagram with mentioning maximum reuse of boiler and cooling blow down effluent and technical justification for high COD effluent treatment in in-house stripper and ATFD in place of CMEE as per ToR, with stage wise reduction of BOD,COD and TDS value in ETP, solvent stripper and ATFD. PP informed about low COD effluent having 9500 mg/l COD value will be treated in primary, secondary and tertiary units and treated effluent will be discharged to CETP of Sarigam through underground pipeline. Committee observed that low COD effluent having 9500 mg/l COD treatment in conventional ETP is not justifiable. Committee deliberated on natural gas as fuel will be provided for proposed boiler and two stage scrubber as APCM proposed for process reactor. Committee deliberated on Baseline data, CER, EMP, Green belt etc in length. Committee insisted for submit revised CER along with need based CER activity. Committee insisted for submission of change in Water, Air, Hazardous waste and EMP due to deviation from ToR regarding waste water management in tabular form.

• After deliberation, SEAC unanimously decided to consider the proposal after submission of the following details.

- 1. Submit revised product profile with curtail R and D production capacity and submission of change in Water, Air, Hazardous waste and EMP due to deviation from ToR regarding waste water management, in tabular form.
- 2. MoU with layout plan showing exact area in sq. mtr within premises and outside premises (In case of green belt development outside premises)
- 3. Submission of revised water balance diagram with mentioning maximum reuse of boiler and cooling blow down effluent and technical justification for high COD effluent treatment in in-house stripper and ATFD in

- place of CMEE as per ToR, with stage wise reduction of BOD,COD and TDS value in ETP, solvent stripper and ATFD.
- 4. Submit technical justification regarding low COD effluent having 9500 mg/l treatment in conventional ETP to achieve CETP inlet norms is feasible.
- 5. Submit need based CER for surrounding villages with budgetary provision for five years.
- Project proponent made presentation for the above mentioned query dated 18/03/2020 for the above mentioned points.
- PP presented replied as below:
 - 1. PP presented revised product profile with curtail R and D production capacity and submission of change in Water, Air, Hazardous waste and EMP due to deviation from ToR regarding waste water management, in tabular form.
 - 2. PP presented MoU with layout plan showing exact area in sq. mtr within premises and outside premises in village: Kalgam.
 - 3. PP presented revised water balance diagram with mentioning maximum reuse of boiler and cooling blow down effluent and technical justification for high COD effluent treatment in in-house stripper and ATFD in place of CMEE as per ToR, with stage wise reduction of BOD, COD and TDS value in ETP, solvent stripper and ATFD.
 - 4. PP presented technical justification regarding low COD effluent having 9500 mg/l treatment in conventional ETP to achieve CETP inlet norms is feasible.
 - 5. PP presented need based CER for surrounding villages with budgetary provision for five years.
- Committee deliberated on the reply submitted by PP and found it satisfactory.
- Compliance of ToR found satisfactory.
- After detailed discussion, Committee unanimously decided to recommend the project to SEIAA,
 Gujarat for grant of Environment Clearance.

9	SIA/GJ/IND2/30398/2018	M/s. Halcyon Labs Pvt. Ltd.	EC – Reconsideration
		Block No.: D-2/CH, Plot No.: 335, 336, 337,	
		GIDC Dahej-2, Bharuch, Gujarat-392110.	

Category of the unit: 5(f)

Project status: New

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/30398/2018 on dated
 11/12/2019 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 25/03/2019.
- Project proponent has submitted EIA Report prepared by Ramans Enviro services Pvt. Ltd. based on the TOR issued by SEIAA.

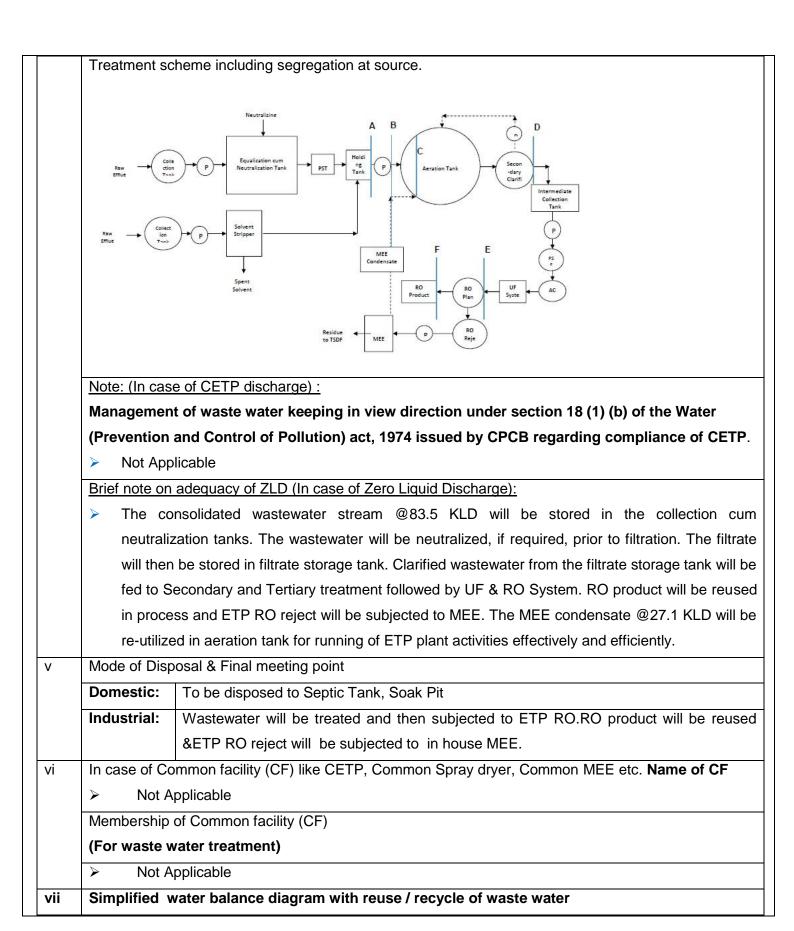
• This is new unit proposes for manufacturing of synthetic organic chemical as tabulated below:

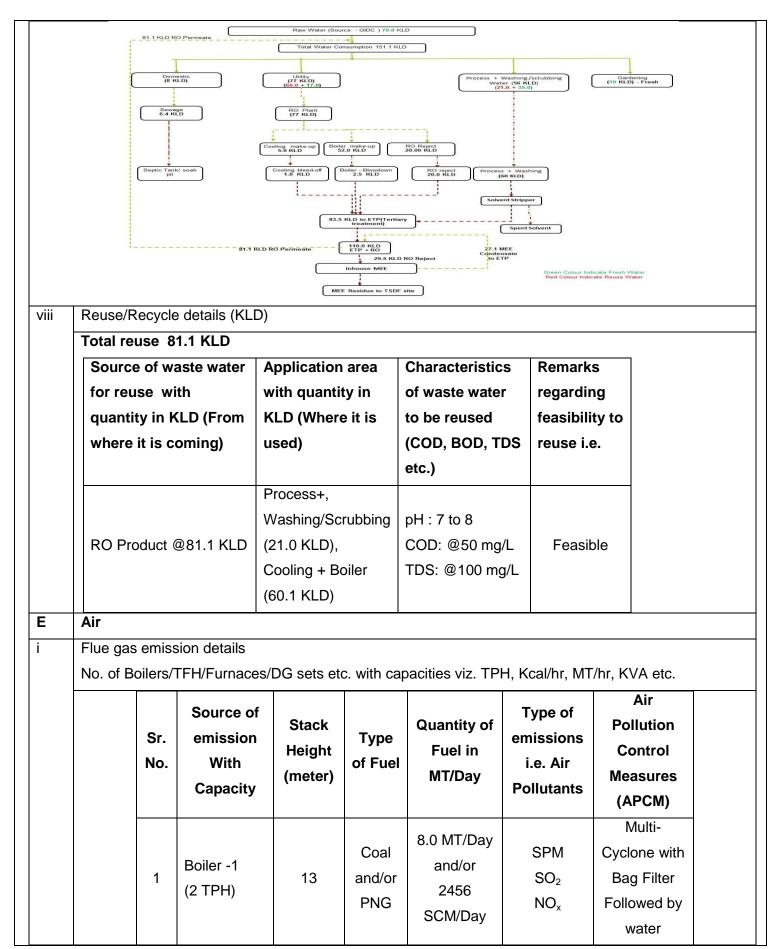
Sr.	Product	Products Name	CAS No. /	Quantity in	End-use of
No.	Group	Froducts Name	CI No.	MT/Month	Products
1		Betamethasone Dipropionate	5593-20-4		
2		Beclomethasone Dipropionate	4419-39-0		
3		Betamethasone Sodium Phosphate	151-73-5		
4		Betamethasone Valerate	2152-44-5		
5		Clobetasol Propionate	25122-46-7		
6		Dexamethasone Sodium Phosphate	2392-39-4		
7		Mometasone Furoate	105102-22-5		
8		Clobetasone Butyrate	25122-57-0		
9		Triamcinolone Acetonide	76-25-5		
10		Halobetasol Propionate	66852-54-8		
11		Fluocinolone Acetonide	67-73-2		
12		Betamethasone	378-44-9		
13		Dexamethasone	50-02-2		
14	Α	Dexamethasone valerate	33755-46-3	0.83	Used as Pharma
15		Dexamethasone tert-butyl acetate	24668-75-5		intermediate in
16		Dexamethasone pivalate	1926-94-9		pharmaceutical
17		Dexamethasone 21-linolate	14899-36-6		industries.
18		Dexamethasone 21-isonicotinate	2265-64-7		
19		Betamethasone benzoate	22298-29-9		
20		Betamethasone admantoate	5593-20-4		
21		Betamethasone acetate	987-24-6		
22		Prednisolone	53-03-2		
23		Fluticasone	80474-14-2		
24		Difluprednate	23674-86-4		
25		Budesonide	51333-22-3		
26		Deflazacort	14484-47-0		
27		Fluocinolone	67-73-2		
28		Erythromycin Base	114-07-8		
29	В	Erythromycin Estolate	3521-62-8	20.83	
30		Erythromycin Ethyl Succinate	1264-62-6		

31		Erythromycin Stearate	643-22-1		
32		Clotrimazole	23593-75-1		
33		Ketoconazole	65277-42-1		
34		Fluconazole	86386-73-4		
35		Posaconazole	171228-49-2		
36		Efinaconazole	164650-44-6		
37		Luliconazole	187164-19-8		
38		Voriconazole	137234-62-9		
39		Sertaconazole	99592-32-2		
40		Ravuconazole	182760-06-1		
41		Isavuconazole	241479-67-4		
42		Itraconazole	84625-61-6		
43		Tavaborole	174671-46-6		
44		Crisaborole	906673-24-3		
45		Fosravuconazole	351227-64-0		
46		Betrixaban	330942-05-7		
47		Tenofovir	147127-20-6		
48		Lamivudine	134678-17-4		
49		Ticagrelor	274693-27-5		
50		Apixaban	503612-47-3		
51		Carbamazepine	503612-47-3		
52		Oxcarbazepine	28721-07-5		
53	С	Eslicarbazepine	236395-14-5	8.33	
54		Dexchlorpheniramine Maleate	2438-32-6		
55		Chlorpheniramine Maleate/Base	113-92-8		
56		Pamoic Acid	130-85-8		
57	D	Disodium Pamoate	6640-22-8	8.33	
58		Pyrantel Pamoate	22204-24-6		
59	Е	2 CTC (2 Chlorotrityl chloride)	42074-68-0	8.33	
		Total	·	46.65	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 16/01/2020.
- Salient features of the project are as under:

C.,	-	Doublesdage			<u> </u>	D 04	(=! =						
Sr no		Particulars				Det	tails						
110													
Α		Total cost of Propo	sed Project			22.6 Crores							
		(Rs. in Crores):											
		Details of EMP											
S	r		Inst	alled	Capital Co	st		Red	curring	Cost			
No		Unit		Capacity		(Rs. I		Rs. In	In Lacs per month)				
	.		Jup	Lacs)		Operating		g	Mainte	nance	То	tal	
1	l	Effluent Treatme	ent 110	KLD	152.00)	12.74		1.2	7	14	.01	
2	2	APCM		bbing stem	16.00		0.50		0.2	0	0.	0.70	
3	3	Hazardous Wast Management	e Storage 7.00 and Membership			3.50			3.	3.50			
4	1	Safety			7.00		0.70		0.10		0.80		
5	5	Environment Monitoring			14.00	0.40			0.15		0.55		
6	6	Green Belt			5.00		0.05		0.08		0.13		
7	7	Dust suppression system during construction phase			1.00		-		-			-	
		Tota	al		202.00		17.89		1.8	0	19	.69	
		Details of CER as	per OM dated	01/05/20	18						1		
			Beneficiary					Bu	dget A	mount	(In Lak	(hs)	
Sı	r.	Activity	of	Specific Ac		tiviti	es	1 st	2 nd	3 rd	4 th	5 th	
No	0.		surroundin					Yr	Yr	Yr	Yr	Yr	
			g village										
1		Up gradation of primary schools (std. 1 to 4) and preprimary schools (Nursery to std.	Rahiad & Samatpur, Vahiyal, Jolva	of sch	es vement in ool i.e. prov ound, bet	infra visior tter		5.86	5.86	5.86	5.86	5.86	


		1)			Teach	ners.							
					• Provis	sion of r	ecreat	tional					
					instru	ments							
					• Other	need based a	ctivitie	s.					
4	2	Improvement existing public health center activities	blic	Rahiad & Suva	Health awareness program PHC, health checkup progra				3.00	3.00	3.00	3.00	3.00
-	Total							8.86	8.86	8.86	8.86	8.86	
В	3	Total Plot area (sq. meter)					1486	61.20 S	Sq. m.				
		Green belt area (sq. meter)					4948	3.00 Sc	ղ. m.				
С	;	Employment generation		ation			50.0	0					
D)	Water											
i		Source of Water Supply					GID	C Supp	oly				
		(GIDC Bore w	vell, Su	rface water, T	r, Tanker supply etc.)								
		Status of perr	mission	from the con	cern auth	nority	Pern	nission	obtai	ned			
ii		Water consumption (KLD)											
		Ca	ategory	У		Quantity in	KLD	Rema	arks				
		(P) D	omestic		8.00	8.00						
		(Q	Q) G	ardening		10.00		> 70 KLD Fresh water					
		(R	R) In	ndustrial				fro	m	GIDC	Wate	er	
					Process			Su	pply	and r	emainin	g	
				\	Washing				81.1	KLD		е	
					Boiler					from I	ETP R	0	
					Cooling			pro	oduct.				
				Others(RO/DN	• •								
					ial Total								
				Total (A									
		•		-	-	oject:151.10 K	LD						
		•	•	e recycled: 8									
		,		vater requirem			-4 <i></i> 1						
		-	-		n water ·	+ Recycled wa	ater)						
iii		Waste water	gener		Т	\\\			D -	- ul c -		1	
				Category		Wastewater KLD			Rema	arks			


(I) Domestic	6.4	➤ To be disposed to Septic Tank,
		Soak Pit
(J) Industrial		
Process	58.0	➤ Wastewater will be treated in
Washing	2.0	ETP and then subjected to ETP-
Boiler	2.5	RO and its product will be
Cooling	1.0	reused.
Others(RO/DM Reject)	20.0	> ETP RO reject will be subjected
Total Industrial waste water	83.5	to in house MEE.
Total [A + B]	89.9	

iv Treatment facility within premises with capacity

[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc.

Sr.No.	Description	Nos.	Volume in KL
1	Collection Tank	1	40
2	Equalization tank	2	60
3	PST	1	25
4	Holding Tank	1	40
5	Aeration Tank	1	170
6	SST	1	30
7	Intermediate collection tank	1	40
8	PSF	1	0.9 dia
9	ACF	1	0.9 dia
10	UF Filtration	1	6 m3/hr.
11	UF Storage Tank	1	10 KL
12	RO Plant	1	6 m3/hr.
13	RO Product Tank	1	20 KL
14	RO Reject Tank	1	20 KL
15	MEE	1	2.0 m ³ /hr

						scrub	
	2	Boiler -2 (1.5 TPH)	13	Coal and/or PNG	5.9 MT/Day and/or 1842 SCM/Day	Mul Cyclon Bag F Follow wat scrub	e with Filter ed by ter
	3	D.G. set-1 Nos. (750 KVA)	9	Diesel	0.6 MT/Day	Adeq Sta Heiç	ack

ii Process gas emission details i.e. Type of pollutant gases (SO₂, HCl, NH₃, Cl₂, NO_x etc.)

Sr. Specific Source of Emission No. (Name of the Product) Type of Emission		Type of Emission	Stack Height (Meter)	Air Pollution Control Measures(APCM)
1	Reactor (2-CTC)	HCI	9	Two Stage Alkali Scrubber
2	Reactor(Prednisolone, Deflazacort)	HBr	9	Single Stage Alkali Scrubber
3	Reactor(Fluticasone)	H2S	9	Single Stage Alkali Scrubber
4	Reactor (Apixaban)	NH3	9	Two Stage Alkali Scrubber

iii **Fugitive emission** details with its mitigation measures:

- > The entire manufacturing activities will be carried out in the closed reactors and regular checking and maintenance of reactors will be carried out to avoid any leakages.
- > The tank vents will be equipped with either a carbon filter or an oil trap to prevent water vapor from entering the tank as it breathes.
- ➤ All the motors of pumps for the handling of hazardous chemicals will be flame proof and provided with suitable mechanical seal with stand-by arrangement.
- ➤ Control of all parameters on a continuous basis will be done by adequate control valves, pressure release valves and safety valves etc.
- ➤ All the flange joints of the pipe lines will be covered with flange guards.
- ➤ All the raw materials will be stored in isolated storage area and containers tightly closed.
- ➤ There will also be provision of adequate ventilation system in process plant and hazardous chemical storage area.

F Hazardous wastes

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

i	Sr. No.	Type/ Name of Haz. waste	Specific Source of generation (Name of the Activity, Product etc.)	Category and Schedule as per HW Rules.	Quantity (MT/ Annum)	Management of HW
	1	Used oil	From Plant machinery	5.1	0.05	Collection, storage, transportation and sold out to the registered recyclers.
	2	ETP Sludge	From ETP Plant	35.3	260.00	Collection, storage, transportation and disposal to authorized TSDF facility or send to co-processing units.
	3	MEE Sludge	From MEE Plant	35.3	Collection, transportation at to authorized TS	
	4	Process sludge	From Manufacturing Process (Product No. 45 to 50)	28.1	30.00	Collection, storage, transportation and disposal to authorized CHWI facility.
	5	Discarded containers /liners/ barrels	From Raw material	33.1	180.00	Collection, storage and reused for disposal of waste to sold to recyclers.
	6	Spent carbon or filter medium	From Manufacturing Process (Product No. 1 to 8, 14 to 16, 18, 19, 33, 51, 54 & 56)	28.3	15.00	Collection, storage, transportation and disposal to authorized CHWI facility or send to co-processing units.
	7	Stripper Residue	From Stripper	36.1	5.00	Collection, storage, transportation and disposal to authorized CHWI facility.
	8	Distillation Residue	From Distillation	36.1	1.00	Collection, storage, transportation and disposal to authorized CHWI facility.

							Collection, storage,	
	9	Spent Solvent	From Stripper	28.6		12.00	transportation and disposal through sale to authorized recyclers as per Rule-9 of Haz Rules.	
	10	Spent Solvent	From Distillation	28.6		85.00	Collection, storage, transportation and disposal through sale to authorized recyclers as per Rule-9 of Haz. Rules.	
	11	HCI Solution (~15-20 %)	26.3			780.00	Collection, storage and transportation and sold to actual users as per Rule-9 of Haz. Rules.	
	12	Aluminiumchl oride (@20 %)	From Scrubbing System (2 Chloro trityle chloride)	Sch. I B(15)		900.00	Collection, storage and transportation and sold to actual users as per Rule-9 of Haz. Rules.	
	13	NaBr Solution (@20 %)	From Scrubbing System (Prednisolone, Deflazacort)	Sch. I B(15)		2.5 KL	Collection, Storage and send to in-house ETP followed by MEE.	
	14	NaSO₃H Solution (@10 %)	From Scrubbing System (Fluticasone)	Sch. I B(15)		0.6 KL	Collection, Storage and send to in-house ETP followed by MEE	
	15	NH₃ Solution	From Scrubbing System (Apixaban)	Sch. I B(15)		96.0 KL	Collection, storage and reuse in same process.	
	16	Exhausted scrubbed media	From Water Scrubber	Sch. I B(15)		350.0 KL	Collection, Storage and send to in-house ETP followed by MEE.	
ii	Membe	ership details of	TSDF, CHWIF etc.		BE	EIL Infrastructure Ltd.		
	(For H	W management	:)		RESP.			
iii	Details of Non-Hazardous waste & its disposal (MSW and others)							
G	Solver	it management	VOC emissions etc.					

i Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format)

Sr. No.	Solvent Name	Consumption in MT/Month	Recovered in MT/Month	Fresh inMT/Month	% Recovery
1	Acetone	500.00	476.00	24.00	95.20
2	Triethyl amine - TEA	71.28	67.79	3.49	95.10
3	MDC	700.00	673.40	26.60	96.20
4	Methanol	350.00	336.00	14.00	96.00
5	Ethylacetate	250.00	240.50	9.50	96.20
6	IPA	450.00	427.50	22.50	95.00
7	Pyridine	163.69	155.51	8.18	95.00
8	Toluene	600.29	582.28	18.01	97.00
9	DMF	97.05	93.36	3.69	96.20

ii VOC emission sources and its mitigation measures

- ➤ Use of effective engineering practices, like use of pneumatic system for transfer of raw materials will be continued to be adopted for control of VOC emissions; and manual handling will be avoided.
- > Equipment / machineries engaged in handling and storage operations will be checked prior to loading/unloading and they will be kept in proper working conditions through regular inspection and maintenance.
- > Transportation and handling of materials will be done in line with the established SOPs and under supervision.

H > Details regarding storage of Hazardous chemicals

Storage details	Name of major Hazardous chemicals	Remarks
Storage tanks	Formamidine HCI, Fumaric Acid,etc	
Drum/Barrel storage	Acetone, MDC, Methanol,Oil,	
	Bromine, tetrahydrofuran, dimethyl	
	amino pyridine, Ethanol, hydrazine,	
	Acetonitrile,NaOCN, etc	
Bags	Sodium Bicarbonate, 48 %	
	NaOH,Raney Ni, 2-amino-5-chloro	
	pyridine, etc	

> Applicability of PESO : Will be obtained

- During the meeting dated 16/01/2020, technical presentation made by project proponent.
- The baseline environmental quality has been assessed for various components of the environment viz. air,noise, water, biological and socioeconomic aspect. The baseline environmental study has been

conductedfor the study area of 10 km radial distance from project site for the 29th October 2018 to 27th January 2019. Ambient Air Quality monitoring was carried out for PM2.5, PM10, SO2, NOx and HCI at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD. The resultant concentrations are within the NAAQS.

- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detailed proposed safeguard measures including On-Site / Off-Site Emergency
 Plan has been covered in the RA report.
- Committee noted that this proposal is Greenfield project in GIDC Dahej. Source of Water is GIDC. PP mentioned that total industrial effluent will be treated in proposed in-house primary, secondary and tertiary ETP and treated effluent will be passed through RO plant. RO permeate will be reused back in process while RO reject will be evaporated in MEE. MEE condensate will be further reutilized in aeration tank for further treatment. Committee asked about technical justification regarding reuse of treated waste water quantity more than mentioned in ToR. Also Committee asked about revised water balance diagram with justification regarding stage wise characteristic of effluent for reduction of pollutant like BOD, COD and TDS. Committee also noted that PP has not addressed bromination, nitration and amination process even though bromine, ammonia solution and conc. Nitric acid as raw material for proposed bulk drug products. Committee noted that PP has not properly addressed adequate APCM like water scrubber in addition to proposed APCM for coal fired boilers. Committee also observed not mentioned membership for ultimate disposal of various Hazardous Waste like spent solvent, process sludge, spent carbon etc. Committee also insisted for solvent stripper with losses at various stages like storage, transportation, handling and reactors with solvent recovery and its mitigation measures. Committee also submit revised EMP with mentioning dust emission during construction phase and need based CER in nearby villages with permission letter for utilize CER fund in School and PHC of concerned department. Committee also insisted for revised layout plan with mentioning green belt area

After detailed discussion, Committee unanimously decided to defer the project and consider the proposal only after submission of the following details.

- 1. Submit technical justification regarding reuse of treated waste water quantity more than mentioned in ToR.
- 2. Revised water balance diagram with justification regarding stage wise characteristic of effluent for reduction of pollutant like BOD, COD and TDS in ETP, RO plant and MEE.
- 3. Submit technical justification regarding process stack and its APCM for bromination, nitration and amination process even though bromine, ammonia solution and conc. Nitric acid as raw material for proposed bulk drug products and subsequent change in EIA report.
- 4. Readdress adequate APCM like water scrubber in addition to proposed APCM for coal fired boilers.
- 5. Submit revised EMP with mentioning dust emission mitigation measures during construction phase & Need Based CER for nearby villages of proposed project with budgetary provision for five years.

- 6. Submit revised Hazardous matrix for disposal of incinerable waste other than critical polluted area, membership certificate for ultimate disposal of various Hazardous Waste like spent solvent, process sludge, spent carbon etc.
- 7. Readdress additional ToR no- 3 for LDAR as per proposed project with each solvent from process and solvent stripper(effluent) storage, handling, recovery, losses and its chemical property and additional ToR no 10 considering scrubber bleed liquor disposal.
- Project proponent made presentation for the above mentioned query dated 18/03/2020 for the above mentioned points.
- PP presented replied as below:
 - 1. PP presented technical justification regarding reuse of treated waste water quantity more than mentioned in ToR.
 - 2. PP presented revised water balance diagram with justification regarding stage wise characteristic of effluent for reduction of pollutant like BOD, COD and TDS in ETP, RO plant and MEE.
 - 3. PP presented technical justification regarding process stack and its APCM for bromination, nitration and amination process with subsequent change in EIA report.
 - 4. PP presented adequate APCM like water scrubber in addition to proposed APCM for coal fired boilers.
 - 5. PP presented revised EMP with mentioning dust emission mitigation measures during construction phase & Need Based CER for nearby villages of proposed project with budgetary provision for five years.
 - 6. PP presented revised Hazardous matrix for disposal of incinerable waste other than critical polluted area, membership certificate for ultimate disposal of various Hazardous Waste like spent solvent, process sludge, spent carbon etc.
 - 7. PP presented LDAR as per proposed project with each solvent from process and solvent stripper (effluent) storage, handling, recovery, losses and its chemical property.
- Committee deliberated on the reply submitted by PP and found it satisfactory.
- Compliance of ToR found satisfactory.
- After detailed discussion, Committee unanimously decided to recommend the project to SEIAA,
 Gujarat for grant of Environment Clearance.

10	SIA/GJ/IND2/30487/2018	M/s.Human Pharma Labs Pvt. Ltd. Survey No. 1562, Pansar Road, Village:	Appraisal
		Pansar, Tal: Kalol, Dist.: Gandhinagar,	
		Gujarat.	

Category of the unit: 5(f)

Project status: New

 Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/30487/2018 on dated 05/11/2019 for obtaining Environmental Clearance.

- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 03/05/2019.
- Project proponent has submitted EIA Report prepared by M/s. San Envirotech Pvt. Ltd, Ahmedabad based on the TOR issued by SEIAA.
- Public Hearing of the Project was conducted by Gujarat Pollution Control Board at Project Site of M/s.Human Pharma Labs Pvt. Ltd., Survey No. 1562, Pansar Road, Vill: Pansar, Tal: Kalol, Dist.: Gandhinagar, Gujarat dated 20/11/2019.
- This is new unit proposes for manufacturing of synthetic organic chemical as tabulated below:

Sr.	Name of the Products	CAS no. / CI	Quantity	End-use of
No.		no.	MT/Month	products
(A) H	ormones			
1	Norethisteron Enanthate	3836-23-5	0.5	Used in
2	Testosteron Enanthate	315-37-7		Pharma
3	Testosteron Propionate	57-85-2		Industry
4	Norethisteron Acetate	51-98-9		
5	Estradiol Benzoate	50-50-0		
6	Estradiol Valerate	979-32-8		
7	Estradiol Undecyclate	3571-53-7		
8	Estradiol	50-28-2		
9	Estradiol Cypionate	313-06-4		
10	Testosteron Cypionate	58-20-8		
11	Methyl Testosteron	58-18-4		
(B) S	teroids			
12	Betamethasone	378-44-9	1.0	Used in
13	Dexamethasone	50-02-2		Pharma
14	Prednisolone	53-03-2		Industry
15	Hydrocortisone	50-23-7		
16	Fluocinolone Acetonide	67-73-2		
17	Dexamethasone Acetate	1177-87-3		
18	Methyl Prednisolone	83-43-2		
19	Mometasone Furoate	105102-22-5		
20	Fluticasone Propionate	80474-14-2		
21	Deflazacort	14484-47-0		
22	Budesonide	51333-22-3		
23	Beclomethasone Dipropionate	4419-39-0		

		Total	2.6	
40	Methylcobalamin	13422-55-4	1.0	
39	Triamcinolone	124-94-7		
38	Triamcinolone Acetonide	76-25-5		
37	Halobetasol Propionate	66852-54-8	0.1	
(C) St	teroids			<u>I</u>
36	Prednisolone Sodium Phosphate	125-02-0		
35	Prednisolone Acetate	52-21-1		
34	Methyl Prednisolone Hemisuccinate	2921-57-5		
33	Methyl Prednisolone Acetate	53-36-1		
32	Hydrocortisone Acetate	50-03-3		
31	Hydrocortisone Hemi Succinate	2203-97-6		
30	Dexamethasone Sodium Phosphate	2392-39-4		
29	Clobetasone Butyrate	25122-57-0		
28	Clobetasole Propionate	25122-46-7		
27	Betamethasone Valerate	2152-44-5		
26	Betamethasone Sodium Phosphate	151-73-5		
25	Betamethasone Dipropionate	5593-20-4		
24	Betamethason Acetate	987-24-6		

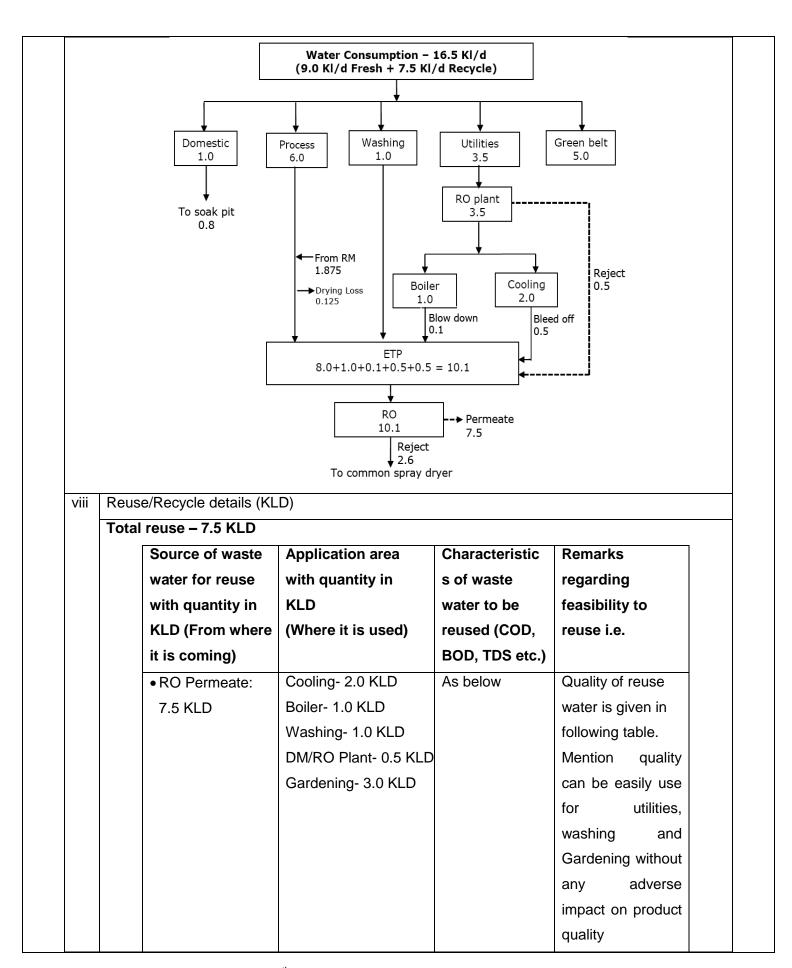
- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 18/03/2020.
- Salient features of the project are as under:

Sr.	Particulars		Details
no.			
Ą			1
A	Total cost of Propose	ed Project	4.5 Crores
	(Rs. in Crores):		
	Details of EMP		1
	COMPONENT	CAPITAL COST OF EMP	RECURRING COST OF EMP
			(per Annum)
	TOTAL COST	Rs. 52 Lakh	Rs. 44.6 Lakh

Sr.	Particulars	Capital Cost	Recurring Cost per
No.		(Rs. in Lakhs)	annum
			(Rs. in Lakh)
1	Air Pollution Control	15.0	1.0
2	Water Pollution Control	20.0	31.9
3	Noise Pollution Control	5.0	1.0
4	Solid/Hazardous Waste Management	5.0	5.0
5	Environment Monitoring and Management	1.0	2.5
6	Occupational Health	0.5	2.0
7	Green Belt Development	2.0	0.7
8	Rain Water Harvesting	3.5	0.5
	System		
	Total	52.0	44.6

Details of CER as per OM dated 01/05/2018

As per OM no. 22-65/2017 on dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER), Greenfield project have to contribute 2.0% of the Project Cost, the company will contribute **Rs. 9.0 lakhs (2.0%)** as funds for CER activities.


Component	As per Norms	Allocation
CER	Rs. 9.0 Lakhs (2.0%)	Rs. 9.0 Lakhs (2.0%)

Detailed expenditure break-up for CER activities

9	Sr.	Activities	Total Budget	Focus area	
ı	No.		(Rs. in Lakhs)		
	1	Provide Dengue Fogging Machines to	3.0	Pansar and	
		Pansar and Vadavsvami village (3 Machine		Vadavsvami	
		in each village)		village	
	2	Health check-up during rainy days and	6.0		
		provide free medicine to Pansar and			
		Vadavsvami village.			
		Total	9.0		
Tota	l Plo	t area (sq. meter)	5665 Sq. m.		
Gree	n be	lt area (sq. meter)	1870 Sq. m.		
Emp	loyn	nent generation	12 persons		

D						
i	Source of	of Water Supply		Source of water supply will be from		
	(GIDC Bore well, Surface water, Tanker supply e			Pansar Village Panchayat		
	Status of	f permission from the concern aut	hority. Permission		ssion already obtained	
ii	Water consumption (KLD)					
		Category	Quantity,	KLD	Remarks	
		(S) Domestic	1.0		Fresh	
		(T) Gardening	5.0		Fresh (2.0 KLD) +	
					Reuse (3.0 KLD from	
					RO permeate)	
		(U) Industrial				
		Process	6.0		Fresh	
		Washing	1.0		Reuse	
		Boiler	1.0		Reuse	
		Cooling	2.0		Reuse	
		Others				
		Water treatment	0.5		Reuse	
		(DM/RO Plant)				
		(DM/RO Plant) Industrial Total	10.5			
			10.5 16.5			
	2) C	Industrial Total	16.5 roject: 16.5 l	KLD		
iii	2) C 3) T	Industrial Total Total (A + B + C) Total water requirement for the parameter recycled: 7.5 KLD	16.5 roject: 16.5 l	<ld< td=""><td></td><td></td></ld<>		
iii	2) C 3) T	Industrial Total Total (A + B + C) Total water requirement for the parametrity to be recycled: 7.5 KLD Total fresh water requirement: 9.0	16.5 roject: 16.5 l			
iii	2) C 3) T	Industrial Total Total (A + B + C) Total water requirement for the parametrity to be recycled: 7.5 KLD Total fresh water requirement: 9.0 Total generation (KLD)	16.5 roject: 16.5 l KLD	ter, KLI		
iii	2) C 3) T	Industrial Total Total (A + B + C) Total water requirement for the parametrity to be recycled: 7.5 KLD Total fresh water requirement: 9.0 Total generation (KLD) Category	16.5 roject: 16.5 l KLD Waste wa	ter, KLI	 D Remarks	
iii	2) C 3) T	Industrial Total Total (A + B + C) Total water requirement for the parametrity to be recycled: 7.5 KLD Total fresh water requirement: 9.0 Total fresh water (KLD) Category (K) Domestic	16.5 roject: 16.5 l KLD Waste wa	ter, KLI	 D Remarks	
iii	2) C 3) T	Industrial Total Total (A + B + C) Total water requirement for the parametrity to be recycled: 7.5 KLD Total fresh water requirement: 9.0 Total water generation (KLD) Category (K) Domestic (L) Industrial	Toject: 16.5 I KLD Waste wa	ter, KLI 8	D Remarks To soak Pit	
iii	2) C 3) T	Industrial Total Total (A + B + C) Total water requirement for the parametrity to be recycled: 7.5 KLD Total fresh water requirement: 9.0 Total water generation (KLD) Category (K) Domestic (L) Industrial Process	Toject: 16.5 I KLD Waste wa 0.4	ter, KLI 8 0	D Remarks To soak Pit	
iii	2) C 3) T	Industrial Total Total (A + B + C) Total water requirement for the parametrity to be recycled: 7.5 KLD Total fresh water requirement: 9.0 Total water generation (KLD) Category (K) Domestic (L) Industrial Process Washing	16.5 roject: 16.5 l KLD Waste wa 0.6	ter, KLI 8 0 0	D Remarks To soak Pit	
iii	2) C 3) T	Industrial Total Total (A + B + C) Total (A + B + C) Total water requirement for the parametrity to be recycled: 7.5 KLD Total fresh water requirement: 9.0 Total water generation (KLD) Category (K) Domestic (L) Industrial Process Washing Boiler	16.5 roject: 16.5 l KLD Waste wa 0.4 8.4 1.4 0.6	ter, KLI 8 0 0	D Remarks To soak Pit	
iii	2) C 3) T	Industrial Total Total (A + B + C) Total water requirement for the parametrity to be recycled: 7.5 KLD Total fresh water requirement: 9.0 Total water generation (KLD) Category (K) Domestic (L) Industrial Process Washing Boiler Cooling	16.5 roject: 16.5 l KLD Waste wa 0.4 8.4 1.4 0.6	ter, KLI 8 0 0 1	D Remarks To soak Pit	

	To	otal Industrial waste water	10.1	ETP-RO-Common				
				Spray Dryer				
		Total [A + B]	10.9					
iv	Treatment fac	cility within premises with capa	acity					
	[In-house ETF	P (Primary, Secondary, Tertian	y), MEE, Strippe	r, Spray Dryer, STP etc.				
	> ETP (Capa	acity-15 KLD), RO (Capacity-	1.0 m³/hr)					
	Treatment sch	neme including segregation at	source.					
	Wastewate	er generated from industrial	activities (10.1 K	(LD) will be treated into i	in- hous			
	ETP and t	hen Treated effluent will be pa	assed through RC	D. Permeate from RO (7.5	KLD) w			
	be reused	l (in utilities, washing & Gree	enbelt) and reject	t of RO (2.6 KLD) will be	e sent f			
	evaporatio	on at Common Spray Drying	Facility (Chhatr	al Environment Manager	nent P			
	Ltd.).							
	> 0.8 KLD D	omestic wastewater will be di	sposed through s	soak pit.				
	Note: (In case	e of CETP discharge):						
	Management	of waste water keeping in	n view direction	under section 18 (1) (I	b) of th			
	Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding							
	Water (Preve	ention and Control of Po	llution) act, 19	74 issued by CPCB re	egardir			
	Water (Preve		llution) act, 19	74 issued by CPCB re	egardir			
	compliance of		llution) act, 19	74 issued by CPCB re	egardir			
	compliance o	of CETP.	,	·	egardir			
	compliance o	of CETP. oplicable adequacy of ZLD (In case of 2	,	·	egardir			
V	> Not ap	of CETP. oplicable adequacy of ZLD (In case of 2	,	·	egardir			
V	> Not ap	of CETP. oplicable adequacy of ZLD (In case of 2 oplicable	Zero Liquid Disch	arge):	egardin			
V	ompliance of Not ap Brief note on a ➤ Not ap Mode of Dispo	of CETP. oplicable adequacy of ZLD (In case of Zoplicable osal & Final meeting point 0.8 KLD disposed of to so	Zero Liquid Disch	arge):				
V	Brief note on a Not ap Mode of Disponentic:	of CETP. oplicable adequacy of ZLD (In case of Zoplicable) osal & Final meeting point 0.8 KLD disposed of to so Total industrial effluent (1	Zero Liquid Discharia L	arge): eptic tank.	P havir			
V	Brief note on a Not ap Mode of Disponentic:	of CETP. oplicable adequacy of ZLD (In case of Zoplicable) osal & Final meeting point 0.8 KLD disposed of to so Total industrial effluent (1	Zero Liquid Discha ak pit through se 0.1 KLD) will be ent units and the	eptic tank. e treated into in-house ET en passed through RO. I	P havir			
v	Brief note on a Not ap Mode of Disponentic:	poplicable adequacy of ZLD (In case of Z poplicable asal & Final meeting point 0.8 KLD disposed of to so Total industrial effluent (1 primary & tertiary treatm from RO (7.5 KLD) will	Zero Liquid Discharate American Liquid Discharat	eptic tank. e treated into in-house ET en passed through RO. I	P havir Permea sent f			
v	Brief note on a Not ap Mode of Disponentic:	poplicable adequacy of ZLD (In case of Z poplicable asal & Final meeting point 0.8 KLD disposed of to so Total industrial effluent (1 primary & tertiary treatm from RO (7.5 KLD) will	Zero Liquid Discharate American Liquid Discharat	eptic tank. e treated into in-house ET en passed through RO. If reject (2.6 KLD) will be	P havir Permea sent f			
V	Compliance of Not age Brief note on a Not age Mode of Disposition Domestic: Industrial:	poplicable adequacy of ZLD (In case of Z poplicable posal & Final meeting point 0.8 KLD disposed of to so Total industrial effluent (1 primary & tertiary treatm from RO (7.5 KLD) will evaporation at Commo	Zero Liquid Discharate American Liquid Discharate American Liquid Discharate American Liquid Bereused and Liquid Discharate American Liquid Li	arge): eptic tank. e treated into in-house ET en passed through RO. I reject (2.6 KLD) will be g Facility (Chhatral Env	P havir Permea sent for			
	Compliance of Not age Brief note on a Not age Mode of Disposition Domestic: Industrial:	poplicable adequacy of ZLD (In case of Zapplicable as a Final meeting point 0.8 KLD disposed of to so Total industrial effluent (1 primary & tertiary treatm from RO (7.5 KLD) will evaporation at Common	Zero Liquid Discharate American Liquid Discharate American Liquid Discharate American Liquid Bereused and Liquid Discharate American Liquid Li	arge): eptic tank. e treated into in-house ET en passed through RO. I reject (2.6 KLD) will be g Facility (Chhatral Env	P havir Permea sent f			
	Mode of Disponentic: In case of Color	poplicable adequacy of ZLD (In case of Zapplicable as a Final meeting point 0.8 KLD disposed of to so Total industrial effluent (1 primary & tertiary treatm from RO (7.5 KLD) will evaporation at Common	Zero Liquid Discharate American Liquid Discharate American Liquid Discharate American Liquid Bereused and Liquid Discharate American Liquid Li	arge): eptic tank. e treated into in-house ET en passed through RO. I reject (2.6 KLD) will be g Facility (Chhatral Env	P havir Permea sent f			
	Mode of Disponentic: In case of Concept Compliance of Disponentic: In case of Concept Committee Domestic: In case	poplicable adequacy of ZLD (In case of Zapplicable asal & Final meeting point 0.8 KLD disposed of to so Total industrial effluent (1 primary & tertiary treatm from RO (7.5 KLD) will evaporation at Commo Management Pvt. Ltd.). mmon facility (CF) like CETP,	Zero Liquid Discharate American Liquid Discharate American Liquid Discharate American Liquid Bereused and Liquid Discharate American Liquid Li	arge): eptic tank. e treated into in-house ET en passed through RO. I reject (2.6 KLD) will be g Facility (Chhatral Env	P havir Permea sent f			
	Mode of Disposition In case of Core Compliance of Core Membership of Compliance of Compliance of Core Membership of Core Mode of Disposition of Core Compliance of Core Membership of Core Membership of Core Mode of Disposition of Core Membership of Core Me	poplicable adequacy of ZLD (In case of Zepplicable) posal & Final meeting point 0.8 KLD disposed of to so Total industrial effluent (1 primary & tertiary treatm from RO (7.5 KLD) will evaporation at Commo Management Pvt. Ltd.). mmon facility (CF) like CETP, non Spray dryer	Zero Liquid Discharate American Liquid Discharate American Liquid Discharate American Liquid Bereused and Liquid Discharate American Liquid Li	arge): eptic tank. e treated into in-house ET en passed through RO. I reject (2.6 KLD) will be g Facility (Chhatral Env	Permea sent for			
	Compliance of Not appeared by	poplicable adequacy of ZLD (In case of Zapplicable posal & Final meeting point 0.8 KLD disposed of to so Total industrial effluent (1 primary & tertiary treatm from RO (7.5 KLD) will evaporation at Common Management Pvt. Ltd.). mmon facility (CF) like CETP, non Spray dryer of Common facility (CF)	Zero Liquid Discharate American Liquid Discharate American Liquid Discharate American Liquid Be and the Liquid Liq	eptic tank. e treated into in-house ET en passed through RO. If reject (2.6 KLD) will be g Facility (Chhatral Env	Permea sent f vironme			

		Pa	rameters	Unit	ETP Inle	et E1	ΓΡ Ο	utlet	RO Permeate
		рН		pH unit	4.5-5.0)	7.0-7	' .5	7.5-8.0
		Colc	or	mg/L	45-50		20-3	30	< 5
		SS		mg/L	450-500	0	50-6	60	20-30
		TDS)	mg/L	12000-125	500 120	000-1	2500	350-400
		COL)	mg/L	3500-400	00 28	300-3	8000	50-70
		BOD)	mg/L	1200-150	00 9	00-1	000	20-25
		Oil 8	& Grease	mg/L	30-35		5-1	0	
			nonical ogen	mg/L	45-50		20-2	25	-
			Volume		10.1 KL	D 1	0.1 K	(LD	7.5 KLD
					oto. with o	Capacities viz	!!	n, Kcal/nr	, MT/hr, KVA etc.
		Sr.	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel MT/Day	T en i Po	Type of nissions i.e. Air ollutants	Air Pollution Control Measures (APCM)
		Sr.	Source of emission With	Stack Height	Type of	Quantity of Fuel MT/Day e 1.5	on i	ype of nissions i.e. Air	Air Pollution Control Measures
		Sr.	Source of emission With Capacity Boiler	Stack Height (meter)	Type of Fuel Agro Waste	Quantity of Fuel MT/Day e 1.5	T en	Type of nissions i.e. Air ollutants	Air Pollution Control Measures (APCM) Cyclone &
ii	Proce	Sr. no.	Source of emission With Capacity Boiler (0.3 TPH) DG Set	Stack Height (meter)	Type of Fuel Agro Waste (Briquettes) Diesel	Quantity of Fuel MT/Day e 1.5 Mt/day 25 Lit/Hr.	T en	SPM, O ₂ , NO _X SPM, O ₂ , NO _X	Air Pollution Control Measures (APCM) Cyclone & Bag filter Adequate Stack height
ii		Sr. no.	Source of emission With Capacity Boiler (0.3 TPH) DG Set (75 KVA) s emission de	Stack Height (meter) 11 11 tails i.e. Tyurce of on	Type of Fuel Agro Waste (Briquettes) Diesel ype of polluta	Quantity of Fuel MT/Day e 1.5 Mt/day 25 Lit/Hr. ant gases (So	T en i Po	SPM, O ₂ , NO _X SPM, O ₂ , NO _X CI, NH ₃ , C	Air Pollution Control Measures (APCM) Cyclone & Bag filter Adequate Stack height
ii		Sr. no.	Source of emission With Capacity Boiler (0.3 TPH) DG Set (75 KVA) s emission de	Stack Height (meter) 11 11 tails i.e. Ty urce of on f the rocess)	Type of Fuel Agro Waste (Briquettes) Diesel ype of polluta	Quantity of Fuel MT/Day e 1.5 Mt/day 25 Lit/Hr.	T en i Po	SPM, O ₂ , NO _X SPM, O ₁ , NO _X CI, NH ₃ , C	Air Pollution Control Measures (APCM) Cyclone & Bag filter Adequate Stack height Il _{2,} NO _x etc.)

Sources of fugitive emission

In proposed activities, there will be chances of VOCs generation from solvent tank farm, process area & raw material storage area. There will be also chances of generation of PM from packing/finishing area.

Mitigation Measures:

- Close handling system provided for transfer of chemicals.
- Pneumatically transfer of liquid raw material in reactor.
- Raw material will be stored in the covered structure.
- Regular maintenance of valves, pipes etc.
- Periodic work area monitoring will be carried out.
- Greenbelt will be developed around the plant to arrest the fugitive emission.

F Hazardous wastes

(As per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

i	Sr	. Type of	Category	Quantity	Disposal method
	No	. Waste			
	Ha	zardous Waste		L	L
	1	ETP Sludge	35.3	24.0 MTPA	Collection, storage & disposal
					at TSDF site approved by
					GPCB.
	2	Distillation	20.3	21.0 MTPA	Collection, storage & disposal
		residue			at CHWIF or co-processing.
	3	Used	5.1	0.2	Collection, storage & use
		Lubricating		Kl/year	within premises as lubricant/
		Oil			sell to registered recyclers.
	4	Discarded	33.1	2400	Collection, storage and reuse
		containers		Nos./Annum	for packing of products or
				&	disposal by selling to approved
		Liners		3.0 MTPA	recyclers.
	5	Spent	28.3	0.9 MTPA	Collection, storage & return
		carbon			back to supplier for
					regeneration.
	6	Off Specific	28.4	What so ever	Collection, storage & disposal
		Products		generation	at CHWIF.
	7	Date	28.5	What so ever	Collection, storage & disposal
		expired		generation	at CHWIF.
1				1	

			products				
		8	Spent Solvent	28.6	225 M	ITPA	Collection, storage, in-house distillation and recovered solvent will be reused.
	S	olid	Waste				
		1	Fly Ash		4.0 MT/	month	Collection, Storage & sold to brick manufacturers
ii		•	details of TSD	F, CHWIF et	C.		ership of TSDF, CHWIFwill be ed after getting EC.
iii	Details of (MSW a		on-Hazardous v thers)	vaste & its di	sposal	MT/Mo	sh generation will be around 4.0 onth, which will be sold to brick facturers.
G	Solvent	t mai	nagement, VO	C emissions	etc.		

- Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format)
 - Methanol, Chloroform, Dimethyl Formamide, IPA, Acetone and n-Hexane will be used as solvent. Self-reflux condenser will be provided with dual valve system for solvent recovery. At the end of reaction, solvent will be collected in receiving tank and reused again in next batch.

Sr.	Name of	Boiling Point	Flash	Recove	Remark
No.	solvent	(°C)	point (°C)	ry	
1	Chloroform	61		~93%	Losses goes
2	Methanol	64.5	12	~96%	with residue
3	DMF	153	57.77	~98%	
4	IPA	82.5	18.3	~96%	
5	Acetone	56.2	-20	~95%	
6	N-Hexane	69	-22	~97%	

VOC emission sources and its mitigation measures

VOC generation will be from the manufacturing activities and raw material storage.

Mitigation measures:

- Close handling system provided for transfer of chemicals.
- Pneumatically transfer of liquid raw material in reactor.
- > Raw material will be stored in the covered structure.
- Regular maintenance of valves, pipes etc.

- Periodic work area monitoring will be carried out.
- Greenbelt will be developed around the plant to arrest the fugitive emission.

H > Details regarding storage of Hazardous chemicals

Storage details	Name of major	Remarks
	Hazardous chemicals	
Storage tank	HCI (30-32%)	1 Tank x 5 KL
Storage tank	Sulphuric acid (70%)	1 Tank x 2 KL
Storage tank	Methanol	1 Tank x 5 KL
Drum	Chloroform	2 drums x 0.2 KL
Drum	DMF	2 drum x 0.2 KL
Drum	Isopropyl Alcohol	4 drum x 0.2 KL
Bottle	Acetic Anhydride	10 Carboys x 0.065 KL
Bottle	Acetic Acid	10 Carboys x 0.065 KL
Drum	MDC	2 drums x 0.2 KL
Drum	Acetone	5 drums x 0.2 KL
Drum	N-Hexane	5 drums x 0.2 KL
Drum	Pyridine	2 drums x 0.2 KL

- Applicability of PESO: Not applicable
- During the meeting dated 18/03/2020, technical presentation made by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the March 2019 to May 2019. Ambient Air Quality monitoring was carried out for PM2.5, PM10, SO2, NOx, Benzene, Toluene, Xylene, VOC, CO & HC at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST3. The resultant concentrations are within the NAAQS.
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan
 has been covered in the RA report.
- Committee deliberated on the Minutes of the Public Hearing dated **20/11/2019** along with the representation made by the Public and noted that PP has not submitted point wise compliance of the same as status of the issue raised by the public as on date and asked PP to submit the same.
- Committee noted that proposal is new in Village: Pansar. Source of water is Pansar Village Panchayat. PP mentioned that effluent generated from process, washing, boiler blow down, cooling tower blow down will be

treated into in-house ETP having primary & tertiary treatment followed by RO. RO – Permeate will be reused/recycled back into process while reject will be sent for evaporation at Common Spray Drying Facility Chhatral Environment Management Pvt. Ltd for final treatment and disposal. PP has proposed one steam boiler. Fuel used will be Briquettes. Committee noted PP has not addressed LDAR properly and asked to address the same. PP has addressed Hazardous Waste as per HWR – 2016. Committee noted that PP has addressed EMP & CER satisfactorily.

- After detailed discussion, Committee unanimously decided to consider the proposal only after submission of the following documents.
 - 1. Membership Certificate from Common Facility (mentioning total capacity, consented quantity, occupied capacity and spare capacity and norms of acceptance of effluent from member units) in-line with the direction given by GPCB vide Letter No. GPCB/P-1/8-G (5)/550706 dated 08/01/2020.
 - 2. Compliance of issues raised during Public Hearing in Tabular Form and current status of compliance.
 - 3. Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use inhouse with detailed chemical properties including vapor pressure. LDAR shall endeavor prevention of losses of solvents to the best minimum extent.
 - 4. Addendum to EIA Report Incorporating all the above mentioned correction.

11	SIA/GJ/IND2/34301/2019	M/s. Fermenta Biotech Limited	EC – Reconsideration
		Plot No. T-33, and T-34 in the Notified GIDC Estate, Saykha, inside the Dahej PCPIR, Ta - Vagra, Dist: Bharuch	

Category of the unit: 5(f)

Project status: New

- PP has submitted online application vide no. SIA/GJ/IND2/34301/2019 dated 14/11/2019 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 25/06/2019.
- Project proponent has submitted EIA Report prepared by M/s: Aditya Environmental Services Pvt. Ltd, Mumbai based on the TOR issued by SEIAA.
- This is a new unit proposes manufacturing of synthetic organic chemicals as tabulated below:

Format

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 08/01/2020.
- Salient features of the project are as under:

Format

- During the meeting dated 08/01/2020, technical presentation made during the meeting by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report and

details presented during the meeting.

- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period April 2019 to June 2019. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2 and NOx at Ten locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD model. The resultant concentrations are within the NAAQS. The modelling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan
 has been covered in the RA report.
- Committee noted that this proposal is Greenfield project in GIDC Sayakha. Source of Water is GIDC. PP mentioned that high COD steam will be segregated and evaporated in MEE while Low COD stream and domestic effluent stream will be treated in proposed in-house primary, secondary and tertiary ETP and treated effluent will be further treated in two stage RO plant and RO reject will be evaporated in in-house MEE while RO permeate will be reused back. MEE condensate further return Back to ETP instead of reuse. Committee asked about MEE condensate again treatment justification, technical expert of PP along with characteristic of effluent explained in brief. Committee asked about treatability report from schedule-I auditor with stage wise reduction of pollutant in ETP, RO and MEE units. Committee asked for submit revised APCM details for process gas emission. Committee also insisted for revised Hazardous matrix for disposal of incinerable waste other than critical polluted area, Bleed liquor generation and its disposal details and Off specification products and medicine details. Committee noted that PP has not properly address EMP as not mentioning Mitigation measures for dust control during construction phase as per MoEFCC Notification dated 25/01/2018 & adequate CER cost as per need based in surrounding villages with budgetary provision. Technical expert of PP explained in length regarding compliance of ToR and Committee insisted PP to readdress additional ToR no- 5 for LDAR as per proposed project with each solvent storage, Handling, recovery, losses and its chemical property, Additional ToR no- 8 and additional ToR no - 10.
- After detailed discussion, Committee unanimously decided to consider the proposal only after submission of the following details.
 - Submit treatability report from schedule lauditor with stage wise reduction of pollutant in ETP, ROand MEE units and Feasibility report for reuse treated wastewater for industrial purpose.
 - 2. Submit revised EMP with mentioning Mitigation measures for dust control during construction phaseas per MoEF&CC Notification dated 25/01/2018 & Need Based CER for nearby villages of proposed project with budgetary provision for five years.

- 3. Submit revised APCM for process gas emission and revised Hazardous matrix for disposal ofincinerable waste other than critical polluted area, scrubber Bleed liquor generation and offspecification products and medicine details.
- 4. Separate fuel consumption rate for FO and NG (For Steam Boilers).
- 5. Readdress additional ToR no- 5 for LDAR as per proposed project with each solvent storage, Handling, recovery, losses and its chemical property and additional ToR no 10 consideringscrubber bleed liquor disposal.
- Project proponent made presentation for the above mentioned query dated 18/03/2020 for the above mentioned points.
- PP presented replied as below:
 - 1. PP presented treatability report from schedule I auditor (ATIRA, Ahmedabad) with stage wise reduction of pollutant in ETP, RO and MEE units and Feasibility report for reuse treated wastewater for industrial purpose.
 - 2. PP presented revised EMP with mentioning Mitigation measures for dust control during construction phase as per MoEF&CC Notification dated 25/01/2018 & Need Based CER for nearby villages of proposed project with budgetary provision for five years.
 - 3. PP presented revised APCM for process gas emission and revised Hazardous matrix for disposal of incinerable waste other than critical polluted area, scrubber Bleed liquor generation and off specification products and medicine details.
 - 4. PP presented separate fuel consumption rate for LSHS and NG for steam boiler by eliminating FO.
 - 5. PP presented ToR no- 5 for LDAR as per proposed project with each solvent storage, Handling, recovery, losses and its chemical property
- Committee deliberated on the reply submitted by PP and found it satisfactory.
- Compliance of ToR found satisfactory.
- After detailed discussion, Committee unanimously decided to recommend the project to SEIAA,
 Gujarat for grant of Environment Clearance.

12		M/s Majdha Industries Pvt. Ltd.	EC – Reconsideration
	SIA/GJ/IND2/48029/2019	Plot No. D-2/CH/55, Dahej II, Dahej	
		Industrial Estate, Tal: Vagra, Dist: Bharuch,	
		Gujarat.	

Category of the unit: 5(f)

Project status: New

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/48029/2019 on dated 06/01/2020 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated

07/09/2019.

- Project proponent has submitted EIA Report prepared by M/s. Aqua Air Environmental Engineers Pvt. Ltd. based on the TOR issued by SEIAA.
- This is new unit proposes for manufacturing of synthetic organic chemical as tabulated below:

SR.	NAME OF PRODUCTS	CAS	PROPOSED	END USE
NO.		NO.	PRODUCTION	
			CAPACITY	
			(MT/MONTH)	
1	2,4 Di Chloro Aniline	554-00-7		Pharma
2	Ortho Nitro Chlorobenzene	88-73-3		Pharma
3	Para Nitro Chlorobenzene	121-73-3		Pharma
4	Meta Nitro Chlorobenzene	100-00-5		Pharma
5	Ortho Nitro Bromobenzene	577-19-5		Pharma
6	Para Nitro Bromobenzene	586-78-7		Pharma
7	Meta Nitro Bromobenzene	585-79-5		Pharma
8	Ortho Di Chlorobenzene	95-50-1		Pharma/Dyes
9	Para Di Chlorobenzene	106-46-7		Pharma/Dyes
10	Ortho Anisidine	90-04-0		Pharma
11	Para Anisidine	104-94-9		Pharma
12	Ortho Nitro Anisole	91-23-6		Pharma
13	Para Nitro Anisole	100-17-4		Pharma
14	Ortho Toluidine	95-53-4		Pharma
15	Para Toluidine	106-49-0	4000	Pharma
16	Meta Di Chlorobenzene	541-73-1		Pharma/Dyes
17	Ortho Chloro Aniline / Meta	95-51-2		Pharma
	Chloro Aniline			
18	Para Chloro Aniline	106-47-8		Pharma
19	Ortho Nitro Aniline	88-74-4		Pharma
20	Para Nitro Aniline	100-01-6		Pharma/Dyes
21	Pivaloyl Chloride/	3282-30-2/		Pharma
	Benzoyl Chloride	98-88-4		
22	Valeroyl chloride	638-29-9		Pharma
23	Chloro Acetyl Chloride / Tri	79-04-9		Pharma
	Chloro Acetyl Chloride			
24	2 Chloro Valeroyl Chloride	1575-61-7		Pharma

	TOTAL		4000	
28	2,4 Di Chloro Phenol	120-83-2		Pharma
27	2,6 Di Chloro Phenol	87-65-0		Pharma
	Tri Chloro benzene	120-82-1		Pharma/Dyes
	Di Chloro benzene	95-50-1		Pharma/Dyes
	Mono Chloro benzene	108-90-7		Pharma/Dyes
26	Chlorination Derivatives			Pharma
25	2-Ethyl Hexanoyl Chloride	760-67-8		Pharma

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 18/02/2020.
- Salient features of the project are as under:

S.	Particulars	Details
no		
Α	Total cost of Proposed Project	50Crore
	(Rs. in Crores):	

li EMP details (Capital cost & Recurring cost)

Brief details of EMP

COMPONENT	CAPITAL COST OF EMP	RECURRING COST OF EMP (per Month)
Cost	Rs. 2.94Crore	Rs. 90.24Lakh

Bifurcation of EMP Cost

Sr.	Unit	Installed	Capital	Operating	Maintenan	Total
No		Capacit	Cost (Rs.	Cost	ce Cost	Recurring
		y (KLD)	in Lakh)	(Lakh/	(Lakh/Mon	Cost
				Month)	th)	(Lakh/Month)
1	Effluent	ETP - I=	125.0	55.50	0.83	56.33
	Treatment	47 KLD				
	Plant, RO &	ETP - II=				
	MEE Cost	87 KLD				
		RO =				
		47KLD,				
		MEE =				
		99.5KLD				
2.	APCM		138.0		8.333	0.03
3.	Hazardous		11.0	34.58		34.58
	Waste					

4.	AWH	 5.0			0.08
	Monitoring				
	Cost				
5.	Greenbelt	 15.0		0.04	0.04
	Total	294.0	90.49	9.2	10.82

lii CER details (As per MoEF&CC OM dated 01/05/2018)

As per OM no. 22-65/2017 on dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER), greenfield projects have to contribute 2% of the Additional Capital Investment; the company will contribute Rs. 100.0 Lakh as funds for CER activities.

Component	As per Norms	Allocation
CER	Rs. 100.0 Lakh (2%)	Rs. 100.0 Lakh (2%)

Activities to be carried out under CER:

Year	Description	Amount (INR i
		Lakh)
2019-2020	Awareness to local farmers to increase yield of crop, Distribution of Fertilizer in nearby village.	5.0
2020-2021	To provide fund for Road development from Jolva to Dahej and Galenda to Vav and/ or required other places	25.0
2021-2022	To construct science lab & Provide necessary instrument for laboratory to Vadadla High secondary School	25.0
2022-2023	Providing medicines and carrying out operation of animals that require fund for such cause in Dahej.	5.0
	Provide 200 Nos. of science kit to Dahej, Jolva School	5.0
2023-2024	Basic needs provide to Primary School of Sambheti - Shamantpor Village Color to primary School School Uniform Stationary for student Computer Drinking Water Facility	20

Total Plot area (sq. meter) 10000 Sq. m. Green belt area (sq. meter) 3300 Sq. m. Employment generation 150 persons Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) Status of permission from the Membership of GIDC Water Supply, letter		n an ab accet	Park for children as per discussion with gram	15.0
Total Plot area (sq. meter) 10000 Sq. m. Green belt area (sq. meter) 3300 Sq. m. Employment generation 150 persons Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc)		panchayat		1000
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej	Total			100.0
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GROW Water Supply Authority, Dahej				
Employment generation 150 persons Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc)				
Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GIDC Water Supply Authority, Dahej				
Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GIDC Water Supply Authority, Dahej	Green belt a	rea (sq. meter)	3300 Sq. m.	
(GIDC Bore well, Surface water, Tanker supply etc)	Green belt a	rea (sq. meter)	3300 Sq. m.	
Tanker supply etc)	Green belt a Employmen Water	t generation	3300 Sq. m. 150 persons	
	Green belt a Employmen Water Source of Wa	t generation ater Supply	3300 Sq. m. 150 persons	
Status of permission from the Membership of GIDC Water Supply, letter	Green belt a Employmen Water Source of Water (GIDC Bore v	t generation ater Supply well, Surface water,	3300 Sq. m. 150 persons	
	Green belt a Employmen Water Source of Water (GIDC Bore v	t generation ater Supply well, Surface water,	3300 Sq. m. 150 persons	

ii	Water consumption (KLD)					
	Category	Quantity (KLD)	Remarks			
	(V) Domestic	10.00				
	(W)Gardening	5.00				
	(X) Industrial					
	Proces	s 135.0				
	Washin	g 5.0				
	Boile	r 160.0				
	Cooling	g 100.0				
	Scrubbing	g 150.0				
	Industrial Tota	550.0				
	Total (A + B + C) 565.0				

1) Total water requirement for the project: 565KLD

2) Quantity to be recycled: 158 KLD

3) Total fresh water requirement: 407 KLD

iii Waste water generation (KLD)

Total [A + B]	400.0	
Total Industrial waste water	392.0	
Scrubbing	220.0	
Cooling	10.0	
Boiler	32.0	
Washing	5.0	
Process	125.0	
(N) Industrial	,	
(M) Domestic	8.0	
Category	Waste water (KLD)	Remarks

iv Treatment facility within premises with capacity

[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc.

- > ETP (Primary treatment)- 85.5 KL/day
- > ETP (Primary, secondary treatment)- 47 KL/day

Treatment scheme including segregation at source.

- Total 400 KL/day (392 KL/day Industrial + 8.0 KL/day domestic) of effluent shall be generated.
- Stream-I: 47 KL/day low COD & TDS stream (from Boiler, cooling, washing) will be treated in ETP giving primary & secondary treatment then sent to RO. RO permeate will be reuse within premises & RO reject will sent to In-house MEE.

- Stream-II: 87 KL/Day high COD & TDS stream (from process) will be sent to Solvent Stripper.

 1.5KL/Day Spent Solvent generate from solvent stripper will disposed to common incineration site & remaining 85.5 KL/Day effluent will be given by primary treatment and then sent to In-house MEE.
- Stream-III: 38 KL/day distilled waterstream will be recovered & reuse by process distillation in process water.
- 220 KL/day scrubbing media will be sold to authorized end user registered under Rule-9 and reuse within the premises.
- Domestic waste water (8.0 KL/day) will be disposed by septic tank or soak pit system.

Note: (In case of CETP discharge):

Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP.

Not applicable.

Brief note on adequacy of ZLD (In case of Zero Liquid Discharge):

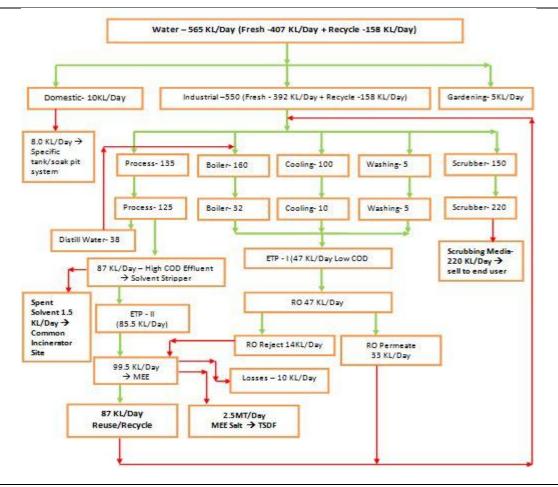
- Total 400 KL/day (392 KL/day Industrial + 8.0 KL/day domestic) of effluent shall be generated.
- Stream-I: 47 KL/day low COD & TDS stream (from Boiler, cooling, washing) will be treated in ETP giving primary & secondary treatment then sent to RO. RO permeate will be reuse within premises & RO reject will sent to In-house MEE.
- Stream-II: 87 KL/Day high COD & TDS stream (from process) will be sent to Solvent Stripper.
 1.5KL/Day Spent Solvent generate from solvent stripper will disposed to common incineration site & remaining 85.5 KL/Day effluent will be given by primary treatment and then sent to In-house MEE.
- Stream-III: 38 KL/day distilled waterstream will be recovered & reuse by process distillation in process water.
- 220 KL/day scrubbing media will be sold to authorized end user registered under Rule-9 and reuse within the premises.
- Domestic waste water (8.0 KL/day) will be disposed by septic tank or soak pit system.
- v Mode of Disposal & Final meeting point

Domestic: • Domestic waste water (8.0 KL/day) will be disposed by septic tank or soak pit system.

Industrial:

- Stream-I: 47 KL/day low COD & TDS stream (from Boiler, cooling, washing) will be treated in ETP giving primary & secondary treatment then sent to RO. RO permeate will be reuse within premises & RO reject will sent to In-house MEE.
- Stream-II: 87 KL/Day high COD & TDS stream (from process) will be sent to Solvent Stripper. 1.5KL/Day Spent Solvent generate from solvent stripper will disposed to common incineration site & remaining 85.5 KL/Day effluent will be given by primary treatment and then sent to In-house MEE.
- Stream-III: 38 KL/day distilled waterstream will be recovered & reuse by process distillation in process water.
- 220 KL/day scrubbing media will be sold to authorized end user registered under Rule-9

vi In case of Common facility (CF) like CETP, Common Spray dryer, Common MEE, CHWIF etc.


Name of Common facility (CF)

Incinerable / Co-process waste at M/s BEIL, Dahej.

Membership of Common facility (CF)

➤ Membership of TSDF Facility, M/s. BEIL, Dahej vide letter no. BEIL/ANK/2019, dated: 18/11/2019.

vii Simplified water balance diagram with reuse / recycle of waste water

vi Reuse/Recycle details (KLD)

i [Source of reuse & application area]

Total reuse 158 KLD

Source of waste water for reuse with quantity in KLD (From where it is coming)	Application area with quantity in KLD (Where it is used)	Characteristics of waste water to be reused (COD, BOD, TDS etc.)	Remarks regarding feasibility to reuse i.e.
Distilled water	Process: 120	COD: 50 mg/l	-
Stream: 38 KLD	KLD	BOD: 10 mg/l	
		TDS: 130 mg/l	

-

E Air

i Flue gas emission details

No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc.

Sr.	Source of	Stack	Type of	Quantity of	Type of	Air Pollution
no.	emission	Height	Fuel	Fuel	emissions i.e.	Control
	With Capacity	(meter)		MT/Day	Air Pollutants	Measures
						(APCM)
1	Steam Boiler	30	Briquettes	45 MT/Day	SPM	ESP with
	(16 TPH-1 Nos.)		of Bio-		SO _X	water
			coal/Coal		NO_X	scrubber
2	Thermic Fluid	20	Natural	1200	SPM	Adequate
	Heater (4.0 LAC		Gas	SCM/Day	sox	Stack height
	K.CAL/Hr)				NOX	
3	Thermic Fluid	20	Natural	1800	SPM	Adequate
	Heater (6.0 LAC		Gas	SCM/Day	sox	Stack height
	K.CAL/Hr)				NOX	
4.	D.G. Set	10	HSD	400Liter	SPM	Adequate
	(1500 KVA x 1			/Day	SOX	Stack height
	Nos.) Stand By			-	NOX	

_

Process gas emission details i.e. Type of pollutant gases (SO₂, HCl, NH₃, Cl₂, NO_x etc.)

| -

Sr. no.	Specific Source of emission (Name of the Product & Process)	Type of emission	Stack/Vent Height (meter)	Air Pollution Contro Measures (APCM)
PROP	OSED			
1.	Process Vent -1	HCI	12	Two Stage Water +
	(Valeroyl Chloride/2-Ethyl	SO_2		Alkali Scrubber
	Hexanoyl Chloride)			
2.	Process Vent -2	NOx	12	Two Stage Alkali
	(Nitro Chloro benzene/Nitro			Scrubber
	Bromo benzene)			
3.	Process Vent -3	Cl ₂	12	Two Stage Water +
	(Chlorination-MCB/DCB/TCB)			Chilled Water
				Scrubber + Alkali
				Scrubber
4.	Process Vent -4	NH ₃	12	Two Stage Water
	(Ortho/Para nitro aniline)			Scrubber

iii Fugitive emission details with its mitigation measures.

- Airborne dust at all transfers operations/ points will be controlled either by spraying water or providing enclosures.
- > Adequate ventilation will be provided.
- Care will be taken to store construction material properly to prevent fugitive emissions, if any
- ➤ Regular maintenance of valves, pumps, flanges, joints and other equipment will be done to prevent leakages and thus minimizing the fugitive emissions of VOCs.
- > Entire process will be carried out in the closed reactors with proper maintenance of pressure and temperature.
- > Periodic monitoring of work area will be carried out to check the fugitive emission.
- > Stand by pumps will be provided on all scrubbers. Besides, scrubbers will be equipped with on-line pH meter with hooter system for better operational control.
- > To eliminate chances of leakages from glands of pumps, mechanical seal will be provided at all solvent pumps.
- ➤ Close feeding system will be provided for centrifuges. Centrifuge and filtrate tank vents will be connected to vent chillers.
- > Fugitive emission over reactors, formulation areas, centrifuges, chemical loading and transfer area will be collected through hoods and ducts by induced draft and controlled by scrubber/ dust collector.

- > Dedicated scrubber will be provided are used for fugitive emissions to control.
- > For dust emissions bag filter will be provided.
- > Minimum number of flanges, joints and valves in pipelines.
- > Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber / dust collector to be ensured.
- ➤ Nitrogen blanketing will be provided, besides special care needs to be taken for control in respect of odorous chemicals.

F Hazardous waste

(As per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

i	Sr.	Type/Name of	Specific Source	Category	Quantity	Management of HW
	no.	Hazardous	of generation	and	(MT/Annum)	
		waste	(Name of the	Schedule as		
			Activity, Product	per HW		
			etc.)	Rules.		
	1	Used/Spent oil	Machineries/	SCH-I/5.1	0.3 KL	Collection, Storage,
			Utilities			Transportation and
						reused for Machine
						Lubrication / Given to
						GPCB registered
						reprocessor
	2	Spent Solvent	Process	SCH-I/28.6	5640	Collection, Storage, In-
						house distillation and
						reuse within premises.
	3	Distillation	Distillation	SCH-I/ 20.3	600	Collection, Storage,
		Residue				Transportation and sell
						to co-processing or
						send to Common
						Incineration Facility
	4	Residual Salts	MEE	SCH-I/35.3	900	Collection, Storage,
		from MEE				Transportation and
						dispose to Landfill at
						TSDF
	5	Sludge from	ETP	SCH-I/35.3	180	Collection, Storage,
		ETP				Transportation and
						dispose to Landfill at

					TSDF
6	Spent Residue	Solvent Stripper	SCH-I/20.3	54	Collection, Storage
	from Stripper				Transportation and se
					to co-processing o
					send to Common
					Incineration Facility
7	Used				Collection, Storage
	Containers				Transportation and so
	Drums	RM/FG	SCH-I/33.1	108	to GPCB authorize
	Bags and	RM/FG	SCH-I/33.1	12	dealer afte
	Liners				decontamination
8	Spent Catalyst	Process	SCH-I/28.2	180	Collection, Storage
					Transportation an
					send to regenerate
					who is having Rule-9.
9	Spent	Process	SCH-I/28.1	2880	Collection, Storage
	Sulphuric Acid				Transportation and se
	(25%)				to end user who i
					having Rule-9.
10	HCI (30%)	Scrubber	SCH-I/28.1	39000	Collection, Storage
					Transportation and se
					to end user who i
					having Rule-9.
11	AlCl ₃ Soln.	Process	SCH-I/28.1	2016	Collection, Storage
	(25%)				Transportation and se
					to end user who i
					having Rule-9.
12	Sodium Sulfite	Scrubber	SCH-I/28.1	27000	Collection, Storage
	(22%)				Transportation and se
					to end user who i
					having Rule-9.

	13	Liquor	Scruk	her	SCH-I/28.1	6600	Collection, Storage,		
		Ammonia	Corak	3001	0011 1/20.1	0000	Transportation and sell		
		(24%)					to end user who is		
		(2170)					having Rule-9.		
	14	Ammonium	Proc	ess	SCH-I/28.1	3264	Collection, Storage,		
		Chloride (20%)	1 100000				Transportation and sell		
		,					to end user who is		
							having Rule-9.		
	15	Sodium Nitrate	Scruk	ober	SCH-I/28.1	1800	Collection, Storage,		
		(25%)					Transportation and sell		
							to end user who is		
							having Rule-9.		
	16	Ash	Boil	ler		600	Sell to brick		
							manufacturer		
	17	Sodium Hypo	Scruk	ober	SCH-II/B-36	50	Collection, Storage,		
		Chlorite					Transportation and sell		
							to end user who is		
							having Rule-9.		
ii	Memb	ership details of TS	SDF,	≻Membe	rship of Hazardo	us Landfill (M/s. E	BEIL, Dahej) & Hazardous		
	CHWI	F etc.		Incinera	ation (M/s BEIL, Ankleshwar), Ref no. BEIL/ANK/2019,				
	`	IW management)			18/11/2019				
iii		s of Non-Hazardou		Non Haz	ardous Waste wi	Il not be generated	d.		
		posal(MSW and oth	•						
G		nt management, \							
i			s of Solvent	recovery	, % recovery, reu	ise of recovered S	olvents etc. (Details in		
		Format)							
			•	stilled fror	n product mixes	and; if required sr	nall be purified in packed		
		mn with the help of		U ba daa:a			0.0/		
		• The solvent distillation system shall be designed so as to achieve minimum 95.0 % recovery of solvent.							
	All the pumps shall be mechanical seal type to avoid any leakage of solvent. All processors fire fighting systems about he provided with plants systems. Flores are of wiring and flores.								
	 All necessary fire fighting systems shall be provided with alarm system. Flame proof wiring and flame proof electrical accessories shall be provided to avoid any mishap. 								
		 All the distillation column vents are also connected to cooling water/ chilled brine condensers for 							
	• All the distillation column vents are also connected to cooling water/ chilled brine condensers for maximum possible recovery of the solvents.								
		·	•		n carbon Adsorb	er for removing tra	aces of solvent from vent		
			miecieu io a	a 6011111101	i caibuii Ausulbe	er for removing tra	ices of solverif from velif		
l l	gases.								

- Residue generated from the distillation will be sent to nearer commonincinerator site.
- Two condensers will install with cooling water and chilled brine to recover the solvent.
- Primary Condenser HE-01: Cooling water or Chilled water (at 10°C) will be used to condense the solvents depend on the vapor pressure at its operating conditions and the non condensed vapors will be condensed in a Secondary Condenser
- VOC Trap Condenser HE-02: Chilled Brine at -05 ⁰C will be used to trap any traces of Solvent which is slipped from Secondary condenser

• SOLVENT RECOVERY TABLE

Solvent	B.P (°C)	M.P (°C)	(g/mL)	F.P (°C)	Qty Consumed	Qty Losses	% of Re- covery	% of Losses
Hexane	69	-95	0.659	-22	400	19.2	95.2	4.8
Methanol	64.6	-98	0.791	12	13380	402	97.0	3.0

ii **VOC emission** sources and its mitigation measures

During operation stage, leakage through valves/pumps, leakage and emission from open drum containing chemicals, open feeding, storage tanks, etc. will be major sources of fugitive emissions and VOCs. Excess use of solvent/s may also results fugitive emission from the process vessels.

- Solid raw material charging will be done through closed system.
- Entire process will be carried out in the closed reactors with proper maintenance of pressure and temperature.
- Close feeding system will be provided for centrifuges. Centrifuge and filtrate tank vents will be connected to vent chillers.
- Fugitive emission over reactors, formulation areas, centrifuges, chemical loading, transfer area, will be collected through hoods and ducts by induced draft and controlled by scrubber/dust collector.
- Emphasis will be given to solvent management/solvent loss prevention.
- Control by having proper scrubbing system.
- Condenser to trap VOC.
- Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber/dust collector to be ensured.
- Proper maintenance schedule will be adhered to avoid emissions through flange joints, pump seals etc.
- Minimum number of flanges, joints and valves in pipelines.
- Proper gland packing will be maintained for pumps and valves and to the extent possible pumps

with mechanical seal.

- All the raw materials will be pneumatically transfer to the reactor.
- All rotating equipments like pumps will be installed with mechanical seals to arrest any sort of emissions.
- A regular preventive maintenance schedule will be in place to replace or rectify all gaskets and joints etc. as a part of ISO systems to ensure no fugitive emissions take place.
- Periodic monitoring of work area will be carried out to check the fugitive emission.
- Solvent tank vents will be connected to vent chillers.
- Adequate ventilation will be provided.
- Airborne dust at all transfers operations/ points will be controlled either by spraying water or providing enclosures.
- Breather valves will be provided on solvent tanks.

H Details regarding storage of Hazardous chemicals

Storage details	Name of major Hazardous chemicals	Remark
		s
Storage tanks	Methanol, Ammonia, Sulfuric Acid,	
	Thionyl Chloride, Benzene, Caustic Lye,	
	Hexane, MCB	
Drum/Barrel storage	Nitric Acid	
Bank, Cylinder, Bottle	Hydrogen, Chlorine	
or Tonner		

> Applicability of PESO :

- > Permission will be taken after getting EC, if applicable and all the standards of PESO for storage of solvents will be followed.
- During the meeting dated 18/02/2020, technical presentation made by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the October 2018 to December 2018. Ambient Air Quality monitoring was carried out for Particulate Matter (PM10), Particulate Matter (PM2.5), Sulphur Dioxide (SO2), Oxides of Nitrogen (NOx), Ozone (O3), Lead (Pb), Carbon Monoxide (CO), Ammonia (NH3), Benzene (C6H6), Arsenic (As), Nickel (Ni), HBr, HCl & VOCs, at nine locations including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST3. The resultant concentrations are

within the NAAQS.

- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan
 has been covered in the RA report.
- Committee noted that this proposal is new in GIDC Dahej-II, Bharuch.
- During SEAC meeting on 27/12/2019, committee noted that Source of water is GIDC. PP mentioned that Low COD effluent from Plant is treated in primary and secondary ETP and RO plant and RO permeate will be used for process while RO reject along with high COD and TDS effluent will be evaporated in in-house MEE. Distillate water from distillation process directly reuse back in process while exhausted scrubbing media effluent will be sold to end users having Rule- 9 permission and reuse in plant. Committee insisted for segregation of stream like high COD/TDS, Low COD/TDS and distilled water from distillation unit with distinctly mentioning characteristics of each segregated stream and its source. Committee noted that PP has addressed ESP and water scrubber as APCM with coal fired boiler and natural gas as fuel will be used for thermopack. Committee insisted for submit revised adequate APCM details for chlorination reactor. Committee noted that PP has not addressed Hazardous Waste table as per HWR - 2016 along with MoU/LOI for selling of spent acid, scrubber bleed liquor disposal etc. Committee also insisted for explore possibility for reuse of hazardous waste like spent acid. Committee noted that PP has not properly addressed Specific ToR No. 5, 9 and ToR No- 65. Committee also noted that PP has not submitted need based CER activity for surrounding villages. Committee also asked PP to submit revised EMP with mentioning mitigation measures for dust control during construction phase as per MoEF &CC OM dated 25/01/2018. Committee deliberated on baseline data, green belt and LDAR etc for proposed project
- After detailed discussion, Committee unanimously decided to defer the proposal and call the project proponent for presentation only after satisfactory submission of the following details.
 - 1. Segregation of stream like high COD/TDS, Low COD/TDS and distilled water from distillation unit with distinctly mentioning characteristics of each segregated stream and its source.
 - 2. Submit revised adequate APCM details for chlorination reactor and its bleed liquor disposal.
 - 3. Submit revised EMP with mentioning mitigation measures for dust control during construction phase as per MoEF &CC OM dated 25/01/2018.
 - 4. Submit need based CER activity for surrounding villages with budgetary provision for five years.
 - 5. Readdress Compliance of Specific ToR No. 5, 9 and ToR no-65.
 - 6. MoU/LOI for selling of Hazardous waste like spent acid, scrubber bleed liquor etc to end users having Rule- 9 permission and explore possibility for reuse of hazardous waste like spent acid.
- Project proponent made presentation for the above mentioned query dated 18/03/2020 for the above mentioned points.
- PP presented replied as below:
 - 1. PP presented Segregation of stream like high COD/TDS, Low COD/TDS and distilled water from

- distillation unit with distinctly mentioning characteristics of each segregated stream and its source.
- 2. PP presented revised adequate APCM details for chlorination reactor and its bleed liquor disposal.
- 3. PP presented revised EMP by mentioning mitigation measures for dust control during construction phase as per MoEF & CC OM dated 25/01/2018.
- 4. PP submitted need based CER activity for surrounding villages with budgetary provision for five years.
- 5. PP readdressed Compliance of Specific ToR No. 5, 9 and ToR no-65.
- 6. PP submitted MoU/LOI for selling of Hazardous waste like spent acid, scrubber bleed liquor etc to end users having Rule- 9 permission.
- Committee deliberated on the reply submitted by PP and found it satisfactory.
- Compliance of ToR found satisfactory.
- After detailed discussion, Committee unanimously decided to recommend the project to SEIAA, Gujarat for grant of Environment Clearance.

13	SIA/GJ/IND2/30681/2019	M/s. Riddhi Pharma Plot No. D-2/CH/384, GIDC Estate, Dahej-II,	Appraisal
		Dist.: Bharuch, State: Gujarat – 392 130,	
		India	

Category of the unit: 5(f)

Project status: New

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/30681/2019 on dated 21/01/2020 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 03/05/2019.
- Project proponent has submitted EIA Report prepared by Siddhi Green Excellence Pvt. Ltd, Ankleshwar based on the TOR issued by SEIAA.
- This is new unit proposes for manufacturing of synthetic organic chemical as tabulated below:

Sr. No.	Name of the Products	CAS no. / CI no.	Quantity MT/Month	End-use of products
1.	Beflubutamid (FMB)	113614-08-7	15.0	Fine Chemical
2.	Trans-4-Aminocyclohexanol	27489-62-9	20.0	Ambroxol HCI
3.	Menadione Sodium Bi Sulfite/ Vitamin K3	130-37-0	15.0	Poultry Feeding
4.	Mono Bromo Acetic Acid	79-08-3	25.0	Fine Chemical
5.	1-H-1,2,4 Triazole	288-88-0		
6.	1-H-1,2,4 Triazole salt (Na salt)	41253-21-8	200.0	Fluconazole
7.	1-H-1,2,4 Triazole salt (K salt)	41253-23-0		
8.	Acetophenone	98-86-2	50.0	Fluconazole
9.	1-(2,4-Difluorophenyl)-2-(1H-1,2,4-Triazol-1-yl) Ethanone (DFTA)	86404-63-9	20.0	Fluconazole
10.	1[-2-(2,4-Difluorophenyl)-2,3-Epoxy Propyl]- 1h-1,2,4-Triazole Methane Sulfonate(DFTA Epoxy Mesylate)	86386-77-8	20.0	Fluconazole

11.	1-(3-Carboxy Pyridyl)-2-Phenyl-4-Methyl Piperazine (Acid)	61338-13-4	3.0	Metrazepine
12.	1-(3-Hydroxy Methylpyridyl-2) -2-Phenyl-4- Methylpiperazine (Alcohol)	61337-89-1	3.0	Metrazepine
13.	4-(2-Aminoethyl) Thiomethyl-2 DimethylaminomethylThiazole (NI-5)	78441-62-0	5.0	Nizatidin
14.	2-[4-(4-chlorobutanoyl) phenyl]-N,N,2-trimethyl propanamide (FEXO-3)	HSN code: 29029090	70.0	Fexotidine
15.	1-[4 (Cyclopropylcarbonyl) Phenyl]1- Methylpropionic Acid Cyclohexylamine Salt (FEXO-6)	1690344-90-1	50.0	Fexotidine
16.	IsoThiourea- [(S)-((2-Guanidino-4-Thiazolyl) Methyl isothiourea Dihydrochloride] (ITU)	88046-01-9	4.0	Famotidin
17.	2,2-Bis-(1-H-1,2,4-Triazole-1-yl-Methyl)-1,3- Dioxolane (DCDO-2)	144333-84-6	5.0	Fine Chemical
18.	1,3-Bis (1H-1,2,4-triazole-1-yl)propan-2-one (DCDO-3)	98414-56-3	5.0	Fine Chemical
19.	3-Amino-1,2,4-Triazole	61-82-5	50.0	Anti Fungal
20.	3, 3-Diphenyl Propionitrile	2286-54-6	3.0	Fine Chemical
21.	Trans, trans 2,4-Hexadienyl Acetate	1516-17-2	10.0	Fine Chemical
22.	AP-200 Acetate	53880-51-6	8.0	Fine Chemical
23.	R & D Product [R & D shall be carried out for the betterment of proposed products (Sr. No.1 to 22) by means of diluents like Solvents]		2 MTM (24 MTA)	Fine Chemical
	Total		583	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 18/03/2020.
- Salient features of the project are as under:

Sr. no.	Particulars	Details
Α		
Α	Total cost of Proposed Project (Rs. in Crores):	8.008 Crore
	Details of EMP	

Brief details of EMP

Component	Capital Cost Of EMP	Recurring cost of EMP (per Month)
Total cost	Rs. 84.5 Lakh	Rs. 16.09 Lakh

Bifurcation of EMP Cost

Sr.	Unit	Installed	Capital Cost	Operating Cost	Maintenance	Total Recurring
No.		Capacity	(Rs. in Lakh)	(Lakh/ Month)	Cost (Lakh/	Cost (Lakh/
		(KLD)			Month)	Month)
1	Effluent	40 KLD	50	9	1	10
	Treatment					
	Plant					
2	APCM	Multi	10	2.25	0.25	2.5
		cyclone				
		separator,				
		bag filter,				
		process				
		scrubber				
		systems,				

		Installation of stacks with platform and sampling arrangement s, local exhaust systems				
3	Hazardous Waste	98.8 m ² (1.97 % of	10	3	0.33	3.33
	management	total plot				
	9	area)				
4	AWH Monitoring Cost + Noise Pollution control + Green belt development + OHS		14.5	0.2322	0.0258	0.258

Details of CER as per OM dated 01/05/2018

As per MoEF&CC's OM no. 22-65/2017-IA.III dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER), Green field projects having investment <100 Crore have to contribute 2% of the Capital Investment. Accordingly proponent has committed to allocate Rs. ~17 Lakh for CER activities to be conducted after the project is operational.

Activities are identified based on need based survey and five year plan with year-wise budget is formulated.

Tentative CER Activities

Sr N o.	Activity	Beneficiary village (Tentative)	Capital Cost Rs. (Lakh)
	1 st Year - 2020		
1.	Drinking Water Facility- maintenance, repair and replacement of RO plants, construction of approach roads and pucca internal roads	Atali, Jolva, Rahiad, Suva	2
	2 nd Year - 2021		
2.	Greenbelt development on village periphery and school, Construction of community hall for skill development	Dahej, Vadadala	4
	3 rd Year - 2022		
3.	Solar Electrification through Solar Street Lights on access roads to village and solar heating systems	Galenda, Ambheta	5
	4 th Year - 2023		
4.	Drinking Water Facility- Provided overhead tank	Vav, Nandida	3
	5 th Year - 2024		
5.	Up-gradation of sanitation facility- Toilet blocks & infrastructure development	Kadodara, Goladara, Ambhel	3
	Total		17

В	Total Plot area (sq. meter)	5010.99 Sq. m.			
	Green belt area (sq. meter)	1635.74 Sq. m.			
С	Employment generation	Company employees 15 Nos. + Contract Labour 35 Nos.			
D	Water				
i	Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) GIDC reservoir				
	Status of permission from the concern authority.	Requested to GIDC			
ii	Water consumption (KLD)				

Quantity Remarks Category KLD Domestic 10 GIDC water supply **(Y)** Gardening GIDC water supply 6 (Z) (AA) Industrial 27 **Process** GIDC water supply Utility blow down water (Boiler: 2 KLD + Cooling tower: 4 KLD Washing 6 = 6 KLD) shall be directly reused for washing purpose after passing through cartridge filter. Boiler 12 GIDC water supply Cooling 40 GIDC water supply Others (APCM) 6 GIDC water supply **Industrial Total** 91 Fresh water (GIDC): 85 KLD + Recycled water: 6 KLD Total (A + B + C)107 Fresh water (GIDC): 101 KLD + Recycled water: 6 KLD

4) Total water requirement for the project: 107 KLD

5) Quantity to be recycled: 6 KLD

6) Total fresh water requirement: 101 KLD

(Total water requirement = Fresh water + Recycled water)

	anta wat	ar aanarati <i>e</i>		••
	aste wat	er generatio	JII (NLL	"

Ш	waste water generation		
	Category Waste water KLD (O) Domestic 4 (P) Industrial		Remarks
			Sewage shall be disposed to soak pit via septic tank.
	Process	18	Process effluent shall be treated in own ETP consisting of Primary treatment, Secondary & Tertiary treatment and treated water shall be sent to CETP, Dahej for further treatment and disposal into GIDC drainage network connected to GIDC pumping station for final disposal into deep sea through common effluent conveyance pipeline. If required, unit shall install MEE for process effluent
	Washing	6	Effluent shall be given Primary & Tertiary treatment and treated water shall be sent to CETP, Dahej for final treatment & discharge into GIDC drainage network connected to GIDC pumping station for final disposal into deep sea through common effluent conveyance pipeline.
	Boiler	2	Boiler blow down of 2 KLD shall be reused for washing purpose after passing through cartridge filter.
	Cooling	4	Cooling tower blow down of 4 KLD shall be reused for

Others (APCM)	5	washing purpose after passing through cartridge filter. Effluent shall be given Primary & Tertiary treatment and treated water shall be sent to CETP, Dahej for final treatment & discharge into GIDC drainage network connected to GIDC pumping station for final disposal into deep sea through common effluent conveyance pipeline.
Total Industrial waste water	35	Discharge quantity: 29 + Recycled water: 6 KLD
Total [A + B]	39	

Treatment facility within premises with capacity

[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc.

> ETP capacity - 40 KLD (Consisting of Primary, Secondary & Tertiary Treatment)

Treatment scheme including segregation at source.

- There shall be segregation of process effluent (high COD) and Washing and APCM effluent (low COD).
- Industrial effluent shall be treated in own ETP consisting of Primary treatment, Secondary & Tertiary treatment and treated water shall be sent to CETP, Dahej for further treatment and disposal into GIDC drainage network connected to GIDC pumping station for final discharge through u/g Dahej-Vilayat Effluent Conveyance Pipeline up to deep sea.
- Process effluent Characteristics

Sr. No.	Parameters of process effluent	Unit	Inlet to ETP	Final Treated Effluent
1.	рН	-	5-10	6.5 - 8.5
2.	Temperature	°C	40	30-35
3.	Total Dissolved Solids	mg/L	7000 – 8000	4000 – 5000
4.	COD	mg/L	12000 – 18000	250
5.	Suspended Solids	mg/L	100 -150	< 10
6.	Ammonical Nitrogen	mg/L	30-50	<10

> Other than process effluent Characteristics (Washing and APCM effluent (low COD))

Sr. No.	Parameters of Other than process effluent	Unit	Inlet to ETP	Final Treated Effluent
1.	рН	-	6.5-8.5	<7.5
2.	Temperature	°C	35	30-32
3.	Total Dissolved Solids	mg/L	2000-3000	5000
4.	COD	mg/L	1000-1500	< 250
5.	Suspended Solids	mg/L	50	<10
6.	Ammonical Nitrogen	mg/L	10	<10

Note: (In case of CETP discharge):

Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP.

Treated effluent shall be sent to CETP, Dahej for further treatment. Treated effluent from CETP.

iv

				C drainage network conne					
			<u> </u>	ayat Effluent Conveyance	Pipeline upto de	eep sea.			
	·		ZLD (In case of Z	<u>ero Liquid Discharge):</u>					
	 Not applicable. Mode of Disposal & Final meeting point 								
	Domestic: Sewage shall be disposed to soak pit via septic tank Treated effluent shall be sent to CETP, Dahej for further treatment. Treated effluent								
٧				•					
V	Industrial: from CETP, Dahej shall be discharged into GIDC drainage network connected to								
	GIDC pumping station for final discharge through u/g Dahej Vilayat Effluent								
			ance Pipeline upt						
		•	\prime (CF) like CETP, (Common Spray dryer, Con	nmon MEE etc.	Name of CF			
	CETP, Da								
vi	Membership of Co								
V 1	(For waste water								
				scharge of booked quantity					
				a through common effluent		peline.			
vii	Simplified water	r balance	e diagram with re	euse / recycle of waste wa	ater				
			Total GIE	DC Water Requirement : 101 KLD + Reuse Wa	ter Quantity: 6 KLD				
			85 KLD		10 K	I.D.			
					- half				
			Industrial		opment Domest	ic			
		KLD		40 KLD					
	APCM	Processing	Boiler Coolir	ng tower Washing	Cour				
	EKID								
	5 KLD 18	KLD	Boiler	Cooling Tower	Sew 4 K				
	5 KLD 18	KLD		Cooling Tower blowdown: 4 KLD					
	5 KLD 18	KLD	blowdown:						
	5 KLD 18	3 KLD	blowdown:	blowdown: 4 KLD	Sewage shall be di	sposed to			
	5 KLD 18	3 KLD	blowdown:	blowdown: 4 KLD	4 K	sposed to			
	5 KLD 18	S KLD	blowdown: 2 KLD	6 KLD	Sewage shall be di	sposed to			
	5 KLD 18	18 KLI	D 29 KLD industrial effluent st	blowdown: 4 KLD 6 KLD catoling title 6 KLD 6 KLD catoling title	Sewage shall be di	sposed to			
	5 KLD 18		Down ETP (40 KLD Capacity)	blowdown: 4 KLD 6 KLD catoling title 6 KLD 6 KLD catoling title	Sewage shall be di	sposed to			
	5 KLD 18	18 KLI	D 29 KLD industrial effluent st	blowdown: 4 KLD 6 KLD catoling title 6 KLD 6 KLD catoling title	Sewage shall be di	sposed to			
	5 KLD 18	18 KLI	D 29 KLD industrial effluent st	blowdown: 4 KLD 6 KLD catoling title 6 KLD 6 KLD catoling title	Sewage shall be di Soak pit via Sept	sposed to cic Tank			
	5 KLD 18	18 KLI	29 KLD Industrial effluent sto own ETP (40 KLD Capacity) P+S+T treatment	blowdown: 4 KLD 6 KLD cattoops title 6 KLD 6 KLD 6 KLD 1 be	Sewage shall be di Soak pit via Sept	sposed to dic Tank			
	18	18 KLI	29 KLD industrial effluent si to own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for fi discharge into GIDC drainage networks	blowdown: 4 KLD 6 KLD categorith 6 KLD 6 KLD l be linal treatment & rork connected to	Sewage shall be di Soak pit via Sept	sposed to lic Tank NDS I Effluent Stream			
	5 KLD 18	18 KLI	29 KLD Industrial effluent s to own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for fi	blowdown: 4 KLD 6 KLD carriers file 1 be sent consisting of 1 be final treatment & rork connected to osal into deep sea	Sewage shall be di Soak pit via Sept	sposed to lic Tank NDS Effluent Stream Sewage			
	18	18 KLI	29 KLD industrial effluent si to own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for fi discharge into GIDC drainage netw GIDC pumping station for final disp	blowdown: 4 KLD 6 KLD carriers file 1 be sent consisting of 1 be final treatment & rork connected to osal into deep sea	Sewage shall be di Soak pit via Sept LEGEI Industria Domestic	sposed to dic Tank NDS I Effluent Stream C Sewage tream			
		18 KLI 5 KLD	29 KLD industrial effluent si to own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for fi discharge into GIDC drainage netw GIDC pumping station for final disputhrough common effluent conve	blowdown: 4 KLD 6 KLD carriers file 1 be sent consisting of 1 be final treatment & rork connected to osal into deep sea	Sewage shall be di Soak pit via Sept LEGEI Industria Domestic Reuse S	sposed to dic Tank NDS I Effluent Stream C Sewage tream			
	Reuse/Recycle de Total reuse : 6 K	18 KLD	29 KLD industrial effluent si to own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for fi discharge into GIDC drainage netw GIDC pumping station for final disputhrough common effluent conve	blowdown: 4 KLD 6 KLD carriers file 1 be sent consisting of 1 be final treatment & rork connected to osal into deep sea	Sewage shall be di Soak pit via Sept LEGEI Industria Domestic Reuse S	sposed to dic Tank NDS I Effluent Stream C Sewage tream			
	Reuse/Recycle do	18 KLI 5 KLD	29 KLD industrial effluent si to own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for fi discharge into GIDC drainage netw GIDC pumping station for final dispression of the conve	blowdown: 4 KLD 6 KLD carriers file 1 be sent consisting of 1 be final treatment & rork connected to osal into deep sea	Sewage shall be di Soak pit via Sept LEGEI Industria Domestic Reuse S	sposed to dic Tank NDS I Effluent Stream C Sewage tream			
	Reuse/Recycle de	etails (KL	29 KLD industrial effluent si to own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for fi discharge into GIDC drainage netw GIDC pumping station for final disputhrough common effluent conve	hall be sent consisting of I be inal treatment & rork connected to osal into deep sea syance pipeline	Sewage shall be di Soak pit via Sept LEGEI Industria Domestic Reuse S Treated Remarks	sposed to dic Tank NDS I Effluent Stream C Sewage tream			
	Reuse/Recycle de Total reuse : 6 K Source of water for	etails (KL LD waste reuse	29 KLD Industrial effluent si to own ETP (40 KLD Capacity) P+S+T treatment shall be sent to CETP, Dahej for f discharge into GIDC drainage netw GIDC pumping station for final disputhrough common effluent converse through conve	I be inal treatment & orac consisting of Characteristics of waste water to be	Sewage shall be di Soak pit via Sepi LEGEI Industria Domestic Reuse S Treated Remarks regarding	sposed to dic Tank NDS I Effluent Stream C Sewage tream			
	Reuse/Recycle do Total reuse : 6 K Source of	etails (KL LD waste reuse ntity in	29 KLD Industrial effluent si to own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for fi discharge into GIDC drainage netw GIDC pumping station for final dispression through common effluent converted to the converted t	I be inal treatment & rork connected to osal into deep sea syance pipeline Characteristics of waste water to be reused (COD, BOD,	Sewage shall be di Soak pit via Sept LEGEI Industria Domestic Reuse S Treated Remarks	sposed to dic Tank NDS I Effluent Stream C Sewage tream			
	Reuse/Recycle do Total reuse : 6 K Source of water for with quar KLD	etails (KL LD waste reuse	29 KLD industrial effluent si to own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for fi discharge into GIDC drainage netw GIDC pumping station for final disp through common effluent conve	I be inal treatment & orac consisting of Characteristics of waste water to be	Sewage shall be di Soak pit via Sepi LEGEI Industria Domestic Reuse S Treated Remarks regarding feasibility	sposed to dic Tank NDS I Effluent Stream C Sewage tream			
viii	Reuse/Recycle de Total reuse : 6 K Source of water for with quar KLD where	etails (KL LD waste reuse ntity in (From	29 KLD Industrial effluent si to own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for fi discharge into GIDC drainage netw GIDC pumping station for final dispression through common effluent converted to the converted t	I be inal treatment & rork connected to osal into deep sea syance pipeline Characteristics of waste water to be reused (COD, BOD,	Sewage shall be di Soak pit via Sepi LEGEI Industria Domestic Reuse S Treated Remarks regarding feasibility	sposed to dic Tank NDS I Effluent Stream C Sewage tream			
viii	Reuse/Recycle de Total reuse : 6 K Source of water for with quar KLD where coming)	etails (KL LD waste reuse ntity in (From it is	29 KLD Industrial effluent si to own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for f discharge into GIDC drainage netw GIDC pumping station for final disputhrough common effluent converse through common effluent converse with quantity in KLD (Where it is used)	hall be sent consisting of 6 KLD I be linal treatment & rork connected to osal into deep sea eyance pipeline Characteristics of waste water to be reused (COD, BOD, TDS etc.)	Sewage shall be di Soak pit via Sept LEGET Industria Domestic Reuse S Treated Remarks regarding feasibility to reuse i.e.	sposed to dic Tank NDS I Effluent Stream C Sewage tream			
viii	Reuse/Recycle de Total reuse : 6 K Source of water for with quar KLD where coming) Boiler blow	etails (KL LD waste reuse ntity in (From it is	29 KLD Industrial effluent sito own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for fidischarge into GIDC drainage netw GIDC pumping station for final disputhrough common effluent converse through common effluent in the pulling station of the pumping station for final disputhrough common effluent converse through common effluent converse through common effluent in the pulling station of th	I be inal treatment & rork connected to osal into deep sea syance pipeline Characteristics of waste water to be reused (COD, BOD, TDS etc.) COD: <100 mg/l	Sewage shall be di Soak pit via Sepi LEGEI Industria Domestic Reuse S Treated Remarks regarding feasibility to reuse i.e.	sposed to dic Tank NDS I Effluent Stream C Sewage tream			
viii	Reuse/Recycle de Total reuse : 6 K Source of water for with quar KLD where coming) Boiler blow 2 KLD &	etails (KL LD waste reuse ntity in (From it is	29 KLD Industrial effluent sito own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for fidischarge into GIDC drainage netw GIDC pumping station for final dispithrough common effluent converted through converted thro	I be inal treatment & rork connected to osal into deep sea syance pipeline Characteristics of waste water to be reused (COD, BOD, TDS etc.) COD: <100 mg/l BOD: <30 mg/l	Sewage shall be di Soak pit via Sepi LEGEI Industria Domestic Reuse S Treated Remarks regarding feasibility to reuse i.e. Blow down shall be	sposed to dic Tank NDS I Effluent Stream C Sewage tream			
viii	Reuse/Recycle do Total reuse : 6 K Source of water for with quar KLD where coming) Boiler blow 2 KLD & Cooling tow	etails (KL LD waste reuse ntity in (From it is down:	Treated water shall shall be sent to CETP, Dahej for f discharge into GIDC drainage netw GIDC pumping station for final dispressive through common effluent converting the common effluent converting the common effluent converting the common effluent converting the common effluent converting the common effluent converting the converting	I be inal treatment & rork connected to osal into deep sea syance pipeline Characteristics of waste water to be reused (COD, BOD, TDS etc.) COD: <100 mg/l	Sewage shall be di Soak pit via Sept LEGET Industria Domestic Reuse S Treated Remarks regarding feasibility to reuse i.e. Blow down shall be passed	sposed to dic Tank NDS I Effluent Stream C Sewage tream			
viii	Reuse/Recycle de Total reuse : 6 K Source of water for with quar KLD where coming) Boiler blow 2 KLD &	etails (KL LD waste reuse ntity in (From it is down:	29 KLD Industrial effluent sito own ETP (40 KLD Capacity) P+S+T treatment Treated water shall shall be sent to CETP, Dahej for fidischarge into GIDC drainage netw GIDC pumping station for final dispithrough common effluent converted through converted thro	I be inal treatment & rork connected to osal into deep sea syance pipeline Characteristics of waste water to be reused (COD, BOD, TDS etc.) COD: <100 mg/l BOD: <30 mg/l	Sewage shall be di Soak pit via Sepi LEGEI Industria Domestic Reuse S Treated Remarks regarding feasibility to reuse i.e. Blow down shall be	sposed to dic Tank NDS I Effluent Stream C Sewage tream			

		fo		9		then shall be	
			urpose aft	er		used. Hence	
			assing Irough			it is feasible.	
			artridge filter				
Е	Air		3 -			I	
		as emission details Boilers/ TFH/ Furnace	s/ DG sets e	tc. with capaci	ties viz. TPH, ł	Kcal/hr, MT/hr,	KVA etc.
	Sr. no.	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel MT/ Day	Type of emissions i.e. Air Pollutants	Air Pollution Control Measures (APCM)
i	1.	Hot Air Generator Capacity: 1.0 lac Kcal/hr	11	Natural Gas OR Coal/ Briquette	1000 m3/ day OR 1.5 MT/ day	PM	Multi-cyclone + Bag filter + Water scrubber
		Boiler Capacity: 4 TPH OR		Coal/ Briquette	12 MT/ day	SO ₂ NO _X	Multi-cyclone + Bag filter +
	2.	Multi Fuel Boiler Capacity: 2 TPH	15	Coal/ Briquette OR LDO	6.0 MT/ day OR 150 L/h	ΝΟχ	Water scrubber
	3.	DG Set (Standby) Capacity: 350 KVA	6	Diesel	60 L/h		With Adequate stack height
	GPCB,	nent is committed to /ANK-C992/215695 da	ited 07/06/20	014)			
ii	Proces	ss gas emission details	ia Tuna of				
		T gas officeren actains	s i.e. Type or	pollutant gase	es (SO _{2,} HCI, N		
	Qr.					Stack/	Air Pollution
	Sr. no.		ource of em	ission	Type of emission	Stack/ Vent Height	Air Pollution Control Measures
		Specific So (Name of the	ource of em Product & l	ission Process)	Type of	Stack/ Vent	Air Pollution Control
	no.	Specific So (Name of the Spray Dryer (1 no.) Process Emission process carried ou Bromo Acetic Acid Process Emission process carried Acetophenone Process Emission process carried ou Difluorophenyl)-2-(1 Ethanone (DFTA)	Capacity – S (Capacity – S Vessel – S t for product for H-1,2,4-Trian	ission Process) 500 Kg/h) - Bromination of Monetion of Monetion of Monetion of Monetion of Monetion of Monetion of 1-(2,4) zol-1-yl)	Type of emission PM n o ft of HCI	Stack/ Vent Height (meter)	Air Pollution Control Measures (APCM)
	1. 2.	Specific So (Name of the Spray Dryer (1 no.) Process Emission process carried ou Bromo Acetic Acid Process Emission process carried Acetophenone Process Emission process carried ou Difluorophenyl)-2-(1 Ethanone (DFTA) Process Emission reaction carried our chlorobutanoyl) propanamide (FEXC Process Emission reaction carried our Acetate	Vessel – t for product Vessel – t for product Vessel – t for product Vessel – t for product Vessel – t for product phenyl]- O-3) Vessel – t for product phenyl]- O-3)	Friedel Craproduction of 1-(2,4zol-1-yl) Acid Chloridation of AP-20	Type of emission PM n o ft of HCI HCI SO ₂ CI ₂ O	Stack/ Vent Height (meter)	Air Pollution Control Measures (APCM) Venturi Scrubber Water Scrubber
	1. 2.	Specific So (Name of the Spray Dryer (1 no.) Process Emission process carried ou Bromo Acetic Acid Process Emission process carried Acetophenone Process Emission process carried ou Difluorophenyl)-2-(1 Ethanone (DFTA) Process Emission reaction carried our chlorobutanoyl) propanamide (FEXC Process Emission reaction carried our Acetate	Vessel – t for product Vessel – t for product Vessel – t for product Vessel – t for product Vessel – t for product phenyl]- O-3) Vessel – t for product phenyl]- Torproduct phenyl]- Torproduct phenyl]- Torproduct	ission Process) 500 Kg/h) Bromination Interior of Monitorial Craphoduction of Monitorial Craphoduction of Monitorial Condensation of 1-(2,4 zol-1-yl) Acid Chloridation of 2-[4-(4-N,N,2-trimethylical Chloridation of AP-20 sand their discontinuous condensation condensati	Type of emission PM HCI HCI SO2 CI2 CI2	Stack/ Vent Height (meter) 12	Air Pollution Control Measures (APCM) Venturi Scrubber Water Scrubber (1 no.) Water + Caustic Scrubber (1 no.)
	1. 2.	Specific So (Name of the Spray Dryer (1 no.) Process Emission process carried ou Bromo Acetic Acid Process Emission process carried Acetophenone Process Emission process carried ou Difluorophenyl)-2-(1 Ethanone (DFTA) Process Emission reaction carried our chlorobutanoyl) propanamide (FEXC Process Emission reaction carried our Acetate Solution obtained from 30-32% HCI solution	Vessel – t for product Wessel – t for product Vessel – t for product Vessel – t for product H-1,2,4-Trian Vessel – t for product phenyl] D-3) Vessel – t for product phenyl] D-3) Vessel – t for product phenyl] D-3)	ission Process) 500 Kg/h) - Bromination of Monitorion of Monitorion of Monitorion of Monitorion of Monitorion of 1-(2,4 201-1-yl) Acid Chloridation of 2-[4-(4-1),N,2-trimethylon of AP-20 and their distribution of AP-20 and their distribution of Monitorion of Monitorion of AP-20 and their distribution of Monitorion of Mo	Type of emission PM HCI HCI SO2 CI2 O Sposal: of HCI gas sha	Stack/ Vent Height (meter) 12 11	Air Pollution Control Measures (APCM) Venturi Scrubber Water Scrubber (1 no.) Water + Caustic Scrubber (1 no.)
	1. 2.	Specific So (Name of the Spray Dryer (1 no.) Process Emission process carried ou Bromo Acetic Acid Process Emission process carried Acetophenone Process Emission process carried ou Difluorophenyl)-2-(1 Ethanone (DFTA) Process Emission reaction carried our chlorobutanoyl) propanamide (FEXC Process Emission reaction carried our Acetate	Vessel – t for product Vessel – out for Vessel – t for product H-1,2,4-Trian Vessel – t for product phenyl] O-3) Vessel – t for product phenyl] O-3) Vessel – t for product phenyl] O-3)	ission Process) 500 Kg/h) Bromination oction of Mon- Friedel Cra production of Condensation ction of 1-(2,4 zol-1-yl) Acid Chloridation of 2-[4-(4-N,N,2-trimethylation of AP-20 sand their discomescrubbing le 9 of Hazardo	Type of emission PM HCI HCI SO2 CI2 OF HCI gas shapped waste rules	Stack/ Vent Height (meter) 12 11 11 11 11 11	Air Pollution Control Measures (APCM) Venturi Scrubber Water Scrubber (1 no.) Water + Caustic Scrubber (1 no.)

•	completely in ETP for purification	solution generated from scrubbing of Cl_2 gas shall be reation, bleaching, odour removal & water disinfection.
_	ve emission details with its m	nitigation measures:
As bel	<u>-</u>	Control
Sr. 1.	Probable sources Pump glands and seals	Control measures All pumps handling HAP chemicals with low V.Ps will be prov mechanical seals which are presently best for prever emissions.
2.	Emissions from Bulk Storage Tanks during storage, loading and unloading	Storage tanks storing low V.Ps chemicals will be provided Breather valve assembly. Set pressure of breather valves will kept above the vapor pressures of stored material to a fugitive emission. Vents of such tanks will be connected with scrubber system. Tank Pressure equalization will be applied wherever required Closed transfer system will be provided with SOPs for loa and unloading
3.	During reactions & Solvent recovery systems	Liquid raw materials will be charged by pumping & closed loop Suitable stoichiometric calculations are done and followed regulate the quantity of reactants to be charged to react vessels in order to avoid use of excess chemicals, which in will minimize organic load in the effluent. All reactors shall be closed and provided with main conderwith cooling water circulation and vent condensers with characterized out at atmospheric as well as vact conditions to obtain min. 95% recovery. Temperature and pressure conditions shall be stringed controlled as per the process requirement and optimized with temperature and vacuum conditions wherever feasible. temperature and critical process control shall be on PLC and operations will be manually.
4.	Pressure Relief Valve Emissions from pipelines	For highly pressurized lines, pressure equalization shall followed with return lines so that the pipelines as well connected equipment do not get pressurized unduly.
5.	Release from Sampling Lines	Shall be carried out using a closed loop sampling system.
6.	Valves, Flanges, plugs and instrument connections	Welded pipes to be used wherever feasible Suitable gasket material to be used Suitable gland packing to be used in valves LDAR shall be planned and implemented for periodic inspectand maintenance of pipes and pipe fittings.
7.	Chemical vapors during filtration and drying process	Covered systems shall be adopted, workers shall be provi PPEs, dust extraction systems, local exhausts and roof ventilators, wherever required.
8.	Drum filling machinery	Covered transfer systems shall be adopted with minimum ma operations, workers shall be provided PPEs, area should be ventilated, facilitated with local exhausts and roof top ventilated
9.	Warehouse storing drums and bags	Spillages shall be strictly prevented by providing drip pans; prohandling equipment, Spill control procedures and equipment see provided.

Sr. no.	Type/ Name of Hazardous waste	Specific Source of generation (Name of the Activity, Product etc.)	Category and Schedule as per HW Rules	Quantity (MT/Annum)	Management of HW
1.	Empty barrels/ Containers/ Liners contaminated with hazardous chemicals/ wastes	From Raw material containers/ bags/ Drums	Cat.: 33.1 Sch.: I	68 (Bags & Liners) & 400 (Drums)	Collection, Storage, Decontamination and reuse within premises/ sell to local scrap vendor OR Disposal by selling to registered re- cyclers approved by GPCB/ CPCB.
2.	Used or Spent oil	From Machineries	Cat.: 5.1 Sch.: I	0.12	Collection, Storage, Transportation & Disposal by selling to Registered Re- refiners approved by GPCB/ CPCB.
3.	Process Residue and wastes	Production of: Through isolation & distillation process of product no. 1; Hydrolysis reaction of product no. 2; Friedel craft reaction of product no. 8; Mesylation of product no. 10; Acid Hydrolysis reaction of product no. 11; Hydrogenation of product no. 11; Hydrogenation of product no. 12; Friedel craft reaction of product no. 14; Salt reaction of product no. 15; ITU Purification	Cat.: 28.1 Sch.: I	84	Collection, Storage, transportation, Disposal by sending to M/s. RSPL, Panoli for Co- processing

		stage of product no. 16; Condensation reaction of Product no. 17; Breaking reaction of product no. 18; Cyclisation reaction of product no. 19; Friedal craft reaction of Product no. 20; Esterification reaction of product no. 21				
4.	Chemical sludge from	and through R & D.	Cat.: 35.3	360	Collection, Storage, Transportation & Disposal to	
	waste water treatment	110 211	Sch.: I		common TSDF facility at M/s. BEIL, Dahej.	
5.	Off specification products	From manufacturing process	Cat.: 28.4 Sch.: I	42	Storage, transportation, Disposal by sending to M/s. RSPL, Panoli for Co- processing	
6.	Spent Solvent	From Production of Product no. 2, 4, 5, 10 – 18 & 20 – 22.	Cat.: 26.4 Sch.: I	161 *	Reused continuously in production through distillation columns having Primary and secondary condensers inbuilt with reactors without any storage in the premises.	
7.	10 – 12% Potassium Bromide	From Production of Beflubutamid (FMB)	Cat.: B- 10 Sch.: II	114	Collection, Storage, Transportation & Disposal by selling out to authorized users	

I							
						who are having authorization with valid CTO and Rule 9 permission.	
	8.	25%- Spent Aluminium chloride solution OR Poly Aluminium Chloride	During Production of: Through Friedal craft reaction of Product no. 8, 9, 14 & 20	Cat.: B- 10 Sch.: II	7506	Collection, Storage, Transportation & Disposal by selling out to authorized users who are having authorization with valid CTO and Rule 9 permission OR shall be converted to Poly Aluminium chloride & then sell out to authorized users who are having authorization with valid CTO and rule 9 permission.	
	9.	Potassium Iodide Solution	From Production of 1[-2-(2,4- Difluorophenyl)- 2,3-Epoxy Propyl]-1h- 1,2,4-Triazole Methane Sulfonate(DFT A EPOXY MESYLATE)	Cat.: B- 10 Sch.: II	936	Collection, Storage, Transportation & Disposal by selling out to authorized users who are having authorization with valid CTO and Rule 9 permission	
	10.	28 - 32% Sodium Bisulphite (Sodium salt) Solution	From Production of: Through Caustic scrubber attached to reaction vessel of 2-[4-(4- chlorobutanoyl) phenyl]-N,N,2- trimethyl propanamide (FEXO-3)	Cat.: B- 23 Sch.: II	990	Collection, Storage, Transportation & Disposal by selling out to authorized users who are having authorization with valid CTO and Rule 9 permission	
	11.	Ammonium Sulphate- 10%	From Production of: During		354	Collection, Storage, Transportation	

 1	ſ	<u> </u>			T	1
		Breaking reaction of 1,3- Bis (1H-1,2,4- triazole-1- yl)propan-2-one (DCDO-3)			&Disposal to common TSDF facility at M/s. BEIL, Dahej	
12.	Mixture of Chromium sulphate & Sodium salt OR 50% Basic Chromium Sulphate after Spray Drying	From Production of: During centrifugation step of Menadione Sodium Bi Sulfite/ Vitamin K3		492 OR 246	Collection, Storage, Transportation & Disposal by selling out to authorized users who are having authorization with valid CTO and Rule 9 permission OR shall be converted to 50% Basic Chromium Sulphate using Spray Dryer & then sell out to authorized users who are having authorization with valid CTO and rule 9 permission.	
13.	30 – 32 % HCl Solution	During production of: From water scrubber attached to reaction vessel of Product no. 4, 8, 9 & 14	Cat.: B10 Sch.: II	1614	Collection, Storage, Transportation & Disposal by selling out to authorized users who are having authorization with valid CTO and Rule 9 permission.	
14.	10% Sodium Hypochlorite solution	During production of: From Caustic scrubber attached to reaction vessel of AP-200 Acetate	Cat.: B-7 Sch.: II	324	Collection, Generation, Storage & Reuse completely (i.e. 324 MTA) in ETP for purification, bleaching, odour removal & water disinfection. Additional quantity (i.e. 100	

							MTA) sh	nall be	
							procured	from	
							authorize	b	
	±\0.7) 	/E (f) (0.4E	vendors		- 0040 (
									5-2019 for spent
									cent suggestions
									ng the recovered lazardous waste
			entioned the actu			25110115	and upua	eu ine r	lazaiuous wasie
	IIIaliix	and me	entioned the acti	iai sperit soive	ant quantity.				
									OC for disposing
ii			details of TSDF ,	CHWIF etc.					to TSDF of M/s.
-	(For F	HW mar	nagement)						co-processing to
	Datail	a af Niau		.t. 0 :t. diam.	- al		M/s. RSI	PL, Pano	lI .
iii		s of Nor and otl	n-Hazardous was ners)	ste & its dispos	sai		Details a	s below:	
	Sr.	Туре	Specific	Category	Quantity		gement o		
	No.	of	Source of	(As Per	(MT/Annum)	Haz	ardous W	aste	
		Waste	generation	Sch)-					
				2016		0-111	· 0	1	
						Collect		torage,	
			From Coal/				ortation, S nanufactu		
	1.	Ash	Briquette		1068		acturers	of	
			combustion			Cemer		_	
						produc			
G	Solve	nt man	agement, VOC	emissions etc.				•	
				Solvent recove	ery, % recovery,	reuse o	f recovere	d Solven	ts etc. (Details in
	Table	Format)		T				
	_				9	Solvent		ered Solvent	
	1 1	duct No.	Name of Product						Jorga Gorront
	or.		Name of I	Product	Solvent	C	harged	per	%
	1 1	NO.	Name of I	Product	Solvent	C	er batch	batch	
		NO.	Name of I	Product		C	er batch (kg)	batch (kg)	% Recovery
		1	Name of I		Acetone	C	er batch (kg) 200	batch (kg) 190	% Recovery
		1	Beflubutamid (F	MB)	Acetone IPA	C	er batch (kg) 200 250	batch (kg) 190 242	% Recovery 95 97
			Beflubutamid (F	MB)	Acetone IPA	C	er batch (kg) 200	batch (kg) 190	% Recovery
		1	Beflubutamid (F	MB) dium Bisulfite/	Acetone IPA	C	er batch (kg) 200 250	batch (kg) 190 242	% Recovery 95 97
		1 3	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad	MB) dium Bisulfite/	Acetone IPA IPA Toluene	C	er batch (kg) 200 250 245	batch (kg) 190 242 238	% Recovery 95 97 97
i		1 3 4	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad	MB) dium Bisulfite/ cetic Acid	Acetone IPA IPA Toluene	C	er batch (kg) 200 250 245	batch (kg) 190 242 238	% Recovery 95 97 97 94.6
i		1 3	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad 1- (2, 4-Di 2- (1H-1, 2, 4-7)	TMB) dium Bisulfite/ cetic Acid fluorophenyl)- Friazol -1-yl)	Acetone IPA IPA Toluene MDC	C	er batch (kg) 200 250 245	batch (kg) 190 242 238	% Recovery 95 97 97 94.6
i		1 3 4	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad 1- (2, 4-Di 2- (1H-1, 2, 4-Ethanone (DF1	FMB) dium Bisulfite/ cetic Acid fluorophenyl)- Friazol -1-yl) FA)	Acetone IPA IPA Toluene MDC Acetone	C	er batch (kg) 200 250 245 92 40	batch (kg) 190 242 238 87 38 96	% Recovery 95 97 97 94.6 95
i		1 3 4	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad 1- (2, 4-Di 2- (1H-1, 2, 4-T Ethanone (DFT 1[-2- (2, 4-Diflue	FMB) dium Bisulfite/ cetic Acid fluorophenyl)- Friazol -1-yl) A) crophenyl)- 2,	Acetone IPA IPA Toluene MDC Acetone	C	er batch (kg) 200 250 245 92 40	batch (kg) 190 242 238 87 38	% Recovery 95 97 97 94.6 95
i		1 3 4 9	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad 1- (2, 4-Di 2- (1H-1, 2, 4- Ethanone (DFT 1[-2- (2, 4-Diffud 3-Epoxy Propy	FMB) dium Bisulfite/ cetic Acid fluorophenyl)- Friazol -1-yl) A) crophenyl)- 2, l]-1h-1, 2, 4-	Acetone IPA IPA Toluene MDC Acetone	C	er batch (kg) 200 250 245 92 40	batch (kg) 190 242 238 87 38 96	% Recovery 95 97 97 94.6 95
i		1 3 4	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad 1- (2, 4-Di 2- (1H-1, 2, 4-T Ethanone (DFT 1[-2- (2, 4-Difluc 3-Epoxy Propy Triazole Methar	GMB) dium Bisulfite/ cetic Acid fluorophenyl)- Friazol -1-yl) GA) crophenyl)- 2, l]-1h-1, 2, 4-ne	Acetone IPA IPA Toluene MDC Acetone	p	er batch (kg) 200 250 245 92 40	batch (kg) 190 242 238 87 38 96	% Recovery 95 97 97 94.6 95
i		1 3 4 9	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad 1- (2, 4-Di 2- (1H-1, 2, 4-T Ethanone (DFT 1[-2- (2, 4-Diflud 3-Epoxy Propy Triazole Methar Sulfonate (D	FMB) dium Bisulfite/ cetic Acid fluorophenyl)- Friazol -1-yl) A) crophenyl)- 2, l]-1h-1, 2, 4-	Acetone IPA IPA Toluene MDC Acetone	p	er batch (kg) 200 250 245 92 40 100	batch (kg) 190 242 238 87 38 96	% Recovery 95 97 97 94.6 95 96
i		1 3 4 9	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad 1- (2, 4-Di 2- (1H-1, 2, 4-T Ethanone (DFT 1[-2- (2, 4-Difluc 3-Epoxy Propy Triazole Methar	GMB) dium Bisulfite/ cetic Acid fluorophenyl)- Friazol -1-yl) GA) crophenyl)- 2, l]-1h-1, 2, 4-ne	Acetone IPA IPA Toluene MDC Acetone MDC Acetonitrile	p	er batch (kg) 200 250 245 92 40 100 30	batch (kg) 190 242 238 87 38 96 29	% Recovery 95 97 97 94.6 95 96
i		1 3 4 9	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad 1- (2, 4-Di 2- (1H-1, 2, 4-T Ethanone (DFT) 1[-2- (2, 4-Diflud 3-Epoxy Propy Triazole Methar Sulfonate (D Mesylate)	GMB) dium Bisulfite/ cetic Acid fluorophenyl)- Friazol -1-yl) FA) crophenyl)- 2, l]-1h-1, 2, 4- ne FTA Epoxy	Acetone IPA IPA Toluene MDC Acetone MDC Acetonitrile	c po	er batch (kg) 200 250 245 92 40 100 30 50	batch (kg) 190 242 238 87 38 96 29 48	% Recovery 95 97 97 94.6 95 96 97
i	1	1 3 4 9	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad 1- (2, 4-Di 2- (1H-1, 2, 4-T Ethanone (DFT 1[-2- (2, 4-Diflud 3-Epoxy Propy Triazole Methar Sulfonate (D Mesylate)	GMB) dium Bisulfite/ cetic Acid fluorophenyl)- Friazol -1-yl) GA) crophenyl)- 2, l]-1h-1, 2, 4- ne FTA Epoxy Pyridyl)-2-	Acetone IPA IPA Toluene MDC Acetone MDC Acetonitrile DMF Ethyl acetat	e	er batch (kg) 200 250 245 92 40 100 30 50 73.00 1235	batch (kg) 190 242 238 87 38 96 29 48	% Recovery 95 97 97 94.6 95 96 97 96
i	1	1 3 4 9	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad 1- (2, 4-Di 2- (1H-1, 2, 4-T Ethanone (DFT 1[-2- (2, 4-Diflud 3-Epoxy Propy Triazole Methar Sulfonate (D Mesylate)	GMB) dium Bisulfite/ cetic Acid fluorophenyl)- Friazol -1-yl) GA) crophenyl)- 2, l]-1h-1, 2, 4- ne FTA Epoxy Pyridyl)-2-	Acetone IPA IPA IPA Toluene MDC Acetone MDC Acetonitrile DMF Ethyl acetat Chloroform	e	er batch (kg) 200 250 245 92 40 100 30 50 73.00 1235 1000	batch (kg) 190 242 238 87 38 96 29 48 69 1173 980	% Recovery 95 97 97 94.6 95 96 97 96 95 98
i	1	1 3 4 9	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad 1- (2, 4-Di 2- (1H-1, 2, 4-T Ethanone (DFT 1[-2- (2, 4-Diflud 3-Epoxy Propy Triazole Methar Sulfonate (D Mesylate)	GMB) dium Bisulfite/ cetic Acid fluorophenyl)- Friazol -1-yl) GA) crophenyl)- 2, l]-1h-1, 2, 4- ne FTA Epoxy Pyridyl)-2-	Acetone IPA IPA IPA Toluene MDC Acetone MDC Acetonitrile DMF Ethyl acetat Chloroform Toluene	e	92 40 100 30 50 73.00 1235 1000 606	batch (kg) 190 242 238 87 38 96 29 48 69 1173 980 576	% Recovery 95 97 97 94.6 95 96 97 96 97 98 98
i	1	1 3 4 9	Beflubutamid (F Menadione Soc Vitamin K3 Mono Bromo Ad 1- (2, 4-Di 2- (1H-1, 2, 4-T Ethanone (DFT 1[-2- (2, 4-Diflud 3-Epoxy Propy Triazole Methar Sulfonate (D Mesylate)	GMB) dium Bisulfite/ cetic Acid fluorophenyl)- Friazol -1-yl) GA) crophenyl)- 2, l]-1h-1, 2, 4- ne FTA Epoxy Pyridyl)-2-	Acetone IPA IPA IPA Toluene MDC Acetone MDC Acetonitrile DMF Ethyl acetat Chloroform	e I	er batch (kg) 200 250 245 92 40 100 30 50 73.00 1235 1000	batch (kg) 190 242 238 87 38 96 29 48 69 1173 980	% Recovery 95 97 97 94.6 95 96 97 96 95 98

	Methylpyridyl-2)-2-Phenyl-4- Methylpiperazine (Alcohol)	Toluene	964	916	95
13	4-(2-Aminoethyl) Thiomethyl-2 Dimethylaminomethyl Thiazole (NI-5)	Toluene	600	590	98
14	2-[4-(4-chlorobutanoyl) phenyl]-N,N,2-trimethyl propanamide (FEXO-3)	MDC	50	48	96
	1-[4	Toluene	50	48	96
15	(Cyclopropylcarbonyl) Phenyl]1-Methylpropionic Acid Cyclohexylamine Salt (FEXO-6)	Methanol	50	48	96
	Iso Thiourea- [(S)-((2-	Acetone	400	384	96
16	Guanidino-4-Thiazolyl) Methylisothiourea Dihydrochloride] (ITU)	IPA	300	285	95
	0.0 Dis /4 H 4.0 4 Trissals	Toluene	500	490	98
17	2,2-Bis-(1-H-1,2,4 Triazole-	MDC	500	485	97
17	1-yl-Methyl)-1,3-Dioxolane [DCDO-2]	N-methyl-2- pyrollidone	1000	980	98
20	3, 3-Diphenyl Propionitrile	Methanol	500	490	98
21 Trans, trans 2,4-Hexadienyl Acetate	THF	1167	1108	95	
22	AP-200 Acetate	THF	1200	1152	96
	vent generated from distillation r	Toluene	1000	965	97

- ➤ Spent solvent generated from distillation process shall be reused continuously in production through distillation columns having Primary and secondary condensers inbuilt with reactors without any storage at the premises.
- Solvent recovery shall be carried out by distillation directly from process vessels provided with distillation assembly in dedicated distillation units depending on the solvent composition. Recovered solvents shall be completely reused in process. Distillation assembly shall comprise of packed column, condensers with cooling water and chilled water/ chilled brine circulation to obtain min. 95% recovery.

VOC emission sources and its mitigation measures

ii

Handling of chemicals will be in closed system.
 Details regarding storage of Hazardous chemicals.

	P Details regarding Storage of		
	Storage details	Name of major Hazardous chemicals	Remarks
	Storage tanks (Aboveground)	Methanol & Sulphuric acid	
	Drum/ Carboys storage	1,3-Dichloro Acetone; Mono Bromo	
		Acetic Acid; Acetophenone; 3-Amino-	
		1,2,4-Triazole; Trans, trans 2,4-	
		Hexadienyl Acetate; 1,3-	
H		Difluorobenzene; 4- chloro Butyryril	
		chloride; Acetic anhydride; Acetic Acid;	
		Acetone; Isopropyl alcohol; Acetonitrile;	
1		Acetyl chloride; Chloro Acetyl Chloride;	
1		Chloroform; Cyclohexylamine; Dimethyl	
		Formamide; Ethyl acetate; Ethyl	
		Chloroformate; Toluene; Formic acid;	
		Hydrobromic acid; Methacrylic acid;	

	Methylene dichloride; Thionyl chloride; Thiourea; Vitride (sodium bis(2-methoxyethoxy)aluminum hydride solution); Benzene; Benzyl Amine; Ethylene glycol; Methane sulfonic acid; Methyl 2- bromo butyrate; Sodium Borohydride; Sodium methoxide; Tetrahydrofuran; Copper Chloride & Dimethyl amine in THF solution	
Bag Storage	Beflubutamid (FMB); Aluminium chloride; Magnesium metal; Mono Chloro Acetic Acid; Potassium hydroxide; Sodium dichromate; Sodium hydroxide; Sodium Nitrite & Sorbic Acid	
Gas cylinder/ Tonner storage	Hydrogen, Methyl chloride & Ammonia	

> Applicability of PESO :

- Unit will obtain licence from PESO if required.
- During the meeting dated 18/03/2020, technical presentation made by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the January 2019 to March 2019. Ambient Air Quality monitoring was carried out for PM₁₀, PM_{2.5}, SO₂, NO_x, NH₃, CO, VOCs as BTX, Benzene, HCl & Cl₂ fourteen locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD. The resultant concentrations are within the NAAQS.
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan
 has been covered in the RA report.
- Committee noted that this proposal is new in GIDC Dahej. Source of water is GIDC. PP mentioned that
 effluent generated from process, washing and scrubber will be treated in in-house ETP consisiting of
 primary, secondary and tertiary treatment and treated effluent will be disposed into CETP, Dahej for final
 treatment and disposal. PP has proposed one steam boiler and HAG. Fuel used will be Natural Gas/Coal/
 Briquette. PP has addressed Hazardous Waste as per HWR 2016. Committee noted that PP has
 addressed EMP & CER satisfactorily.
- Compliance of ToR found satisfactory.
- After detailed discussion, Committee unanimously decided to recommend the project to SEIAA,
 Gujarat for grant of Environment Clearance.

14	SIA/GJ/IND2/20470/2015	M/s. Govind Organics Industries LLP	EC – Reconsideration
		Plot No. D3/135, GIDC Phase III, Dahej,	

	Tal. Vagra, Dist.: Bharuch, Gujarat, India	
--	--	--

Category of the unit: 5(f)
Project status: Expansion

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/20470/2015 dated 16/01/2020 for obtaining Environmental Clearance.
- SEIAA issued TOR to PP vide letter dated 23/08/2019.
- Project proponent has submitted EIA Report prepared by Siddhi Green Excellence Pvt. Ltd, Ankleshwar based on the TOR issued by SEIAA.
- This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

Qr.	Sr. Name of The Breducts		Quar	tity (MT/Mont	h)	End - use of the	
No.	Name of The Products	no./ CI no.	Existing	Proposed	Total	products	
1.	Monochlorobenzene (MCB)	108-90- 7	250	0	250		
2.	Paradichlorobenzene (PDCB)	106-46- 7				Pharma intermediates, Solvents, Air freshener,	
3.	Orthodichlorobenzene (ODCB)	95-50-1				Rubber chemical, Pigments etc.	
4.	Trichlorobenzene (TCB)	120-82- 1					
5.	Meta dichlorobenzene	541-73- 1	0	200	200	Pharma Intermediate	
6.	Nitro naphthalene (NN)	86-57-7	0	500	500	To manufacture 1- Aminonaphthalene	
7.	1, 5 Dinitro naphthalene	605-71- 0				To manufacture 1, 5 Diaminonaphthalene	
8.	1, 8 Dinitro naphthalene	602-38- 0				To manufacture 1, 8 Diamino naphthalene	
9.	2, 5 Dimethyl nitro benzene (2, 5 DMNB)	89-58-7				To manufacture 2, 5 Dimethyl aniline	
10.	2, 5 Dichloro nitro benzene (2, 5 DCNB)	89-61-2				To manufacture 2, 5 Dichloro aniline	
11.	3, 4 Dichloro nitro benzene	99-54-7				To manufacture 3, 4 Dichloro aniline	
12.	2, 3 Dichloro nitro benzene	3209- 22-1				To manufacture 2, 3 Dichloro aniline	
13.	2, 4 Dichloro nitro benzene	611-06- 3				To manufacture 2, 4 Dichloro aniline	
14.	2, 6 Dichloro nitro benzene	601-88- 7				To manufacture 2, 6 Dichloro aniline	
15.	2, 4, 5 Trichloro nitro benzene	89-69-0				To manufacture 2, 4, 5 Trichloro aniline	
16.	2, 3, 4 Trichloro nitro benzene	17700- 09-3				To manufacture 2, 3 Dichloro 6 Nitroaniline	
17.	2, 3 Dichloro 4 nitro phenol	59384- 57-5				To manufacture 2, 3 Dichloro 4 Aminophenol	

	1	E047			l	To manufacture 2 F
18.	2, 5 Dichloro 4 nitro phenol	5847- 57-4				To manufacture 2, 5 Dichloro 4 Amino Phenol
19.	Ortho chloro aniline	95-51-2	0	500	500	Dye Intermediate
20.	Para chloro aniline	106-47-				Pharma & Dye
		8				intermediate Dye Intermediate & To
21.	Alpha naphthyl amine	134-32-				manufacture Sodium
		7				Naphthioate
22.	2, 5 Xylidine	95-78-3				Dye Intermediate
23.	N-isopropyl Parachloro Aniline (IPPCA)	770-40- 1				Pharma Intermediate
	Annine (IFFCA)	I				Dye Intermediate & to
24.	2, 5 Dichloroaniline	95-82-9				manufacture 2, 5
						Dichloro Phenol
0.5	O O Disklans as ilin s	608-27-				Dye Intermediate & to
25.	2, 3 Dichloro aniline	5				manufacture 2, 3 Dichloro Phenol
26.	3, 4 Dichloro Aniline	95-76-1				Dye Intermediate
27.	2, 4 Dichloro Aniline	554-00-				Dye Intermediate
27.	2, 4 Dictrioro / trimine	7				bye intermediate
28.	2, 4, 5 Trichloro Aniline	636-30- 6				Pigment Intermediate
	2, 3 Dichloro 4 Amino	39183-				Drug Intermediate for
29.	Phenol	17-0				Triclabendazole
30.	3-Chloro Aniline	108-42-				Dye Intermediate
		9 576-24-	0	50	50	Drug Intermediate for
31.	2, 3 Dichloro Phenol	9	U	30	30	Triclabendazole
32.	2, 5 Dichloro Phenol	583-78-				Drug Intermediate for
52.	•	8	•	00	00	Lufenuron
33.	Parachloro aniline hydrochloride	20265- 96-7	0	30	30	Drug Intermediate for CH-Base
0.4	O – Chloro Trityl Chloride	42074-				
34.	(O -CTC)	68-0				Specialty compound
0.5	Nitro RF (O, O, O-Tris (4 –	64131-				To manufacture Amino
35.	nitro phenyl) thio phosphate)	85-7				RF
	4-(Trifluoromethyl)	000.40				
36.	benzene Sulphonamide	830-43- 3				Specialty compound
	(TBSA)	0				
37.	Thiophosphoric Acid Tri (4 Amino Phenyl) Ester	52664-				Specialty compound
37.	(AMINO RF)	35-4				Opecially compound
38.	1, 5 Diamino Naphthalene	2243-				Dye & Pigment
JO.	i, o Diamino Napitinalone	62-1				Intermediate
39.	1, 8 Diamino Naphthalene	479-27- 6				Dye & Pigment Intermediate
40	Conditions in a selectivity of	130-13-		000	000	
40.	Sodium naphthionate	2	0	200	200	Dye Intermediate
41.	Alpha Naphthol	90-15-3	0	100	100	Drug Intermediate
42.	N-Phenyl 1-naphthyl amine (PANA)	90-30-2				Anti oxidant
43.	Nevile Winther acid (N.W.	84-87-7	0	100	100	Food Colour Intermediate

	Acid)					
44. Sulphanilic Acid		121-57- 3	0	F00	500	Dvo Intermediate
45.	Sulphanilic Acid - Na Salt	6106- 22-5	0	500	500	Dye-Intermediate
	TOTAL (Excluding Potassium Sulphate) – proposed for EC		250	2180	2430	
46.	Potassium Sulphate - It is an Inorganic Product, hence not included in total production proposed for EC.	7778- 80-5	0	500	500	To manufacture potassium per sulphate

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 04/02/2020.
- Salient features of the project for Water, air and Hazardous waste management are as under:

Sr.	Particulars	Details
no.		
Α	Total cost of Proposed Project (Rs. in Crores):	Existing: 8.05 Crores Proposed: 25 Crores
		Total: 33.05 Crores
	Details of EMP	

COMPONENT	ADDITIONAL CAPITAL COST OF EMP	RECURRING COST OF EMP (per month)
TOTAL COST	Rs. 325 Lakh	Rs. 88.675 Lakh

Bifurcation of FMP Cost

Sr. No	Particulars	Capacity	Addition al Capital Cost (Rs. in Lakh)	Operatin g Cost (Lakh/ Month)	Maintenanc e Cost (Lakh/ Month)	Total Recurrin g Cost (Lakh/ Month)
1	Effluent Treatment Plant	150KLD	140	33.75	3.75	37.5
2	APCM	Multi cyclone separator, bag filter, process scrubber systems, Installation of stacks with platform and sampling arrangement s, local exhaust & dust collector systems	60	0.747	0.083	0.83
3	Hazardous Waste managemen	100 m ² (1.71 % of total plot area)	60	45	5	50

		t									
	4	AWH		65	(0.306	0.034	0	.34		
		Monitoring									
		Cost +									
		Noise Pollution									
		control +									
		Green belt									
		developmen									
		t + OHS									
	Detail	ls of CER as pe	r OM dated 0°	1/05/201	8			•	•		
										t Responsibility"	
										of the Capital	
					mmitted	to alloc	cate Rs. 50 la	akh to	r CER	activities to be	
		cted after the pr	oject is operat		Norms	. 1	Allocation				
	CER	ponent			Lakh (2		Rs. 50 Lakh (2%)			
	LOLIK			113. 50	Lakii (2	. 70)	113. 30 Lakii (Z 70)			
	Tenta	tive CER Activi	ties								
	Sr. No.		CER Activity	1		Ве	eneficiary villa (Tentative)	ge	Ca	pital Cost Rs. (Lakh)	
	1.	Tree plantation pond boundar	у			Dahej,	Vadadala			5	
	2.	Donation to		hospita	als for						
		improving drin			1		olva, Rahiad,			25	
		water, sanital electrification	ation facilitie	s and	solar	Suva					
	3.	Providing pav	erblocks on in	iternal ro	ads of						
		surrounding v					ra, Goladara, 20				
		roads	3	`	,	Ambhe) 				
В		Plot area					8.38 Sq. m.				
	(sq. n	neter)				Proposed: NIL					
	Croor	s half area			Total: 5858.38 Sq. m.						
		n belt area neter)				cisting: NIL oposed: 660 Sq. m.					
	\ 34.1					: 660 Sq					
С	Emple	oyment generat	ion					os. co	mpany	employees + 10	
]				Nos.	Nos. on Contract basis					
							Iditional Man			os. company	
						•	10 Nos. on Co			.	
										Nos. company	
					empi	oyees +	20 Nos. on Co	nıracı	basis		
					Max	efforts	for recruitmen	t from	local	area and within	
						ct and st			loodi	area aria within	
D	Water	r			ı	-					
i		e of Water Supp						GID	C rese	rvoir	
		Bore well, Surfa)					
		s of permission f		rn autho	rity.			Red	quested	I to GIDC	
ii	Water	r consumption	(KLD)								
			Existi		Propose		Total after		Remar	rks	
			KLD		Additio	nal)	Expansion	1			
					KLD		KLD				

Grand Total (A+B+C)	55.22	169	224.22	Fresh water (GIDC 216.22 KLD Recycled water: 8 KLD
Industrial Total	53.5	156	209.5	Fresh water (GIDC) 201.5 KLD Recycled water: 8 KLD
Others (APCM)	12	8	20	GIDC water supply
Cooling	35	51	86	GIDC water supply
Boiler	NIL	22	22	GIDC water supply
				Additional water requirement for washing: Boiler blood down of 2 KLD Cooling tower blood down of 6 KLD shabe reused for washing purpose after passing through cartridge filter.
Washing	6.5	8	14.5	Proposed
Process	NIL	67	67	GIDC water supply
(DD) Industrial				
(CC) Gardening	NIL	5	5	GIDC water supply
(BB) Domestic	1.72	8	9.72	GIDC water supply

7) Total water requirement for the project: 224.22 KLD8) Quantity to be recycled: 8 KLD

9) Total fresh water requirement: 216.22 KLD

(Total water requirement = Fresh water + Recycled water) Waste water generation (KLD)

Category	Existing KLD	Proposed (Additional) KLD	Total after Expansion KLD	Remarks
(Q) Domestic	1.4	6.6	8	Sewage shall be disposed t soak pit via septic tank.
(R) Industrial		-1	1	
Process	0	56	56	High COD Effluent: Primar treated effluent shall be ser to CMEE (Common Mul Effect Evaporator) of M/s BEIL (Bharuch Envir Infrastructure Limited), Dahe for final disposal.
		53	53	Low COD Effluent: Prima

				treated effluent shall be sent to CETP, Dahej for further treatment and disposal.
Washing	0	8	8	Recycled: 8 KLD Boiler blow down of 2 KLD & Cooling tower blow down of 6 KLD shall be reused for washing purpose after passing through cartridge filter. Washing effluent shall be given primary treatment in own ETP & then shall be sent to CETP, Dahej for further treatment and disposal.
Boiler	0	2	2	Boiler blow down of 2 KLD shall be reused for washing purpose after passing through cartridge filter
Cooling	0	6	6	Cooling tower blow down of 6 KLD shall be reused for washing purpose after passing through cartridge filter
Others (APCM)	0.02	0	0.02	Primary treated effluent shall be sent to CETP, Dahej for further treatment and disposal.
Total Industrial waste water	0.02	125	125.02	Discharge quantity: 117.02 KLD + Recycled water: 8 KLD
Total [A + B]	1.42	131.6	133.02	Discharge quantity: 125.02 KLD + Recycled water: 8 KLD

iv Treatment facility within premises with **capacity**

[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc..

Proposed ETP capacity- 150 KLD (Consisting of Primary treatment)

Treatment scheme including segregation at source. (Give Characteristics of each stream i.e. COD, BOD, TDS etc.)

There shall be segregation of Effluent streams based on COD.

Characteristics of High COD process effluent

Sr. No.	Parameters	Unit	Estimated value
7.	рН	-	3 to 10
8.	Total Dissolved Solids (TDS)	mg/L	8000 – 10000
9.	COD	mg/L	13000 – 25000
10.	Suspended Solids	mg/L	100
11.	Oil & Grease	mg/L	<10
12.	Ammonical Nitrogen	mg/L	<50

Low COD effluent characteristics

Sr. No.	Parameters	Unit	Collection Tank (Inlet to ETP)	Partially Treated Effluent to CETP
1.	рН	-	6.5 – 8.5	6.5 - 8.5
2.	Total Dissolved Solids mg/L		1200 – 1500	1500
3.	3. COD		2000 – 2500	1500 - 2000
4.	4. Suspended Solids		< 100	< 10
5. Oil & Grease		Grease mg/L < 10		< 1
6.	6. Ammonical Nitrogen mg/L		<10	<10

Treatment & Disposal of segregated effluent streams:

Irea	Treatment & Disposal of segregated effluent streams:										
Sr. No.	Waste stream Details	Source of generation of effluent	Treatment Methodology	Disposal							
1.	Low COD	Process (during manufacturing of products EXCEPT Sodium naphthionate & Nevile Winther acid (N.W. Acid)) and washing (as and when generated) & APCM effluent (as and when generated)	To ETP	Primary treated effluent shall be sent to CETP, Dahej.							
		Boiler blowdown & Cooling tower blowdown (as and when generated)		Reused for washing purpose							
2.	High COD	Process (during manufacturing of Sodium naphthionate & Nevile Winther acid (N.W. Acid))	To ETP (Primary Treatment)	Primary treated effluent shall be sent to CMEE (Common Multi Effect Evaporator) of M/s. BEIL (Bharuch Enviro Infrastructure Limited), Dahej							

Note: (In case of CETP discharge):

Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP.

Low COD Process Effluent & washing effluent shall be primarily treated and shall be sent to CETP, Dahej for further treatment and disposal. Treated effluent from CETP, Dahej shall be discharged into GIDC drainage network connected to GIDC pumping station for final discharge through u/g Dahej-Vilayat Effluent Conveyance Pipeline up to deep sea.

Brief note on adequacy of ZLD (In case of Zero Liquid Discharge):

Not Applicable

٧

	, , , , , , , , , , , , , , , , , , , ,	
,	Mode of Disposal & Final meeting point	
	Domestic:	Sewage shall be disposed to soak pit via septic tank.
	Industrial:	 High COD process effluent shall be primarily treated and shall be sent to CMEE plant of M/s. of Bharuch Enviro Infrastructure Limited (BEIL), Dahej. Low COD Process Effluent & washing effluent shall be primarily treated and shall be sent to CETP, Dahej for further treatment and disposal. Treated effluent from CETP, Dahej

shall be discharged into GIDC drainage network connected to GIDC pumping station for final discharge through u/g Dahej-Vilayat Effluent Conveyance Pipeline up to deep sea. In case of Common facility (CF) like CETP, Common Spray dryer, Common MEE, CHWIF etc. νi Name of Common facility (CF) (For waste water treatment) CMEE plant of M/s. BEIL (Bharuch Enviro Infrastructure Limited), Dahej. CETP, Dahej Membership of Common facility (CF) (For waste water treatment) 1. Assurance letter from GIDC, Bharuch for discharge of booked quantity of 61 KLD after final treatment in CETP, Dahej for final disposal into deep sea through common effluent conveyance pipeline. NOC Letter of M/s. BEIL, Dahej for CMEE plant. vii Simplified water balance diagram with reuse / recycle of waste water Total Water Requirement 224.22 KLD (Fresh water from GIDC: 216.22 KLD + Recycled water: 8 KLD) Domestic Industrial: 209.5 KLD Green belt development Fresh water (GIDC) : 9.72 KLD (Fresh water (GIDC): 201.5 KLD + Recycled Fresh water (GIDC): 5 KLD Process Boiler Others (APCM) Cooling tower (Fresh water (GIDC): 6.5 KLD + (Fresh water (GIDC): (Fresh water (GIDC): 20 KLD) (Fresh water (GIDC): 22 KLD) (Fresh water (GIDC): 86 KLD) Recycled water: 8 KLD) 67 KLD) Low COD 8 KLD i 6 KLD Effluent: 53 12 KLD 0.02 KLD 8 KLD KLD Cartridge Filter Sewage shall be disposed to soak pit via septic tank w COD effluent: 61 02 KLD 117.02 KLD Effluent to ETP High COD Process effluent: 56 KLD (150 KLD capacity)
(Primary treatment - High COD OR Low COD effluent any one at a time) LEGENDS Sent to FTP Reuse / recycle steam Primary treated Low COD effluent (61.02 KLD) shall be Primary treated High COD effluent (56 KLD) shall be sent to Final Disposal sent to CETP, Dahei CMEE of M/s.BEIL, Dahej for final disposal Reuse/ Recycle details (KLD) vii [Source of reuse & application area] Total reuse: 8 KLD Source of waste water **Application area Characteristics** Remarks regarding for reuse with with quantity in of waste water to feasibility to reuse quantity in KLD (Where it is be reused (COD, KLD (From i.e. used) BOD, TDS etc.) where it is coming) Boiler blow down of 2 COD: <100 Boiler down will be Blow blowdown: KLD & Cooling tower BOD: <30 used after only blow down of 6 KLD TDS: <500 KLD passing through Cooling tower shall be passed cartridge filter. Thus, through blowdown: cartridge parameters will **KLD** filter and used for within remain

		washin	g purpose			permissib feasible washing p				
Air				I						
No. of B	oilers/	sion details / TFH/ Furnac oposed	ces/ DG se	ets etc. wit	h capacities	viz. TPH, Kcal	/hr, MT/hr, KVA etc.			
	Sr. no.	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel	Type of emissions i.e. Air Pollutants	Air Pollution Control Measures (APCM)			
			Gas Sta	ks & Emi		ils as per exis	ting EC			
				Natural gas OR	5000 m ³ / day		As natural gas is used as fuel, the			
	1	Thermic fluid heater Capacity: 9 Lakh Kcal/hr	11	HSD	30 kL/Month	PM SO ₂ NOx	flue gas parameter shall be within permissible limits, hence APCM is not required. Adequate stack height with SMF shall be provided.			
	2	D. G Set (Stand By) Capacity: 100 KVA	6	Diesel	20 Lit./hr		Adequate stack height with SMF			
	Proposed Additional Flue Gas Stacks & Emission Details: Natural 1080 m³/ As natural gas is									
		Boiler Capacity: 2 TPH		Natural gas OR HSD	1080 m ³ / day 20 kL/Month		As natural gas is used as fuel, the flue gas parameter shall be within			
	3	Thermic fluid	11	Natural gas OR	1440 m3/ day		permissible limits, hence APCM is not			
		heater Capacity: 8 Lakh Kcal/hr	HSD	30 kL/Month		required. Adequate stack height with SMF shall be provided.				
		Multi fuel boiler Capacity: 2 TPH		Coal	3 MT/ day	PM SO ₂ NOx				
	4	Thermic fluid heater Capacity: 20 Lakh Kcal/hr	15	Coal	7 MT/ day		Multi Cyclone + Water scrubber			
	5	D. G. Set (Standby) Capacity: 500 KVA	6	Diesel	102 Lit./hr		Adequate stack height with SMF			
- 1	Propor	500 KVA	nitted to fo	llow all th		s given by soli	d fuel policy (Office or			

		GPCB/	ANK-C992/21569	95 dated 07/06/2014)				
				nt gases (SO ₂ , HCl, NH ₃ , o	Cl _{2,} NO _x etc.)			
E	<u>xistir</u>	Sr.		ource of emission Product & Process)	Type of emission	Stack/ Vent Height (meter)	Air Pollution Control Measures (APCM)	
			Proce	ess Gas Emission Detai	ls as per exi	sting EC		
				umn – Chlorination	_			
		1.	reaction of Mon Paradichlorober Orthodichlorobe Trichlorobenzen	nzene (ODCB) &	HCI	11	2 stage Water Scrubber	
				sed additional Process	Gas Emissio	n Details		
		2.	Reaction vessel for production Chloride	Reaction carried out of O – Chloro Trityl	HCI	11	2 stage Water Scrubber	
	for production amine (PANA) Reaction vesses			 Reaction carried out N-Phenyl 1-naphthyl Drawning reaction production of Nevile W. Acid) 	NH_3	11	2 stage – Water scrubber	
		4.	Reaction vesse carried out for Winther acid (N.	l – Drawning reaction production of Nevile	SO ₂	11	Water + Alkali Scrubber	
•	OR 20 - user 8 - prer	If requir 25% A r. 10% So nises.	ed shall be sold t mmonia solution odium Bisulphite	rated from scrubbing of Hoo authorized actual end ungenerated from scrubbin solution generated from its mitigation measures.	ser. g of NH₃ sha	II be sold t	o authorized act	tual er
			le sources	Control measures				
	1.	Pump g	lands and seals	All pumps handling HAI be provided mechanic best for preventing emis	al seals whicesions.	ch are pre	esently	
	2. Emissions from Bulk Storage Tanks during storage, loading and unloading			Aboveground Storage tanks storing low V.Ps chemicals will be provided with Breather valve assembly. Set pressure of breather valves will be kept above the vapor pressures of stored material to avoid fugitive emission. Vents of such tanks will be connected with scrubber system.				
	Tank Pressure equalization will be apprequired Closed transfer system will be provided loading and unloading. Very low V.P chemicals shall be stored 3. During reactions & Liquid raw materials will be charged					ed with SC	OPs for ound	
		Solvent systems	,	closed loops. Suitable stoichiometric	calculations	are don	e and	

	2.	ETP Sludge	From ETP		Cat.: 35.3 Sch.: I O.2 720 720 720 Registered re-cyclers approved by GPCB/ CPCB. Collection, Storage, Transportation & Disposal to common TSDF facility at M/s. BEIL, Dahej.						
	1.	Discarded Container s/ Bags/ Liners	Raw materia Finished p packing materia	product	Cat.: 33.1 Sch.: I	2	24	26	vendor OR Disposal by selling to		
	n o	Hazardou s waste	(Name of t Activity, Pro etc.)		as per HW Rules.	Exis ting	Prop osed	Tot al	Managemo	ent of HW	
i	S r.	Type/ Name of	Specific Sour generatio	n	Category and Schedule		Quantity T/Annun				
	(As		ardous and Othe	er Wast	es (Manage				ndary Movement)	Rules 2016.	
F	Haz	ardous was			dures and e						
	9.	Warehous drums an	0	Spillag	ges shall be	strictly	/ prever	nted b	y providing drip Spill control		
				provid	ed PPEs,	area	should	be	well-ventilated, top ventilators		
	8.		ng machinery	Covere	Covered transfer systems to be adopted with minimum manual operations, workers shall be						
	'	filtration	vapors during and drying	Covered systems to be adopted, workers shall be provided PPEs, dust extraction systems, local exhausts and roof top ventilators, wherever required.							
	7.	Chemical	vanore during	inspec	tion and ma	aintena	nce of p	ipes a	and pipe fittings		
		and connection	instrument ons	Suitab	le gland pad	acking to be used in valves lanned and implemented for Periodic					
	6.	Valves, F	Valves, Flanges, plugs Seamless pipes to be used wherever feasible								
	5.	Release t	from Sampling	Shall systen		out us	ing a c	losed	loop sampling		
		pipelines		unduly	/ .				jet pressurized		
	4.	Emission	Relief Valve s from	followe	ed with retu	rn lines	so that	the p	equalization is ipelines as well		
		Dur	Dallat VII	Critica	l processes	will be	control				
				and o	•	ith lov	v tempe	•	e and vacuum		
									ions shall be ess requirement		
						ospheric as well 5% recovery.					
				or chill	led brine for						
						ation and vent brine circulation					
					the effluen actors shall		sed and	d prov	vided with main		
				excess	s chemicals	, which			to avoid use of ninimize organic		
					•		•	•	reactants to be		

					ſ	1	
3.	Used oil	From Machineries	Cat.: 5.1 Sch.: I	2	22	24	Collection, Storage, Transportation & Disposal by selling to Registered Re-refiners approved by GPCB/ CPCB.
4.	Distillation residue	During Production of: Through distillation process of product no. 1 to 5, 7, 8, 17 - 32, 34 - 35 & 37 - 42 in product list	Cat: 36.1 Sch: I	2.4	1932	193 4.4	Collection, Storage, Transportation & Disposal by Coprocessing to cement industry OR Co-processing at M/s. RSPL, Panoli.
5.	30 – 33% Hydrochlo ric acid	During production of: From water scrubber attached to reaction vessel of Product no. 1 to 4 & 34 in product list	Cat.: B15 Sch.: II	499 2	312	530 4	Collection, Storage, Transportation, Disposal by selling out to authorized users who are having authorization with valid CTO and Rule 9 permission – M/s. Ideal Dye Chem Industries (unit-2), Vapi.
6.	Carbon waste	During production of: Product no. 45 & 46 in product list	Cat: 28.3 Sch: I	NIL	828	828	Collection, Storage, Transportation & Disposal by Coprocessing to cement industry OR Co-processing at M/s. RSPL, Panoli.
7.	Spent Filter cloth	Filtration Process	Cat: 36.2 Sch: I	NIL	3	3	Collection, Storage, Transportation & Disposal by Coprocessing at M/s. RSPL, Panoli.
8.	Spent catalyst	From manufacturing process	Cat: 26.5 Sch: I	NIL	276	276	Collection, Storage in Bags at separate place (shed with RCC flooring), Transportation & sent for regeneration.
9.	Spent Solvent	From Production of Product no. 1 - 5, 7, 8, 17 - 21, 23 - 32, 34 - 36, 38 - 40 & 42 in product list	Cat.: 26.4 Sch.: I	203	1272	147 5	Completely Reused in production through distillation columns having Primary and secondary condensers inbuilt with reactors followed by carbon tower without any storage in the premises.
10.	Spent acid (70%)	During production of: Product no. 6 - 18, 31 & 32 in product list	Cat: 26.3 Sch: I	NIL	1114 8	111 48	Collection, Storage, Transportation, Disposal by selling out to authorized users who are having authorization with valid CTO and Rule 9 permission – M/s. Rama Phosphates Ltd., Udaipur, Rajasthan.
11.	20 – 22% Aluminium Chloride Solution	From Production of: During Dumping reaction of Meta dichlorobenzene & reaction of O – Chloro Trityl Chloride	Cat.: B-10 Sch.: II	NIL	2736	273 6	Collection, Storage, Transportation & Disposal by selling out to authorized users who are having authorization with valid CTO and Rule 9 permission – M/s. Ureca Industries, Vapi.
12.	Nitro compound mixture	During production of: Product no. 6, 9 - 10 & 15 - 16 in product list	Cat.: 20.1 Sch.: I	NIL	840	840	Collection, Storage, Transportation & Disposal by selling out to authorized users who are having authorization with valid CTO- M/s. Shreyas Industries, Vapi.
13.	60 - 80% Spent Sulphuric acid	From Production of Products 2, 5 Dimethyl nitro benzene (2, 5 DMNB); 2, 3 Dichloro Phenol & 2, 5 Dichloro	Cat.: B15 Sch.: II	NIL	6312	631 2	Collection, Storage & Completely reuse as raw material in manufacturing of product no. 17, 18, 43, 44 & 45. Fresh additional quantity required = 9553.2 MTA

			Phenol								
	14.	20 – 25% Ammonia Solution	During production of: Product no. 42 & 43 in product list.	Cat: A-10 Sch: II	NIL	984	4 984	Collection, Transportation & Disp selling out to authorize who are having authoriza valid CTO and Rule 9 pe – M/s. Jackson & Sons, F		uthorized users uthorization with ule 9 permission	
	15.	8 – 10% Sodium Bisulphite	From Production of Product Nevile Winther acid (N.W. Acid)	Cat.: B 23 Sch.: II	NIL	200	200	reuse manufac 43. Fre	anufacturing of product no. 36 3. Fresh additional quanti equired = 100.8 MTA		
	16.	Aniline	From Production of Product N-Phenyl 1- naphthyl amine (PANA)	Cat.: B 3 Sch.: II	NIL	178	38 178 8	reuse manufac 44 & 45	as raw cturing of	product no. 42, dditional quantity	
					Jnit is having NOC for disposing landfilling vaste to TSDF of M/s. BEIL, Dahei;						
	(For HW management)					ir C n c	incinerable/ co-processing waste to CHWIF of M/s. BEIL, Ankleshwar and membership letter of M/s. RSPL, Panoli for co-processing of haz. waste.				
iii	Details of Non-Hazardous waste & its disposal (MSW others)				MSW ar	S	Ash: Source of generation: From Coal Combustion				
						C	Quantity: 360 MTA				
					Disposal: Sale to brick manufacturers of manufacturers of Cement articles of products						
G i			ement, VOC emissions		rocovor	v rol	iso of roo	covered 9	Solvente	oto (Dotails in	
Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solv Table Format)					JOIVEIRS	etc. (Details iii					
	Pro	od.					Solvent		Recovered Solvent		
	Sr. Name of Product			Solvent		charge per (kg)	batch	per batch (kg)	% Recovery		
	1.		chlorobenzene (MCB)		zene	-1	1230		500	94.5	
	2.&3. Paradichlorobenzene (PDCB) & Orthodichlorobenzene (ODCB)		B) Ben	Mono chloro Benzene		250		250	100		
	4. Trichlorobenzene (TCB) Dichloroben		loroben	zen	250		250	100			
	5.				ortho or para- Dichlorobenzen e		1010		500	99	
	7.8		Dinitro Naphthalene & ONaphthalene		Ethylene dichloride		1700		1615	95	
	17.	2, 3 🗆	Dichloro 4 nitro phenol	,	Ethylene dichloride		1000		970	97	
	18.	2, 5 🗆	Dichloro 4 nitro phenol	,	Ethylene dichloride		1000		970	97	
		19. Ortho chloro aniline M		Meth	nanol		2000		1940 97		
	20. Para chloro aniline Methanol		-	2000		1940	97				

21.	Alpha naphthyl amine	Methanol	2000	1942	97.1
23.	N-isopropyl Parachloro Aniline (IPPCA)	Acetone	1600	1013	95.5
24.	2, 5 Dichloroaniline	Toluene	516.53	501.03	97
25.	2, 3 Dichloro aniline	Toluene	508.30	493.02	97
26.	3, 4 Dichloro Aniline	Toluene	508.26	493.02	97
27.	2, 4 Dichloro Aniline	Toluene	508.26	493.02	97
28.	2, 4, 5 Trichloro Aniline	Methanol	2000	1940	97
29.	2, 3 Dichloro 4 Amino Phenol	Methanol	2000	1940	97
30.	3-Chloro Aniline	Toluene	516.53	501.03	97
31.	2, 3 Dichloro Phenol	o - Dichlorobenzen e	1750	1700	97.1
32.	2, 5 Dichloro Phenol	o - Dichlorobenzen e	1750	1700	97.1
34.	O – Chloro Trityl Chloride (O - CTC)	Benzene	2800	1900	92.9
35.	Nitro RF (O, O, O-Tris (4-nitrophenyl) thiophosphate)	Acetone	1738	1686	97
36.	Thiophosphoric Acid Tri (4 Amino Phenyl) Ester (Amino RF)	Methanol	4000	3880	97
38.	1, 5 Diamino Naphthalene	Xylene	2000	1940	97
39.	1, 8 Diamino Naphthalene	Xylene	2000	1940	97
40.	Sodium naphthionate	o-dichloro benzene	2280	2200	96.5
42.	N-Phenyl 1-naphthyl amine (PANA)	Aniline	2850	2200	99.3

- Spent solvent generated from distillation process shall be reused continuously in production through distillation columns having Primary and secondary condensers inbuilt with reactors without any storage at the premises.
- Solvent recovery shall be carried out by distillation directly from process vessels provided with distillation assembly in dedicated distillation units depending on the solvent composition. Recovered solvents shall be completely reused in process. Distillation assembly shall comprise of packed column, condensers with cooling water and chilled water/ chilled brine circulation to obtain min. 95% recovery.

ii **VOC emission** sources and its mitigation measures

Handling of chemicals will be in closed system.
 Details regarding storage of Hazardous chemicals

Н	Details regarding storage of Hazardous chemicals				
	Storage details	Name of major Hazardous chemicals			
	Storage tanks	Monochlorobenzene (MCB), Benzene, Ethylene dichloride, p-Xylene, Methanol, Acetone, Toluene, Sulphuric acid, Nitric Acid, 30% Hydrochloric acid, Sodium hydroxide solution, Orthodichlorobenzene (ODCB), Meta dichlorobenzene, Ortho chloro aniline, Aniline, Para Dichlorobenzene (PDCB), Nitro naphthalene (NN), Trichlorobenzene (TCB), 3-Chloro Aniline; 3, 4 Dichloro nitro benzene, Para chloro aniline, Alpha naphthyl amine; 2, 5 Xylidine; 2, 3 Dichloro aniline, O - Nitro chloro benzene, p- Nitro chloro benzene, 3 Chloro nitrobenzene			
	HDPE OR MS 2-(Trifluoromethyl) aniline & Xylene				
	Bags	Aluminium Chloride, Naphthalene, Sodium hydroxide, 4-Nitro			

		phenol, Sodium Nitrite	
	Cylinders/	Chlorine, Hydrogen, Ammonia	
	Tonners		
			_

Applicability of PESO :

- Unit will obtain licence from PESO if required.
- During the meeting dated 04/02/2020, technical presentation made during the meeting by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report, and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period January 2019 to March 2019. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, NH3, CO, Cl2, HCl and VOC at Fourteen locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD model. The resultant concentrations are within the NAAQS. The modeling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan
 has been covered in the RA report.
- This unit was established after year 2006. They have valid EC for existing unit. Copy of EC and its compliance report is submitted. PP ensured that there are no court cases pending and no public complaints against the project.
- During SEAC meeting, Committee asked for certified compliance report by MoEF&CC, Bhopal or RO site visit report, PP informed about unit is fully complied EC order conditions. PP informed that existing plant is under construction phase and still not in operation stage. Committee asked about area adequacy of proposed expansion as huge expansion in proposed project, PP informed that they have sufficient plot area to accommodate proposed expansion project plant machinery, utility area etc. Committee asked about readdressed ToR no-2 regarding NOC letter from previous Management of unit for use of old EC. Committee asked about waste water management, PP informed that high COD effluent will be sent to CMEE of M/s. BEIL, Dahej after in-house ETP treatment and low COD effluent will be treated in primary ETP and treated effluent will be sent to CETP, Dahej for further treatment. Committee asked for submit membership certificate of CMEE with mentioning total consented quantity, booked quantity, spare capacity of CMEE and acceptance norms of effluent for MEE. Committee also insisted for readdressed ToR no- 3 regarding technical justification for ETP sludge quantity against industrial effluent treatment. Committee asked about justification regarding nitration process for proposed project eventhough mentioning Nitric acid

as raw material for 2, 3 Dichloro 4 nitro phenol and 2, 3, 4 Trichloro nitro benzene product, PP is unable to satisfy regarding its justification during meeting. Committee asked about submit membership certificate for disposal of incinerable waste other than Ankleshwar CEPI area. Committee asked clarification regarding nitro compound mixture as Hazardous waste with its category and disposal of it and revised Hazardous waste matrix for disposal of spent acid, reuse of Hazardous waste for which product process with its mass balance and disposal of incinerable waste. Committee insisted for readdressed ToR no-65 regarding Specific safety measures to be taken for general Public living in the vicinity, ToR no-8 for safety precaution for hydrogen gas, chlorine gas, and ammonia gas and ToR no-14 for LDAR with each solvent and its technical details.

• After deliberation, it was unanimously decided to consider the project for further consideration only after satisfactory submission of the following:

- 1. Readdress ToR no-2 regarding NOC letter from previous Management of unit for use of old EC readdress ToR no- 3 regarding technical justification for ETP sludge quantity against industrial effluent treatment with its mass balance.
- 2. Readdress ToR no-65 regarding Specific safety measures to be taken for general Public living in the vicinity, ToR no-8 for safety precaution for hydrogen gas, chlorine gas, and ammonia gas and ToR no-14 for LDAR with each solvent and its technical details.
- 3. Submit Membership certificate of CMEE/common spray dryer with mentioning total capacity, consented quantity, occupied capacity and spare capacity and norms of acceptance of effluent from member units.
- 4. Justification regarding nitration process for proposed project even though mentioning Nitric acid as raw material for 2, 3 Dichloro 4 nitro phenol and 2, 3, 4 Trichloro nitro benzene product.
- 5. Clarification regarding Nitro compound mixture as Hazardous waste or not. If yes then mention its category and disposal of the same and revised Hazardous waste matrix for disposal of spent acid, reuse of Hazardous waste for which product process with its mass balance.
- 6. Submit membership certificate for incinerable waste disposal other than CEPI area.
- Project proponent made presentation for the above mentioned query dated 18/03/2020 for the above mentioned points.
- PP presented replied as below:
 - 1. PP presented regarding NOC letter from previous Management of unit for use of old EC and also gave technical justification for ETP sludge quantity against industrial effluent treatment with its mass balance.
 - 2. PP presented regarding ToR no-65 regarding Specific safety measures to be taken for general Public living in the vicinity, ToR no- 8 for safety precaution for hydrogen gas, chlorine gas, and ammonia gas and ToR no- 14 for LDAR with each solvent and its technical details.
 - 3. PP presented Membership certificate of CMEE/common spray dryer with mentioning total capacity, consented quantity, occupied capacity and spare capacity and norms of acceptance of effluent from member units.

- 4. PP presented regarding nitration process for proposed project even though mentioning Nitric acid as raw material for 2, 3 Dichloro 4 nitro phenol and 2, 3, 4 Trichloro nitro benzene product.
- 5. PP presented for Clarification regarding Nitro compound mixture by saying that it is not covered under schedule of Hazardous Waste.
- 6. PP presented Membership Certificate of RSPL, Panoli for Co-processing.
- Committee deliberated on the reply submitted by PP and found it satisfactory.
- Compliance of ToR found satisfactory.
- After detailed discussion, Committee unanimously decided to recommend the project to SEIAA, Gujarat for grant of Environment Clearance.

Meeting ended with thanks to the Chair.

Minutes approved by:

1.	Dr. Dinesh Misra, Chairman, SEAC	
2.	Shri S. C. Srivastav, Vice Chairman, SEAC	
3.	Shri V. N. Patel, Member, SEAC	
4.	Shri. R. J. Shah, Member, SEAC	
5.	Shri. A. K. Muley, Member, SEAC	
6.	Dr. V. K. Jain, Member, SEAC	
7.	Shri A. V. Shah, Secretary, SEAC	