Minutes of the 551st meeting of the State Level Expert Appraisal Committee held on 25/09/2019 at Committee Room, Gujarat Pollution Control Board, Sector 10-A, Gandhinagar.

The 551st meeting of the State Level Expert Appraisal Committee (SEAC) was held on 25th September 2019 at Committee Room, Gujarat Pollution Control Board, Sector 10-A, Gandhinagar. Following members attended the meeting:

- 1. Dr. Dinesh Misra, Chairman, SEAC
- 2. Shri S. C. Srivastav, Vice Chairman, SEAC
- 3. Shri V. N. Patel, Member, SEAC
- 4. Shri Rajesh I Shah, Member, SEAC
- 5. Shri A.K. Muley, Member, SEAC
- 6. Shri N.M. Tabhani, Secretary, SEAC

The agenda of TOR/Scoping cases, Reconsideration cases and Appraisal were taken up. The applicants made presentations on the activities to be carried out along with other details furnished in the Form-1, PFR, EIA-EMP reports and other reports.

C	7.	SIA/GJ/IND2/34142/2019	M/s. Omega Pharmaceuticals	Appraisal
			Plot No. 119,120,121,122,123,149, 150,151 GIDC	
			Estate, Wadhwan City, Dist - Surendranagar	

Category of the unit: 5(f)
Project status: Expansion

- PP has submitted online application vide no. SIA/GJ/IND2/34142/2019 dated 13/09/2019 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 25/06/2019.
- Project proponent has submitted EIA Report prepared by M/s: Excel Enviro tech based on the TOR issued by SEIAA
- This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

Sr.	Name of the	CAS no. /	Qu	End-use of the		
no.	Products	CI no.	Existing	Proposed	Total	products
1	Tablets		24 Lakh/Month (2880		24 Lakh/Month (2880	Healthcare
			kg/month)		kg/month)	
2	Capsules		5.8		5.8	Healthcare
			Lakh/Month		Lakh/Month	neallificate

		Total	12380	353	12733		
10	Methadone Hydrochloride	1095-90-5		100	100	Healthcare	
9	Naltrexone Hydrochloride	51481-60-8		50	50	Healthcare	
8	Naloxone Hydrochloride	23277-43-2		50	50	Healthcare	
7	Fentanyl Citrate/ Fentanyl Base	990-73- 8/437-38-7	-1	3	3	Healthcare	
6	Eflornithine Hydrochloride	67037-37-0		100	100	Healthcare	
5	Buprenorphine Hydrochloride/ Buprenorphine Base	53152-21- 9/52485- 79-7	-	50	50	Healthcare	
4	Ointments		150 kg/Month		150 kg/Month	Healthcare	
3	Liquid Orals		30,000 Bottle/Month (9000 kg/month)		30,000 Bottle/Month (9000 kg/month)	Healthcare	
			(350 kg/month)		(350 kg/month)		

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 25/09/2019
- Salient features of the project are as under:

Sr.	Particulars	Details
No.		
Α		
Α	Total cost of Proposed Project	Existing: 2.3 Crores
	(Rs. in Crores):	Proposed: 2 Crores
		Total: 4.3 Crores
В	Total Plot area (sq. meter)	Existing: 5985 Sq. m.
		Proposed: 0 Sq. m.
		Total: 5985 Sq. m.
	Green belt area	Existing: 120 Sq. m.
	(sq. meter)	Proposed: 1855 Sq. m.
		Total: 1975 Sq. m.
С	Employment generation	Existing: 28
		Proposed:12
		Total:40
D	Water	
i	Source of Water Supply	Wadhwan Nagarpalika
	(GIDC Bore well, Surface water, Tanker supply etc)	
	Status of permission from the concern authority.	Water available from local
		authority

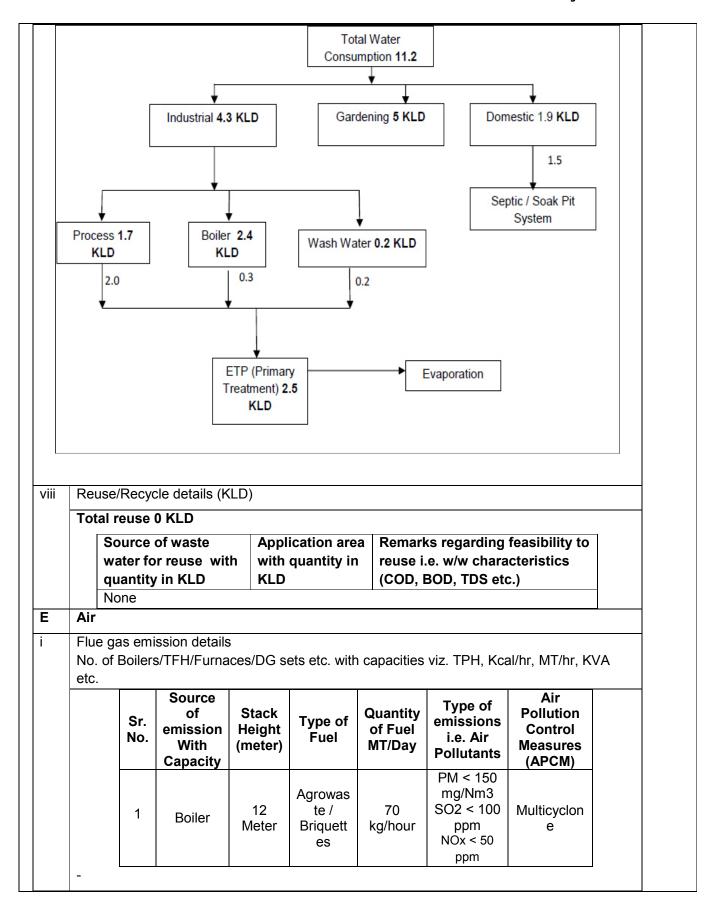
Water	consumption (K	(LD)			
	Category	Existing	Proposed	Total after	Remarks
		KLD	(Additional)	Expansion	
			KLD	KLD	
(/	A) Domestic	0.9	1	1.9	-
(E	3) Gardening	0	5	5	-
((C)Industrial				
	Process	0.3	1.4	1.7	-
	Washing	0	0.2	0.2	-
	Boiler	0	2.4	2.4	-
	Cooling	-	-	-	-
	Others	-	-	-	-
Indu	strial Total	0.3	4	4.3	-
Gran (A+B		1.2	10	11.2	-

Note - **: Will include the reuse quantity of treated domestic waste water.

- 1) Total water requirement for the project: 11.2 KLD
- 2) Quantity to be recycled: 0.0 KLD
- 3) Total fresh water requirement: 11.2 KLD

iii Waste water generation (KLD)

Category	Existing KLD	Proposed (Additional) KLD	Total after Expansion KLD	Remarks
(A) Domestic	0.7	0.8	1.5	Septic tank/soak pit
(B) Gardening	-	-	-	
(C)Industrial		1	1	
Process	0.5	1.5	2	
Washing	0	0.2	0.2	Primary
Boiler	0	0.3	0.3	treatment &
Cooling	-	-	-	Evaporation
Others	-	-	-	
Industrial Total	0.5	2	2.5	
Grand Total (A+B+C)	1.2	2.8	4	


Waste water from process and APCM will be neutralized in ETP and then evaporated in MEE. The concentrate from MEE shall be further treated in ATFD and condensate from MEE after treatment shall be reused.

iv Treatment facility within premises with capacity

[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc.

- ➤ ETP (Primary Treatment) 2.50 KLD Capacity
- ➤ Collection cum Neutralization Tank 1.44 m³
- Filter Press 0.5 m³ / hour
- Storage Tank 2.64 m³
- Evaporator 500 L/hour (5 Hours working)

	Treatment sche	me including segregation at source.						
	Effluent generated would be collected in collection cum neutralization tank and neutralized. From neutralization tank it would be taken to filter press where solids would be removed and then evaporated in in-house evaporator.							
	Note: (In case of CETP discharge):							
	_	aste water keeping in view direction under section 18 (1) (b) of the Water (Prevention						
		lution) act, 1974 issued by CPCB regarding compliance of CETP.						
	Not Applie	cable						
		equacy of ZLD (In case of Zero Liquid Discharge):						
		uld not be any discharge into environment. The wastewater generated shall be						
	evaporated in in-house evaporator. The domestic effluent shall be treated in septic tank /							
	soak pit system.							
٧	Mode of Dispos	f Disposal & Final meeting point						
	Domestic:	Soak Pit/Septic tank						
	Industrial:	Evaporation in in-house evaporator						
vi	In case of Comr	non facility (CF) like CETP, Common Spray dryer, Common MEE etc.						
	Name of CF							
	> NOT APF	PLICABLE.						
	Membership of	Common facility (CF)						
	(For waste wat							
	, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,						
vii	Simplified wat	er balance diagram with reuse / recycle of waste water						
		- · · · · · · · · · · · · · · · · · · ·						

	Sr. no.	Specific Source of emission(Name of the Product & Process)	Type of emission	Stack/Vent Height (meter)	Air Pollution Control Measures (APCM)
--	------------	---	------------------	---------------------------------	---

iii **Fugitive emission** details with its mitigation measures:

- Regular sprinkling of water, pacca road shall be constructed & green belt shall be provided within premises to prevent fugitive emissions due to vehicular movement. Regular maintenance of vehicles.
- General control measures like routine & regular inspection to identify leakage, preventive maintenance and operational maintenance, provision of leak detection and repair system (LDAR).
- Management to ensure proper handling of the spillages during transfer, charging operation and provision of a Dust Collection System for collection of the air borne material wherever applicable.
- Preventive maintenance of flange connections and glands of pumps.
- Management will also ensure proper usage of the Personnel Protective Equipment by the workers.
- Closed handling system shall be provided for chemicals.
- Reflux condenser to be provided over the reactor.
- The acids shall be taken from storage tanks to reactor through closed pipeline. Storage tanks shall be vented through trap receiver and condenser operated on chilled water.
- Fugitive emissions in the work zone environment, product raw material storage area shall be monitored regularly.

F Hazardous wastes

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

i		Type/N	Specific	Category	Quai	Quantity(MT/Annum)		
	Sr. No.	ame of Hazard ous waste	Source of generation (Name of the Activity, Product etc.)	and Schedule as per HW Rules.	Existing	Proposed	Proposed total	Management of HW
	1	Distillatio n residues	Solvent Recovery	20.3		3 MT/Year	3 MT/Year	Collection, Storage, Transportation and Disposal at CHWIF of SEPPL
	2	Spent Catalyst	From Manufacturing process	28.2		0.675 MT/Year	0.675 MT/Year	Collection, Storage, Transportation and Disposal at TSDF of SEPPL
	3	Spent Carbon	From Manufacturing process	28.3		0.26 MT/Year	0.26 MT/Year	Collection, Storage, Transportation and send to cement co- processors or TSDF
	4	Spent Solvent	From Manufacturing process	28.6		227 MT/Year	227 MT/Year	Collection, storage, reused within process or disposal to solvent recyclers or CHWIF. MOU with HETU Industries for accepting Spent Solvent has been done

		1		ı	1				T
		Stripped	From stripper			40		40	Collection, storage, reused within process
	5	Solvent	in ETP	28.6	-	MT/Y		MT/Year	or disposal to solvent
									recyclers or CHWIF.
	6	Off specifica tion products / Date Expired Medicine s	From Manufacturing process	28.4 / 28	.5 0.8 MT/Year	0.5 MT/Y		1.3 MT/Year	Collection, Storage, Transportation and Disposal at CHWIF
	7	ETP Sludge	From Effluent Treatment Plant	35.3	0.061 MT/Year	5 MT/Y	ear	5.061 MT/Year	Collection, Storage, Transportation and Disposal at TSDF site
	8	Spent Resin Containi ng Toxic Chemical s	Raw water Treatment Plant	34.2	0.10 MT/Year			0.10 MT/Year	Collection, Storage, Transportation and Disposal at TSDF site
	9	Evaporat ion Residue	From Effluent Treatment Plant	37.3		7.0 MT/Y		7.0 MT/Year	Collection, Storage, Transportation and Disposal at TSDF.
		Discarde d	Storage of Raw Materials			Whate Genera		22 Nos/Year	Sold to authorized vendors
	10	rs Drums / Used Bags	and Products	33.1	Nos/Yea	r 1 MT/	Year	1 MT/Year	Sold to authorized vendors
ii	Men		letails of TSDF	, CHWIF	etc.		Ме	mbership	of CHWMF at Detox
	(Foi	· HW man	agement)	•			Ind	ia Pvt Ltd	BHACHAU obtained
iii	Deta	ails of Non	-Hazardous wa	aste & its	disposal		Doi	mestic Wa	ste: To soak pit
	_ `	W and oth	,						
G	Solv	ent mana	agement, VOC	emissior	ns etc.				
İ	Тур	es of solve	ents, Details of	Solvent r	ecovery, %	recove	ry, r	euse of re	covered Solvents
	etc.	(Details in	Table Format)					
			Solvents		Quantity	Quan	titv	%	
					Used In	Recove		, -	ry
					kg/Month	in	. (1		
		-1			40F 40	Kg/Mo		00.0	
	-	etone			405.12	327.2		80.8	
	-	etonitirile			857.7	698.		81.4	<u> </u>
		loroform			275.0	262.		95.45	
	<u> </u>	clohexane			1067.5	100.	3	939	
			Methyl Bromid methyl Ether (C		37.5	 5555	_	0	
	Eth		inetriyi Etriei (C	JI⁻IVI⊏)	6278.1	5555		88.48	
	L(I	101			2300.0	2362	o	0.91	

Ethyl Acetate	275.0		
Hexane	1500.0	682.5	45.5
Isopropyl Alcohol	6675.0	3939.0	59.01
Methanol	2350.0	2140.0	91.06
Methanol	1206.0	90.5	0.08
THF	51.7	90.5	0.06
Methyl Vinyl Ketone (MVK)	52.5	277.5	0.01
Toluene	250.0	277.5	0.91
Methylene Chloride (MDC)	909.1	818.2	90
N Propanol	321.4	292.9	91.1
P-Diethyl Benzene	975.6	269.3	27.6
Tetrahydrofuran (THF)	628.04	F07.6	0.25
Toluene	853.65	527.6	0.35
Toluene	850.0	575.0	0.67
Triethyl Amine	599.2		0

Remaining solvent will be consumed in process and being very small quantity, it its not feasible to recover the solvent

ii VOC emission sources and its mitigation measures

Mitigation Measures:

- Management to ensure proper handling of the spillages during transfer, charging operation and provision of a Dust Collection System for collection of the air borne material wherever applicable.
- Preventive maintenance of flange connections and glands of pumps.
- Management will also ensure proper usage of the Personnel Protective Equipment by the workers.
- Regular Work Place Monitoring, Ambient Air, Stack Air Monitoring to be done.
- · Proper identification on discharge line.
- Providing arrangements to avoid static sparks.
- Take care of adverse weather conditions.
- Providing Explosion Vents in spaces with possibility of air-vapour mixtures.
- Smoke detectors or heat detectors to be provided in storage or process area.

H Details regarding storage of Hazardous chemicals

Storage details	Name of major	Remarks
	Hazardous chemicals	
Storage tanks	None	
Drum/Barrel storage	All liquid raw material shall be stored in drum / barrel,	

- Applicability of PESO : Not Applicable
- During the meeting dated 25/09/2019, technical presentation made during the meeting by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report, and

details presented during the meeting.

- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March 2019 to May 2019. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD model. The resultant concentrations are within the NAAQS. The modelling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan has been covered in the RA report.
- This unit was established well before year 2006. They have valid CC&A for existing unit. Copy of CC&A,
 its compliance report is submitted. PP ensured that there are no court cases pending and no public
 complaints against the project.
- During SEAC meeting, PP ensured that this unit is having valid CC&A for existing unit. Copy of CC&A, its compliance report is submitted. PP ensured that there are no court cases pending and no public complaints against the project. PP ensured that no legal action taken against unit by GPCB. Committee asked about compliance of specific ToR regarding adequacy of evaporator and stage wise reduction in effluent parameter in ETP units, PP informed briefly regarding adequacy of ETP and closed in-house evaporator for industrial effluent treatment with its characteristics and informed that industrial effluent passing through solvent stripper before sending it to in-house evaporator. Agro waste will be used as fuel for boiler. Committee deliberated on cleaner production, BAT, LDAR of proposed project and PP informed briefly regarding cleaner production and BAT and LDAR for proposed project. Committee asked regarding Hazardous waste management and PP informed regarding Hazardous waste management as per HWRules'2016.
- Committee also deliberated on baseline data, ambient air quality, surface water and ground water quality and Noise, EMP, need based CER with details of budgetary provisions and green belt development etc.
- Compliance of the ToR was found satisfactory.
- After detailed discussion, it was decided to recommend the project to SEIAA Gujarat for grant of Environmental Clearance.

08.	SIA/GJ/IND2/21137/2017	M/s. Meghmani Finechem Ltd.	Appraisal
		Plot No.: CH-1/ CH-2,GIDC Estate, Dahej, Ta -	
		Vagra, Dist - Bharuch	

Category of the unit: 5(f) Project status: Expansion

- PP has submitted online application vide no. SIA/GJ/IND2/21137/2017 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 16/05/2019.
- Project proponent has submitted EIA Report prepared by M/s: Anand consultants based on the TOR issued by SEIAA
- This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

S.		040 N. /		E. I f		
No	Name of Products	CAS No. / CI No.	Existing	(MT/Month) Proposed	Total	End use of products
		OI NO.	Laisting	Existing		products
Α	Chlor - Alkali Units					
	Caustic Soda	1310-73-2	33,600	Nil	33,600	Pulp, Paper,
	OR					Textile, ETP &
	Caustic Soda	1310-73-2	33,600	Nil	33,600	Other Organic
			33,600		(31,800	and inorganic chemicals
1	Caustic Potash	1310-58-3	(31,800 Caustic Soda + 1,800 Caustic Potash)	Nil	Caustic Soda + 1,800 Caustic Potash)	Raw material for Soap, detergent, Fertilizer
2	Chlorine Gas	7782-50-5	29,770	Nil	29,770	Dyes intermediate, pharmaceutical
3	Hydrogen Gas	1333-74-0	840	Nil	840	Petroleum refining, pharmaceutical
4	30 % Hydrochloric Acid	7647-01-0	15,166	Nil	15,166	ETP, refinement of ore, animal nutrient
5	Sodium Hypochlorite	7681-52-9	2,916	Nil	2,916	Water purification, textile, Dyes
	Total		82292		82292	
В	Power Generation Unit		T			T T
1	Captive Power Plant		132 MW	Nil	132 MW	Use for Chlor- Alkali & Synthetic Organic Products
2	Steam (including			300 TPH*		Use for process

process & power)	GEOTTI I	050	operations
	650TPH	950 TPH	

*Technical justification regarding need of proposed 300 TPH steam boiler is given in table below:

Sr. No.	Description	Quantum of Steam (TPH)	Remarks
1.	33% standby in case of shutdown of any of our power plant turbines.	100 TPH	In case of failure of a power plant, we would be able to get power supply from the grid. However, the low-pressure steam that was generated at the turbine outlet of the power plant would be missed and would therefore have to be replaced by another steam source for our production activity.
2.	Steam required for our new products.	200 TPH	Distillation, Steam cracking process
	Total	300 TPH	

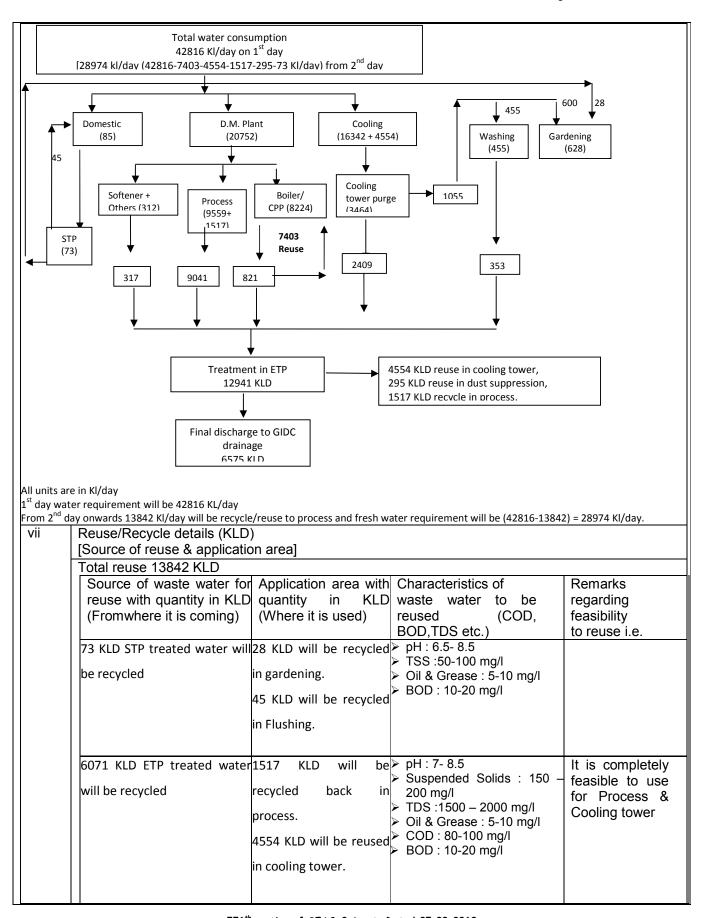
(C S	vnthetic	Organic Un	its
•	_		Olyanic Ol	1113

S.		CAS No. /		End use of		
No	Name of Products	CI No.	Existing	(MT/Month) Proposed	Total	products
1	Epichlorohydrin (ECH)	106-89-8	2,500	1667	4167	Epoxy resins, glycerin, polymers, coagulant
2	Epoxy Resins	61788-97-4	2,500	1667	4167	Coatings, electronic materials, adhesives, and fiber-reinforced compounds
3	Monochloro Acetic Acid	79-11-8	-	5000	5000	In manufacturing of carboxy methyl cellulose
4	Poly Aluminium Chloride	1327-41-9	2,500	Nil	2,500	Deodorants and antiperspirant, w/w treatment and paper sizing.
5	Meta PhenoxyBenzaldehyde Alcohol	13826-35-2	200	Nil	200	Synthetic organic chemicals
6	Dichloro Benzene (Ortho/ Meta/ Para)	95-50-1/ 541-73-1/ 106-46-7	6,000	Nil	6,000	Disinfectant
7	Trichloro Benzene (1,2,4/1,2,3)	120-82-1/ 87-61-6	1,200	Nil	1,200	Dyes and organic chemicals
8	Chloro Benzene	108-90-7	6,000	Nil	6,000	Drug, rubber, paint

				.	1	
9	Chlorinated Poly Vinyl Chloride (CPVC)	68648-82-8	4,200	Nil	4,200	Plastic Pipe
9A	Low grade CPVC and PVC resin powders	-	2,100	Nil	2,100	Plastic Pipe
10	Chloromethanes	T = = .	6,900	6,900	13800	
i	C1 (Methyl Chloride)	74-87-3	900	900	1800	Refrigerant
ii	C2 (Methylene Chloride)	75-09-2	4,080	4,080	8160	Paint, metal cleaning, adhesives, pharma industries
iii	C3 (Chloroform)	67-66-3	1,680	1,680	3360	PTFE, pharmaceutical
iv	C4 (Carbon Tetra Chloride)	56-23-5	240	240	480	As a Feedstock
11	Refrigerant Gas					
11	DifluoromethaneR-32 &/or Tetrafluoroethane R-134A &/or Pentafluoroethane R-125	75-10-5 , 811-97-2 354-33-6	-	1251	1251	As a refrigerant gas
12	Chlorodifluoromethane R-22	75-45-6	-	2083	2083	For manufacturing of fluoro polymers
13	Tetra Fluoropropane- 1234yf	754-12-1	-	417	417	As a refrigerant gas
14	R-410a (R32+R125) (DifluoromethanePentafl uoroethane)	75-10-5-354- 33-6	-	583	583	As a refrigerant gas
15	R- 407C (R32+R125+R134a) (DifluoromethanePentafl uoroethane 1,1,1,2- Tetrafluoroethane)	75-10-5- 354-33-6- 811-97-2	-	508	508	As a refrigerant gas
-	Othoro					
16	Others AHF (Hydrofluoric acid)	7664-39-3	-	2500	2500	As a raw material for chemical process in different chemical industries
17	TFE (Tetra Fluoroethylene)	116-14-3	-	1333	1333	Sale to PTFE manufacturing industries
18	S-PTFE and/or D- PTFE	9002-84-0	-	750	750	For the manufacture of Heat Resistant

Part Polyvinylidene							T .
HFP (Hexafluoro Propylene)							polymer
HFP (Hexafluoro Propylene)				_	<u> </u>		
19							
Propylene Prop	10	HFP (Hexafluoro	140 45 4		000	222	
Total	19		116-15-4	-	333	333	
Description Per Proposition Per Propositio							
Ethylene Propylene 2906/-11-2 - 208 208 Cables Sale to 0-Rings Manufacturing industries For manufacture of PPF polymer Sale to 0-Rings Manufacturing industries For manufacture of PPF polymer Sale to 0-Rings Manufacture of PPF polymer Sale to 0-Rings Manufacture of PPF polymer Sale to 0-Rings Manufacturing industries Sale to 0-Rings Manufacturing industries In the manufacturing industries In the manufacturing industries In the manufacture process of Metal Paints As a raw material for chemical industries As a raw material for chemical industries Sale to 0-Rings Manufacturing industries In the manufacture process of Metal Paints As a raw material for chemical industries As a raw material for chemical industries Sale to 0-Rings Sale to 0-Rings Manufacturing industries In the manufacture process of Metal Paints As a raw material for chemical industries As a raw material for chemical industries Sale to 0-Rings Manufacturing industries In the manufacturing industries In		FED (Elucrinated			1	+	
Sale to o-Rings manufacturing industries For manufacture of PPF polymer	20		25067-11-2	_	208	208	
21		Ethylene Propylene)			1	+	
PRINI(Fludio Elastofflets) 64706-30-3 230 manufacturing industries							
Calcium Chloride (70 % -92%) Total	21	FKM(Fluoro Elastomers)	64706-30-5		250	250	
Hexafluoropropylene							
Hexafluoropropylene	-	+			+	+	
Oxide(HFPO)	22	Lovafluoropropylene	428 ₋ 50 ₋ 1	_	167	167	
PerfluoroAlkoxy(PFA) 26655-00-5 - 208 208 Sale to o-Rings manufacturing industries	~~		420-08-1	_	107	101	
23 PerfluoroAlkoxy(PFA) 26655-00-5 - 208 208 Rings manufacturing industries 24 Polyvinylidene Fluoride(PVDF) - 250 250 25 Calcium Chloride (70 % - 92%) 7440-70-2 - 2083 2		Oxide(HFFO)	+	-	+	+	
23 PeriludroAikoxy(PFA) 26635-00-5 - 208 208 manufacturing industries							
24	23	PerfluoroAlkoxy(PFA)	26655-00-5	_	208	208	
Polyvinylidene Poly							
24 Polyvinylidene Fluoride(PVDF) 24937-79-9 - 250 250 manufacture process of Metal Paints 25 Calcium Chloride (70 % - 92%) 7440-70-2 - 2083 2083 As a raw material for chemical process in different chemical industries 26 Hydrogen Peroxide (100%) 7722-84-1 1200 2493 3693 Used in textile industries. 8/or Hydrogen Peroxide (40%) 7722-84-1 0 5908.80 5908.80 5908.80 8/or Hydrogen Peroxide (50%) 7722-84-1 0 5539.50 5539.50 Hydrogen Peroxide (60%) 7722-84-1 0 5170.20 5170.20 Total 35300 47269.5 82569.5 82569.5		+			1	+	
Polyvinylidene Pluoride(PVDF) Polyvinylidene Pluoride(PVDF) Pluo							
Fluoride(PVDF) Calcium Chloride (70 % - 92%) Calcium Chloride (70 % - 92%) Total Calcium Chloride (70 % - 92%) Total Calcium Chloride (70 % - 92%) Total Calcium Chloride (70 % - 7440-70-2 - 2083	24	Polyvinylidene	24937-79-9	_	250	250	
Calcium Chloride (70 % - 92%)							
Calcium Chloride (70 % -92%)		Tidonac(i vbi)					
25 Calcium Chloride (70 % - 92%) 7440-70-2 - 2083 2083 chemical process in different chemical industries 26 Hydrogen Peroxide (100%) 7722-84-1 1200 2493 3693 Used in textile industries. 8/or Hydrogen Peroxide (40%) 7722-84-1 0 5908.80 5908.80 8/or Hydrogen Peroxide (50%) 7722-84-1 0 5539.50 5539.50 8/or Hydrogen Peroxide (60%) 7722-84-1 0 5170.20 5170.20 Total 35300 47269.5 82569.5							
Calcium Chloride (70 % - 92%)							
Total Continue C	25		7440-70-2	_	2083	2083	
26 Hydrogen Peroxide (100%) 7722-84-1 1200 2493 3693 Used in textile industries. 8/or Hydrogen Peroxide (40%) 7722-84-1 0 5908.80 5908.80 8/or Hydrogen Peroxide (50%) 7722-84-1 0 5539.50 5539.50 8/or Hydrogen Peroxide (60%) 7722-84-1 0 5170.20 5170.20 Total 35300 47269.5 82569.5	20	- 92%)	7440702		2000	2000	
Hydrogen Peroxide (100%) 7722-84-1 1200 2493 3693 Used in textile industries.							
26 Hydrogen Peroxide (100%) 7722-84-1 1200 2493 3693 Used in textile industries. &/or Hydrogen Peroxide (40%) 7722-84-1 0 5908.80 5908.80 &/or Hydrogen Peroxide (50%) 7722-84-1 0 5539.50 5539.50 &/or Hydrogen Peroxide (60%) 7722-84-1 0 5170.20 5170.20 Total 35300 47269.5 82569.5							
Total 1200 2493 3693 industries.		Hydrogen Peroxide			†	+	
8/or Hydrogen Peroxide (40%) 7722-84-1 0 5908.80 8/or Hydrogen Peroxide (50%) 7722-84-1 0 5539.50 8/or Hydrogen Peroxide (60%) 7722-84-1 0 5170.20 Total 35300 47269.5 82569.5	26		7722-84-1	1200	2493	3693	
Hydrogen Peroxide (40%) 7722-84-1 0 5908.80 5908.80 8/or Hydrogen Peroxide (50%) 7722-84-1 0 5539.50 5539.50 8/or Hydrogen Peroxide (60%) 7722-84-1 0 5170.20 5170.20 Total 35300 47269.5 82569.5						+	
(40%) 7722-84-1 0 5908.80 5908.80 8/or Hydrogen Peroxide (50%) 7722-84-1 0 5539.50 5539.50 8/or Hydrogen Peroxide (60%) 7722-84-1 0 5170.20 5170.20 Total 35300 47269.5 82569.5	-						
8/or Hydrogen Peroxide (50%) 7722-84-1 0 5539.50 8/or Hydrogen Peroxide (60%) 7722-84-1 0 5170.20 Total 35300 47269.5 82569.5			7722-84-1	0	5908.80	5908.80	
Hydrogen Peroxide (50%) 7722-84-1 0 5539.50 5539.50						+	•
(50%) 8/or Hydrogen Peroxide (60%) Total 7722-84-1 0 5539.50						+	•
8/or Hydrogen Peroxide (60%) 7722-84-1 0 5170.20 5170.20 Total 35300 47269.5 82569.5			7722-84-1	0	5539.50	5539.50	
Hydrogen Peroxide (60%) 7722-84-1 0 5170.20 5170.20 Total 35300 47269.5 82569.5		,				+	•
(60%) 7722-64-1 0 3170.20 3170.20 Total 35300 47269.5 82569.5				_		+	•
Total 35300 47269.5 82569.5			7722-84-1	0	5170.20	5170.20	
				35300	47269.5	82569.5	
		Final total (A+C)		117592	47269.5	164861.5	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 25/09/2019.
- Salient features of the project are as under:


Sr.	Particulars	Details
No.		

Α	Total cost of	of Proposed Project		Existing:88	7Crores		
	(Rs. in Cro	res):					
	,				Proposed: 490Crores		
				Total: 1377	'Crores		
В	Total Plot a	ırea		Existing:	353870 Sq. m.		
	(sq. meter)					
				Proposed:	179600 Sq. m.		
					•		
				Total:	533470Sq. m.		
					333 W 334 W		
	Green belt	area		Existing: 90	0000 Sg. m.		
	(sq. meter)						
	(5 41 515.)	,		Proposed:	86100. Sq. m.		
				Горозси.	50100. 5q. m.		
				Total: 1761	00 Sa m		
C		ot apparation					
	Employmen	nt generation			Existing: 300 nos.		
				Proposed:			
				Total:350 n	ios.		
D	Water			•			
i		Vater Supply	T	G.I.D.C			
	supply etc.	e well, Surface water,)	ranker				
		ermission from the co	ncern autho	rity. Attached	as Annexure-	2.2 of EIA Repo	rt
ii	Water cons	sumption (KLD)					
	Water cons		Existing	Proposed	Total after	Remarks	
			KLD	(Additional)	Expansion		
		(a) Domestic	65	KLD 20	KLD 85		
		(b) Gardening	500	128	628		
		(c) Industrial	1=044		T 40044#		
		Process	7241	4970	12211*	* Including DM Plant	
						water for	
		NA/ 1.2 .	055	100	455	regeneration	
		Washing Boiler	355 1024	100 7200	455 8224		
		Cooling	9632	11264	20896		
		Softner+Others	197	120	317		
		Industrial Total	18449	23654	42103		
		Grand Total	19014*	23802	42816		

(A+B+C) 1) Total water requirement for the project: 42816KLD 2) Quantity to be recycled: 13842KLD 3) Total fresh water requirement: 28974KLD Total water requirement Quantity to be recycled Total fresh water for the project requirement 13842KLD 28974KLD 42816KLD Waste water generation (KLD) Category Existing Proposed Total after Remarks (Additional) Expansion KLD KLD KLD (A) Domestic 55 18 73 Will be treated in STP (B) Industrial **Process** Including DM 9041* 4675 4366 plant Washing 353 353 Treatment in ETP Treatment in 1024 8224 Boiler 7200 ETP Cooling 1113 1296 2409 Treatment in ETP 120 197 317 Others Treatment in ETP Total Industrial waste 7362 12982 20344 water Treatment facility within premises with capacity iv [In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STPetc.. > Existing ETP Capacity 5355 KLD, AugmentedETP-Capacity 6760 KLD Treatment scheme including segregation at source. The treated effluent generated will be initially collected into the Holding tank cum Equalization Tank with fixed aerators. Further, the effluent from the Equalization tank shall be equalized by giving air through fixed aerators. The effluent from this tank is pumped to aeration tank where aeration is provided by means of fixed aerators. In aeration tank biodegradation takes place in the presence of active biomass and dissolved oxygen, which is provided by means of fixed diffused aerators. The overflow of the aeration tank will be diverted into the secondary clarifier Tank for Biomass

- separation. The settled biomass is recycled back to the aeration tank to maintain the ratio of biomass in the aeration tank and excess biomass will be diverted into the filter press.
- The leachate from the filter-press will be diverted into Equalization tank and the wet cake of sludge is packed into the plastic bags properly and stored intothe sludge storage area with shed and impervious layer having leachate collection system. The overflow of the secondary clarifier is diverted into holding tank. The part of treated water from holding tank will be recycled back in the process and cooling tower and remaining will be discharged to GIDC drainage system along with

	,	the reject of UF/RO. Details are given in EIA report, Chapter – 2.						
	Note: (In case	e of CETP discharge):						
	Management of	waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of						
	Pollution) act, 1974 issued by CPCB regarding compliance of CETP. > Not Applicable.							
	Brief note on	adequacy of ZLD (In case of Zero Liquid Discharge):						
	➤ Not App	plicable.						
v	Mode of Disposal & Final meeting point							
	Domestic:	73 KLD (existing + proposed) domestic waste water generated will be treated in STP and the treated water will be reused in flushing and gardening.						
	Industrial:	9041 KLD process waste water, 821 KLD of boiler blowdown, 2409 KLD of cooling tower purge, 353 KLD of wash water and 317 KLD of softening/other wastewater will be treated in ETPs and UF/RO system. The part of treated effluent will be recycled back in various processes and the remaining will be discharged into the GIDC drain for sea disposal.						
vi		mmon facility (CF) like CETP, Common Spray dryer, Common MEE, CHWIF etc. nmon facility (CF)(For waste water treatment)						
	> Not Ap	oplicable						
		of Common facility (CF) - Not Applicable						
	,	ater treatment)						
vii	➤ Not Ap	ter balance diagram with reuse / recycle of waste water						
V 11	Cirripinios Wa	ter balance diagram militrodes / 100/010 of made mater						

,		 pH: 7- 8.5 Suspended Solids: 150 – 200 mg/l TDS: 1500 – 2000 mg/l Oil & Grease: 5-10 mg/l COD: 80-100 mg/l BOD: 10-20 mg/l 	
7403 KLD of boiler condensate	Will be reused in boiler make-up.	 pH: 7-8.5 Suspended Solids: 5 – 10 mg/l TDS:150 – 200 mg/l COD: 10-20 mg/l BOD: 2-5 mg/l 	

Note: Existing ETP waste water has TDS characteristics of 34600 mg/l and Augmented ETP waste water has characteristics of 2929 mg/l. So after total expansion when combine ETP would be operate, TDS in collection tank would be homogeneoused and reduced and it is acceptable that TDS in final treated water would be around 1500-2000 mg/l.

	gas emission deta		sets etc. with cap	acities viz TF	PH Keal/hr MT/hr	· K\/Δ etc
	ing & Proposed	naces/DC	sets etc. with cap	acities viz. 11	ii, Kcai/iii, Wii/iii	, KVA etc.
Sr. no.	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel MT/Day	Type of emissions i.e. Air Pollutants	Air Pollution Control Measures (APCM)
Exist	ing Flue Gas Stac	ks				
1.	Boiler 1 (90 TPH) & 2 (90 TPH)	95	Coal	777	SPM, SO2, NOx	ESP
2.	Boiler 3 (110 TPH) & 4 (180 TPH)	65		690	PM SOx NOx	ESP
3.	Boiler – 5(180 TPH)		Coal	690	SPM, SO2, NOx	ESP
4.	D G Set(1200 kva)	20	HSD	0.2(25 lit/hr)	PM, SO2, NOx	Adequate s height
Prop	osed Flue Gas Sta	acks		•		<u>'</u>
1	D G Set (6*1010 KVA + 1500 KVA)	20	HSD	0.12 (4000 lpd)	PM, SO2, NOx	Adequate s height

	2	Boiler – 6 (300 TPH@)	95*	Coal/ Lignite	1092	2	SPM, SO2, NOx	ESP
ii	genera (ii) Wa	ation & utilization ter scrubber will	will carry be install	production for ou out by installing t ed along with ESF nt gases (SO ₂ .HCI	the boiler	s in pl	nase manner.	requirement steam
		ng & Proposed		. 3 (2,	, 0, -	2, - X	,	
	Specific Source of emission (Name of the Product & Process)		oduct	Type of emission	Stack, Height	/Vent (meter		Control Measures PCM)
	Existin	g Process Stacks						
	1.	Reactor of Hypo	Plant	HCl, Cl2	3	0	caustic soda l	cali scrubber with ye as a scrubbing nedia
	2.	Reactor of HCl Synthesis		HCl, Cl2	3	0	Two Stage\	Water Scrubber
	3.	Reactor of Flake Plant	rs	SPM	4	0	Ва	g Filter
	4.	Reactor of Hypo &Dechlorination System		CI2	3	0	caustic soda l	cali scrubber with ye as a scrubbing nedia
	5.	Scrubber for HCl Synthesis		HCl, Cl2	3	0	Two Stage\	Water Scrubber
	6.	HCl Scrubber (Tr Chlorobenzene)	j-	HCl, Cl2	2	0		r with caustic soda rubbing media
	7.	HCl Scrubber (Di Chlorobenzene)		HCI, CI2	2	0		r with caustic soda rubbing media
	8.	HCl Scrubber (Chlorobenzene)		HCl, Cl2	2	0		r with caustic soda rubbing media
	9.	HCl Scrubber (EC	:H)	HCl, Cl2	2	0		r with caustic soda rubbing media
	10.	Cl2 Scrubber (CP	VC)	Cl2	9.	.5		r with caustic soda rubbing media
	11.	Cl2 Scrubber EM action (CPVC)	G	Cl2	10	0.5		r with caustic soda rubbing media

			•	
12.	Dryer (CPVC)	HCI	18	Alkali scrubber with caustic sodal lye as a scrubbing media
13.	Bag Filter at re-slurry tank (CPVC)	SPM	2.8	Bag Filter
14.	Bag Filter attached to product hopper (CPVC)	SPM	6	Bag Filter
15.	Bag Filter attached to product bagging machines (CPVC)	SPM	2.8	Bag Filter
16	HCl Scrubber (Chloromethane)	HCl, Cl2	30	Alkali scrubber with caustic sod lye as a scrubbing media
Propos	sed Process Stacks			
1.	HCl Scrubber (Epoxy Resin)	HCl, Cl2	20	Two Stage Alkali scrubber with caustic soda lye as a scrubbing media
2.	HCl Scrubber (Chloromethane)	HCl, Cl2	30	Two Stage Alkali scrubber with caustic soda lye as a scrubbing media
3.	HCl Scrubber (Epichlorohydrin)	HCl, Cl2	20	Two Stage Alkali scrubber with caustic soda lye as a scrubbing media
4.	HCl Scrubber System (Refrigerant Gas)	HCL, Cl2	21	Two Stage Venturi Scrubber with water as a scrubbing media
5.	HCl Scrubber System (Refrigerant Gas)	HCL	21	Two Stage Venturi Scrubber with water as a scrubbing media
6.	2-HCl Scrubber+ Caustic Scrubber (AHF)	Chlorine HCL	30	Two Stage Water Scrubber followed by Alkali scrubber with caustic soda lye as a scrubbing media &venturi
7.	2-HCl Scrubber+ Caustic Scrubber (TFE)	Chlorine HCL	30	Two Stage Water Scrubber followed by Alkali scrubber with caustic soda lye as a scrubbing media &venturi
8.	2-HCl Scrubber+ Caustic Scrubber (FKM)	Chlorine HCL	30	Two Stage Water Scrubber followed by Alkali scrubber with caustic soda lye as a scrubbing media &venturi
9.	2-HCl Scrubber+ Caustic Scrubber (PFA)	Chlorine HCL	30	Two Stage Water Scrubber followed by Alkali scrubber with caustic soda lye as a scrubbing media &venturi

	10		•		SO2 HF		30		Vet Alkali scrubber soda lye as a nedia
	11	Emerge Oxidati	ence Thermal on	PM,H	CL,SO2,C	О	12	_	/enturi Scrubber + Vater Scrubber
iii	> C	oncrete road		ed within p	lot premi	ses to avo		e dust due to veh	icle movement. cking and maintenanc
	of > A cl	the same will the raw ma osed system	ill be carried ou	it to avoid a tored in clo andling loss	anyleaka sed cont ses and r	ge and relatainers and relative fug	ative fugit I in seale	tive emissions. d bags and will b	e handled through
F	(As 201	•	zardous and (Other Was	stes (Ma	nagemen	t and Tra	ansboundary M	ovement Rules
i	Sr. no.	Type/Nam e of Hazardous waste	Source of generation	Category and Schedule as per HW Rules.		Quantity MT/month Proposed		Management of HW	
	1	Process waste/ Residue	Chlor – Alkali,chloro methane, Dichloroben zene, Trichlorobe nzene	20.3	178 MT	1292 MT	1470 MT	Will be collected, stored and sent to CHWIF/ sent for Co-processing	
	2	Used Oil	Production Plant	5.1	3.3 KL [3.63 MT]	100 KL [110 MT]	103.3 KL [113.6 3 MT]	Will be collected, stored reused as low grade lubrication and left over quantity (if any) sold to an authorized dealer or Reprocessor.	

			Discard	led Conta	iners			
	Drums			400 Nos. [0.2 MT]	15000 Nos. [7.5 MT]	15400 Nos. [7.7 MT]	Will be collected, stored and	
3	Carboys	Production Plant	33.1	75 Nos. [0.04 MT]	8000 Nos. [4 MT]	8075 Nos. [4.04 MT]	sold to an authorized/ registered recyclers	
	Plastic Liners			5 MT	70 MT	75 MT	recyclers	
4	ETP Sludge	ЕТР	35.3	35 MT	500 MT	535	Will be disposed in TSDF site.	
5	Used Catalyst	Chlor – Alkali, epichlorohy drin, Chloro- methane	26.5	0.32 MTPA	40 MTPA	40.32 MTPA	Collection, Storage, transportatio n and disposed in to TSDF.	
6	Process residue including (Spent alumina, molecula r sieves)	Refrigerant Gases	36.1	-	100	100	Collection, Storage, transportatio n and disposed in to TSDF.	
7	Spent Carbon	Refrigerant Gases, Chlor alkali, Chloro- methane	36.2	-	50	50	Will be collected, stored and sent to CHWIF/ Co- processing/ captive end use as fuel.	
8	Solid waste containin g organic & inorganic residue	Epichlorohy drin, Chloro- methane	-	-	1000	1000	Collection, Storage, transportatio n and disposed in to TSDF.	
9	Dilute Sulphuric Acid (70- 90%)	Chlor – Alkali, Chloro- methane, PTFE	B-15 of Sch-II	1740	2000	3740	Collection, Storage, Transportatio n and Sale to	
10	Hydrochl oric Acid – 100%	Chlor alkali, Chloro- methanes, Refrigerant Gases	B-15 of Sch-II	21636 (30% BASIS) 6490 (100%	12510 (100% BASIS)	19,00 0 (100% BASIS)	actual end users as per Rule 9.	

					BASIS)					
	11	Sodium Hypochlo rite		B-15 of Sch-II	462	3145	3607			
	12	Hydroflu orosilisic acid(20- 40%)	PTFE, Refrigerant Gases	B-15 of Sch-II	-	1500	1500			
	13	Aqueous HF(20- 40%)	PTFE, Chlor – Alkali,	B-15 of Sch-II	-	1063	3 1063	Collection, Storage, Transportatio n and Sale to actual end users as per Rule 9.		
	14	Gypsum	Refrigerant Gases	B-2080 of Sch-	-	1014	8 10148	Will be sold to the cement manufacture.		
	15	HCl(anhy drous)		B-2 of Sch-II	-	15	15			
	16	Trifluoro Methane	Refrigerant Gases, PTFE	A-3170 of Sch- VI	-	20.83	3 20.83			
	17	Spent Caustic	Chlor alkali, Chlorometh anes,Refrige rent gases	-	-	53.37	6 53.37	Collection, Storage, Transportatio n and Sale to		
	18	Aluminiu mTrifluor ide	PTFE, Refrigerent gases	-	-	62.5	62.5	actual end users as per Rule 9.		
	19	Calcium Fluoride	PTFE,Refrige rent gases	-	-	375	375			
	20	Polymer Waste	Fluoropoly mers	B-3010 of Sch- VI	-	83.75	5 83.75			
	21	MONG[Matter Organic Nonglycero	ECH	-	-	450	450	Will be sent for Co- processing as per Rule-9 / will dispatched in		
ii	Mer	l nbership de	l etails of TSDF	, CHWIF	etc.	Atta	ched as ar	TSDF site nnexure 2.4		
iii	Deta		gement) Hazardous wa and others)	aste & its			Waste		th otal after opansion	Mode of Storage & Disposal

							[a]	[b]	[a+b]	
					1.	Brine Sludge	3360	-	3360	Will be collected, stored and disposed in solid waste collection pit within factory site and left over quantity (if any) will be sent to thedesignated TSDF site.
				-	2.	Fly Ash	6858	3472	10330	Will be sold to brick manufacturer, cement industries, and dump off at low lying areas .
				-	3.	Inorganic impurities [Due to us of 82% Ca	е -	900	900	Will be disposed to Captive TSDF/Common TSDF. Will be disposed
					4.	NaCl	-	10	10	to Brine sludge TSDF/Common TSDF.
G	Sol	vent management, '	VOC emissions etc	C.						
i	Тур	oes of solvents, Deta	ails of Solvent reco	very, %	% re	covery, i	euse of re	ecover	ed	
	Sol	vents etc. (Details ir	n Table Format)							
	Sr.	Name of	Name of Raw	Raw	Mate	erials /	Raw			
	No.	Product	Materials/	Solve	olventtobeUse Materials/Solve			nt to		
			Solvent	d			be Reco	vered		
				(N	/IT/D	ay)	(MT/Day)) (%)	
	1.	Epoxy Resin	Toluene	1.	.389		1.386	99.	.8	
	2.	HFPO [Hexafluoropropyl ene oxide]	Toluene	2.	.783		2.774	99.	.8	
	Red	covered solvents wil	I be reused in prod	cess.						
ii		C emission sources			res					
	outi	hlorohydrin, Produ nclosed loop systen much as possible.	ns.Double mechan	ical sea	al pu	ımps wi	ll be provi	ded to	reduce	VOC emission
Н	refe	rence. Details regardin	g storage of Haza	rdouscl	hem	icals				
	Sto	orage details	Name of ma				emicals	1	P.	emarks
		orage tanks	C1 (Methyl						1 (
		orago tarino	C2 (Methyle					n),		
			C4 (Carbon	Tetra (Chlo					
			Epoxy Resi							
	(Aqueous hydrofluoric acid), TFE (Tetra Fluoro- ethylene) R-134 a,									
			Anhydrous I							
			Di Methyl Bo							
			SMC,Acetic					ne, R-		
			32				-			
	110	Otomoro Torrico	Diflouro Met				h.utul 1/24-			
1 1		Storage Tanks	Toluene, Me	euranol	, IVIE	tiriyi ISO	outyi Keto	IIIE		

	Pipeline	Chlorine		
	 Applicability of PESO PESO Certificates have 	been attached as an Annexure – 21(a) & (b)	,	

- During the meeting dated 25/09/2019, technical presentation made during the meeting by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report, and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period October 2017 to December 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, CO, Cl2, NH3, HCl, HBr and VOC at Eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD model. The resultant concentrations are within the NAAQS. The modeling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan has been covered in the RA report.
- During SEAC meeting, Committee asked for existing plant EC compliance report. PP informed that EC certified compliance report (CCR) dated 02/05/2014 by MoEF & CC, Bhopal is submitted and committee deliberated briefly in length. PP informed that they have obtained recently additional EC for expansion on dated 29/09/2018 and for power plant on dated 31/07/2018 but not started production of it. As they have not obtained CCA for EC recently obtained on 29/09/18 and hence submitted EC certified compliance report of dated 02/05/2014 and submitted letter regarding it. PP informed that they have started work regarding green belt development, installation of CEMS and rain water harvesting etc as per EC conditions compliance. Committee asked about proposed refrigerant gas products, PP informed that they will comply Ozone depleting Substances (ODS) Rules for proposed refrigerant gas manufacturing. Committee asked about steps taken for control fugitive emission of proposed epichlorohydrin product which is persistent organic pollutant, PP informed that they will adopt adequate measures for control of epichlorohydrin in atmosphere from plant. Committee asked about proposed steam production, PP informed that proposed steam as product will be used for only during failure of any boiler and 300 TPH boiler will be used for requirement of steam for proposed products production. Committee disagree with

use of Matter Organic Nonglycerol Content (MONG) and other Hazardous waste as fuel for captive fuel consumption and hence PP informed that they will sell Matter Organic Nonglycerol Content (MONG) and other Hazardous waste to end users having Rule-9 permission under HWR Rules '2016. Committee asked about waste water management, PP informed that 9041 KLD process waste water, 821 KLD of boiler blow down, 2409 KLD of cooling tower purge, 353 KLD of wash water and 317 KLD of softening/other wastewater will be treated in ETPs and UF/RO system and treated effluent partly will be reused back in process while rest of will be discharged into GIDC underground drainage. Committee asked regarding worst case scenario for effluent and PP informed in briefly regarding effluent characteristic and its stage wise pollutant reduction. Committee insisted for CEMS installation at effluent discharge line and flue gas and process gas emission stack.ESP as APCM will be installed with each boilers and two stage scrubbing system will be as APCM with process gas reactors. Committee asked about CER and green belt development, PP informed that they will start campaign in nearby villages for green belt development in support of Dahej industrial association. Committee discussed in length regarding LDAR of epichlorohydrin and other solvents and LDAR of its in length.

- Committee also deliberated on baseline data, ambient air quality, surface water and ground water quality and Noise, EMP, need based CER with details of budgetary provisions and green belt development etc.
- Compliance of the ToR was found satisfactory.
- After detailed discussion, it was decided to recommend the project to SEIAA Gujarat for grant of **Environmental Clearance with following specific condition,**
 - 1. Unit shall provide Continuous Emission Monitoring System [CEMS] for air emission and waste water discharge as per the CPCB guidelines. Unit shall made arrangement for reflecting the online monitoring results on the company's server, which can be assessable by the GPCB on real time basis.
 - 2. Unit shall develop thick green belt development in periphery of premises as per the CPCB guidelines for control of fugitive emission generated from proposed expansion project.

09.	SIA/GJ/IND2/30713/2019	M/s. CS Specialty Chemicals Pvt. Ltd.	Appraisal
		Plot No. Z-81, Z-82, SEZ Phase – 1, Dahej, Ta-	
		Vagra, Dist -Bharuch	

Category of the unit: 5(f)

Project status: New

- PP has submitted online application vide no. SIA/GJ/IND2/30713/2019 dated 12/09/2019 for obtaining Environmental Clearance.
- The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 30/04/2019.
- Project proponent has submitted EIA Report prepared by M/s: Unistar Environment and Research Labs Pvt. Ltd based on the TOR issued by SEIAA

• This is a new unit proposes manufacturing of synthetic organic chemicals as tabulated below:

Sr. No.	Name of the Products	CAS No.	Quantity (MT/Month)	End-use of the products		
1	Donor B (IPIA) (3,3-BIS(methoxymethyl)-2,6-DMH)	129228-11-1	8.33	Catalyst for poly olefin and Polymer		
2	Catalyst Support (Magnesium ethoxide)	2414-98-4	25.00	manufacturing.		
3	U - Donor (Diethyl Amino-Triethoxy Silane)	15180-47-9	8.33			
	Total of Product		41.66			

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 25/09/2019.
- Salient features of the project are as under:

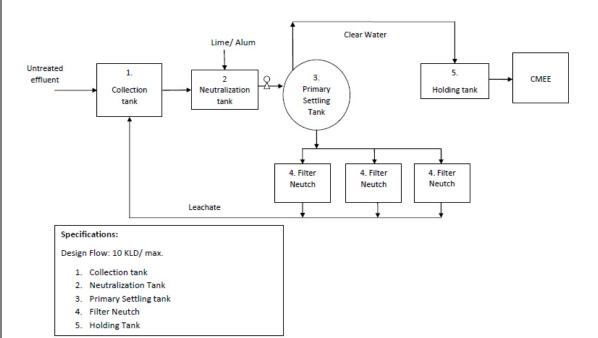
Particulars	Details
Total cost of Proposed Project (Rs. in Crores):	15 Crores
Total Plot area (sq. meter)	9886.12 Sq. m.
Green belt area (sq. meter)	2000.24 Sq. m. (Inside Premises- 2000.24 m ² + outside premises 690m ²)
Employment generation	60 Nos.
Water	
Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc)	Dahej SEZ water supply dept
Status of permission from the concern authority.	Obtained
	Total cost of Proposed Project (Rs. in Crores): Total Plot area (sq. meter) Green belt area (sq. meter) Employment generation Water Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc) Status of permission from the concern

ii Water consumption (KLD)

Category	Quantity (in KLD)	Remarks
(C) Domestic	15.00	Fresh water
(D) Gardening	10.00	Treated sewage from STP will be reused in gardening
(E) Industrial		
Process & Washing	6.00	Fresh water
cooling	30.00	Fresh water
Scrubbing	4.50	Industrial effluent from cooling tower
		is reused in scrubber
Industrial Total	40.50	
Total (A + B + C)	65.50	Total Fresh -51.00 KLD + 14.50 KLD Reused

- 1) Total water requirement for the project: 65.50 KLD
- 2) Quantity to be recycled: 14.50KLD
- 3) Total fresh water requirement: 51.00KLD

Category	Waste water (in KLD)	Remarks
(A) Domestic	10.80	To STP for treatment and will be
		reused in greenbelt
(B) Industrial		
Process & Washing	5.50	Bleed off liquor to ETP for primar
Scrubbing	4.00	treatment then disposal through
		CMEE(BEIL, Dahej).
cooling	4.50	Will be reused in scrubber
Total Industrial waste water	14.00	
Total [A + B]	24.80	

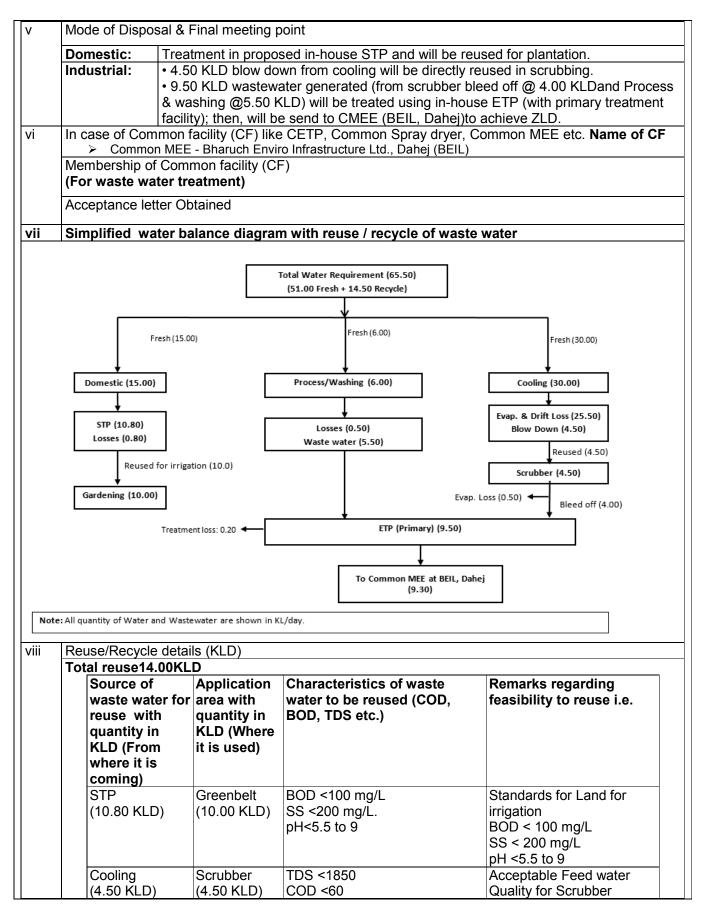

iv Treatment facility within premises with capacity

[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc.

- In-house ETP with Primary treatment facility (Capacity 10 KL/day Max.)
- ➤ In-house STP (Capacity 15 KL/day Max.)

Treatment scheme including segregation at source.

Proposed ETP Plan:


Note: (In case of CETP discharge):

Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP.

Not Applicable

Brief note on adequacy of ZLD (In case of Zero Liquid Discharge):

- > Domestic effluent (10.80 KLD) will be treated in STP and will be reused in greenbelt.
- The industrial effluent generation will be @ 14.00 KLD (5.50 KLD from process/washing, 4.50 KLD cooling blow down and 4.00 KLD scrubber).
- Cooling tower blowdown @4.50 KLD will be directly reused in scrubbing.
- ➤ Hence, 9.50 KLD wastewater generated (5.50 KLD from Process & washing and 4.00 KLD from scrubber bleed off) will be treated using in-house ETP with primary treatment facility then will be send to CMEE (BEIL, Dahej) to achieve ZLD.

	, ,						1			
			E	3OD <30			TDS <250 COD <60 BOD<50			ir Pollution Control Measures (APCM) Alse air jet De Bag filter Stem with Alequate Back height Pollution DI Measures APCM) Stage alkalier Area products Distage alkalier Di
Е	Air	<u> </u>								الم
i		gas emission details f Boilers/TFH/Furnace	es/DG sets	s etc. with cap	pacities viz. TP	H, K	cal/hr, MT	/hr, k	Air Pollution Control Measures (APCM) Pulse air jet type Bag filter system with Adequate Stack height Measures (APCM) Air Pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM) Two stage alkalistic cubber Air pollution Control Measures (APCM)	
	Sr. no.	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of F MT/Day	uel	Type of emission i.e. Ai Polluta	ns ir	Control Measures (APCM)	s
	1	Thermo pack (15 Lakh K.cal/hr)	15	Briquettes (Bio Fuel)	12.72 (530.00 Kgs/	hr)	PM<150 mg/Nm3 SO2< 100	nnm	type Bag filte system with Adequate	er 1
	2	D.G. Sets: 1 X 250 KVA	7	HSD	0.40 KL/ Da (50.00 L/H		NOx< 50 p			
ii	Proce	ess gas emission deta	ils i.e. Typ	e of pollutant	gases (SO _{2,} H	ICI, 1	NH _{3,} Cl _{2,} NO	O _x etc	c.)	
	Sr.	Specific Sou (Name of the Pr	Type of emission		Height Control Measu		ntrol Measur			
	1	Process Stack (Capa Product: U-DONC (triethoxy) silane)			HCI		11	Two scru	stage al	kali
	Foreit			£						
iii	As be Fugiti Emiss move produ any d	ive emission details elow: ve emission could of sions from transport ments will be controlled to and from the falust emissions. Property of the production, the ries Act.	occur fron of vehicle olled by preactory prea er planning	n the storag s would occi oper plannin mises. All the g and mainte	e yard of rav ur to a certain ng of the trans roads inside t nance will con	ext sport the p trol t	tent. The of raw no lant will be the extent	emis: nater e cor of fu	sions from trials and finisticreted to rec ligitive emissions.	affic shed duce ons.
	• E	sures taken for fugiti Solid raw material cha Entire process will be and temperature. Close feeding system Emphasis will be giver	rging will to carried on will be pronto to solven	be done throu ut in the clos vided for cen t manageme	sed reactors w trifuges. nt/solvent loss	rith prev	vention.		·	
	• F	particular solvents the collector to be ensured Proper gland packing with mechanical seal. All the raw materials we	rough hoo d. will be ma	ds and duct	s by induced umps and valv	draf es a	t, and cor	ntrol	by scrubber/	dust

- All rotating equipments like pumps will be installed with mechanical seals to arrest any sort of emissions.
- A regular preventive maintenance schedule will be in place to replace or rectify all gaskets and joints etc. as a part of ISO systems to ensure no fugitive emissions take place.
- Periodic monitoring of work area will be carried out to check the fugitive emission.
- · Adequate ventilation will be provided.
- Airborne dust at all transfers operations/ points will be controlled either by spraying water or providing enclosures.

F Hazardous wastes

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

Sr. no.	Type/Name of Hazardous waste	Specific Source of generation (Name of the Activity, Product etc.)	Category and Schedule as per HW Rules.	Quantity (MT/Annum)	Management of HW
1	ETP sludge	From ETP	Sch-I/ 35.3	15.00	Collection, Storag Transportation, Disposal TSDF(BEIL,Dahej).
2	Used oil	From plant and machinery	Sch-I/ 5.1	0.05 KL/Annum	Collection, Storag Transportation, disposal t selling to registere recyclers/Reused.
3	Discarded materials Drum, Liners/ Bags/ Carboys	Raw Materials	Sch-I/ 33.1	20.00	Collection, Storag Decontamination, Dispos on sell to authorized r conditioners.
4	Distillation Residue/ Organic bottom residue.	Distillation and manufacturing process of all products.	Sch-I/ 20.3	160.00	Collection, Storag Transportation, Disposal Co-Processing authorized site atAuthorised common incineration (falling outsid CEPI area).
5	Waste from HCl scrubber (Bleed off liquor)	Process Scrubber (Product- U- DONOR (Diethyl amino (triethoxy) silane))	Sch-I/ 37.1	1200.00	Will be treated in ETP f primary treatment the disposal throug CMEE(BEIL,Dahej).
	Spent solvents			5000.00	Collection, storage ar Reuse by captive distillation.
6	(Ethanol, Hexane, DMSO, Methanol and n- Heptane)	Mfg. Process	Sch-I/ 20.2	2000.00	Collection, storage and sato registered recycler und Rule No. 9 of the Hazardous and Oth Wastes (Management and Transboundary Movemer Rules, 2016.
7	Diethyl amine - HCl salt	From manufacturing of product (U- DONOR)	Sch-II/ Class-C2	155.00	Collection, storage ar Reuse by captive Regeneration of Dieth Amine and any no reusable will be sold out Registered recycler und Rule no.9 of the Hazardor and Other Waste (Management ar Transboundary Movemer Rules, 2016.

	Membership details of TSDF, CHWIF etc. (For HW management)	>	Acceptance letter of TSDF - Bharuch Enviro Infrastructure Ltd (BEIL), Dahej is obtained.
	Details of Non-Hazardous waste & its	-	
	disposal(MSW and others)		

G Solvent management, VOC emissions etc.

Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format)

In the proposed project, Ethanol, Hexane, Dimethyl Sulfoxide, methanol and n-Heptane will be used as solvent. Solvents used in process will be recovered, distilled and reused back in the process. For the distillation two stage condensers will be used, one with cooling water circulation and other with Brine Circulation. The vents will be directed to the KO pots then released to the atmosphere. Solvent recovery will be more than 91%.

Solvent Recovery Table:

S. No.	Solvent	Charged Qty (MT)	Consumed in Process / Loss (MT)	Qty for Recovery(MT)	Qty Recovered (MT)	Recovery Loss(MT)	Effi. of Solvent recovery system (%)
1.	Ethanol	13.05	0.882	12.17	11.51	0.91	94.6
2.	Hexane	10.28	0.051	10.23	9.38	0.85	91.7
3.	DMSO	4.01	0.020	3.99	3.98	0.01	99.8
4.	Methanol	0.25	0.001	0.25	7.89	0.57	93.3
5.	n-Heptane	1.52	0.300	1.22	1.14	0.08	93.4

xii VOC emission sources and its mitigation measures

VOC emission sources: material handling area, process area, & solvent storage area.

- Knockout chiller & pot will be provide for VOC Control
- Closed handling & charging system will be provided.
- Mechanical seals to pumps will be provided to prevent leakages.
- Regular monitoring of VOCs will be done.
- Solvent specific LDAR program will be implemented. The solvent characteristics is as under.

Solvent Characteristics

Sr. No.	Name of Solvent (CAS No.)	Boilin g Point (In °C)	Flash Point (In °C)	Vapor Pressurek Pa (at 20 °C)	Relative Density,g/ cm3	Detection limit for alarm, ppm	Monitoring frequency
1.	Ethanol (64-17-5)	78.24	14	5.95	0.7893	1000	Continuous for online detector
2.	Hexane (110-54-3)	68.5 to 69.1	-26.0	17.60	0.6606	1000	& twice per shift (every 4
3.	Methanol (67-56-1)	64.7	11 to 12	13.02	0.792	1000	hrs) for portable
4.	n-Heptane (142-82-5)	98.38	-4.0	5.33	0.6795	1000	detector
5.	DMSO (67-68-5)	189	89	NA	1.1004	2 liters per 8 hrs	Regular at beginning of shift

Identification (detection) of leaking component and repair, preventive maintenance and overall inspection will be done for all above solvents according to the methodology and schedule given in LDAR program presented in Chapter-7, section: 7.4.16 of EIA Report.

Details regarding storage of Hazardous chemicals

Storage details	Name of major Hazardous chemicals	Remarks	
Storage tanks	Ethanol, Hexane, Sodium Hydroxide, Methanol		

Drum/Barrel	Isoveraldehyde, Formaldehyde, Dimethyl Sulfoxide, Iodine,	
storage	Magnesium, Tetra ethoxysilane (TEOS), Silicon tetra chloride,	
	Diethyl amine, n-Heptane	
Cylinder	Methyl Chloride	

- During the meeting dated 25/09/2019, technical presentation made during the meeting by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report, and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period December 2018 to February 2019. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, CO, O3, NH3, HCl and VOC at Eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD model. The resultant concentrations are within the NAAQS. The modelling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan has been covered in the RA report.
- This unit is a new Greenfield project in GIDC Dahej.
- During SEAC meeting, Committee deliberated on area adequacy which was addressed in their presentation. PP informed that proposed plot is sufficient for accommodate proposed project plant machinery. Committee deliberated on cleaner production, BAT, LDAR Of proposed project and PP informed briefly regarding cleaner production and BAT and LDAR for proposed project. Total industrial effluent generated from process and washing will be treated in primary ETP and then will be sent to CMEE of Dahej for further treatment and disposal. Cooling blow down will be used in scrubber and domestic effluent will be treated in STP and will be used for green belt development in premises. Agro waste briquette will be used as fuel in thermo pack and pulse jet bag filter as APCM will be provided with thermo pack. Committee asked regarding Hazardous waste management and PP informed regarding Hazardous waste management as per HWRules'2016.
- Committee also deliberated on baseline data, ambient air quality, surface water and ground water quality and Noise, EMP, need based CER with details of budgetary provisions and green belt development etc.
- Committee also deliberated on Compliance of the ToR during meeting and found satisfactory.

After detailed discussion, it was decided to recommend the project to SEIAA Gujarat for grant of Environmental Clearance.

10.	SIA/GJ/IND2/30244/2018	M/s. Kinjal Chemicals	EC –
		Plot no C/1/B-145-3, Phase II, GIDC, Naroda,	Reconsideration
		Ahmedabad	

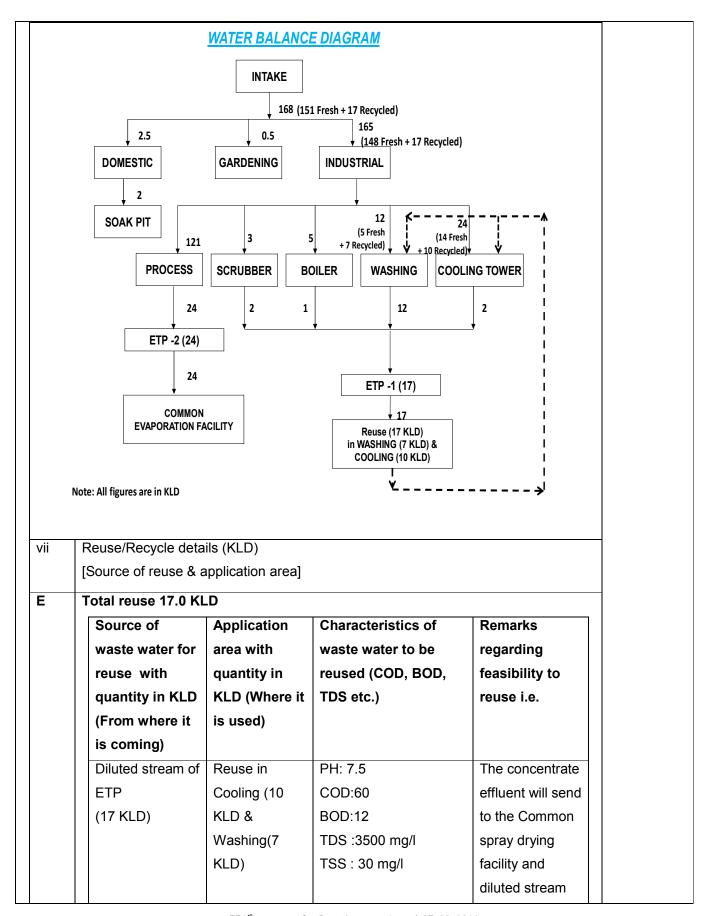
Category of the unit: **5(f)**Project status: **Expansion**

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/36786/2019 on dated 24.06.2019 for obtaining Environmental Clearance.
- SEIAA issued TOR to PP vide their letter dated 14.05.2019.
- Project proponent has submitted EIA Report prepared by B S Rana based on the TOR issued by SEIAA.
- This is an existing unit engaged in manufacturing of synthetic organic chemicals and now proposed for expansion tabulated as below:

Sr.	Name of the	CAS no. /		Quantity		End-use of
no.	Products	CI no.		MT/Month		the products
			Existing	Proposed	Total	
1.	Resist salts	127-68-4	5	195	200	Dyes & Dyes
2.	Metanilic Acid Liquid	121-47-1	10	-	10	Intermediates
3.	Aniline 2-5	98-44-2	20	380	400	Manufacturing
	Disulphonic Acid					
	AND/OR					
	Aniline 2-4	137-51-9	-			
	Disulphonic Acid					
4.	Metanilic Acid	121-47-1	90	210	300	
	Powder					
	AND/OR					
	Meta Amino Phenol	591-27-5	10	90	100	•
		Total	135	875	910]

Note: Any three products from the six products can be manufactured at a time in a month.

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 08.07.2019.
- Salient features of the project including Water, Air and Hazardous waste management:


Sr.	Particulars	Details

no								
	Fotal sast	-f D:-	anagad Drainet			Eviatio	.4.0	
			oposed Project			Existing	:4.0	
	Rs. in Cro	165 <i>)</i> .				Propose	ed: 2.0 Cr.	
						Total: 6	.0 Cr	
[Details of	EMP						
			Operati	on Phase				$\overline{}$
	Sr. No.	ı	Pollution Control Measures	Capit	al Cost Rs.)	C	curring ost per ium (Rs.)	
	1		Pollution Control		0,000		00,000	
			er Pollution Control		0,000		,00,000	
	3	Nois	e Pollution Control	1,00,000		2	25,000	
	4		ironment Monitoring Management	1,00	0,000	2	20,000	
	5	Rair	Water Harvesting	2,00	0,000		50,000	
	6		upational Health		0,000		25,000	\exists
	7	Gree	en Belt Total		0,000 0,000		20,000 45,000	_
Sr.	Activ		as per OM dated 01/05 Social Benefi		Exper	ises (Rs	. Lacs)	
No	•				2019	2020	2021	
1.	Green	ıbelt	 Greenery for ecological balance Enrich local biodive Helpful to control so erosion Plan for plantations 	rsity bil	1	1	2	4
2.	Water Utilize		 Drinking & sanitation facilities in schools of villages 		2	3	3	8
			Total		3	4	5	12
			10441		1			
R	Total Pla	nt are				Fyieting	·1494	_
В	Total Pla				,	Existing		

				Total:1	494 Sq. m.
	Green belt area			Existing	g:44 Sq. m
	(sq. meter)				
				Propos	ed: -
				Total: 4	14 Sq. m.
С	Employment generation	on		Existing	g:10
				Propos	ed:5
				Total:1	5
D	Water				
i	Source of Water Supply			GIDC 1	Naroda
	(GIDC Bore well, Surface)	
	Status of permission fro	m the conce	ern authority.	-	
ii	Water consumption (K	-	Dropood	Total after	Remarks
		Existing	Proposed	Total after	Remarks
		N D	(Evnancian	
		KLD	(Additional)	Expansion	
	(E) Domestic		KLD	KLD	2.5 Kl D freeh
	(F) Domestic	1.5	KLD 1.0	KLD 2.5	2.5 KLD fresh
	(G) Gardening		KLD	KLD	2.5 KLD fresh 0.5 KLD fresh
	(G) Gardening (H) Industrial	1.5	1.0 0.5	2.5 0.5	
	(G) Gardening (H) Industrial Process	1.5	KLD 1.0	KLD 2.5	0.5 KLD fresh
	(G) Gardening (H) Industrial	9.0	1.0 0.5	2.5 0.5	0.5 KLD fresh 5 KLD fresh +7
	(G) Gardening (H) Industrial Process	1.5	1.0 0.5	2.5 0.5	0.5 KLD fresh 5 KLD fresh +7 KLD recycled
	(G) Gardening (H) Industrial Process Washing	9.0	1.0 0.5	2.5 0.5	0.5 KLD fresh 5 KLD fresh +7
	(G) Gardening (H) Industrial Process Washing Boiler	9.0	1.0 0.5	2.5 0.5	0.5 KLD fresh 5 KLD fresh +7 KLD recycled treated w/w
	(G) Gardening (H) Industrial Process Washing	9.0	1.0 0.5 112 4	2.5 0.5 121 12	0.5 KLD fresh 5 KLD fresh +7 KLD recycled treated w/w 14KLD fresh +10
	(G) Gardening (H) Industrial Process Washing Boiler	9.0	1.0 0.5	2.5 0.5	0.5 KLD fresh 5 KLD fresh +7 KLD recycled treated w/w 14KLD fresh +10 KLD recycled
	(G) Gardening (H) Industrial Process Washing Boiler Cooling	9.0 8 -	1.0 0.5 112 4 5	2.5 0.5 121 12 5	0.5 KLD fresh 5 KLD fresh +7 KLD recycled treated w/w 14KLD fresh +10 KLD recycled treated w/w
	(G) Gardening (H) Industrial Process Washing Boiler	9.0	1.0 0.5 112 4	2.5 0.5 121 12	0.5 KLD fresh 5 KLD fresh +7 KLD recycled treated w/w 14KLD fresh +10 KLD recycled treated w/w -
	(G) Gardening (H) Industrial Process Washing Boiler Cooling	1.5 - 9.0 8 - 12	1.0 0.5 112 4 5 12	2.5 0.5 121 12 5 24	0.5 KLD fresh 5 KLD fresh +7 KLD recycled treated w/w 14KLD fresh +10 KLD recycled treated w/w - 148KLD fresh
	(G) Gardening (H) Industrial Process Washing Boiler Cooling	9.0 8 -	1.0 0.5 112 4 5	2.5 0.5 121 12 5	0.5 KLD fresh 5 KLD fresh +7 KLD recycled treated w/w 14KLD fresh +10 KLD recycled treated w/w -

Grand Tot	al			151KLD fresh
(A+B+C)	31.5	136.5	168	+17 KLD recycled
(A-B-G)				treated w/w
 Total water r Quantity to be Total fresh w 	e recycled:	17 KLD		
Waste water genera	ation (KLD)			
Category	Existing	Proposed	Total after	Remarks
	KLD	(Additional)	Expansion	
		KLD	KLD	
(C) Domestic	1.5	0.5	2.0	Discharge to soak pit
(D) Industrial			I	
Process				Neutralize in
				ETP-1 and
	9	15	24	disposed to
				Common spray
				drying facility
Washing				Treated in ETP-
	0	4	40	2 and reuse in
	8	4	12	cooling tower
				make up and washing
Boiler	_	1	1	wasiiiig
Cooling	1	1	2	
Scrubber	1	' 1	2	
Total Industrial waste water	19	22	41	-
Treatment facility wit	hin nremise	s with canacity		
	•			Spray Dryer, STP etc.
> ETP -1(prima	-			
(p	• ,	(Diluted Stream	•	

Simp	lified water balance dia	gram with reuse / recycle of waste water			
,	waste water treatment)				
Memb	pership of Common facility	y (CF):Enclosed Annexure-VIII			
>	Novel, :500 MT/Month	(For discharge as per CC&A)			
•	Naroda Enviro Projects	Ltd.:450 MT/Month			
•	Society of clean and Gr	een Environment, Naroda: 200 MT/Month			
Name	e of Common facility (CF	F) (For waste water treatment)			
CHW	IF etc.				
In cas	se of Common facility (CF) like CETP, Common Spray dryer, Common MEE,			
		Recycled: 17 KLD.			
Indus	trial:	Common Spray Drying Facility: 24 KLD			
Dome	estic:	Soak pit : 2 KLD			
Mode	of Disposal & Final meet	ing point			
	ZLD is not possible	ing point			
		nary treatment in separate ETP the concentrated scharged to the common spray drying facility and diluted used as cooling tower makeup and washing process. LD (In case of Zero Liquid Discharge):			
Dist					
	-				
	, , ,	ng segregating diluted stream and concentration			
		arged to CETP waste water treatment plant, NEPL,			
	under section 18 (1)				
		plying of waste water management in view direction			
regar	ding compliance of CET	⁻ P.			
of the	Water (Prevention and	Control of Pollution) act, 1974 issued by CPCB			
Mana	gement of waste water	keeping in view direction under section 18 (1) (b)			
Note:	(In case of CETP dischar	ge) :			
>	ETP-2 (primary) : 17 KL	D (Diluted Stream)			
	ETP -1(primary) :24 KLI	D (Concentrated Stream)			
>	Treatment Capacity:	•			
>	Type of Treatment: Prin	nary Treatment			
	providing separate ETP	•			
	Treatment Scheme: Seg	gregation of Concentrated and diluted stream by			

Sr. No. 1.	Attached to	Stack Height : m	Fuel Consumption	Pollutant	APCM
		_	Consumption		
1.		m			
1.	T		Not sel Occ	DM/00 /	A 1
	Thermic Fluid	12	Natural Gas	PM/SO ₂ /	Adequate
	Heater		(475SCM/	NO_2	Stack Height
	(01 Nos. of 2		day)		
	Lacs Cal) (One stand by)				
	(Existing)				
2.	HAG / SFD	12		PM/SO ₂ /	Adequate
2.	(No – 1)	12		NO ₂	Stack Height
	(Existing)			1102	o talent i religint
3.	Evaporator	12	-	PM/SO ₂ /	Adequate
	(Existing)			NOx	Stack Height
4.	D.G set	4	Diesel	PM/SO ₂ /	Adequate
	(125KVAStandb		(25 Lit/hr)	NO_2	Stack Height
	y)(No-1)				
5	Boiler	12	Natural Gas	PM/SO ₂ /	Adequate
	0.614 Ton		(300	NO_2	Stack Height
	(Nos-3)		SCM/day)		
	(Proposed)				

		1.	Reaction vessel	SO_2	12	Water & Alkali	
			From manufacturing	&		Scrubber	
			of Aniline 2:5	SO ₃		(Two stage)	
			Disulphonic Acid&				
			Aniline 2:4				
			Disulphonic Acid)				
		2	SFD	PM	12	Multi Cyclone &	
			(Spin Flash Dryer)			Bag Filter	
:::	Г.		omele el emedete il e contre it				

iii **Fugitive emission** details with its mitigation measures.

Proposed project is of manufacturing of S. O. Dyes Intermediates. Followings measures will take for existing & proposed project.

- Maintaining the house keeping regularly
- Transferring the liquid materials by pump
- To carry out regular leak detection and repair activities
- Proper <u>routine maintenance</u> of equipment reduces the likelihood of leaks

F Hazardous waste

(As per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

Existing & Proposed

i	Sr.	Type/Nam		y and (MT/Ann		Quantity (MT/Annur		
	no	e of Hazardou s waste	Source of generation	Schedul e as per HW Rules.	Existin g	Propose d	After Propose d	Disposal Method
	1.	ETP Sludge	ETP	35.3	2	7	9	Collection, storage, transportatio n, disposal at the approved TSDF site.
	2.	Discarded Container	Raw Materials Packing	33.3	0.72	1.55	2.22	Collection, storage, Reuse within premises/Sol

			1				
							d to
							registered
							recycler.
3.	Gypsum	Manufacturin	26.1	2056.1	12972	15028.1	Collection,
	Sludge	g of Metallic					storage,
		Acid &					transportatio
		Resist Salt					n, Disposal
							by sent for
							CO-
							processing
							in Cement
							Industries
4.	Iron	Manufacturin	26.1	913.84	5640	6553.84	Collection,
	Sludge	g of Metallic					storage,
		Acid					transportatio
							n, Disposal
							by sent for
							CO-
							processing
							in Cement
							Industries
5.	Spent	Manufacturin	D2 of	374.90	5678.4	6053.3	Collection,
	Sulphuric	g of	schedule				storage,
	Acid	Aniline2:5	Ш				transportatio
		Disulphon					n, disposal
		Acid &					to Novel as
		Aniline 2:4					per CC&A
		Disulphon					and
		Acid					additional
							Sold to the
							Vendors
							under rule9
6.	Inorganic	Manufacturin	26.1	21.30	574.71	596.01	Collection,
		1					storage,
	Salt	g of MAP					Storage,
	Salt KCl	g of MAP					transportatio

Total Details of Solvent Details of Solvent recovery, when the content of the solvent etc. (Details in Table Format) Voc emission sources and its mitigation measures There is no any Solvent will use.		1						
Total Scrubbing Collection, storage, transportation Storage, transportation Storage, transportation Storage, transportation Storage, transportation Storage, transportation Storage Storag								by selling
Tule9 7. Bleed Scrubbing - 0.100 0.600 0.700 Collection, storage, transportation, disposal by treating in ETP Membership details of TSDF, CHWIF etc. (For HW management) Details of Non-Hazardous waste & its disposal(MSW and others) Solvent management, VOC emissions etc. Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format) No use of solvent VOC emission sources and its mitigation measures • There is no any Solvent will use. > Unit will provide closed transferring system of raw materials during to avoid any leakage. • Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be kept for transferring the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the								actual
7. Bleed Scrubbing - 0.100 0.600 0.700 Collection, storage, transportation, disposal by treating in ETP Membership details of TSDF, CHWIF etc. (For HW management) Part III. Details of Non-Hazardous waste & its disposal(MSW and others) Solvent management, VOC emissions etc. Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format) No use of solvent VOC emission sources and its mitigation measures • There is no any Solvent will use. > Unit will provide closed transferring system of raw materials during to avoid any leakage. • Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be kept for transferring the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the								userund
Liquor system storage, transportation, disposal by treating in ETP Membership details of TSDF, CHWIF etc. (For HW management) Part III. Details of Non-Hazardous waste & its disposal(MSW and others) Solvent management, VOC emissions etc. Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format) No use of solvent VOC emission sources and its mitigation measures • There is no any Solvent will use. > Unit will provide closed transferring system of raw materials during to avoid any leakage. • Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be kept for transferring the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the								rule9
transportatio n, disposal by treating in ETP Membership details of TSDF, CHWIF etc. (For HW management) Details of Non-Hazardous waste & its disposal(MSW and others) Solvent management, VOC emissions etc. Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format) No use of solvent VOC emission sources and its mitigation measures • There is no any Solvent will use. > Unit will provide closed transferring system of raw materials during to avoid any leakage. • Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL 3. Caustic: 25 KL 4. Stand by Tank: 25 KL (3 No.) Drum/Barr 2.22 MT/Annum Sold to the	7.	Bleed	Scrubbing	-	0.10	0 0.600	0.700	Collectio
Membership details of TSDF, CHWIF etc. Enclosed in the Annexure-VIII of EIA		Liquor	system					storage
Membership details of TSDF, CHWIF etc. Enclosed in the Annexure-VIII of EIA Part III.								transporta
Membership details of TSDF, CHWIF etc. (For HW management) Details of Non-Hazardous waste & its disposal(MSW and others) Solvent management, VOC emissions etc. Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format) No use of solvent VOC emission sources and its mitigation measures • There is no any Solvent will use. > Unit will provide closed transferring system of raw materials during to avoid any leakage. • Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL kept for transferring the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the								n, dispos
Membership details of TSDF, CHWIF etc. (For HW management) Details of Non-Hazardous waste & its disposal(MSW and others) Solvent management, VOC emissions etc. Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format) No use of solvent VOC emission sources and its mitigation measures • There is no any Solvent will use. > Unit will provide closed transferring system of raw materials during to avoid any leakage. • Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL kept for transferring the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the								by treating
Part III.								ETP
Details of Non-Hazardous waste & its disposal(MSW and others) Solvent management, VOC emissions etc. Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format) No use of solvent VOC emission sources and its mitigation measures • There is no any Solvent will use. > Unit will provide closed transferring system of raw materials during to avoid any leakage. • Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be kept for transferring the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the	Men	nbership deta	ails of TSDF ,	CHWIF et	C.	Enclosed in	n the Annex	ure-VIII of E
Solvent management, VOC emissions etc. Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format) ➤ No use of solvent VOC emission sources and its mitigation measures • There is no any Solvent will use. ➤ Unit will provide closed transferring system of raw materials during to avoid any leakage. • Details regarding storage of Hazardous chemicals Storage	(For	HW manage	ement)			Part III.		
Solvent management, VOC emissions etc. Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format) ➤ No use of solvent VOC emission sources and its mitigation measures • There is no any Solvent will use. ➤ Unit will provide closed transferring system of raw materials during to avoid any leakage. • Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be a 3. Caustic: 25 KL kept for transferring the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the	ii Deta	ails of Non-Ha	azardous was	ste & its		NA		
Types of solvents, Details of Solvent recovery, % recovery, reuse of recovered Solvents etc. (Details in Table Format) No use of solvent VOC emission sources and its mitigation measures • There is no any Solvent will use. > Unit will provide closed transferring system of raw materials during to avoid any leakage. • Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be 3. Caustic: 25 KL kept for transferring 4. Stand by Tank: 25 KL (3 No.) the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the	disp	osal(MSW ar	nd others)					
Solvents etc. (Details in Table Format) No use of solvent VOC emission sources and its mitigation measures • There is no any Solvent will use. > Unit will provide closed transferring system of raw materials during to avoid any leakage. • Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be a 3. Caustic: 25 KL kept for transferring the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the	G Solv	ent manage	ement, VOC	emissions	etc.			
Solvents etc. (Details in Table Format) No use of solvent VOC emission sources and its mitigation measures • There is no any Solvent will use. > Unit will provide closed transferring system of raw materials during to avoid any leakage. • Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be a 3. Caustic: 25 KL kept for transferring the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the								
 ➤ No use of solvent VOC emission sources and its mitigation measures There is no any Solvent will use. ➤ Unit will provide closed transferring system of raw materials during to avoid any leakage. Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be kept for transferring the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the 	Туре	es of solvents	s, Details of S	Solvent red	covery	, % recover	y, reuse of r	ecovered
VOC emission sources and its mitigation measures • There is no any Solvent will use. > Unit will provide closed transferring system of raw materials during to avoid any leakage. • Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be kept for transferring the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the	Solv	ents etc. (De	tails in Table	Format)				
There is no any Solvent will use. Unit will provide closed transferring system of raw materials during to avoid any leakage. Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be 3. Caustic: 25 KL kept for transferring 4. Stand by Tank: 25 KL (3 No.) the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the	7	No use of	solvent					
There is no any Solvent will use. Unit will provide closed transferring system of raw materials during to avoid any leakage. Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be 3. Caustic: 25 KL kept for transferring 4. Stand by Tank: 25 KL (3 No.) the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the								
Unit will provide closed transferring system of raw materials during to avoid any leakage. Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be	i voc	emission s	ources and it	s mitigatio	n mea	sures		
Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be 3. Caustic: 25 KL kept for transferring 4. Stand by Tank: 25 KL (3 No.) the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the	•	There is r	no any Solver	nt will use.				
Details regarding storage of Hazardous chemicals Storage Name of major Hazardous chemicals Remarks Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be kept for transferring 4. Stand by Tank: 25 KL (3 No.) the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the	7	Unit will p	rovide closed	l transferri	ing sys	stem of raw	materials du	uring to avo
Storage details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL kept for transferring 4. Stand by Tank: 25 KL (3 No.) Drum/Barr 2.22 MT/Annum Sold to the		any leaka	ge.					
Storage details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL kept for transferring 4. Stand by Tank: 25 KL (3 No.) Drum/Barr 2.22 MT/Annum Sold to the								
details Storage 1. Oleum:25 KL(working Stand by tank of 25 tanks 2. Sulphuric Acid: 25 KL KL capacity will be 3. Caustic: 25 KL kept for transferring 4. Stand by Tank: 25 KL (3 No.) the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the	1 .	Details re	egarding sto	rage of H	azardo	ous chemic	cals	
Storage 1. Oleum:25 KL(working tanks 2. Sulphuric Acid: 25 KL 3. Caustic: 25 KL 4. Stand by Tank: 25 KL (3 No.) Drum/Barr 2. Sulphuric Acid: 25 KL 4. Stand by Tank: 25 KL (3 No.) Drum/Barr 2.22 MT/Annum Sold to the		Storage	Name of m	ajor Hazaı	rdous	chemicals	Remarks	
tanks 2. Sulphuric Acid: 25 KL 3. Caustic: 25 KL 4. Stand by Tank: 25 KL (3 No.) Drum/Barr 2. Sulphuric Acid: 25 KL kept for transferring the chemical in emergency. Sold to the		details						
3. Caustic: 25 KL kept for transferring 4. Stand by Tank: 25 KL (3 No.) the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the		Storage	1. Olei	um:25 KL(workir	ng	Stand by t	ank of 25
4. Stand by Tank: 25 KL (3 No.) the chemical in emergency. Drum/Barr 2.22 MT/Annum Sold to the		tanks	2. Sulp	huric Acid	d: 25 K	(L	KL capacit	y will be
Drum/Barr 2.22 MT/Annum Sold to the			3. Cau	stic: 25 K	L		kept for tra	nsferring
Drum/Barr 2.22 MT/Annum Sold to the			4. Star	nd by Tanl	k: 25 k	(L (3 No.)	the chemic	al in
							emergenc	<i>y</i> .
		Drum/Barr	2.22	2 MT/Annu	ım		Sold to the	;
el storage registered	l	1					registered	
recycler./ Reuse for		el storage					registered	

			parking of ETP and
			process sludge.
•	Applicabi	lity of PESO :	

- During the meeting dated 08.07.2019 technical presentation made by project proponent.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period November'18 to January'19. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx at Eight locations including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AIRMOD. The resultant concentrations are within the NAAQS.
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan has been covered in the RA report.
- Committee noted that this proposal is for expansion of Dyes & Dyes Intermediates manufacturing at GIDC, Naroda. Unit has valid CC&A. PP submitted compliance report of CC&A. PP informed that there is no court case pending and no complaint against unit.
- While deliberating ToR no. 16, Committee found discrepancy in quantity of effluent generation shown in water balance diagram and stoichiometry mass/material balance. Upon asking the same, PP could not give clarification satisfactorily.
- Natural gas and diesel will be used as fuel. PP has not addressed APCM for SO3 process gas emission.
- Committee also deliberated on area adequacy, EMP, CER, safety aspects etc. of proposed project.
- PP has not addressed compliance of specific ToR no. 2, 3, 4, 7, 8 & 10 satisfactorily. Upon asking, PP could not explained compliance status of existing project (4 conditions).

After deliberation, SEAC unanimously decided to consider the proposal only after submission of the following details.

- 1. Compliance status of existing project (4 conditions).
- 2. Compliance of specific ToR no. 2, 3, 4, 7, 8 & 10.
- 3. Revise water balance diagram as per stoichiometry mass/material balance.
- 4. Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP.
- 5. APCM for SO3 process gas emission.
- Readdress HW matrix including management of bleed liquor in accordance with the HWM Rules, 2016.

- PP submitted reply vide their letter dated 12.09.2019 which was considered in meeting dated 25.09.2019.
- During SEAC meeting dated 25/09/19, PP informed that they have submitted revised water, air and Hazardous Waste matrix as above. Committee asked about area adequacy and existing plant compliance, PP informed that vertical expansion of production plant in existing plot. PP informed that one show cause notice issued by the Board and SCN conditions complied by the unit. PP readdressed briefly regarding specific ToR conditions no-2, 3,4,7,8 and 10. Committee asked about Water Balance Diagram and PP informed revised water balance diagram with mass balance for all products in length. PP informed that concentrated effluent stream after primary treatment will be sent to common evaporation facility at Naroda and dilute stream after primary treatment will be reused back in process. PP informed that two stage scrubber as APCM will be provided with sulphonation reactor. PP submitted revised Hazardous waste matrix considering bleed liquor disposal and spent sulphuric acid as per existing CCA will be disposed to M/s Novel spent acid Management and additional quantity will be sold to Rule-9 units under HWR Rules'2016.Technical expert of PP informed that they have submitted revised format and oleum spare storage tank details.
- In view of above after detailed discussion, Committee unanimously decided to recommend the project to SEIAA Gujarat for grant of Environmental Clearance.

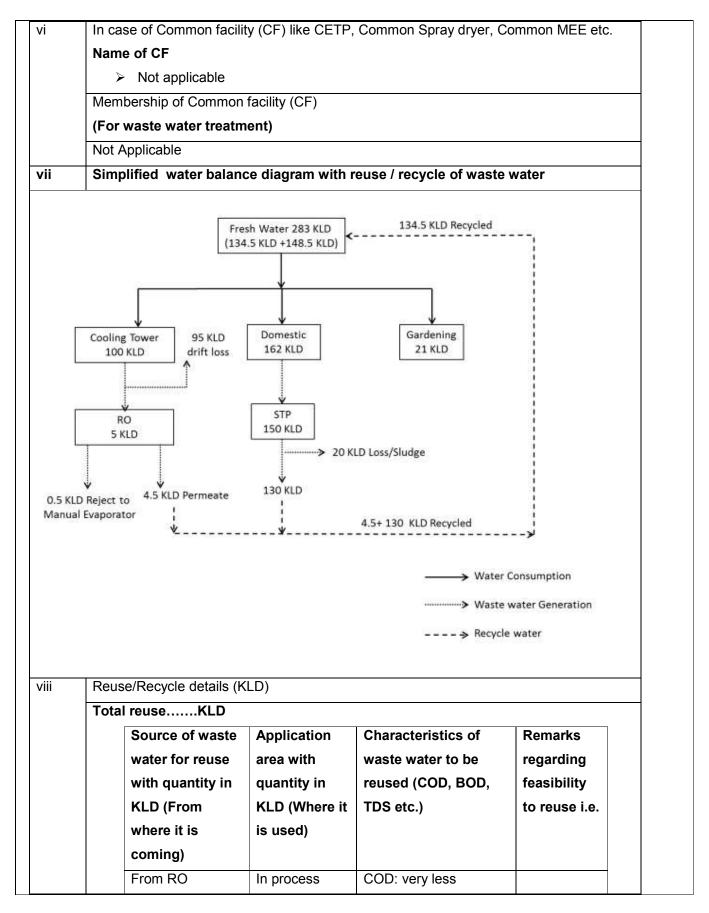
11.	SIA/GJ/IND2/39857/2018	M/s. Voltbek Home Appliances Pvt. Ltd	EC-Reconsideration
		Plot No. SM-12+51/1/2, Sanand-II Industrial	
		Estate, BOL GIDC, Dist - Ahmedabad	

Category of the unit: **5(f)**

Project status: **New**

- Project proponent (PP) submitted online application vide no. SIA/GJ/IND2/39857/2018 dated 23/08/19 for obtaining Environmental Clearance.
- SEIAA issued TOR to PP vide their letter dated 30/10/2018.
- Public Hearing of the Project was Carried Out at Project Site of M/s.Voltbek Home Appliances Pvt. Ltd.
 Plot No. SM-12+51/1/2, Sanand II Industrial Estate, BOL GIDC, Ahmedabad, Gujarat by Gujarat Pollution Control Board on dated 30/06/2019.
- Project proponent has submitted EIA Report prepared by Yuva Enviro Expert, Ahmedabad based on the TOR issued by SEIAA.
- This is a new unit proposes for manufacturing of Synthetic Organic Chemical as tabulated below:

Sr.	Name of the	CAS no. /CI no.	Quantity	End-use of products
No.	Products			


	01	Production Usage of Polyurethane	9009-54-5	57.4 ton/Day (at maximum capacity in 2023)	Refrigerators as appliances For Home use purpose
		Total		57.4 ton/Day	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 05/09/2019.
- Salient Features of the project including Water, Air and Hazardous waste management:

Sr. no.	Particulars	Details
Α		
Α	Total cost of Proposed Project	Total cost is 1214 Cr. From which 11
	(Rs. in Crores):	Cr is the project cost of this plant of
		usage of Polyurethane EC applicable
		area.
	Details of EMP	Capital Cost: 6 Cr
		Recurring Cost: 17 Lakh/Annum
	Details of CER as per OM dated 01/05/2018	22 Lakh (2 % of the total project cost of
		11 Crore- EC applicable project)
В	Total Plot area (sq. meter)	Total plot area is 239278.16 Square
		meter from which 1250 Square meter is
		for polyurethane Usage EC applicable
		area.
	Green belt area	70000 m ²
	(sq. meter)	
С	Employment generation	Total: 2153
		Male:1507, Female: 646
		From which 6 male is required in
		polyurethane Usage EC applicable
		area.
D	Water	
i	Source of Water Supply	GIDC Water supply
	(GIDC Bore well, Surface water, Tanker	
	supply etc)	
	Status of permission from the concern	Obtained

	authority.						
	Water co	nsumption (KLD)					
		Category	Quantit	y Re	marks		
			KLD				
		(I) Domestic	162				
		(J) Gardening	21				
		(K) Industrial	•				
		Proces	ss -				
		Washir	ng -				
		Boil	er -				
		Coolir	ng 100				
		Othe					
		Industrial Tot					
		Total (A + B + 0	C) 283				
	2) Quant	otal water requirementity to be recycled: 134 fresh water requirementer requirementer requirementer requirementer requirementer requirementer	.5 KLD nt:148.5 KLD		r)		
iii	2) Quant 3) Total t	tity to be recycled : 134 fresh water requireme	.5 KLD nt:148.5 KLD	ycled wate	r)		
ii	2) Quant 3) Total t	tity to be recycled: 134 fresh water requireme ter requirement = Fre	.5 KLD nt:148.5 KLD sh water + Rec Waste water		r)		
ii	2) Quant 3) Total t	tity to be recycled: 134 fresh water requirementer requirement = Freater generation (KLD) Category	.5 KLD nt:148.5 KLD sh water + Rec	ycled wate			
ii	2) Quant 3) Total t	tity to be recycled: 134 fresh water requirementer requirement = Fre ater generation (KLD)	.5 KLD nt:148.5 KLD sh water + Rec Waste water KLD	ycled wate Remarks Will be tre	eated in STP		
iii	2) Quant 3) Total t	tity to be recycled: 134 fresh water requirementer requirement = Freater generation (KLD) Category	.5 KLD nt:148.5 KLD sh water + Rec Waste water	Remarks Will be tre	eated in STP a	in in	
iii	2) Quant 3) Total t	tity to be recycled: 134 fresh water requirementer requirement = Freater generation (KLD) Category	.5 KLD nt:148.5 KLD sh water + Rec Waste water KLD	Remarks Will be tre 130 KLD Domestic	eated in STP areuse in back & Gardening	c in	
iii	2) Quant 3) Total t	tity to be recycled: 134 fresh water requirementer requirement = Freater generation (KLD) Category	.5 KLD nt:148.5 KLD sh water + Rec Waste water KLD	Remarks Will be tre 130 KLD Domestic purpose 8	eated in STP a	c in	
ii	2) Quant 3) Total t	tity to be recycled: 134 fresh water requirement = Freeter requirement = Freeter generation (KLD) Category (E) Domestic	.5 KLD nt:148.5 KLD sh water + Rec Waste water KLD	Remarks Will be tre 130 KLD Domestic	eated in STP areuse in back & Gardening	c in	
ii 	2) Quant 3) Total t	tity to be recycled: 134 fresh water requirementer requirement = Freater generation (KLD) Category	.5 KLD nt:148.5 KLD sh water + Rec Waste water KLD	Remarks Will be tre 130 KLD Domestic purpose 8	eated in STP areuse in back & Gardening	c in	
ii	2) Quant 3) Total t	tity to be recycled: 134 fresh water requirement = Freeter requirement = Freeter generation (KLD) Category (E) Domestic (F) Industrial	.5 KLD nt:148.5 KLD sh water + Rec Waste water KLD	Remarks Will be tre 130 KLD Domestic purpose 8	eated in STP areuse in back & Gardening	c in	
ii	2) Quant 3) Total t	tity to be recycled: 134 fresh water requirement = Freeter requirement (KLD) Category (E) Domestic (F) Industrial	5 KLD nt:148.5 KLD sh water + Rec Waste water KLD 150	Remarks Will be tre 130 KLD Domestic purpose 8	eated in STP areuse in back & Gardening	c in	
ii	2) Quant 3) Total t	tity to be recycled: 134 fresh water requirement = Freeter requirement = Freeter generation (KLD) Category (E) Domestic (F) Industrial	.5 KLD nt:148.5 KLD sh water + Rec Waste water KLD 150	Remarks Will be tree 130 KLD Domestic purpose 8	eated in STP areuse in back & Gardening	c in	
ii	2) Quant 3) Total t	tity to be recycled: 134 fresh water requirement = Free ater generation (KLD) Category (E) Domestic (F) Industrial Process Washing	.5 KLD nt:148.5 KLD sh water + Rec Waste water KLD 150	Remarks Will be tre 130 KLD Domestic purpose & loss	eated in STP areuse in back & Gardening	t in	
iii ———	2) Quant 3) Total t	tity to be recycled: 134 fresh water requirement = Fresh eter requirement = Fresh eter generation (KLD) Category (E) Domestic (F) Industrial Process Washing Boiler	5 KLD nt:148.5 KLD sh water + Rec Waste water KLD 150	Remarks Will be tre 130 KLD Domestic purpose 8 loss	eated in STP areuse in back & Gardening & 20 KLD will	t in be	

				KLD will be forwarded in				
				manual evaporator(ZLD)				
		Othor:		manual evaporator(ZLD)				
		Others						
		Total Industrial	5					
		waste water						
		Total [A + B]	155					
	-							
iv	Treatme	ent facility within premise	s with capacity	,				
	[In-hous	e ETP (Primary, Second	ary, Tertiary), I	MEE, Stripper, Spray Dryer, STP et	c.			
	The tota	l water consumption will	be 283 KLD. F	roposed is Zero Liquid Discharge U	Jnit.			
	The sew	age water of 150 KLD w	vill be treated in	Sewage Treatment plant and reuse	ed.			
	Treatme	ent scheme including seg	regation at sou	rce.				
		-	•		O and			
		The waste water generated from cooling tower of 5 KLD will be sent to RO and RO permeate (4.5 KLD) will be recycled back in process while reject (0.5 KD) will						
	be sent to manual evaporator. The sewage water of 150 KLD will be treated in							
	Sewage Treatment plant and after treatment 130 KLD will be recycled back							
	within premises. Hence total 134.5 KLD of waste water will be recycled back.							
	Note: (In case of CETP discharge): Management of waste water keeping in view direction under section 18 (1) (b) of							
	_		. •		, 01			
		•		on) act, 1974 issued by CPCB				
	_	ng compliance of CETF	' .					
		Not Applicable						
		te on adequacy of ZLD (I						
	➤ The waste water generated from cooling tower of 5 KLD will be sent to RO and							
	RO permeate (4.5 KLD) will be recycled back in process while reject (0.5 KD) will							
	be sent to manual evaporator. The sewage water of 150 KLD will be treated in							
	Sewage Treatment plant and after treatment 130 KLD will be recycled back							
	v	vithin premises. Hence to	otal 134.5 KLD	of waste water will be recycled bac	k.			
٧	Mode of	Disposal & Final meetin	g point					
	Domesti	c:	Will	be treated in STP and 130 KLD re	euse in			
			bacl	in Domestic & Gardening purpose	e & 20			
				will be loss				
	Industri	al·		be treated in RO and permeate	of 4.5			
	maastri	wi.		will be reuse back and reject of 0.				
				be forwarded in manual evaporator(
1			I W/III I	ie iolwalded in manual evanoratori				

		KLD From	neate)-4.5	In prod	cess	BOD: Ni	0		
			r treatment -130 KLD			BOD<10			
		Tota		134.5	KLD(In p	process and	d gardening)		
E	Air								
i		_	mission deta ers/TFH/Furr		sets etc.	with capac	ities viz. TPI	H, Kcal/hr, MT/hr,	KVA
		Sr. no.	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel MT/Day	Type of emission s i.e. Air Pollutant s	Air Pollution Control Measures (APCM)	
		1	DG Set	11	HSD	165 Litre/Hr	PM,SOX, NOX	Adequate stack height will be maintained	
ii		ess ga		letails i.e.	Type of	pollutant ga	ases (SO _{2,} Ho	CI, NH _{3,} CI _{2,} NO _x e	tc.)
iii	Fugitive emission details with its mitigation measures: As below:								
		-	precautions evelopment			like develop	oment of wat	er sprinkling syst	em
F	(as p			and Other	Wastes	(Managem	ent and Trar	sboundary Move	ment)
	Sr.		e/Name S	pecific	Cate	gory Qua		Management	

no.	of Hazardous waste Used oil	Source of generation (Name of the Activity, Product etc.) Maintenance of plant machineries & D. G. Set	and Schedule as per HW Rules.	(MT/Annum)	Collection, Storage,Reuse in lubrications of gear box and drive chains
2	ETP Waste (Evaporation Salt)	Manual Evaporator	35.3	0.5	Collection, Storage, Transportation, Will be sent to TSDF (Which will be Approved by GPCB and Falling outside CEPI area).
3	Battery	Production Unit		6	Collection, Storage, Transportation, SellingTo authorized dealers
4	Plastic & e- waste	From Production		At Actual	Collection, Storage, Transportation, Will be resale as per Plastic Waste management Rules, 2016

ii	Membership details of TSDF	TSDF membership part is	TSDF membership part is Under Process (GPCB			
	CHWIF etc.	Approved Nearby TSDF w	Approved Nearby TSDF which will be falling Outside			
	(For HW management)	CEPI area).	CEPI area).			
iii	Details of Non-Hazardous	Sewage sludge will be	used as manure within			
	waste & its disposal	premises. Other municip	oal solid waste generated			
	(MSW and others)	would include kitchen was	te, cardboards, papers, and			
		garden waste. Cardboard	and papers wastes will be			
		handed over to scrap de	alers and kitchen & garden			
		waste would be sent to t	he nearest municipal waste			
		collection site. Aluminiur	n waste generated during			
		production is approx. 22	MT/A which will be sold to			
		authorised dealer.	authorised dealer.			
G	Solvent management, VOC	emissions etc.				
i	Types of solvents, Details of	Solvent recovery, % recovery, re	euse of recovered Solvents			
	etc. (Details in Table Format)					
	There will be negligible	e solvent loss from proposed pr	oject as Pentane is			
	completely used and	goes along with the product.				
ii	VOC emission sources and it	s mitigation measures				
	> There will be no VOC	generation				
Н	Details regarding sto	orage of Hazardous chemicals	s-Not Applicable			
	Storage details	Name of major	Remarks			
		Hazardous chemicals				
	Storage tanks: 3 I	NOs Methylene diphenyl	@ 80 KL			
		diisocyanate (MDI)	storage			
		[
	Applicability of PES	O : Applicable and Under Proce	SS			

- During the meeting dated 05/09/2019, technical presentation made by the Project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report,
 Public hearing proceedings and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect for the study area of 10 km radial distance from project site for the period October 2018 to December 2018. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2 & NOX at tenlocations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD. The resultant concentrations are within the NAAQS. The modeling

- study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan has been covered in the RA report.
- Committee also noted that a complaint on the project has been received on 23/06/2019 via E-mail from Paryavaran Abhiyan (NGO) and noted on the issue raised (1) storage on MDI and the Applicability of EC on the same considering category 6 (b), (2) Project falls in GIDC Sanand which has not obtained EC as per category 7(c) as per EIA Notification, after detail deliberation committee concluded that as per OM dated 13/06/2019 from MoEF&CC EC on Isolated Storage of Hazardous Chemicals has been Eliminated and further they submitted that the Isolated storage of Hazardous chemicals is within the 500 meter from the production area. Further committee deliberated that as Sanand GIDC has not obtained EC in category 7 (c) as per EIA Notification the project proponent has already carried out Public Hearing for the compliance of the same as per the ToR issued by SEIAA.
- Committee noted that this proposal is new in GIDC II Sanand. Source of Water is GIDC. PP mentioned that effluent generated from cooling tower blow down will be treated in proposed in-house RO, RO Permeate will be reused back by mixing with fresh water while RO Reject will be treated in manual evaporator. Committee asked PP about justification for calculation of drift loss however PP was not able to satisfactorily address the same. Committee asked PP about technical specification of manual evaporator and about the operation of the same however PP was not able to address the same. Committee asked PP to submit detail Plant Layout for the overall plot for which EC is applied with details of all the plant & machinery installation along with storage tanks of MDI. Committee also noted that PP has not properly address issues raised in the public hearing in the presentation. Committee deliberated on MDI safety issues for storage, transfer, unloading & process and noted that PP has not addressed satisfactorily the same. Committee noted that PP has not addressed Hazardous Waste as per HWR 2016.
- After detailed discussion, it was decided to call the project proponent along with their expert consultant only after satisfactory submission of the following details.
 - Technical Justification for 95 KLD Drift Loss from Cooling Tower having 100 KLD fresh water consumption in Water Balance Diagram.
 - 2. Submission of Approved Plant Layout along with every Technical details regarding plant & machinery and storage tanks of MDI along with their capacities.
 - **3.** Details of issues raised in Public Hearing covering all the questions (issues) raised by public along with the commitment of the Project Proponent for the same in Tabular Form along with Summary.
 - 4. Technical Specification of Evaporator and its operation mechanism as per the ToR.

- 5. Safety Precautions on MDI covering Storage, Transfer, Loading, Unloading & Process Safety.
- 6. Revised Hazardous Waste Matrix Considering the Storage of MDI as per HWR 2016.
- **7.** Technical Justification of ND values of COD/BOD at all the locations for Surface Water & Ground Water in EIA Report.
- PP submitted reply vide their letter dated 24.09.2019 which was considered in meeting dated 25.09.2019.
- During SEAC meeting dated 25/09/19, PP informed that they have submitted technical justification regarding 95 KLD drift loss from cooling tower with summary of water balance diagram and committee deliberated in brief regarding evaporative cooling unit for drift loss. Committee deliberated in length regarding Approved Plant Layout along with every Technical details regarding plant & machinery and storage tanks of MDI along with their capacities. Committee deliberated in length regarding details of issues raised in Public Hearing covering all the questions (issues) raised by public along with the commitment of the Project Proponent for the same in Tabular Form along with Summary submitted by PP. Committee asked regarding technical details of evaporator and its operation mechanism, PP informed in details regarding evaporator and RO system for effluent treatment. Committee insisted for safety precaution measures for MDI storage and its handling and revised Hazardous waste matrix considering MDI storage and handling. PP informed about technical justification for ND values of COD/BOD at all the locations for Surface Water & Ground Water in EIA Report.
- <u>In view of above after detailed discussion, Committee unanimously decided to recommend the project to SEIAA ,Gujarat for grant of Environmental Clearance.</u>

ſ	12.	SIA/GJ/IND2/36996/2019	M/s. Vihita Chem Pvt Ltd (Unit III)	Screening and
			Plot No. 25/8, GIDC Estate- Jhagadia, Ta-	scoping
			Jhagadia, Dist-Bharuch	

Project / Activity No.: 5(f)

Project status: New

- This office has received an application vide their online proposal no. SIA/GJ/IND2/36996/2019 dated 27/08/2019 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- Project proponent (PP) has submitted Form-1, PFR and relevant details/information.
- This is a new unit proposes for Synthetic Organic Chemicals manufacturing plant as tabulated below:

Sr. no.	Name of the Products	CAS No.	QUANTITY MT/MONTH	End-use of the products		
	GROUP-1 (Sr. NO:- 1 to 3) (Total:- 70 MT/Month)					
1.	2,3,4,5-bis-O-[1-Methyl Ethyl	20880-92-6	70	For Topiramate		
	idene]B-D-Fructopyranose			(API)		

	AND/OR			
2.	Di Methyl Formamide Di Methyl	4637-24-5		For Imatinib (API)
۷.	AcetalAND/OR	4037-24-3		1 of imatino (Ai 1)
3.	4-Methyl Catechol Di-acetic acid	52589-39-6		For Watermelone
	Dimethyl ester AND/OR			Ketone
				(FRAGRANCE)
	GROUP-2 (Sr No:-4 to 8) (TOTA	L:- 40 MT/Month	
4.	4-Methyl Catechol AND/OR	452-86-8	40	For Watermelon
				Ketone
				(FRAGRANCE)
5.	Methylene dioxy phenol AND/OR	533-31-3		For Paroxetine (API)
6.	4-Chloro-4'Hydroxy	42019-78-3		For Fenofibrate
	Benzophenone AND/OR			(API)
7.	2-Bromo Veratryl Bromide	53207-004		For Pinaverium
	AND/OR			Bromide (API)
8.	7-Ethyl tryptophol AND/OR	41340-36-7		For Etodolac (API)
	GROUP-3 (Sr No:-9 to 53) (TOTAL	:- 25 MT/Month)		
9.	Di Methyl Formamide Di Iso	18503-89-4	25	For Cocaine (API)
	Propyl Acetal AND/OR			
10.	4-Methoxy Benzaldehyde	2186-92-7		For
	dimethyl Acetal AND/OR			Paclitaxel/Octinoxate
				(API)
11.	Benzaldehyde dimethyl Acetal	1125-88-8		For Rosuvastatin
	AND/OR			(API)
12.	Dimethyl Acetamide Dimethyl	018871-66-4		For Zaleplon (API)
	Acetal AND/OR			
13.	O-Benzyl hydroxyl amine	2687-43-6		For Larsartan(API)
	Hydrochloride AND/OR			
14.	Endo-9-methyl-9-	76272-56-5		For Granisetron (API)
	azabicyclo[3,3,1]nonane 3-			
	amineAND/OR			
15.	2 3 Dihydrofuran AND/OR	1191-99-7		For Etodolac
	,			

16.	2-Amino-4-fluoro Benzophenone	3800-06-4	For Pitavastatin (API)
	AND/OR		
17.	2-(2-ethoxy phenoxy)ethyl amine HCL AND/OR	64464-07-9	For Tamsulosin (API)
18.	2-(2-ethoxy phenoxy)ethyl amine AND/OR	6781-17-5	For Tamsulosin (API)
19.	N-(4-cyanophenyl)-glycin AND/OR	42288-26-6	For Dabigatran (API)
20.	1-(2,'5' Dimethoxy phenyl amino ethanol) AND/OR	3600-87-1	For Midodrine (API)
21.	Guanidine hydrochloride AND/OR	50-01-1	For Triazine (API)
22.	Guanidine Nitrate AND/OR	506-93-4	For Trimethoprim (API)
23.	Guanidine thiocyante AND/OR	593-84-0	For Triazine (API)
24.	O-benzyl hydroxyl amine AND/OR	2687-43-6	For Azaindoles (API)
25.	Syringaldazine AND/OR	14414-32-5	For Cholrine Test (API)
26.	3-amino-2-thiophenecarboxylic acid AND/OR	55341-87-2	For Tenoxicam (API)
27.	ethyl 2-(3-cyano-4- isobutoxyphenyl)-T-oxo-N,B- diphenylbenzenebutanamide AND/OR	125971-96-2	For Atorvastatin (API)
28.	Sulfamerazine AND/OR	127-79-7	For Antibiotic & Antimicrobial (API)
29	2-amino-4-methylpyrimidine AND/OR	108-52-1	For Sulfamerazine (API)
30	Methyl-2-amino-3-nitrobenzoate AND/OR	57113-91-4	For Candesartan (API)
31.	Guanidine carbonate AND/OR	593-85-1	For Triazine (API)
32.	N-hydroxy phthalimide AND/OR	524-38-9	For Catalyst Oxidation Reaction

33	Alpha –Bromo -2-Chloro Phenyl	85259-19-4	For Clopidogrel (API)
	Acetic Acid Methyl Ester		
	AND/OR		
34	4-Methoxy-3-	592542-51-3	For Oncology
	nitrobenzylsulfonylacetic acid		(API)
	AND/OR		
35	3,4-Dihydroxy Benzoic Acid	99-50-3	For Protochuic Acid
	AND/OR		(API)
36	3,4- Dihydroxy Benzoic Acid	2150-43-8	For Erlotinib
	Methyl ester AND/OR		(API)
37	Piperonylic Methyl Ester	326-56-7	For Fragrance
	AND/OR		Intermediate
38	Ethyl 3-[(pyridin-2-yl)-amino]-	103041-38-9	For Dabigatran (API)
	propanoate AND/OR		
39	3-nitro-4-methylamino benzoic	41263-74-5	For Dabigatran (API)
	acid AND/OR		
40	Hydroquinone dimethyl ester	150-78-7	For Midodrine (API)
	AND/OR		
41	Malonic Acid Methyl Ester	38330-80-2	For Gycosylation
	Potassium salt AND/OR		(API)
42	(1R,2R)-1,2 Cyclohexane	46022-05-3	For Lurasidon Hcl
	Dicarboxylic Acid AND/OR		(API)
43	1-Methylindazole-3-Carboxylic	50890-83-0	For Garnisetron Hcl
	acid AND/OR		(API)
44	Isovanillic Acid AND/OR	645-08-9	For Galantamine
			(API)
45	2-Methyl-3-Oxo-Pentanoate	759-66-0	For Etodolac (API)
	AND/OR		
46	2-(2-ethoxy phenoxy)-mesylate	106463-17-6	For Tamsilosin HCl
	AND/OR		(Speciality Chemical)
47	3-(((2-methoxy-2-	106820-63-7	For Tenoxicam (API)
	oxoethyl)amino)-sulfonyl)-2-		
	thiopenecarboxylic acid methyl		
	ester AND/OR		
48	Methyl-6-methylnicotinate	2519-37-1	For Etoricoxib (API)
	AND/OR		

49	4-[(4-Methyl-1-piperazinyl)-	106261-48-7		For Lematinib (API)
	methyl]-benzoic acid AND/OR			
50	2-(((2'-cyano-(1,1'biphenyl)-4-	139481-28-0		For Cilexetile (API)
	yl)-methyl)amino)-3-nitro			
	benzoic acid) AND/OR			
51	Ndlic anhydride (endo- cis-	3853-88-1		For Lurasidone Hcl
	bicyclo-(2.2.1)-5-heptane-2,3-			(API)
	dicarboxylic acid) AND/OR			
52	4- Methoxy-3-(3-	895240-50-3		For Aliskiren (API)
	methoxypropoxy) benzoic acid			
	AND/OR			
53	3- cyclopropyl-3-oxo Propionic	32249-35-7		For Pitavastatin (API)
	Acid Methyl Ester AND/OR			
	GROUP-4 (Sr. No:-54 To 127) (25	MT/Month)		
54	4-Hydroxy Benzyl Alcohol	623-05-2	25	For Bisoprolol
	AND/OR			Fumarate (API)
55	2,4,6 TrimethoxyBenzaldehyde	830-79-5		For Oncology
	AND/OR			(API)
56	4-Isopropyl catechol AND/OR	2138-43-4		For Fragrance
				Intermediate
57	3-Methoxy Phenol AND/OR	150-19-6		For Antioxidants
				(API)
58	Veratryl Alcohol AND/OR	93-03-8		For Pinaverium
				Bromide (API)
59	3,4 Dihydroxy Benzaldehyde	139-85-5		For Protochuic Acid
	AND/OR			(API)
60	4-Propyl Catechol AND/OR	2525-02-2		For Fragrance
				Intermediate
61	(3S,4R)-4-(4-Fluorophenyl)-3-	105812-81-5		For Paroxetine (API)
	hydroxymethyl-1-			
	methylpiperidine(-alcohol)			
	AND/OR			
62	3 –MethoxyPropiophenone	37951-49-8		For Tapentadol (API)
	AND/OR			
63	4-Hydroxy Benzaladehyde	123-08-0		For Bisoprolol
	AND/OR			Fumarate (API)

64	Piperonyl Alcohol AND/OR	495-76-1	Antioxidants (API)
65	3,4-Dimethoxy phenol AND/OR	2033-89-8	For Thalicarpine
00	4. Mathyl Cusingal AND/OD	02.54.0	(API)
66	4- Methyl Guaiacol AND/OR	93-51-6	For Fragrance
			Intermediate
67	Isovanillyl Alcohol AND/OR	4383-06-6	Aliskiren (API)
68	3-Methoxy benzyl alcohol	6971-51-3	Sarpogrelate (API)
	AND/OR		
69	2,5-dimethoxy Benzaldehyde	93-02-7	Midodrine (API)
	AND/OR		
70	5-Nitrovanillin AND/OR	6635-20-7	Entacapone (API)
71	4-Hydroxy Anisole AND/OR	150-76-5	For Fragrance
			Intermediate
72	Salicylaldehyde AND/OR	090-02-8	Midodrine (API)
73	Isovanillin AND/OR	621-59-0	For Galantamine
			(API)
74	Watermelone ketone AND/OR	28940-11-6	For Perfumes
			(Fragrance)
75	(1R,2R)-1,2-	65376-05-8	For Lurasidone Hcl
	cyclohexanedimethanol AND/OR		(API)
76	3',4'-(methylenedioxy)-	3162-29-6	For Paroxetine Hcl
	acetophenone AND/OR		(API)
77	3,4-dihyroxy-5-nitro-	116313-85-0	For Enatcapone
	benzaldehyde AND/OR		(API)
78	2,4- di Hydroxy Benzophenone	131-56-6	For Antioxidants
	AND/OR		(API)
79	2-hydroxy benzyl alcohol	90-01-7	For Fragrance
	AND/OR		Intermediate
80	N-benzyl-4-	22065-85-6	For Donepezil (API)
	piperidinecarboxaldehyde		
	AND/OR		
81	5,6- Dimethoxy indanone	2107-69-9	For Donepezil (API)
	AND/OR		

82	3-(1-Piperaziny)-1,2-	87691-87-0/	For Ziprasidone (API)
02	Benzisoxazole/Hydrochloride	87691-88-1	1 of Zipradiadric (711 1)
	AND/OR	07031001	
83	5-Chloroethyl-6-Chloro-2-	118289-55-7	For Ziprasidone (API)
63	Oxindole AND/OR	110209-33-7	Tot Ziprasidorie (AFT)
0.4		400004.04.7	F. J. C. T. (A.D.)
84	4-[(4-Methyl-1-piperazinyl)-	106261-64-7	For Imatinib (API)
	methyl]-benzoyl chloride		
	dihydrochloride AND/OR		
85	1-(Benzo (d)(1,3)dioxol-5-yl)	6329-73-3	For Proline (API)
)ethanol AND/OR		
86	2 -Bromo 2',5' –	1204-21-3	For Midodrine (API)
	dimethoxyacetophenone AND/OR		
87	(1R,2R)-1-2-bis (methane	186204-35-3	For Lurasidone Hcl
	sulfonyloxy methyl) cyclohexane		(API)
	AND/OR		
88	Tert-butyl(4-bromophenyl)	639520-70-0	For Protecting Group
	Methylcarbamate AND/OR		
89	(2-cyclopropyl-4-(4-	121660-11-5	For Pitavastatin (API)
	fluorophenyl)quinolone-		, ,
	3yl)methanol AND/OR		
90	2-Bromo-3'-Chloro –	34911-51-8	For Bupropion Hcl
	Propiophenone AND/OR		(API)
91	3- Bromo- 4-Hydroxy	2973-78-6	For Bromoxynil (API)
	Benzaldehyde AND/OR		
92	3,4-(methylenedioxy) bromo	2635-13-4	4-Bromo 1,2-
32	benzene AND/OR	2000-10-4	Methylene Dioxy
	Benzene AND/OK		Benzene (Speciality
00	O Mathama Dannal ablanida	004.00.0	Chemical)
93	3-Methoxy Benzyl chloride	824-98-6	Sarpogrelate (API)
	AND/OR		
94	4- Chloro Guaiacol AND/OR	16766-30-6	For Fragrance
			Intermediate
95	4- Chloro VeratroleAND/OR	16766-27-1	For Reactant
			(Speciality Chemical)
96	2-Bromo-4- Chloro Phenol	695-96-5	For Reactant
	AND/OR		(Speciality Chemical)

97	4- Bromo Anisole AND/OR	104-92-7	4-Bromo –(3-Methyl
			Phenol)
			Methanamine
			(Speciality Chemical)
98	4-BromoPhenetole AND/OR	588-96-5	For irritability
			(Fragrance)
99	Endo-9-methyl-9-	135906-03-5	For Granisetron Hcl
	azabicyclo[3,3,1]nonane 3-amine		Int. (API)
	2 HCL AND/OR		
100	2-Bromo-4-Cyanophenol AND/OR	82380-17- 4	For 2-Bromo -4-
			Hydroxy -Benzonitrite
			(Speciality Chemical)
101	2-Chloro-4,6-dimethoxy-[1,3,5]-	3140-73- 6	For Pemetrexed
	triazine AND/OR		Disodium (API)
102	Bicyclo[2.2.1]hep-tane-2,3-exo-	14805-29-9	For Lurasidone (API)
	dicarboximide AND/OR		
103	4-Bromo Phenol AND/OR	106-41-2	For Stilled Reaction
			(Speciality Chemical)
104	2-(2-ethoxy phenoxy) ethyl	3259-03-8	For Tamsulosin (API)
	bromide AND/OR		
105	Ethyl-3[1-(3 amino-4-(methyl	212322-56-0	For Dabigatran (API)
	amino)-phenyl)-n-(pyridine-2-yl)-		
	foramido)proponate] AND/OR		
106	Ethyl-n-[2-((4-cyanophenyl)-	211915-84-3	For Dabigartan (API)
	amino)-methyl-1-methyl-1H-		
	benzimidazol-5-yl)-carbonyl-n-		
	pyridine-2-yl-b-		
	alanimate030AND/OR		
107	6-chloro 2-oxindole AND/OR	56341-37-8	For Ziprasidone (API)
108	6-chloro-5-(chloroactyl)-1-3-	118307-04-3	For Ziprasidone (API)
	dihydro-2H-indole-2-one AND/OR		
109	3,4-(methylenedioxy)-toluene	7145-99-5	For Sitaxentan
	AND/OR		(API)
110	2-chloro-4,6-	18093-05-5	For Fenoldopam
	dimethoxybenzaldehyde AND/OR		Mesylate (API)

111	2-chloro-2',5'-dimethoxy	1204-22-4	For Midodrine (API)
	Acetophenone AND/OR		
112	4-fluoro-alpha-(2-methyl-1-	125971-96-2	For Atorvastatin (API)
	oxopropyl)-t-oxo-	120071 00 2	1 of Attorvation (Att 1)
	N,B,Diphenylbenzenebutanamide		
	AND/OR		
440		5434-47-9	For Honoridona (ADI)
113	5-Bromo-6-bromomethyl-1,3-	5454-47-9	For Iloperidone (API)
444	benzodioxole AND/OR	04400 77.0	5 0
114	6-Fluoro-3-(4-piperidinyl)1,2-	84163-77-9	For Resperidone
	benzisoxazole AND/OR		(API)
115	2,4-dimethoxy benzyl chloride	55791-52-1	For Coumestan
	AND/OR		(Speciality Chemical)
116	methyl-4-(Bromomethyl)-	2417-72-3	For Eprosartan (API)
	benzoate AND/OR		
117	1,2,3,4- tetrahydro-9-methyl-4H-	27387-31- 1	For Ondansetron
	carbazol-4-one AND/OR		(API)
118	4,5-dimethoxy-2- nitro toluene	7509-11-7	For Chemical
	AND/OR		Ingredient (Speciality
			Chemical)
119	Alpha-bromo-ortho-chloro-phenyl	29270-30- 2	For Clopidogrel
	acetic acid AND/OR		(API)
120	3,4-(Dimethoxy)-6-methylbenzyl	34523-76-7	For Antibiotics (API)
	chloride AND/OR		, ,
121	Anisole AND/OR	100-66-3	For Fragrance
			Intermediate
122	Veratrol AND/OR	91-16 - 7	For Salmeterol Int.
122	Torum of 7 m to		(API)
123	Vanillin AND/OR	121-33-5	For Vanilla Bean
123		121 00 0	(API)
124	Ethyl Vanillin AND/OR	121-32-4	For Chocolate
124	Luiyi Valiiliii AND/OR	121-32-4	
105	O. A. marathada mar E	400.57.0	&Antioxidants (API)
125	3,4-methylenedioxy	<u>120-57-0</u>	For Tadalafil Int.
	Benzaldehyde (piperonal)		(API)
	AND/OR		
126	1-[3-(benzyloxy)propyl]-5-	1375180-30-5	For Silodosin (API)
	formylindoline-7-carbonitrile		

	AND/OR			
127	Dimethyl formamide di-tert-butyl Acetal AND/OR	36805-97-7		For Int. Veterinary Uses (API)
		 5 (Sr No:- 128 to 209) ((15 MT/Month)	` '
128	AfatinibDimaleate AND/OR	850140-73-7	15	For Metastatic
				(pharma)
129	Arbutin AND/OR	497-76-7		For Glycoside
				(pharma)
130	Agomelatine AND/OR	138112-76-2		For Antidepressant
				(pharma)
131	Apixaban AND/OR	503612-47-3		For Anticoagulant
				(pharma)
132	Aripiprazole AND/OR	129722-12-9		For Antipsychotic
				(pharma)
133	Asenapine AND/OR	65576-45-6		For Schizophrenia
				(pharma)
134	Axitinib AND/OR	319460-85-0		For Carcinoma
				(pharma)
135	Azilsartan AND/OR	147403-03-0		For Hypertension
				(pharma)
136	Abacavir Sulfate AND/OR	188062-50-2		For HIV Medications
				(pharma)
137	Atorvastatin Calcium AND/OR	134523-03-8		For Cardiovascular
				Diesease (pharma)
138	Bupropion HCL AND/OR	31677-93-7		For Depressive Order
				(pharma)
139	Bisoprolol Fumarate AND/OR	104344-23-2		For Antihypertensive
				(pharma)
140	Bazedoxifene AND/OR	198481-32-2		For Cancer (pharma)
141	Canagliflozin AND/OR	842133-18-0		For Diabetes
				(pharma)
142	Candesartan Cilexetil AND/OR	145040-37-5		For Angiotensin
				(pharma)
143	Celecoxib AND/OR	169590-42-5		For Non-Steroidal
				&Anti-inflammatory

			(pharma)
			,
144	Clopidogrel sulfate AND/OR	120202-66-6	For Antiplatelet
			(pharma)
145	Dabigatran AND/OR	211915-06-9	For Anticoagulant
			(pharma)
146	Dapagliflozin AND/OR	461432-26-8	For Glycemia
			(pharma)
147	Darifenacin AND/OR	133099-04-4	For Overative
			Bladder (pharma)
148	Donepezil AND/OR	120014-06-4	For Dementia
			(pharma)
149	Dronedarone AND/OR	141626-36-0	For atrial fibrillation
			(pharma)
150	Desvenlafaxine Succinate	386750-22-7	For Depressive
	monohydrate AND/OR		Disorder (pharma)
151	Duloxetine Hydrochloride	136434-34-9	For Depression
	AND/OR		&Anxiety (pharma)
152	Erlotinib AND/OR	183321-74-6	For Cancer (pharma)
450	EL LANDIOD	000400.00.4	
153	Etoricoxib AND/OR	202409-33-4	For Pain & Swelling
454	Ctodolog AND/OD	44240.25.4	(pharma)
154	Etodolac AND/OR	41340-25-4	For Arthritis (pharma)
155	Escitalopram oxalate AND/OR	219861-08-2	For Depression &
			Anxiety (pharma)
156	Febuxostat AND/OR	144060-53-7	For Arthritis (pharma)
			, ,
157	Felodipine AND/OR	72509-76-3	For Hypertension
			(pharma)
158	Fluconazole AND/OR	86386-73-4	For Antifungal
			(pharma)
159	Fenofibrate AND/OR	49562-28-9	For High Good And
			loco cholesterol
			(pharma)
160	Granisetron HCI AND/OR	107007-99-8	For Cancer (pharma)

161	Gefitinib AND/OR	184475-35-2	For Lung Cancer
			(Pharma)
162	Gabapentin AND/OR	60142-96-3	For Neurontin
			(Pharma)
163	ILoperidone AND/OR	133454-47-4	For Proton Pump
			(Pharma)
164	Irbesartan AND/OR	138402-11-6	For Hypertension
			(Pharma)
165	Itopride Hydrochloride AND/OR	122892-31-3	For Dyspepsia
			(Pharma)
166	Lapatinib AND/OR	388082-78-8	For Cancer (Pharma)
167	Lurasidone Hydrochloride & its	367514-88-3	For Schizophrenia
	intermediate AND/OR		(Pharma)
168	Losartan Potassium AND/OR	124750-99-8	For Hypertension
			(Pharma)
169	Mem Chloride AND/OR	3970-21-6	For API (Antibiotics)
170	Minodronic Acid AND/OR	155648-60-5	For osteoporosis
			(Pharma)
171	Moclobemide AND/OR	71320-77-9	For Depression &
			Anxiety (Pharma)
172	Modafinil AND/OR	68693-11-8	For Sleep apnea &
			narcolepsy (Pharma)
173	Metoprolol Tartrate AND/OR	37350-58-6	For Hypertension
			(Pharma)
174	Nisoldipine AND/OR	63675-72-9	For Hypertension
			(Pharma)
175	Omeprazole AND/OR	73590-58-6	For Antacids and
L			Peptic Ulcer(Pharma)
176	O Des Venlafexine AND/OR	93413-62-8	For Major Depression
			Disorder (Pharma)
177	Olmesartan AND/OR	144689-63-4	For Hypertension
			(Pharma)
178	Pitavastatin AND/OR	147511-69-1	For High & Low
			Cholesterol (Pharma)

179	Piperonylic Acid AND/OR	94-53-1	For Piperonal (API)
180	PramipexoleDihydrochloride	191217-81-9	For Renal Liver
	Monohydrate AND/OR		(Pharma)
181	Prasugrel Hydrochloride AND/OR	389574-19-0	For Heart Disease
			(Pharma)
182	Paroxetine hcl AND/OR	61869-08-7	For Depression
			(Pharma)
183	Pinaverium Bromide AND/OR	53251-94-8	For Irritable Bowel
			Syndromes (Pharma)
184	Pioglitazone HCl AND/OR	112529-15-4	For Diabetes
			(Pharma)
185	QuetiapineFumarate AND/OR	111974-72-2	For Schizophrenia
			(Pharma)
186	Rabeprazole Sodium AND/OR	117976-90-6	For
			Gastroesophageal
			Reflux Disease
			(Pharma)
187	Rivaroxaban AND/OR	117976-90-6	For Atrial fibrillation
			(Pharma)
188	Ropinirole Hydrochloride AND/OR	91374-20-8	For Restless Legs
			Syndrome (Pharma)
189	Resperidone AND/OR	106266-06-2	For Schizophrenia
			(Pharma)
190	Sertraline Hydrochloride AND/OR	79559-97-0	For Depression
			(Pharma)
191	Solifenacin Succinate AND/OR	242478-38-2	For Urination &
			incontinentia
			(Pharma)
192	Tadalafil AND/OR	171596-29-5	For Erectile
			DysFunction
			(Pharma)
193	Ticagrelor AND/OR	274693-27-5	For Angioplasty
			(Pharma)
194	Topiramate AND/OR	97240-79-4	For Seizures
			(Pharma)

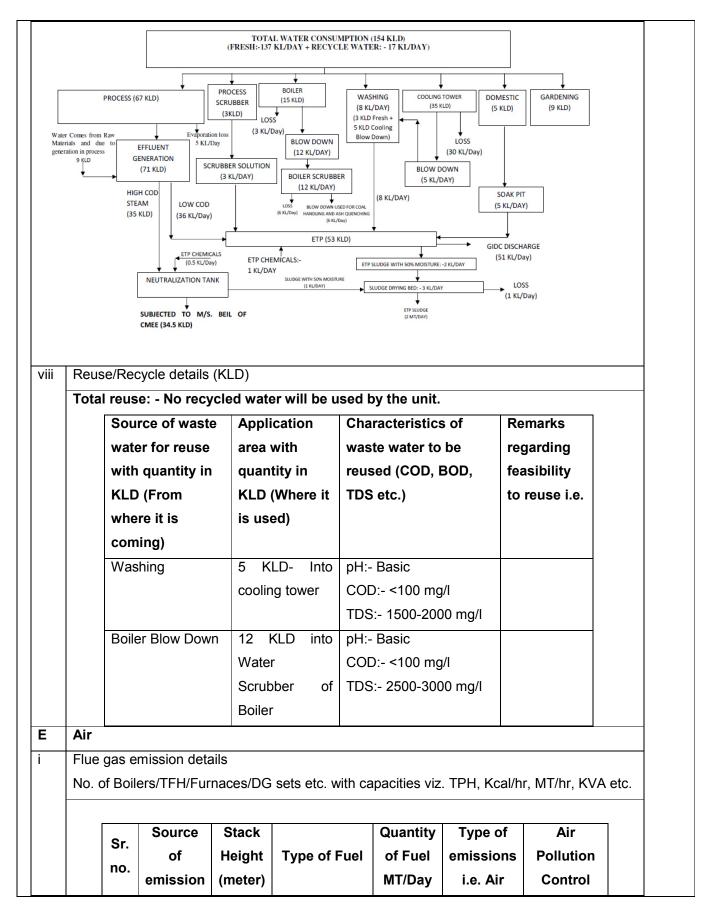
195	Vilazodone Hydrochloride	163521-08-2		For (Pharma)
	AND/OR			
196	Valsartan AND/OR	137862-53-4		For Hypertension
				(Pharma)
197	Vortioxetine Hydrbromide	960203-27-4		For Depression
	AND/OR			(Pharma)
198	Vemurafinib AND/OR	1029872-54-5		For Melonoma
				(Pharma)
199	Warfarin Sodium clatharte	67430-45-9		For AntiCoagulant
	AND/OR			(Pharma)
200	Ziprasidone HCI AND/OR	138982-67-9		For Schizophrenia
				(Pharma)
201	Vildagliptin AND/OR	274901-16-5		For Diabetes
				(Pharma)
202	Memantine HCL AND/OR	41100-52-1		For Alzeheimer
				(Pharma)
203	Linezolid AND/OR	165800-03-3		For Infections
				(Pharma)
204	Ramelteon AND/OR	96597-26-9		For Insomnia
				(Pharma)
205	Timolol maleate AND/OR	26839-75-8		For Antibiotic
				(Pharma)
206	Salmeterol Xinafoate AND/OR	94749-08-3		For Adrenergic
				(Pharma)
207	Ezetimibe AND/OR	163222-33-1		For Primary
				Hypercholesterolemi
				a (Pharma)
208	Ritonavir AND/OR	155213-67-5		For HIV Protease
				Inhibitors (Pharma)
209	Glimepiride AND/OR	93479-97-1		For Diabetes
				(Pharma)
	GRO	UP- 6 R&D PRODUCT	rs	1
	Various New Product developed		5	
	by In-House R & D with similar			
	chemistry for production 1 to 209.			

TOTAL PRODUCTION	 180	
CAPACITY		

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 25/09/2019.
- Aerial distance of this unit from the nearest Critically Polluted Area (CPA), GIDC Ankleshwar is @ 8.24
 Km.
- Salient features of the project including Water, Air and Hazardous waste management :

Sr.	Particulars		Details	
no.				
Α				
Α	Total cost of Proposed Pro	ject	20 Crore	
	(Rs. in Crores):			
В	Total Plot area (sq. meter)		Total Area:- 11784.66 Sq.mt	
			Utilization area:- 9570.62	
	Green belt area		3184.16 Sq.mt	
	(sq. meter)			
С	Employment generation		150	
D	Water			
i	Source of Water Supply		GIDC	
	(GIDC Bore well, Surface wa			
	Status of permission from th	Status of permission from the concern authority.		
ii	Water consumption (KLD)			
	Category	Quantity	Remarks	
		KLD		
	(L) Domestic	5	Unit will use fresh water for it.	
	(M) Gardening	9	Unit will use fresh water for it.	
	(N) Industrial	1		
	Deceses	67	Fresh Water:- 67 KLD	
	Process			
	Washing	8	Fresh water:- 3 KLD + Recycled water:- 5 KLD)	
		8 15		

	Process Scrubber	3	Fresh water:- 3 KLD
	Boiler Scrubber	12	Recycled Water:- 12 KLD
	Industrial Total	140	Fresh water:- 123 KLD + Recycled water:- 17 KLD
	Total (A + B + C)	154	Fresh water requirement:- 137 KLD + Recycled water:- 17 KLD
	4) Total water requiremer	nt for the project:154KLD	
:	5) Quantity to be recycled :	17KLD	
	6) Total fresh water require	ement: 137KLD	
(To	tal water requirement = I	Fresh water + Recycle	ed water)
ii Wa s	ste water generation (KL	.D)	
	Category	Waste water	Remarks
		KLD	
	(G) Domestic	5	Unit will treat domestic effluent along with its industrial effluent.
	(H) Industrial	1	
	Process	71	High COD effluent subjected to CMEE of M/s. BEIL-Dahej: - 35 KLD after neutralization. LOW COD effluent: - 36 KLD subjected to in house effluent treatment plant and subjected to M/s. NCT.
	Washing	8	8 KLD WASHING WATER will be treated in unit's own effluent treatment plant.
	Boiler	12	Total 12 KLD Boiler Blow Down will be generated. Unit will use this Boiler Blow Down water in the water scrubber of Boiler. Total 6 KLD effluent will be lost in to atmosphere. Remaining 6 KLD saturated Water will be used in Coal Handling and Ash quenching. So unit will use entire BOILER BLOW


5 KLD Cooling Tower Blow

5

Cooling

			Down water will be weed for	1
			Down water will be used for the washing purpose.	
	Others	3	3 KLD washing water will be	
	others	O .	subjected to unit's own	
			effluent treatment plant.	
	Total Industrial waste	99	Total 99 KLD effluent will be	
	water		generated from Industrial	
	Water		activity.	
			STEAM 1:- High Ammonical	
			Nitrogen Steam + HIGH	
			COD steam – send to	
			CMEE of M/s. BEIL-Dahej	
			after neutralization. (35	
			KLD)	
			STEAM 2:- Total 64 KLD	
			low COD steam will be	
			generated. From which 5	
			KLD cooling tower blow down will be reused in the	
			washing which comes as low COD and 12 KLD boiler	
			blow down will be used in	
			the water scrubber of boiler,	
			· ·	
			remaining water will be	
			subjected to in house ETP.	
			1 KL/Day chemicals will	
			also be added in ETP for	
	Total IA - Di	404	treatment.	
	Total [A + B]	104	Total 35 KLD effluent will be	
			subjected to M/s. BEIL-	
			Dahej after neutralization.	
			Total 69 KLD effluent	
			(Industrial + Domestic) will	
			be generated ,from it 5 KLD	
			cooing tower blow down will	
			be reused in the washing	
			which comes as low COD	
			from washing and 12 KLD	
			boiler blow down will be	
			used in the water scrubber	
			of boiler, remaining water	
			will be subjected to in house	
			ETP. 1 KL/Day chemicals	
			will also be added in ETP	
			for treatment.	
iv	Treatment facility within premises with capacity			
	[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc.			
 Unit is having primary, secondary and tertiary treatment. 				

Treatment scheme including segregation at source. > High COD and High Ammonical nitrogen stream will be segregated at the source and sent to CMEE of M/s. BEIL- Dahej after neutralization and LOW COD and LOW Ammonical nitrogen steam will be treated in units own effluent treatment plant and subjected to M/s. NCT. Note: (In case of CETP discharge): Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP. > 18(1)-B is not applicable. Brief note on adequacy of ZLD (In case of Zero Liquid Discharge): Unit will discharge 51 KLD effluent into M/s. NCT Mode of Disposal & Final meeting point Domestic: Domestic Industrial: GIDC Discharge In case of Common facility (CF) like CETP, Common Spray dryer, Common MEE etc. Name of CF M/s. NCT Membership of Common facility (CF) (For waste water treatment) M/s. NCT vii Simplified water balance diagram with reuse / recycle of waste water

		Wi	th				Pollutants	Measures	
		Capa	city					(APCM)	
	1	Boile (2 MT/H		30	Natural Gas / Furnace Oil	m³/Day OR 1800	PM SO ₂ Nox	Adequate Stack Height.	
	3	Boild (5 MT/H Ther Flu Hea (4 La Kcal	mic id tter acs	30	Natural Gas / Furnace Oil	MT/Day OR 13 MT/Day	PM SO ₂ Nox PM SO ₂ Nox	Bag Filter Multi Cyclone Separator and Water Scrubber. Adequate Stack Height Adequate	
ii Pı	4 rocess ga	(75 KV (2 N as emis	A) os)	details i.e.	Type of polluta	ant gases (S0	SO ₂ Nox D _{2,} HCl, NH _{3,} (Stack Height Cl _{2,} NO _x etc.)	
	[Sr	ecific					
		Sr. no.	So em (Na the	urce of dission dise of Product rocess)	Type of emission	Stack/Vent Height (meter)	Air Poli Cont Meas (APC	trol ures	
		1		ocess essels	HCI SO ₂	15	Water S followed Alkali Scr	by	
		2		ocess	Br ₂	15	Water S followed Alkali Scr	by	
		3		ocess	HBr	15	Water S followed Alkali Scr	crubber by	
		4		ocess	Ammonia	15	Acid Scru		
iii Fu	ugitive e	missic	n det	ails with it	s mitigation me	easures:	ı	l	
As	s below:								

as p	ardous wa per the Hades s 2016.		and Other Wastes (Management and Transbo	oundary Mo	vement)
Sr. No	Type of Waste	Categ ory	Source of Generation	Total Hazardo us waste generatio n (MT/ Annum)	Mode of Disposal
1.	ETP sludge	35.3	From ETP	730	Collection, Storage, Transportation, Disposal at
2.	Process Salt	35.3	From manufacturing Process of following, 4-Methoxy Benzaldehyde dimethyl Acetal, Benzaldehyde dimethyl Acetal, 2-(2-ethoxy phenoxy)ethyl amine HCl, 2-(2-ethoxy phenoxy)ethyl amine, Ethyl 2-(3-cyano-4-isobutoxyphenyl)-Toxo-N,B-diphenylbenzenebutanamide, Veratryl Alcohol, (1R,2R)-1,2-cyclohexanedimethanol, (2-cyclopropyl-4-(4-fluorophenyl)quinolone-3yl)methanol, 3- Bromo- 4-Hydroxy Benzaldehyde, 3-Methoxy Benzyl chloride, 4- Chloro Veratrole, 4-BromoPhenetole, Anisole, Veratrol, Vanillin, Ethyl Vanillin, 3,4-methylenedioxy Benzaldehyde (piperonal), Etodolac, Nisoldipine, Omeprazole	650	TSDF site authorized by the GPCB.
3	Used Oil	5.1	From lubricate of plant and machineries	5	Collection, Storage, And internally reused in the lubrication of plant

 1	1			Ţ	1-1
					or sell it to authorized re- refiners/rec ycler.
4	Discarde d containe rs/ Empty barrels/ Bags/ Liners	33.1	Packing of raw materials.	50	Storage, decontami nation, transport and send to recycler or reuse or send back to supplier.
5	Spent Catalyst	28.2	From following manufacturing Process Endo-9-methyl-9-azabicyclo[3,3,1]nonane 3-amine, Alpha –Bromo -2-Chloro Phenyl Acetic Acid Methyl Ester , 4-Hydroxy Benzyl Alcohol, 5,6- Dimethoxy indanone, Endo-9-methyl-9-azabicyclo[3,3,1]nonane 3-amine 2 HCl, Bicyclo[2.2.1]hep-tane- 2,3-exo-dicarboximide , Ethyl-n-[2-((4- cyanophenyl)-amino)-methyl-1-methyl- 1H-benzimidazol-5-yl)-carbonyl-n- pyridine-2-yl-b-alanimate030, Alpha- bromo-ortho-chloro-phenyl acetic acid, Bazedoxifene, Dapagliflozin, Paroxetine hcl, Vemurafinib, Salmeterol Xinafoate, Ezetimibe	25	Collection, Storage, and send to authorized unit for regeneratio n.
6	Spent Carbon	28.3	From manufacturing Process Product no:- Aripiprazole, Asenapine, Donepezil, Irbesartan, Losartan Potassium, Losartan Potassium, Moclobemide, PramipexoleDihydrochloride Monohydrate, Tadalafil	30	Collection, Storage, and send for co- processing or Incinerator
7	Distillati on Residue	26.3	From manufacturing Process Product no:- 4-Isopropyl catechol, 4-Propyl Catechol, 1-[3-(benzyloxy)propyl]-5- formylindoline-7-carbonitrile Agomelatine, Aripiprazole, Asenapine, Bazedoxifene, Canagliflozin, Dabigatran, Dapagliflozin, Darifenacin, Escitalopram oxalate, Fenofibrate, Gabapentin, Losartan Potassium, Modafinil, Pitavastatin, Solifenacin Succinate.	280	
8	Formic acid solution (50 to 60%	26.3	From following manufacturing Process Product no:- Methylene dioxy phenol, Ethyl 2-(3-cyano-4-isobutoxyphenyl)-T- oxo-N,B-diphenylbenzenebutanamide	1435	Collection, Storage, And sell to those units

	soln);				who are having permission
9	Zinc chloride Solution (20 to 22% soln);	26.3	From following manufacturing Process Product no:- Methylene dioxy phenol, 3',4'-(methylenedioxy)-acetophenone, 5-Chloroethyl-6-Chloro-2-Oxindole, 2 -Bromo 2',5' – dimethoxyacetophenone, 1,2,3,4- tetrahydro-9-methyl-4H- carbazol-4-one.	3130	of RULE-9 or who have applied under RULE-9.
10	Sodium Bromide Solution (10 to 12% soln);	26.3	From manufacturing Process Product no:- 4,56,60,69,71,206 4-Methyl Catechol, 4-Isopropyl catechol, 4-Propyl Catechol, 2,5-dimethoxy Benzaldehyde, 4-Hydroxy Anisole, Salmeterol Xinafoate	4980	
11	Alumini um Chloride Solution	26.3	From following manufacturing Process 4-Chloro-4'Hydroxy Benzophenone, 2-Amino-4-fluoro Benzophenone, 1-Methylindazole-3-Carboxylic acid, 3,4 Dihydroxy Benzaldehyde, 3 -MethoxyPropiophenone, 3,4-Dimethoxy phenol, 2,4- di Hydroxy Benzophenone, 6-chloro-5-(chloroactyl)-1-3-dihydro-2H-indole-2-one, 2-chloro-2',5'-dimethoxy Acetophenone, Febuxostat	3036	
12	Acetic Acid (35% to 40% solu)	26.3	From manufacturing Process Product no:- 3,4 Dihydroxy benzoic acid	810	
13	Scrubbe r Solution		From Scrubber	1095	It will be treated in unit's own effluent treatment plant. (HCl solution:548 MT/Annum, SBS Solution:-250

					MT/Annu m, HBr solution:- 200 MT/Annu m, Sodium Bromide solution:- 40 MT/Annu m, Ammoniu m Sulfate Solution:- 42 MT/Annu m)
14	Off Specific ation Products	28.4		2	Collection, Storage, And send to co-
15	Date Expired Products	28.5		2	processing or Incinerator
16	Spent Solvents	28.6	From following products, Di Methyl formamide di iso propyl acetal, 2,3 Dihydorfuran, Methyl 2 amino 3 nitrobenzene, 4- Propyl catechol, Bisoprolol fumarate and SRP	560	Collection, Storage and send for co- processing or Incinerator
17	Sodium sulfate salt	35.3	From following products, 3,4 Dihydroxy Benzoic acid methyl ester, Hydroquinone dimethyl ester, 1- methylindazole 3- carboxylic acid, Isovanillic acid.	948	Collection, Storage and sell to those units who are having permission of rule-9 or who have applied under rule- 9 or dispose through TSDF site.
18	Recover able Solvent	28.6	From all products	6450	Collection, Storage and Recycled within the

						unit by using of distillation.		
	Membership det	ails of TSDF, CHWIF	etc.	Members	ship certificate	is attached		
	(For HW manag	gement)		as ANNE	XURE-XV.			
	Details of Non-F	lazardous waste & its	s disposal					
	(MSW and other	rs)						
ì	Solvent manag	ement, VOC emission	ons etc.					
_	Types of solven	ts, Details of Solvent	recovery, % re	covery, reuse o	of recovered S	Solvents etc.		
	(Details in Table	Format)						
	-	*	N/ 1					
	Unit is using methanol, Toluene, Xylene etc. as a solvent.							
		ing methanol, roldene,	Xylene etc. as a	solvent.				
	Name of	Name Of	Total	Quantity	Quantity	%		
Í	Name of Solvent		Total Quantity	Quantity Fresh	recovered	% Recovery		
	Solvent	Name Of Product 2,3,4,5-bis-O-[1-	Total	Quantity	-			
		Name Of Product 2,3,4,5-bis-O-[1- Methyl Ethyl	Total Quantity (MT/MT)	Quantity Fresh (MT/MT)	recovered (MT/MT)	Recovery		
	Solvent	Name Of Product 2,3,4,5-bis-O-[1-	Total Quantity (MT/MT)	Quantity Fresh (MT/MT)	recovered (MT/MT)	Recovery		
	Acetone Toluene	Name Of Product 2,3,4,5-bis-O-[1- Methyl Ethyl idene] B-D- Fructopyranose	Total Quantity (MT/MT) 2 0.6	Quantity Fresh (MT/MT) 0.1	recovered (MT/MT) 1.9 0.56	Recovery 95		
	Solvent Acetone	Name Of Product 2,3,4,5-bis-O-[1- Methyl Ethyl idene] B-D- Fructopyranose Di Methyl	Total Quantity (MT/MT)	Quantity Fresh (MT/MT) 0.1	recovered (MT/MT)	Recovery 95		
	Acetone Toluene Total	Name Of Product 2,3,4,5-bis-O-[1- Methyl Ethyl idene] B-D- Fructopyranose Di Methyl Formamide Di Methyl Acetal	Total Quantity (MT/MT) 2 0.6	Quantity Fresh (MT/MT) 0.1 0.04	recovered (MT/MT) 1.9 0.56 2.46	95 94		
	Acetone Toluene	Name Of Product 2,3,4,5-bis-O-[1- Methyl Ethyl idene] B-D- Fructopyranose Di Methyl Formamide Di Methyl Acetal 4-Methyl	Total Quantity (MT/MT) 2 0.6	Quantity Fresh (MT/MT) 0.1	recovered (MT/MT) 1.9 0.56	Recovery 95		
	Acetone Toluene Total Methanol	Name Of Product 2,3,4,5-bis-O-[1- Methyl Ethyl idene] B-D- Fructopyranose Di Methyl Formamide Di Methyl Acetal 4-Methyl Catechol Di- acetic acid	Total Quantity (MT/MT) 2 0.6 2.6	Quantity Fresh (MT/MT) 0.1 0.04 0.14	recovered (MT/MT) 1.9 0.56 2.46 4.85	95 94 97		
	Acetone Toluene Total	Name Of Product 2,3,4,5-bis-O-[1- Methyl Ethyl idene] B-D- Fructopyranose Di Methyl Formamide Di Methyl Acetal 4-Methyl Catechol Di-	Total Quantity (MT/MT) 2 0.6	Quantity Fresh (MT/MT) 0.1 0.04	recovered (MT/MT) 1.9 0.56 2.46	95 94		
	Acetone Toluene Total Methanol Total Total	Name Of Product 2,3,4,5-bis-O-[1- Methyl Ethyl idene] B-D- Fructopyranose Di Methyl Formamide Di Methyl Acetal 4-Methyl Catechol Di- acetic acid	Total Quantity (MT/MT) 2 0.6 2.6 5	Quantity Fresh (MT/MT) 0.1 0.04 0.14 0.15 0.06 0.21	recovered (MT/MT) 1.9 0.56 2.46 4.85 1.94 6.79	95 94 97 97		
	Total Total Total Total Total N-butanol	Name Of Product 2,3,4,5-bis-O-[1- Methyl Ethyl idene] B-D- Fructopyranose Di Methyl Formamide Di Methyl Acetal 4-Methyl Catechol Di- acetic acid	Total Quantity (MT/MT) 2 0.6 2.6	Quantity Fresh (MT/MT) 0.1 0.04 0.14 0.15	recovered (MT/MT) 1.9 0.56 2.46 4.85	95 94 97		
	Total Total Total Total N-butanol Total	Name Of Product 2,3,4,5-bis-O-[1- Methyl Ethyl idene] B-D- Fructopyranose Di Methyl Formamide Di Methyl Acetal 4-Methyl Catechol Di- acetic acid Dimethyl ester	Total Quantity (MT/MT) 2 0.6 2.6 5 2 7 1.4	Quantity Fresh (MT/MT) 0.1 0.04 0.14 0.15 0.06 0.21 0.05	recovered (MT/MT) 1.9 0.56 2.46 4.85 1.94 6.79 1.35	95 94 97 97 98		
	Total Total Total Total Total N-butanol	Name Of Product 2,3,4,5-bis-O-[1- Methyl Ethyl idene] B-D- Fructopyranose Di Methyl Formamide Di Methyl Acetal 4-Methyl Catechol Di- acetic acid	Total Quantity (MT/MT) 2 0.6 2.6 5	Quantity Fresh (MT/MT) 0.1 0.04 0.14 0.15 0.06 0.21	recovered (MT/MT) 1.9 0.56 2.46 4.85 1.94 6.79	95 94 97 97		
	Total Total Total Total N-butanol Total	Name Of Product 2,3,4,5-bis-O-[1- Methyl Ethyl idene] B-D- Fructopyranose Di Methyl Formamide Di Methyl Acetal 4-Methyl Catechol Di- acetic acid Dimethyl ester Methylene dioxy	Total Quantity (MT/MT) 2 0.6 2.6 5 2 7 1.4	Quantity Fresh (MT/MT) 0.1 0.04 0.14 0.15 0.06 0.21 0.05	recovered (MT/MT) 1.9 0.56 2.46 4.85 1.94 6.79 1.35	95 94 97 97 98		

		5.5	0.224	5.276	
1,2 Di	4-Chloro-	1.6	0.06	1.54	96.2
Chloro	4'Hydroxy				
benzene	Benzophenone				
Total	_	1.6	0.06	1.54	
Methelyen	2-Bromo Veratryl	1	0.5	0.95	95
dichloride	Bromide				
Toluene		1	0.08	0.92	92
Total		2	0.13	1.87	
Toluene	7-Ethyl tryptophol	1	0.1	0.9	90
Total	31 1	6.2	0.7	5.5	
Methelene	2 -Bromo 2',5'-	1.2	0.1	1.1	92
chloride	dimethoxyacetop henone				
Total	_	1.2	0.1	1.1	
	Di Methyl Formamide Di Iso Propyl Acetal	No Solvent w	rill be used.		
Methanol	4-Methoxy	1.4	0.07	1.33	95
	Benzaldehyde Dimethyl Acetal	1.4	0.07	1.33	
Methanol	Benzaldehyde	1.4	0.07	1.33	95
	dimethyl Acetal	1.4	0.07	1.33	
Methanol	4-Hydroxy	2	0.08	1.92	96
Total	Benzyl Alcohol	2	0.08	1.92	
Methelene dichloride	O-Benzyl hydroxyl amine	3	0.15	2.85	95
Toluene	- Hydrochloride	1.6	0.05	1.55	97
Methanol		2	0.1	1.9	95
Total		6.6	0.3	6.3	
Toluene	Alpha –Bromo -	4	0.2	3.8	95
Methanol	2-Chloro Phenyl	1.4	0.1	1.3	93
Chloro	Acetic Acid Methyl Ester	2	0.1	1.9	95
benzene	_		2.1		22
Methelene		1	0.1	0.9	90
dichloride					
Total		8.4	0.5	7.9	a = :
Methanol	3-(1-	7	0.1	6.9	97.5
Toluene	Pleperazinuyl)- 1,2 Hydrochloride	8	0.5	7.5	94
	11 di ocinonac	15	0.6	14.4	
Methelene dichloride	5-Chloroethyl-6- Chloro-2-	1.4	0.1	1.3	93

DMSO	Oxindole	2	0.1	1.9	95
Methanol	1	2	0.05	1.95	97.5
Total		5.4	0.25	5.15	
Methanol	2,4,6	2	0.1	1.9	95
Total	TrimethoxyBenz aldehyde	2	0.1	1.9	
chlorobenze ne	4-Methoxy-3- nitrobenzylsulfon	3.8	0.12	3.68	97
Methanol	ylacetic acid	3	0.3	2.87	96
Total		6.8	0.42	6.55	
Methelyen dichloride	(1R,2R)-1-2-bis (methane sulfonyloxy	2	0.2	1.8	90
THF	methyl) cyclohexane	1	0.04	0.96	96
Total		3	0.24	2.76	
Methelyne dichloride	4-Isopropyl catechol	2	0.1	1.9	95
N-Butanol		2.8	0.06	2.74	98
Copper sulfate		2	0.1	1.9	95
Total		6.8	0.26	6.54	
Toluene	3-Methoxy	2	0.1	1.9	95
Total	Phenol	2	0.1	1.9	
Toluene	Veratrol Alcohol	3.76	0.26	3.5	93
Methanol		2	0.1	1.9	95
Methelyen dichloride		1	0.1	0.9	90
Total		6.76	0.46	6.3	
	3,4-Dihydroxy Benzoic Acid	Solv	net will not be use	ed in this produ	ct.
Total					
	3,4 DihydroxyBenzal dehyde	Solv	net will not be use	ed in this produ	ct.
Total					
N-Butanol	4-Propyl	2.8	0.06	2.74	98
Methelyen	Catechol	2	0.1	1.9	95
dichloride					
Total		4.8	0.16	4.24	
Methanol	Dimethyl	1	0.02	0.98	98
Total	Acetamide	1	0.02	0.98	
DMF	Dimethyl Acetal Tert-butyl(4-	1	0.05	0.95	95
	bromophenyl)		1		

Total		4	0.3	3.7	
Methelyen	4-[(4-Methyl-1-	1	0.05	0.95	95
dichloride	piperazinyl)-				
Thionyl	methyl]-benzoyl chloride	4	0.1	3.9	97.5
chloride r	dihydrochloride				
chloroforom	,	2	0.1	1.9	95
Total		7	0.3	6.7	
Methanol	(2-cyclopropyl-4-	1.2	0.05	1.15	96
1,1001101101	(4-				
Toluene	fluorophenyl)qui nolone-	4	0.1	3.9	97.5
10100110	3yl)methanol				
Cyclohaxen		1	0.05	0.95	95
Total		6.2	0.2	6.0	
Iso propyl	(-) Alcohol	2	0.1	1.9	95
alcohol					
DMF		0.4	0.02	0.38	95
Total		2.4	0.12	2.28	
EDC	3 –	2	0.1	1.9	95
DMF	MethoxyPropiop henone	0.6	0.05	0.55	92
Toluene	nenone	2	0.1	1.9	95
Total		4.6	0.25	4.35	
Methanol	AfatinibDimalate	1.29	0.3	1.26	97.6
Total		1.29	0.3	1.26	
MDC	Arbutin	2	0.1	1.9	95
methanol		1.6	0.08	1.52	95
Total		3.6	0.18	3.42	
Methanol		3	0.1	2.9	96.6
Total		3	0.1	2.9	
Ethyle glycoal	Apixaban	2	0.1	1.9	95%
Total		2	0.1	1.9	
Dimethylforma mide	Aripiprazole	1.7	0.06	1.64	96.4
Iso Propyl		3.1	0.14	2.96	95.4
Alcohol Total		4.8	0.2	4.6	
Methanol	Asenapine	2.4	0.1	2.3	95.8
MDC		2.4	0.1	2.3	95.8
Butanol		2	0.1	1.9	95
N-Butyl alcohol		1.4	0.1	1.3	92.8
Total		8.2	0.4	7.8	72.0
	Axitinib				
		1			<u> </u>
Total MDC r	Azilsartan	1.6	0.1	1.5	93.7

Ethyl acetate		2	0.1	1.9	95
Total		5.6	0.3	4.9	
Iso Propyl Alcohol	Abacavir Sulfate	6	0.3	5.7	95
Triethyl ortho formate		4	0.1	3.9	97.5
Acetone		0.4	0.02	0.38	95
Total		10.4	0.42	9.98	
Cyclohexane	Atorvastatin	1	0.05	0.95	95
Ethyle acetate	Calcium	1	0.05	0.95	95
Methyl ethyl ketone		1	0.05	0.95	95
T-butanol		0.5	0.05	0.45	90
Methanol		1.5	0.09	1.41	94
Total	7	5	0.44	4.56	
Iso Propyl Alcohol	Bupropion HCl	1	0.05	0.95	95
Methelene dichlorie		2	0.1	1.9	95
Ethlye acetate		1	0.05	0.95	95
Total		4	0.2	3.8	
Acetone	Bazedoxifene	1.8	0.1	1.7	94.44
Total		1.8	0.1	1.7	
Methanol	Canagliflozin	2.4	0.1	2.3	95.83
Ethyle acetate		2.4	0.1	2.3	95.83
Toluene + Heptane		2	0.1	1.9	95
Total		6.8	0.3	6.5	
Methelene dichloride r	Candesartan Cilexetil	4.6	0.2	4.4	95.65
Acetone		2	0.1	1.9	95
Methanol		2	0.1	1.9	95
Acetonitrile	7	2	0.1	1.9	95
Total	1	10.6	0.5	10.1	
	Celecoxib				
Total					
Methanol	Clopidogrel bi	3	0.2	2.8	93.33
Total	sulfate	3	0.2	2.8	
Acetone	Dabigatran	3	0.1	2.9	96.66
Methanol recovered	Dapagliflozin	2.2	0.1	2.1	95.45
Total		2.2	0.1	2.1	
Dimethyl formamide	Darifenacin	2	0.1	1.9	95.0
Acetone	7	2	0.1	1.9	96.0
Methelene		2	0.2	1.8	90

dichloride	4				
Total	D "	6	0.4	5.6	05.45
Methelye dichloride	Donepezil	2.2	0.1	2.1	95.45
Methanol		2.2	0.1	2.1	95.45
Diisopropyl ether		2	0.1	1.9	95
Total		6.4	0.3	6.1	
Methelye	Dronedarone	4.2	0.1	4.1	98
dichloride Ethyl acetate	_	4.2	0.1	4.1	98
Total		8.4	0.2	8.2	
Acetonitrile	Desvenlafaxine	2	0.1	1.9	95
	Succinate	0.306	0.026	0.28	93
Thiophenol	monohydrate				
DMSO Total		1	0.05	0.95	95
		3.306	0.226	3.08	
Methanol	Duloxetine	3	0.15	2.85	95
DMSO	Hydrochloride	1	0.05	0.95	95
Diiso propyle amine		1	0.05	0.95	95
acetone	_	1	0.05	0.95	95
Total		6	0.3	5.7	
Methelyene	Erlotinib	1.6	0.1	1.5	94
dichloride Methanol	-	2.95	0.35	2.6	90
Total		4.55	0.33	4.1	70
Tetrahydrofura	Etoricoxib	1.8	0.43	1.7	94.44
n					
Toluen		2.2	0.1	2.1	95.45
IPA-Hexane		2	0.1	1.9	95
Total		6	0.3	5.7	
Methanol	Etodolac	2	0.1	1.9	95
Total	1	2	0.1	1.9	
Iso propyl alcohol	Escitalopram oxalate	2	0.1	1.9	95
Methanol		2	0.1	1.9	95
MDC	-	1.5	0.1	1.4	93.33
Toluene		2	0.1	1.9	95
	_				93
Total	T. 1	6.5	0.4	6.1	0.5.02
Methanol	Febuxostate	2.4	0.1	2.3	95.83
Acetone		1	0.05	0.95	95
Total		3.4	0.15	3.25	
Cyclo hexane	Felodipine	1	0.05	0.95	95
Isopropyl alcohol	1	1	0.05	0.95	95
Total		2	0.1	1.9	
Ethyle acetate	Fluconazol	2	0.1	1.9	95

Methanol		3	0.1	2.9	96
Total	1	5	0.2	4.8	
MDC	Granisetron HCl	2	0.1	1.9	95
Total	1	2	0.1	1.9	
Iso propyl alcohol	Gefitinib	1.6	0.1	1.5	93.7
N-Propanol	•	2	0.1	1.9	95
Total		3.6	0.2	3.4	
Iso propyl alcohol	Gabapentin	1	0.05	0.95	95
Acetone		1	0.1	0.9	90
recovered Methanol recovered		1	0.05	0.95	95
Total	-	3	0.2	2.8	
	ILoperidone	Solve	ent will not be us	ed in this prod	uct.
Total				•	
Iso propyl alcohol	Irbesartan	2	0.1	1.9	95
Methyl-T-Butyl ether		2	0.1	1.9	95
Xylene		2	0.1	1.9	95
Total		6	0.3	5.7	
Toluene	Itopride	2	0.05	1.95	97.5
Acetone	Hydrochloride	2	0.05	1.95	97.5
Total	-	4	0.1	3.9	
Tetrahydrofura n	Lapatinib	2	0.1	1.9	95
Total		2	0.1	1.9	
IPA	Lurasidone	3	0.1	2.9	96.6
Acetone	Hydrochloride	0.4	0.04	0.36	90
Toluene	-	2	0.1	1.9	95
N-Xylene	-	0.4	0.04	0.36	90
Total	1	5.8	0.28	5.52	+
Methanol	Losartan	2.4	0.1	2.3	96
Total	Potassium	2.4	0.1	2.3	
1,3,5 Trioxane recovered	Mem Chloride	1	0.1	0.9	90
Total		1	0.1	0.9	
	Minodronic Acid	No solvent will	be used in this p	roduct.	•
Total]				
Toluene	Moclobemide	2	0.1	1.9	95
IPA		2	0.1	1.9	95
Total		4	0.2	3.8	
Acetid acid	Modafinil	2	0.1	1.9	95
Total		2	0.1	1.9	
Acetone	Metoprolol	1	0.1	0.9	90

Toluene	Tartrate	2	0.05	1.95	97.5
Total		3	0.15	2.85	
Acetone	Nisoldipine	1	0.05	0.95	95
Toluene		1.6	0.1	1.5	93.75
Total		2.6	0.15	2.45	
Methanol	Omeprazole	1	0.05	0.95	95
acetone		1	0.05	0.95	95
Total		2	0.1	1.9	
DMF	O Des	1.3	0.1	1.2	92.30
Methanol	Venlafexine	2	0.1	1.9	95
Toluene		2.2	0.1	2.1	95.45
Total		5.5	0.45	5.2	
Methanol	Olmesartan	2	0.1	1.9	95
Acetone		2	0.1	1.9	95
Total		4	0.2	3.8	
Methanol	Pitavastatin	1	0.05	0.95	95
acetone		1	0.05	0.95	95
Total		2	0.1	1.9	
	Piperonylic Acid				
Total					
Methanol	PramipexoleDihy	4.9	0.2	4.7	95.91
Total	drochloride Monohydrate	4.9	0.2	4.7	
Ethyl methyl ketone	Prasugrel Hydrochloride	2	0.1	1.9	95
Ipa		2	0.1	1.9	95
Total		4	0.2	3.8	
DMF	Paroxetine	1	0.05	0.95	95
toluene		3	0.1	2.9	96.66
Total		4	0.15	3.85	
IPA	Pinaverium	2	0.1	1.9	95
ACETONE	Bromide	2	0.1	1.9	95
Total		4	0.2	3.8	
Recover of Toluene	Pioglitazone HCl	3	0.2	2.8	93.33
Recover of DMSO		0.5	0.04	0.46	92
Recover of Ethanol		1	0.05	0.95	95
	1	4.5	0.29	4.21	
Total					
	QuetiapineFumar ate	3	0.2	2.8	93.33

Ethanol					
Recovered DMSO		0.5	0.04	0.46	92
Total		5.5	0.34	5.16	
Recover of Methanol	Rabeprazole Sodium	2	0.1	1.9	95
Recover of Toluene		2	0.1	1.9	95
Total		4	0.2	3.8	
Recover of Acetic acid	Rivaroxaban	2	0.1	1.9	95
Total		2	0.1	1.9	
Recover of ETHYL ACETATE	Ropinirole Hydrochloride	2	0.1	1.9	95
Recover of Methanol		2.5	0.1	2.4	96
Recover of MDC		2	0.1	1.9	95
Total		6.5	0.3	6.2	
Recover of DMF	Resperidone	2	0.05	1.95	97.5
Total		2	0.05	1.95	
Recover of ETHYL ACETATE	Sertraline Hydrochloride	1	0.05	0.95	95
Recover of Methanol		1	0.05	0.95	95
Recover of Acetonitrile		2	0.1	1.9	95
Total		4.1	0.2	3.9	
Recover of DMF	1-[3- (benzyloxy)propy	2	0.1	1.9	95
Recovery of Methanol	l]-5- formaylindoline-	2	0.1	1.9	95
Total	7-carbonitrite	4	0.2	3.8	
Recover of DMSO	Solifenacin Succinate	2	0.1	1.9	95
Total		2	0.1	1.9	
Recover Of t- butanol	Dimethylformam ide di-tert-butyl	3	0.1	2.9	96.66
Total	Acetal	3	0.1	2.9	
Recover Of methanol	Tadalafil	2.4	0.1	2.3	95.83
Recover IPA		2	0.06	1.94	97
Total		4.4	0.16	4.24	
Recover Of methanol	Ticagrelor	2	0.1	1.9	95
Cyclohexane		2	0.1	1.9	95

recovered					
Total		4	0.2	3.8	
Water recovered	Topiramate	2	0.1	1.9	95
Recover of O- XYLENE		2	0.1	1.9	95
Recover of THF	_	3	0.1	2.9	96.66
Recover of N- HEXANE	-	6	0.3	5.7	95
Total		13	0.6	12.4	
	Vilazodone				
Total	Hydrochloride				
Recover Of Ethyl Acetate	Valsartan	2.4	0.1	2.3	95.83
Di isopropyl ether recovered	-	2	0.1	1.9	95
Total	1	4.4	0.2	4.2	
Recover Of THF	VortioxetineHydr bromide	2	0.1	1.9	95
Total	_ 010111140	2	0.1	1.9	
Acetonitrile recovered	Vemurafinib	2	0.1	1.9	95
Total	1	2	0.1	1.9	
Acetonitrile recovered	Vemurafinib	2	0.1	1.9	95
Total	1	2	0.1	1.9	
	WarfarinSodium				
Total	clatharte				
IPA recovered	Ziprasidone HCl	1	0.05	0.95	90
Total		1	0.05	0.95	
> Unit will fol	urces and its mitigation low LDAR program.				
 Details reg 	garding storage of H	lazardous cl	hemicals		
Stor	age details	Name of	major	Remarks	
			is chemicals		
Tan	ık	Methanol	, Toluene,		
		Xylene, H	lexane, TEA,		
		DMS			
Applicabil	ity of PESO :				

- During the meeting dated 25/09/2019, the project proponent along with their expert/consultant M/s. Jyoti
 Om Chemical Research Centre Pvt. Ltd attended the meeting and made presentation before the committee.
- This is a new Greenfield project in GIDC Jhagadia
- During SEAC meeting dated 17/09/2019, Committee asked about 209 products proposed in product profile and its justification, technical expert of PP informed that proposed products are bulk drug and its intermediate product manufacturing unit. Bulk drugs intermediate will be used captive for bulk drug products and classified in bulk drug group and bulk drugs intermediate group separately. Committee asked about waste water management, PP informed that high COD effluent will be sent to CMEE of M/s BEIL, Dahej after primary treatment for further treatment and disposal and low COD effluent will be treated in ETP and then will be discharged into M/s NCT pipeline for further treatment and disposal. NG/FO will be used as fuel in boiler and bag filter and water scrubber as APCM will be provided with coal fired boiler. Committee asked about bleed liquor from scrubber disposal and PP informed regarding disposal of scrubber bleed liquor.
- Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering 10 Km radial distance from the project boundary.
 - 1. Treatability report of ETP units and stage wise reduction of pollutant like, BOD/COD/Ammonical nitrogen/TDS value to achieve M/s NCT pipeline discharge norms.
 - 2. Unit shall submit notarized undertaking for installation of CEMS at final effluent discharge line leading to M/s NCT pipeline.
 - 3. Compliance of MoEF&CC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.
 - 4. Explore the use of renewable energy to the maximum extent possible. Details of provisions to make the project energy-efficient through energy efficient devices and adoption of modes of alternative eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for energy conservation.
 - 5. Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including vapor pressure. LDAR shall endeavor prevention of losses of solvents to the best minimum extent.
 - 6. Technical details of scrubber and source of VOC generation in each product plant area.
 - 7. PP shall furnish status of all the applicable Rules, Acts, Regulation, Clearances in a tabular form.

- 8. Membership certificate of Common facility (Common Spray dryer, Common MEE, Common Incinerator etc.) with booking quantity in KLD along with other details/information like Spare capacity of Common Facility (CF), quality of waste water by member industry and assurance by CF that there is no adverse impact on Environment and Human Health due to treatment of waste water received from your industrial effluent.
- 9. Submit status of compliance of Environmental norms of existing Common Infrastructure of M/s: BEIL, Dahej.
- The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs available in the MoEF&CC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006.
- Further Project Proponent may be advised to submit final EIA Report with EC application within 100 days from the date of issuance of this ToR to expedite processing of Environment Clearance application.
- The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/along with final EIA report.

13.	SIA/GJ/IND2/41193/2019	M/s.	Maxwe	ell Indu	Screening and			
		Plot No. 508, Phase-IV, GIDC Naroda,						scoping
		Ahme	edabad					

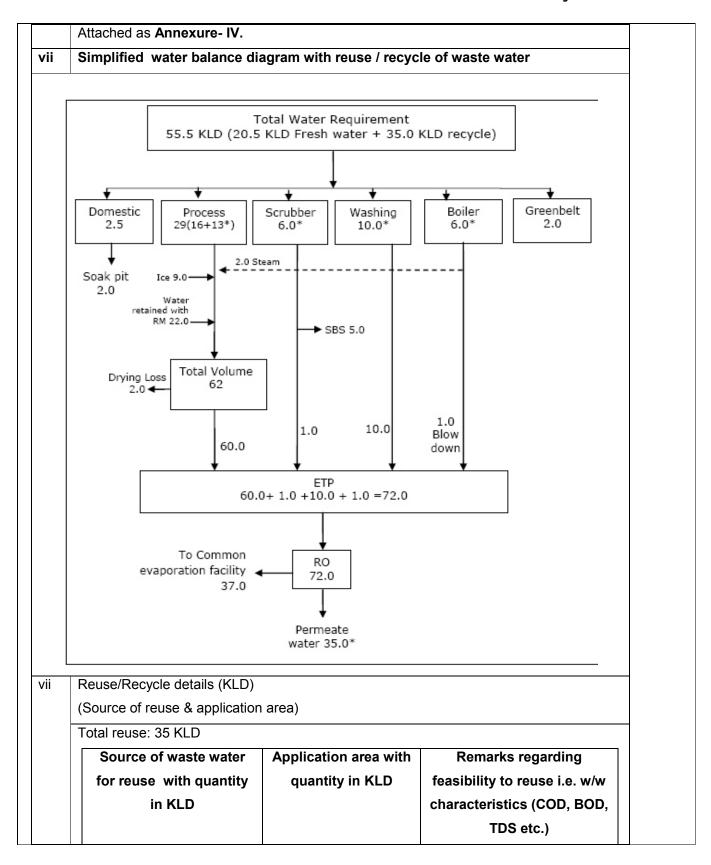
Project / Activity No.: 5(f)

Project status: Expansion

- This office has received an application vide their online proposal no. SIA/GJ/IND2/41193/2019 dated 30/08/2019 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- Project proponent (PP) has submitted Form-1, PFR and relevant details/information.
- This is an existing unit and now proposes for expansion of Synthetic Organic Chemicals manufacturing plant as tabulated below:

Sr.	Name of the Products	CAS No. /	Quan	Quantity, MT/Month		End-use
no.		CI no.	Existing	Proposed	Total	of the
						products
1.	4 Sulpho Anthranilic Acid	98-43-1	10	40	50	Dyes
2.	4 SulphoHydrazone	118969-29-2	00	60	60	manufac
3.	5 SulphoHydrazone	68645-45-4	00	10	10	turing
4.	4 NADPSA	91-29-2	00	80	80	
	(4 Nitro 2 Amino Di Phenyl					

		Total	10	190	200	
	(4 Chloro 2 Amino Phenol)					
8.	4 CAP	95-85-2				
	(4-Nitro 2 Amino Phenol)					
7.	4 NAP	99-57-0				
	Sulphonic Acid)					
	(4 Amino Di Phenyl Amine					
6.	4 ADAPSA	91-30-5				
	Acid)					
	Amine Ortho Sulphonic					
	(2 Nitro 2 Amino Di Phenyl					
5.	2 NADPSA	135-11-5				
	Acid)					
	Amine Ortho Sulphonic					


Note - Unit will take production of any 2 products at a time

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 25/09/2019.
- Salient features of the project including Water, Air and Hazardous waste management :

Sr.	Particulars	Details
no.		
Α	Total cost of Proposed Project	Existing: 1.5 Crores
	(Rs. in Crores):	Proposed: 2.5 Crores
		Total: 4.0 Crores
В	Total Plot area	Existing: 1167 Sq.
	(sq. meter)	m.Proposed:
		Total: 1167 Sq. m.
	Green belt area,/Tree Plantation area	Existing: 100 Sq. m.
	(sq. meter)	Proposed: 250 Sq. m.
		Total: 350 Sq. m.
С	Employment generation	Existing: 12
		Proposed: 13
		Total: 25
D	Water	
i	Source of Water Supply	GIDC water supply
	(GIDC Bore well, Surface water, Tanker supply etc)	
	Status of permission from the concern authority.	Permission is obtained from

				GIDC.	
Water consu	mption (KLD))			
		Existing	Proposed	Total after	Remarks
		KLD	(Additional)	Expansion	
			KLD	KLD	
(O) Dome	estic	1.0	1.5	2.5	Fresh
(P) Garde	ening	1.0	1.0	2.0	Fresh
(Q) Indus	trial				
	Process	1.5	27.5	29.0	13.0 Recycle
					16.0 Fresh
	Scrubber	0.0	6.0	6.0	Recycle
	Washing	2.5	7.5	10.0	Recycle
	Boiler	2.0	4.0	6.0	Recycle
	washing	2.0	8.0	10.0	Recycle
	Cooling				
	Others				
Indu	strial Total	5.5	45.5	51.0	
Grand Tot	al (A+B+C)	7.5	48.0	55.5	
Le	ss Recycle		35.0	35.0	
F	resh water	7.5	13.0	20.5	
rec	quirements				
7) Total v	vater require	ment for the	project: 55.5KL	.D	
8) Quanti	ty to be recy	cle: 35.0KL l	D		
9) Total fi	resh water re	quirement:	20.5KLD		
Waste water	asperation /				
	generation (KLD)			
	Category	KLD) Existing	Proposed	Total after	Remarks
			Proposed (Additional)	Total after Expansion	Remarks
		Existing	-		Remarks
(1)		Existing	(Additional)	Expansion	Remarks
	Category	Existing KLD	(Additional) KLD	Expansion KLD	Remarks
	Category Domestic	Existing KLD	(Additional) KLD	Expansion KLD	Remarks
	Category Domestic Industrial	Existing KLD	(Additional) KLD 1.2	Expansion KLD 2.0	Remarks
	Category Domestic Industrial Process	Existing KLD 0.8 2.3	(Additional) KLD 1.2	Expansion KLD 2.0	Remarks
	Category Domestic Industrial Process Washing	Existing KLD 0.8 2.3 2.0	(Additional) KLD 1.2 57.7 8.0	Expansion KLD 2.0 60.0 10.0	Remarks
	Category Domestic Industrial Process Washing Boiler	0.8 2.3 2.0 0.2	(Additional) KLD 1.2 57.7 8.0 0.8	Expansion KLD 2.0 60.0 10.0 1.0	Remarks

		waste wat	ter							
		Total (A+	B)	5.3	68.7	74.0				
V	Treatm	ent facility within	n pre	mises with	capacity					
	[In-hou	[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc.								
	>	ETP - 75 KLD								
	>	ETP-RO- Capac	city –	·3.5 m³/hr.						
	Treatm	ent scheme incl	uding	g segregat	tion at source.					
	>	Wastewater ger	ewater generated from process, washing and utilities will be treated in In-							
		house ETP.								
	>	Stream of RO	rejec	t (37.0 KL	_D) will be ser	t to common e	evaporation facilit	y at,		
		NEPL, Naroda,	Soci	ety for Cl	ean and Greer	Environment,	Naroda Currently	, we		
		have members	hip o	of 500 KI	_/month of NE	EPL, Naroda a	nd 220 KL/mont	h of		
		Society for Clea	an an	d Green E	Environment, N	aroda. Balance	qty. of 10 KLD wi	ill be		
		procured from a	any c	ommon fa	cility except Va	itva before subi	mission of EIA rep	ort.		
	>	2.0 KLD Domes	stic w	astewater	will be dispose	ed through soal	c pit.			
	Note: (In case of CETP	disc	harge):						
	Manag	Management of waste water keeping in view direction under section 18 (1) (b) of								
	the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB									
	regard	regarding compliance of CETP.								
	>	No disposal of e	efflue	nt to CET	P, Naroda					
	Brief no	ote on adequacy	of Z	LD (In cas	se of Zero Liqui	d Discharge):				
	>	Wastewater ge	nerat	ed from p	orocess, washi	ng and utilities	will be treated in	n In-		
		house ETP. Pri	mary	treated e	ffluent will be p	assed though	ETP-RO. Permea	te of		
		RO (35 KLD)wi	ll be	recycled i	n process and	RO reject (37.	0 KLD) will be se	nt to		
		common evapo	oratio	n facility	at, NEPL, Na	roda, Society	for Clean and G	reen		
		Environment, N	aroda	а						
V	Mode o	of Disposal & Fin	al m	eeting poi	nt					
	Domes	tic: Dome	stic v	vastewate	er (2.0 KLD) will	be disposed th	rough soak pit.			
	Industr	ial: 72.0 k	KLD (of industria	al wastewater	will be primarily	treated in ETP,	after		
		treatm	nent,	it will be	passed though	RO RO nerm	eates (35.0 KLD)) will		
						rto, rto pom	` '	,		
			used	and RO	reject (37.0	•	sent to the com	•		
		be re			• ,	•	sent to the com	•		
vi	In cas	be re evapo	ratio	n facility fo	or final treatme	KLD) will be nt and disposal	sent to the com	mon		
vi		be re evapo	ratio facilit	n facility for	or final treatme	KLD) will be nt and disposal	sent to the com	mon		
vi	CHWIF	be re evapo e of Common	ratio facilit	n facility for y (CF) like non facility	or final treatme ke CETP, Cor	KLD) will be nt and disposal nmon Spray d	sent to the com . ryer, Common N	mon		

ETP-RO permeate – 35.0	RO permeate utilize for	Quality of reuse water is
KLD	Process-13 KLD	given in following table.
	Scrubber-6 KLD	Mention quality easily use for
	Boiler- 6 KLD	washing and utilities without
	Washing – 10 KLD	any adverse impact on
		product quality.

Parameter	Unit	RO permeate after ETP
рН	pH unit	7.5-8.0
Color	mg/L	<10
SS	mg/L	15-18
TDS	mg/L	200-250
COD	mg/L	50-70
BOD	mg/L	20-30
Oil & Grease	mg/L	
Ammonical	mg/L	
Nitrogen	g/ L	
Volume		35.0 KLD

Air Ε

Flue gas emission details

No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc.

Existing & Proposed

Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantit y of Fuel MT/Day	Type of emissions i.e. Air Pollutants	Air Pollution Control Measures (APCM)
					
Steam Boiler*	11	Fire	0.75	SPM, SO ₂ ,	Cyclone
(0.6 TPH)		wood	MT/day	NO _x	
Hot air	11	Fire wood	0.75	SPM, SO ₂ ,	
generator*			MT/day	NO_x	
(2 lakh					
KCal/hr)					
	emission With Capacity ting Scenario Steam Boiler* (0.6 TPH) Hot air generator* (2 lakh	emission With Capacity Height (meter) ting Scenario Steam Boiler* (0.6 TPH) Hot air generator* (2 lakh	emission With Capacity Height (meter) Type of Fuel ting Scenario Steam Boiler* 11 Fire (0.6 TPH) wood Hot air 11 Fire wood generator* (2 lakh	Source of emission With Capacity (meter) Stack Height (meter) With Capacity Type of Fuel MT/Day Source of emission With Capacity Stack Height (meter) Type of Fuel Fuel MT/Day Pollutants	

1.	Steam Boiler	21	Agro	6.0	SPM, SO ₂ ,	Cyclone
	(1.0 TPH)		waste/	MT/day	NO_x	Bag filte
			Agro			
			Briquettes			
2.	Hot air	11	Agro	4.0		
	generator		waste/	MT/day		
	(5 lakh		Agro			
	KCal/hr)		Briquettes			

^{*} Existing boiler and HAG will be dismantled/modified after expansion and replaced by the new boiler and HAG.

ii Process gas i.e. Type of pollutant gases (SO₂, HCl, NH₃, Cl₂, NO_x etc.)

Existing & Proposed

Sr. no.	Specific Source of emission (Name of the Product & Process)	Type of emission	Stack/ Vent Height (meter)	Air Pollution Control Measures (APCM)
Exist	ting Scenario			

There is no process gas emission from existing manufacturing process.

Scenario after expansion

1	Process vent attached to	SO ₂	21	Alkali scrubber
	reaction vessel of 4 and			
	5 sulphoHydrazone			
2	Spin Flash Dryer	SPM	15	In built bag filter
	(250 liter/hr.)			

iii Fugitive emission details with its mitigation measures.

There are chances of the fugitive emission due to handling of raw materials, from process and hazardous chemicals.

Mitigation Measures:

- Entire process will be carried out in closed reactors.
- Pneumatically transfer of liquid raw material in rector.
- Raw material will be stored in the covered structure.
- Greenbelt will be developed around the plant to arrest the fugitive emission.
- Frequent work area monitoring will be done ensure fugitive emissions level.

- Internal road will be concreted or paved to reduce the fugitive emission during vehicular movement.
- Water sprinkling will be done to control air borne dust.
- **F** Hazardous waste (as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

Existing & Proposed

i	Sr.	Type of	Source	Category		Quantity		Method of
	No.	Waste		No. as	Existing	Propose	Total	Disposal
				per HWM		d		
				rules,				
				2016				
	1.	ETP	ETP	35.3	372	1788	2160	Collection,
		sludge			MT/annu	MT/	MT/ann	Storage,
					m	annum	um	Transportatio
								n, Disposal
								at TSDF site.
	2.	Iron	Reductio	26.1	Nil	1935	1935	Collection,
		Sludge	n stage			MT/	MT/	Storage,
			of 2-			annum	annum	Transportatio
			NADPSA					n, Disposal
			, 4-					at TSDF site
			NADPSA					or sale to
								cement
								industries.
	3.	Discarde	Raw	33.1	2500	12500	15000	Collection,
		d	material		No/	No/	No/	Storage,
		Container			annum	annum	annum	Decontaminati
		s						on,
							5.0	Transportation
					0.6	4.4	MT/ann	, Disposal by
		Liners			MT/annu	MT/annu	um	selling to
					m	m		Authorized
								Recycler.
	4.	Used Oil	Plant &	5.1	12	88	100	Collection,
			machiner		Lit/Year	Lit/Year	Lit/Year	Storage,
			ies					Transportatio

								n, Disposal
								by selling to
								Registered
								Reprocess.
	5.	Sodium	Process	B(15)		1560	1560	Collection,
		Bi-	of 4 & 5			MT/Annu	MT/	Storage and
		Sulphite	sulphoHy			m	Annum	captive used.
			drazone					Balance will
								be sold to
								actual user
								under rule-9.
	6.	Bleed	Scrubber			312	312	Collection,
		liquor	blow			MT/yr.	MT/yr.	Storage and
			down					send to ETP
								for treatment
								and final
								disposal.
ii	Membership details of TSDF, CHWIF etc. Eco Care Infrastructures Pvt.							res Pvt. Ltd.,
		•		, CHIVIE				,
	(For	HW manag		, Crivvir e	St	urendranag	ar (copy	attached as
		HW manaç	gement)		St.	urendranag nnexure-IV	ar (copy	,
iii	Detai	HW manag	gement) lazardous w		St.	urendranag nnexure-IV	ar (copy	,
	Detai (MSV	HW manag Is of Non-H	gement) Hazardous w	aste & itsd	Su An isposal	urendranag nnexure-IV	ar (copy	,
G	Detai (MSV	HW managers of Non-Formula of Non-Fo	gement) Hazardous w rs) ement, VOC	aste & itsd	Alisposal	urendranag nnexure-IV	ar (copy	attached as
	Detai (MSV Solve	Is of Non-H V and other ent manag	dazardous w s) ement, VOC ts, Details of	aste & itsd	Alisposal	urendranag nnexure-IV	ar (copy	,
G	Detai (MSV Solve	HW managed is of Non-House and other continuous of solventials in Table	dazardous wrs) ement, VOC ts, Details of	aste & itsd cemissions f Solvent re	Alisposal	urendranag nnexure-IV	ar (copy	attached as
G	Detai (MSV Solve Types (Deta	Is of Non-H V and other ent manag s of solventials in Table No use of	dazardous w s) ement, VOC ts, Details of	aste & itsd C emissions f Solvent re	s etc.	nnexure-IV	ar (copy	attached as
G i	Detai (MSV Solve Types (Deta	Is of Non-H V and other ent manag s of solventils in Table No use of	dazardous w rs) ement, VOC ts, Details of Format) of any solve	aste & itsd C emissions f Solvent re ents its mitigation	s etc. ecovery, %	nnexure-IV recovery.	ar (copy	attached as
G i	Detai (MSV Solve Type: (Deta	Is of Non-F V and other ent manag s of solventils in Table No use of emission s No gene	dazardous was) ement, VOC ts, Details of Format) of any solve	aste & itsd C emissions f Solvent re ents its mitigation	isposal s etc. ecovery, % on measure use of any	nnexure-IV recovery.	ar (copy	attached as
G i	Detai (MSV Solve Type: (Deta	Is of Non-F V and other ent manag s of solventils in Table No use of emission s No gene	dazardous wars) ement, VOC ts, Details of Format) of any solve ources and in	aste & itsd c emissions f Solvent re ents its mitigation CC as no unof Hazardo	isposal s etc. ecovery, % on measure use of any	recovery.	ar (copy	attached as
G i	Detai (MSV Solve Type: (Deta	Is of Non-H V and other ent manages of solventials in Table No use of emission solventials	dazardous wars) ement, VOC ts, Details of Format) of any solve ources and in	aste & itsd C emissions F Solvent re ents its mitigation OC as no unof Hazardo	s etc. ecovery, % on measure use of any s	recovery. s solvent cals	ar (copy	attached as
G i	Detai (MSV Solve Type: (Deta	Is of Non-H V and other ent manages of solventials in Table No use of emission solventials	dazardous wars) ement, VOC ts, Details of Format) of any solve ources and in	aste & itsd C emissions F Solvent re ents its mitigation OC as no unof Hazardo	s etc. ecovery, % on measure use of any sous chemic	recovery. s solvent cals	ar (copy	attached as
G i	Detai (MSV Solve Type: (Deta	Is of Non-F V and other ent manag s of solventils in Table No use of emission s No gene ils regardir	dazardous wars) ement, VOC ts, Details of Format) of any solve ources and in	aste & itsd C emissions F Solvent res ents its mitigation OC as no use of Hazardo Haz	s etc. ecovery, % on measure use of any sous chemic	recovery. s solvent cals	ar (copy	attached as

- During the meeting dated 25/09/2019, the project proponent along with their expert/consultant M/s. San
 Enviro tech Pvt. Ltd attended the meeting and made presentation before the committee.
- During SEAC meeting dated 25/09/2019, Committee asked about existing plant CCA and legal action

compliance for existing plant. PP informed that one show cause notice issued by GPCB and PP complied SCN condition and its reply submitted. Unit is having CCA of GPCB for existing product. Committee asked about clarification regarding area adequacy for proposed product, technical expert of PP informed that this proposed product process is simply one and two step process and at a time only two products will be manufactured in plant. Committee asked about waste water management, PP informed that total industrial effluent will be treated in ETP units and RO plant. RO permeate will be reused back in process while RO reject will be sent to CMEE facility at Naroda . Technical expert of PP informed that agro waste briquette will be used as fuel in boiler and Hot Water Generator and cyclone and bag filter as APCM will be provided with it. Committee deliberated on Hazardous Waste management in details.

- Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering 10 Km radial distance from the project boundary.
 - 1. Technical justification of quantity of ETP sludge against treatment of industrial effluent.
 - 2. Feasibility study report for reuse of industrial effluent along with stage wise reduction of pollutants within premises.
 - 3. Details with respect to justification for proposed expansion: (1) To address proportionate availability of space for production plant. (2) To address proportionate availability of storage area for raw materials finished goods, utilities considering fire-safety norms & PESO standards and goods carrier movement within premises. (3) To address proportionate captive/common infrastructure available to accommodate additional load due to proposed expansion. (4) Environment impact and its mitigation measures for common/ captive infrastructure due to proposed production.
 - 4. Compliance of MoEF&CC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEF&CC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.
 - 5. Explore the use of renewable energy to the maximum extent possible. Details of provisions to make the project energy-efficient through energy efficient devices and adoption of modes of alternative eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for energy conservation.
 - 6. Membership certificate of Common facility (Common Spray dryer, Common MEE, Common Incinerator etc.) with booking quantity in KLD along with other details/information like Spare capacity of Common Facility (CF), quality of waste water by member industry and assurance by

- CF that there is no adverse impact on Environment and Human Health due to treatment of waste water received from your industrial effluent.
- 7. PP shall furnish status of all the applicable Rules, Acts, Regulation, Clearances in a tabular form.
- The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs available in the MoEF&CC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006.
- Further Project Proponent may be advised to submit final EIA Report with EC application within 100 days from the date of issuance of this ToR to expedite processing of Environment Clearance application.
- The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/along with final EIA report.

14.	SIA/GJ/IND2/41244/2019	M/S. Loxim Industries Limited Screening and
		Plot No. DP-120, DP-125 To 129/1, GIDC scoping
		Industrial Estate, Saykha, Ta-Vagra, Dist -
		Bharuch

Project / Activity No.: 5(f)

Project status: New

- This office has received an application vide their online proposal no. SIA/GJ/IND2/41244/2019 dated
 27/08/2019 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- Project proponent (PP) has submitted Form-1, PFR and relevant details/information.
- This is a new unit proposes for Synthetic Organic Chemicals manufacturing plant as tabulated below:

	LIST OF PRODUCTS						
SR.NO	NAME WITH C.I NUMBER	CAS No.	QUANTITY (MT/MONTH)	END USE			
		A - SOLVENT DY	ES				
1	Solvent Blue 104	116-75-6		NYLON			
2	Solvent Green 3	128-80-3		FABRIC			
3	Solvent Violet 13	81-48-1					
4	Solvent Blue 35	17654-14-2	100				
5	Solvent Blue 36	14233-37-5					
6	Solvent Blue 78	2475-44-7					
7	Solvent Red 135	20749-68-2					

8	Solvent Red 139	61969-49-1		
9	Solvent Orange 60	6925-69-5	-	
10	Solvent Red 179	6829-22-7	=	
		B - ACID DYES		
11	Acid Blue 111	6420-90-4		
		6408-78-	1	
		2/2786-71-		
12	Acid Blue 25	2/37218-11-4		
13	Acid Blue 281	226923-51-9	-	
14	Acid Blue 225	12216-97-6	1	
15	Acid Blue 260	62168-86-9	1	
16	Acid Black 194- 24709	61931-02-0	1	
17	Acid Black 107/KBL- 24703	12218-96-1	1	
18	Acid Black 207- 24710	84145-95-9	1	
19	Acid Black 210	99576-15-5	-	
20	Acid Black 63- 24708	32517-36-5	-	
21	Acid Blue 193/Navy MBR- 24404	12392-64-2		
22	Acid Blue 171-24407	51053-44-2	-	
23	Acid Blue 277	25797-81-3	-	NYLON
24	Acid Blue 284-24405	61814-66-2	50	FABRIC
25	Acid Blue 324- 24408	88264-80-6	-	
26	Acid Brown 282- 24601	12219-65-7	-	
27	Acid Green 73	12219-93-1	-	
28	Acid Orange 144	61814-64-0	1	
29	Acid Orange 156	68555-86-2	1	
30	Acid Red 182- 24305	61901-42-6	1	
31	Acid Red 211	12239-05-3	1	
32	Acid Red 260	12239-07-5	1	
33	Acid Red 315	12220-47-2	1	
34	Acid Red 361	61931-22-4	1	
35	Acid Red 405	83833-37-8	1	
36	Acid Red 414	172287-09-7	1	
37	Acid Violet 90- 24801	6408-29-3	1	
38	Acid Yellow 137-24105	72827-84-0	1	
39	Acid Yellow 151	12715-61-6		

40	Acid Yellow 199- 24106	70865-20-2		
41	Acid Yellow 220- 24102	71603-79-7	-	
42	Acid Yellow 246	119822-74-1		
43	Acid Yellow 59	5601-29-6		
	C	- DISPERSED DY	ES	
44	Disperse Red 60	17418-58-5		
45	Disperse Blue 60	12217-80-0		
46	Disperse Blue 56	12217-79-7		
47	Disperse Navy Blue 79 (3G)	12239-34-8		
48	Disperse Orange 25 (RL)	31482-56-1		POLYSTER
49	Disperse Red 167 (Red 2B)	61968-52-3	416	FABRICS
50	Disperse Yellow 211 (4G)	86836-02-4	1	I ABRICS
51	Disperse Violet 99 (3R)	212955-32-3		
52	Disperse blue 62	53989-05-2		
53	Disperse blue 77	20241-76-3		
54	Disperse blue 25	2475-46-9		
		D - PIGMENTS	1	1
55	Pigment Red 122	980-26-7		POLYSTER
56	Pigment Yellow 135	68511-62-6	100	FABRICS
57	Pigment Red 177	4051-63-2		ABINIOO
		E - DIRECT DYES	3	1
58	Direct Base Brown 1	1052-36-6		
59	Direct Black HRS			
60	Direct Black 168	85631-88-5		
61	Direct Black 179	143549-91-1		
62	Direct Black 22	6473-13-8		
63	Direct Black 62	6473-13-8		
64	Direct Blue 273	70956-20-6		COTTON
65	Direct Blue 281	77907-25-6	50	FABRIC
66	Direct Blue 290	110444-91-2		I ABRIC
67	Direct Blue 299			
68	Direct Blue 71	4399-55-7		
69	Direct Blue 80	12222-00-3		
70	Direct Blue 85	70210-31-0	1	
71	Direct Blue 67/SF	3354-97-0	1	
72	Direct Blue 279/SM	72827-89-5	≓	

73	Direct Brown 44/SBR	6252-62-6		
74	Direct Green 26/78	8003-79-0		
75	Direct Orange 102	6598-63-6	-	
76	Direct Orange 118	60202-34-8		
77		1325-35-3		
	Direct Orange 15			
78	Direct Orange 34	12222-37-6		
79	Direct Orange 603R	12217-64-0		
80	Direct Red 16	6227 02 7		
81	Direct Red 227	17791-81-0		
82	Direct Red 239/CAS	28706-25-4		
83	Direct Red 254/2B	6300-50-1		
84	Direct Red 80/F3B	08-10-10		
85	Direct Red 81	09-11-10		
86	Direct Red 83	15418-16-3		
87	Direct Red 89	12217-67-3		
88	Direct Violet 66	04-03-98		
89	Direct Violet 35	6227-20-9		
90	Direct Yellow 106	12222-60-5		
91	Direct Yellow 6	1325-42-4		
92	Direct Yellow 11	1325-37-7		
93	Direct Yellow 137	71838-47-6		
94	Direct Yellow 142	71902-08-4		
95	Direct Yellow 157	72705-26-1		
96	Direct Yellow 86	50925-42-3		
	F	- REACTIVE DYE	S	
97	Reactive Blue 19	2580-78-1		
98	Reactive Blue 49	12236-92-9		
99	Reactive Blue 198	124448-55-1		
100	Reactive Black – 5	1222-25-1		
101	Reactive Black 31	12731-63-4		COTTON
102	Reactive Blue – 171/HEXL	77907-32-5	50	COTTON
103	Reactive Blue 203	147836-71-9		FABRIC
104	Reactive Blue 220	147826-71-9		
105	Reactive Blue 221	93051-41-3		
106	Reactive Blue 222	93051-44-6		
107	Reactive Blue 250/RGB	93951-21-4	-	

108	Reactive Blue 28/ 3R	12225-45-5
109		12225-73-9
110		90597-79-8
11	ŭ	12220-12-1
	i todouro oranigo (22	12225-88-
		6/20262-58-
112	Reactive Orange 16/3R	2/12769-09-4
11:	- J	6522-74-3
114		12236-86-1
11:	9	12225-83-1
116	9	71902-15-3
117	9	91261-29-9
	Reactive Orange 96 / Yellow	
118		85567-07-3
	Reactive Red EHS 237- 1304	
119		17752-85-1
120	Reactive Red 278/CD	
12 ⁻	Reactive Red 120	61951-82-4
122	Reactive Red 141	61931-52-0
123	Reactive Red 194	23354-52-1
124	Reactive Red 195	93050-79-4
12	Reactive Red 198	145017-98-7
126	Reactive Red 222	93051-45-7
12	Reactive Red 23	12769-07-2
128	Reactive Red 2445-1304 B-2	41423-92-1
129	Reactive Red 410	98114-32-0
130	Reactive Red 49	12237-02-4
13	Reactive Violet 5/5R	12226-38-9
132	Reactive Yellow 145/MER	93050-80-7
133	Reactive Yellow 15/GR	12226-47-0
134	Reactive Yellow 160.1	
13	Reactive Yellow 17/G	20317-195
136	Reactive Yellow 24/RTN	12226-51-6
137	Reactive Yellow 37/HNL	12237-16-0
138	Reactive Yellow 42/FG	12226-63-0
139	Reactive Yellow 135/HE6G	77907-38-1

	Total (A+B+C+D+E+F+G+	+H)	2280.0	
	Formulated Dyes		1248.0	
	H - F	ORMULATED D	/ES	
	Sub Total (G)	1	266.0	
150	1,8 Di Amino Naphthalene	479-27-6	50.0	
149	1,8 Dihdroxy-4,5 dinitro AQ	81-55-0	5.0	
148	1, 5 Dichloro AQ	82-46-2] 0.0	
147	1,8 Dichloro AQ	82-43-9	5.0	Dyes
146	AQ	01 72 0		Production of
	1,4 Di Amino 2,3 Di Chloro	81-42-5	200.0	Sale for
145	1,4 Di Amino AQ	128-95-0	206.0	or
144	1,4 Di Hydroxy AQ	81-64-1		Captive Use
	G -	INTERMEDIATE	S	,
143	Reactive Yellow V1/1104B-1			
142	2			
	Reactive Yellow 98_2/1104B-			
141	Reactive Yellow 84/HE4R	61951-85-7		
140	Reactive Yellow 57/ME4GL	61969-35-5		

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 25/09/2019.
- Salient features of the project including Water, Air and Hazardous waste management :

Sr	Particulars	Details							
.									
n									
0.									
A									
Α	Total cost of Proposed Project	30.00 Crores							
	(Rs. in Crores):								
_	Total Distance (or motor)	00050 45 0							
В	Total Plot area (sq. meter)	29256.15 Sq. m.							
	Green belt area	9654.00 Sq. m.							
	(sq. meter)								
	` ' '	Daymananti 100 Nas							
С	Employment generation	Permanent: 108 Nos.							
		Tempararory: 54 Nos.							
D	Water	1							

i	Source of \	Water Supply		Saykha,GIDC	
	(GIDC Bore well, Surface water, Tanker supply etc)				
	Status of permission from the conce		ern authority.	Permission Granted from Saykha,GIDC.	n
				1 2 2 2 2 2	
ii	Water consumption (KLD)				
		Category	Quantity	Remarks	
			KLD	(Reuse)	
		(R) Domestic	5	-	
		(S) Gardening	13	-	
		(T) Industrial			
		Process	218.2	183	
		Washing	10	-	
		Boiler	240	216	
		Cooling	49	31	
		Others	0	-	
		le de chii da Takal	517.2	430	
		Industrial Total	535.2	430	
		Total (A + B + C)	535.2	430	
	1) Total water requirement for the project: 535.2 KLD 2) 0 1/2 to the project in the project i				
	,	antity to be recycled : 43			
	 Total fresh water requirement: 105.2 KLD (Total water requirement = Fresh water + Recycled water) 				
	(10tai wat	or requirement - riesi	. water - Necyclet	water j	
iii	Waste water generation (KLD)				
		Category	Waste water	Remarks	
			KLD		
		(K) Domestic	4.5	-	
	(L) Industrial				
		Process	205	-	

Washing	9	-
Boiler	19	-
Cooling	15	-
Others	0	-
Total Industrial	248	-
waste water		
Total [A + B]	252.5	

_

iv | Treatment facility within premises with capacity

[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc.

In-House ETP (Primary, Secondary, Tertiary): 225 KLD

➤ MEE (MVR) : 220 KLD

➤ UF+RO: 40 KLD

Treatment scheme including segregation at source.

Streams are segregated as follows:

- High COD Stream of 214 KLD is subjected to ETP followed by MEE(MVR) where 212.8 KLD (209.8+ 3 from RO Reject) is send to MVR (Type of MEE) for further reduction of COD & TDS. where 183 KLD is recovered back after condensation to processing unit & remaining 29.8 KLD outlets from MEE(MVR) is released to ATFD where recovery salt of 24.8 is send to TSDF.
- ➤ 34 KLD from Low COD Stream of Boiler and Cooling tower blow down is subjected to UF-RO where 3 KLD is rejected and send to the in-house MEE(MVR) and 31 KLD permeate from UF-RO is reuse in cooling tower as make up water.

Note: (In case of CETP discharge):

Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP.

Not Applicable (Unit is ZLD)

Brief note on adequacy of ZLD (In case of Zero Liquid Discharge):

➤ High COD Stream of 214 KLD is subjected to ETP followed by MEE(MVR) where 212.8 KLD (209.8+ 3 from RO Reject) is recompressed where 183 KLD is recovered back after condensation to processing unit & remaining 29.8 KLD outlets from MEE(MVR) is released to ATFD where recovery salt of 24.8 is send to TSDF.

> 34 KLD from Low COD Stream of Boiler and Cooling tower blow down is subjected to UF-RO where 3 KLD is rejected and send to the in-house MEE(MVR) and 31 KLD permeate from UF-RO is reuse in cooling tower as make up water. Mode of Disposal & Final meeting point Domestic: Soak Pit/Septic Tank Industrial: Zero Liquid Discharge In case of Common facility (CF) like CETP, Common Spray dryer, Common MEE etc. Name of CF NA (Zero Liquid Discharge) Membership of Common facility (CF) (For waste water treatment) NA (Zero Liquid Discharge) νi Simplified water balance diagram with reuse / recycle of waste water i WATER BALANCE 183 KLD CONDENSATE RECOVERY 35.2 205 PROCESS 218.2 KLD MEE (MVR) (220 KLD 214 ATFD (35 KLD) ETP (225 KLD) 4.2 TPD ETP SLUDGE TO TSDF 5 LOSS 87.2 EVA. LOSS - 5 24.8 TPD SALT SEND TO TSDF 19 BOILER (240) 31 KLD PERMEATE REUSE IN COOLING TOWER Total water req. – 535.2 KLD Reuse/Recycle- 430.0 KLD 34 UF - RO (40 KLD) Total Fresh water Req.-105.2 EVA. + DRIFTLOSS - 34 3 KLD REJECT TO IN-HOUSE MEE COOLING (49) DOMESTIC (5) SOAK PIT/SEPTIC TANK 18 GARDENING (13)

i	Total	reuse 430 KLD						
		Source of waste water for reuse	-	pplicatior ea with	1	Character		Remarks regarding
		with quantity in KLD (From		uantity in LD (here i		reused (C TDS etc.)	OD, BOD,	feasibility to reuse i.e.
		where it is coming)		sed)		,		
		Boiler & Cooling	ng Cooling-31		pH-6	5-7.5	Yes Feasible.	
	Blowdown-34					COD	-<50	Boiler &
						TDS	-<10	Cooling
						TSS	-<30	Blowdown is separately
								treated in UF&RO and
								then reuse in
		Droppes 205	Dr	rocess-18	2	5H 6	5-7.5	CT. Yes Feasible
		Process-205 Washing-9		ocess-18	3		.5-7.5 ·<100	after adequate
		washing-5					<500	treatment.
						TSS	-<50	
		Boiler Condensate		Boiler-216		pH-6.5-7.5		Its Condensate
		Recovery-216				COD-<50 TDS-<10		Recovery in
							-<10 -<30	Boiler basically its a recycle.
E	Air							
İ	Flue gas emission details No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc.							
	-							
	Sr.	Source of emission Hei		Type of	Qu	antity of	Type of emission	Air Pollution S Control
	no.	With	ar	_ U		. 401	i.e. Air	Measures

1	Steam Boiler (5 TPH)			23 TPD Imported Coal OR 6300 SCM/day Natural gas	PM, Sox, Nox	Multi Cyclone separator+ Bag filter + water scrubber & Adequate
2	Steam Boiler (5 TPH)	36	1.3	23 TPD Imported Coal OR 6300 SCM/day Natural gas	PM, Sox, Nox	Stack Ht Multi Cyclone separator+ Bag filter + water scrubber & Adequate Stack Ht
3	Thermo Pack (1,00,000 Kcal/Hr)	30	2.5	3.5 TPD Imported coal OR 1000 SCM/day Natural Gas	PM, Sox, Nox	Multi Cyclone Separator + Bag filter & Adequate Stack Ht
4	HAG (12,50,000 Kcal/Hr)	34	1	7 TPD Imported coal OR 2100 SCM/day Natural Gas	orted coal OR OSCM/day cural Gas Sepa Sepa Nox Ade	Multi Cyclone Separator + Bag filter & Adequate Stack Ht
5	HAG (12,50,000 Kcal/Hr)		7 TPD Imported co OR 2100 SCM/d Natural Gas	OR 2100 SCM/day Natural Gas	PM, Sox, Nox	Multi Cyclone Separator + Bag filter & Adequate Stack Ht
6	D. G. set of 500 KVA X 2 nos	12	0.3	Diesel 160 Lit./hr approx.	PM, Sox, Nox	Acoustic Enclosure & Adequate stack

	(In			height
	Emergency			
	only)			

-

ii Process gas emission details i.e. Type of pollutant gases (SO₂, HCl, NH₃, Cl₂, NO_x etc.)

-

Sr. no.	Specific Source of emission (Name of the Product & Process)	Type of emission	Stack/Vent Height (meter)	Air Pollution Control Measures (APCM)
1	Scrubber (Intermediate Plant)	CL2 SO2 NOx	16.5	2 Stage Alkali Scrubber
2	Spray Dryer 1 (HAG)	PM	33	Cyclone Separator + Water Scrubber
3	Spray Dryer 2 (HAG)	PM	33	Cyclone Separator + Water Scrubber
4	Fluidized Bed Dryer	PM	16	Cyclone Separator

iii Fugitive emission details with its mitigation measures:

As below:

- Green belt will be developed which will help to reduce fugitive emission.
- All pumps, Compressors and Agitator must be mechanically sealed.
- All process pumps must be provided trays to collect probable leakage.
- More weightage on selection of MOC of piping must be given to avoid leakage/spillage.
- Proper system must be provided for decontamination and effective cleaning of drums.
- Face mask must be provided to all workers to avoid odor nuisance.
- Developing appropriate green belt. Vehicular speed will be limited to reduce airborne fugitive dust.

F Hazardous wastes

(as per the Hazardous and Other Wastes (Management and Transboundary

Sr. no.	Type/Name of Hazardous waste	Specific Source of generation (Name of the Activity, Product etc.)	Category and Schedule as per HW Rules.	Quantity (MT/Annum)	Management of HW
1	Spent/Used oil	Various Maintenance Processes	5.1	0.6	Collected in drums and stored at specified area, Reuse in plant for lubrication and Balance will be Selling to authorized recyclers
2	Discarded drums/ Containers	Various Production units	33.3	1008	Collected and stored at specified area and sold to approved/registered vendors.
3	Distillation residue (Semi Solid having CV 1500-2000 Kcal/Kg)	From Solvent Recovery Process	36.1	1548	Collection, Storage Transportation, Disposal at GPCB approved CHWIF or Co/Pre- processing
4	ETP sludge Primary sludge Secondary	Effluent Treatment Plant	34.3	1560	Collection, Storage, Transportation, Disposal at BEIL,

		Т			Collection	
		,, .			Collection,	
		Various			Storage	
5	Gypsum	production	D2	6192	Transportation,	
		units			Disposal by selling	
					to cement industry	
					Collection,	
	Salts				Storage,	
6	(Solid)	ATFD	34.3	9000	Transportation,	
	(Colla)				Disposal at BEIL,	
					TSDF	
					Collection,	
	Fly Ash				Storage	
7	(Boiler)	Boiler		2400	Transportation,	
'	(Non	bollet	-	2400	Disposal by	
	Hazardous)				selling to brick	
					manufactures	
		Intermediate				
	Spent Acetic Acid	Manufacturin			Will be Reuse in	
		g process	00.0	00	process	
8		(1,8	26.3	36	(50 MT/Month in	
	25-30%	Dihdroxy-4,5			Acid Dyes)	
		dinitro AQ)				
		Intermediate			Collection,	
		Manufacturin			Storage,	
		g process			Transportation,	
9	Spent	(1,8 Di Amino	28.2	0.72	disposal	
	Catalyst	Naphthalene)			by selling to	
					registered	
					recyclers	
		Solvent			Collection,	
		orange 60,			Storage,	
	Spent	Pigment red			Transportation,	
10	Solvent	122, 1-4 Di	26.3	24156	Recovered solvent	
	(Methanol)	Hydroxy AQ,			will be reused in	
		1-8 Di Amino			process &	
		Napthalene,			unrecovered	
		• ,				

		1-8 dichloro			distillation residue
		AQ, 1-5			will be sent for
		dicholoro AQ			CHWIF at BEIL
		Solvent blue			
	Spent Solvent (ODCB)	104, Pigment red 122, 1-8 dichloro AQ, 1-5 dicholoro AQ		4464	
	Spent Solvent (Toluene)	Solvent Green 3		396	
	Spent Solvent (Ethylene Glycol)	Dispersed Blue 7		9720	
	Spent Solvent (Ethyl acetate)	1,4 Di Hydroxy AQ		3096	
11	Liquor Ammonia (23%) (1,8 Dihdroxy- 4,5 dinitro AQ Intermediate)	From Unit Operation (Condensatio n) of 1,8 Dihdroxy- 4,5 dinitro AQ Intermediate	26.3	21.6	Collection, Storage, Transportation, Will be Reuse in Process (Req. in Process 50.0 MT/Month in production of 1,8 Dihdroxy-4,5 dinitro AQ Intermediates)
12	NaNO3 (Sodium Nitrate) (1,8 Dihdroxy-	Scrubber at Intermediate Plant (1,8 Dihdroxy-4,5	26.3	1.68	Collection, Storage, Transportation, Will be sent to users under Rule

	D:lal.a						
14	Na2SO3 Sodium Sulphite 30% (1,4 Dihydroxy	Scrubber at Intermediate Plant (1,4 Dihydroxy		3	0	Collection, Storage, Transportation Will be sent users under F	on, to
13	AQ Intermediate) NaOCI Sodium Hypochlorite (1,8 Dichloro AQ, 1-5 Dichloro AQ)	Scrubber at Intermediate Plant (1,8 Dichloro AQ, 1-5 Dichloro AQ	26.3	2	.4	Collection Storage, Transportation Will be Reuse Process (Req. in Proc 100 MT/Mont production Direct Yellow & Direct Oran	e in ess h in of

1	Methanol	67.1	64.1	0.5	0.2	94
	Ortho					
2	Dichlorobenzen	12.4	11.2	0.2	1.0	90
	е					
3	p-Toluidine	1.1	1	0.01	0.2	89
4	Ethylene Glycol	27	24.3	0.3	2.4	90
5	Ethyl Acetate	8.6	8.2	0.27	0.069	95

- ii VOC emission sources and its mitigation measures
 - Leak Free Pumps for transfer of solvents.
 - MSW Gaskets in solvent pipelines to prevent leakage from flanges.
 - Minimum number of flanges, joints and valves in pipelines.
 - > To eliminate chances of leakages from glands of pumps, mechanical seal will be provided at all solvent pumps.
 - ➤ All the rotating equipments like pumps will be installed with Mechanical Seals to arrest any sort of emissions.
 - Condenser and scrubber post Reactor with cooling arrangement.
 - ➤ Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by condenser to be ensured.
 - In case the small spillage or leakage observed, first pour the china clay (vermiculate) on material and collect the contaminated china clay (vermiculate) and send to ETP.
 - ➤ If the spillage is of inflammable liquid, switch off all the power supply in the area to prevent Electric Spark.
 - > Two condensers will install with cooling water and chilled brine to recover the solvent.
 - Primary Condenser HE-01: Cooling Tower water or Chilled water at 5 0C will be used to condense the solvents depend on the vapor pressure at its operating conditions and the non condensed vapors will be condensed in a Secondary Condenser
 - VOC Trap Condenser HE-02: Chilled Brine at -15 0C will be used to trap any traces of Solvent which is slipped from Secondary condenser

H • Details regarding storage of Hazardous chemicals

Storage details Name of major Remarks

Hazardous chemicals

Storage tanks	HCL	1 X 25 KL
	98% Sulphuric Acid	1 X 8 KL
	20 % Oleum	1 X 5 KL
	60 % Oleum	1 X 5 KL
	Nitric Acid	1 X 5 KL
	Acetic Acid	1 X 5 KL
	Caustic Lye	1 X 5 KL
	Acetic Anhydride	1 X 5 KL
	Aniline Oil	1 X 5 KL
	Liquid Phenol 90%	1 X 5 KL
	Liquor Ammonia 23%	1 X 10 KL
Drum/Barrel storage	Hydrazine Hydrate	200 L X 4
Cylinders	Tonner	2 X 900 kg

- Applicability of PESO :
- Will be applied.
- During the meeting dated 25/09/2019, the project proponent along with their expert/consultant M/s. Envision Environmental Services attended the meeting and made presentation before the committee.
- This is a new Greenfield project in GIDC Saykha
- During SEAC meeting dated 25/09/2019, Committee asked about proposed production plant size justification, technical expert of PP informed that proposed plot is sufficient to accommodate proposed products plant machinery. Committee asked about waste water management, PP informed that high COD effluent will be evaporated in in-house MEE(MVR) after ETP treatment and low COD effluent will be treated in ETP and then will be further treated in UF/RO plant. Imported coal will be used as fuel in boiler and MCS & bag filter and water scrubber as APCM will be provided with coal fired boiler separately. Committee insisted for spare storage tank for oleum and adequate safety measures for CI2 handling as per PESO standards. Committee asked about bleed liquor from scrubber disposal and PP informed regarding disposal of scrubber bleed liquor as per HWRules'2016.
- Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering 10 Km radial distance from the project boundary.
 - 1. Treatability report of ETP units and stage wise reduction of pollutant like BOD/COD/Ammonical nitrogen/TDS value.
 - 2. Compliance of MoEF&CC's OM dated 01/05/2018 regarding "Corporate Environment

- Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.
- 3. Explore the use of renewable energy to the maximum extent possible. Details of provisions to make the project energy-efficient through energy efficient devices and adoption of modes of alternative eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for energy conservation.
- 4. Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including vapor pressure. LDAR shall endeavor prevention of losses of solvents to the best minimum extent.
- 5. Technical details of scrubber and source of VOC generation in each product plant area.
- 6. PP shall furnish status of all the applicable Rules, Acts, Regulation, Clearances in a tabular form.
- 7. Details of the treatability and feasibility of waste water to be disposed off by means of in-house MEE (MVR) and ATFD and its impact on Environment and Human Health. Submit Adequacy of MEE (MVR) and ATFD. Standard Operating Procedures (SOPs) for MEE(MVR) and ATFD shall be incorporated in EIA report.
- 8. Adequacy of utilization of various Hazardous waste reuse back in process with material balance for various products and management of balance quantity keeping Hazardous and Other Waste (Management and Trans boundary Movement) Rules, 2016 in view.
- The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs available in the MoEF&CC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006.
- Further Project Proponent may be advised to submit final EIA Report with EC application within 100 days from the date of issuance of this ToR to expedite processing of Environment Clearance application.
- The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/along with final EIA report.

15.	SIA/GJ/IND2/41300/2019	M/s. Asiatic Colour Chem Ind. Ltd	Screening and
		Plot No. 1503-04, 306-A, Phase-I, GIDC, Naroda,	scoping
		Ahemdabad	

Project / Activity No.: 5(f)

Project status: Expansion

- This office has received an application vide their online proposal no. SIA/GJ/IND2/41300/2019 dated 27/08/2019 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- Project proponent (PP) has submitted Form-1, PFR and relevant details/information.
- This is an existing unit and now proposes for expansion of Synthetic Organic Chemicals manufacturing plant as tabulated below:

Sr.	Product	CAS No.	Qu	Quantity MT/Month			
No.			Existing	Proposed	After Proposed	of product	
	ES Group 1 Dyes, Acid Dyes, Rea	ctive Dyes, Morda	ant Dyes and	d Azo Pigme	nt)		
1	Acid Black 210	99576-15-5	375	500	850	Textile &	
2	Acid Black 234	157577-99-6	. 070	300	000	Leather	
3	Acid Black 194	61931-02-0	<u> </u> -			Industries	
4	Acid Black 173	61967-86-0	-			(Tannery)	
5	Acid Black 107	12218-96-1	_			, ,,,	
6	Acid Black 84	6408-22-6	_				
7	Acid Black 71	127830-14-2	_				
8	Acid Black 52	5610-64-0	-				
9	Acid Black 1	1820-82-5	-				
10	Acid Green 111	58419-36-6	_				
11	Acid Green 104	61814-51-5	-				
12	Acid Green 73	12219-93-1	-				
13	Acid Green 68	61901-32-4	-				
14	Acid Green 20	5850-39-5	-				
15	Acid Green 1	19381-50-1	-				
16	Acid Violet 91	13221-09-5	-				
17	Acid Blue 119	1324-80-7	1				
18	Acid Blue 92	3861-73-2	1				
19	Acid Brown 425	119509-49-8	-				
20	Acid Brown 432	119509-50-1	1				
21	Acid Brown 452	152521-14-7	1				
22	Acid Brown 440	93376-15-9	1				
23	Acid Brown 431		-				
24	Acid Brown 417	83562-73-6	1				

25	Acid Brown 414	172287-09-7
26	Acid Brown 357	61814-63-9
27	Acid Brown 357	60181-77-3
28	Acid Brown 354	71799-43-4
29	Acid Brown 349	72827-73-7
30	Acid Brown 348	72827-72-6
31	Acid Brown 322	61931-11-1
32	Acid Brown 289	12219-72-6
33	Acid Brown 282	12219-65-7
34	Acid Brown 235	1269-90-8
35	Acid Brown 214	37372-87-5
36	Acid Brown 194	61931-08-6
37	Acid Brown 188	12219-57-7
38	Acid Brown 161	61724-13-8
39	Acid Brown 147	12211-50-6
40	Acid Brown 106	61724-11-6
41	Acid Brown 105	8003-78-9
42	Acid Brown 98	12269-88-4
43	Acid Brown 85	77031-30-2
44	Acid Brown 83	13011-68-2
45	Acid Brown 78	94552-32-6
46	Acid Brown 75	8011-86-7
47	Acid Brown 70	
48	Acid Brown 58	12269-87-3
49	Acid Brown 14	5850-16-8
50	Acid Brown 1	6373-76-8
51	Acid Red 414	172287-09-7
52	Acid Red 362	61814-58-2
53		61951-36-8
	Acid Red 357	
54	Acid Red 315	12220-47-2
55	Acid Red 186	52677-44-8
56	Acid Red 151	6406-56-0
57	Acid Red 119	70210-06-9
58	Acid Red 97	10169-02-5
59	Acid Red 88	1658-56-6
60	Acid Red 44	2766-77-0

61	Acid Red 18	2611-82-7
62	Acid Orange 144	61814-64-0
63	Acid Orange 142	61901-39-1
64	Acid Orange 61	6408-33-9
65	Acid Orange 60	30112-70-0
66	Acid Orange 56	6470-20-8
67	Acid Orange 8	5850-86-2
68	Acid Orange 7	633-96-5
69	Acid Orange 3	6373-74-6
70	Acid Yellow 220	71603-79-7
71	Acid Yellow 204	61814-53-7
72	Acid Yellow 194	61814-52-6
73	Acid Yellow 166	12220-86-9
74	Acid Yellow 151	12715-61-6
75	Acid Yellow 96	61901-50-6
76	Acid Yellow 99	10343-58-5
77	Acid Yellow 59	5601-29-6
78	Acid Yellow 49	12239-15-5
79	Acid Yellow 23	1934-21-0
80	Acid Yellow 17	6359-98-4
		Reactive Dy
1	Reactive Black 5	12225-25-1
2	Reactive Black WNN	
3	Reactive Black TNN	
4	Reactive Blue 250	93951-21-4
5	Reactive Blue 171	77907-32-5
6	Reactive Yellow 145	93050-80-7
7	Reactive Yellow 160	129898-77-7
8	Reactive Orange 122	79809-27-1
<u> </u>	Direct Dyes	1
1	Direct Black 19	6428-31-5
2	Direct Black 80	8003-69-8
3	Direct Black 22	6473-13-8 1
4	Direct Blue 80	12222-00-3
5	Direct Blue 71	4399-55-7
6	Direct Red 239	89157-03-9

	Blending of	275	-	275	Textile
	S O Dyes				Industries
TOTAL		S.O. Dyes	S. O.	S. O. Dyes	
		375	Dyes	875	
		MT/Month	500	MT/Month	
		&	MT/	& Blending	
		Blending	Month	of S O	
		of S O		Dyes	
		Dyes		275	
		275		MT/Month	
		MT/Month			

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 25/09/2019.
- Salient features of the project including Water, Air and Hazardous waste management :

Sr.	Particulars	Details
no.		
Α	Total cost of Proposed Project	Existing: 6.1 cr
	(Rs. in Crores):	Proposed: 2.9 Cr.
		Total: 9.0 Cr.
В	Total Plot area	Existing: 4422 Sq. m.
	(sq. meter)	Proposed: 2056.29 Sq. m.
		Total: 6478.29 Sq. m.
	Green belt area	Existing: 50 Sq. m.
	(sq. meter)	Proposed: 250 Sq. m.
		Total:300 Sq. m.
С	Employment generation	Existing:50
		Proposed:25
		Total:75
D	Water	
i	Source of Water Supply	Water will supplied by
	(GIDC Bore well, Surface water, Tanker supply etc)	GIDC, Naroda ,
		Ahmedabad
	Status of permission from the concern authority.	-

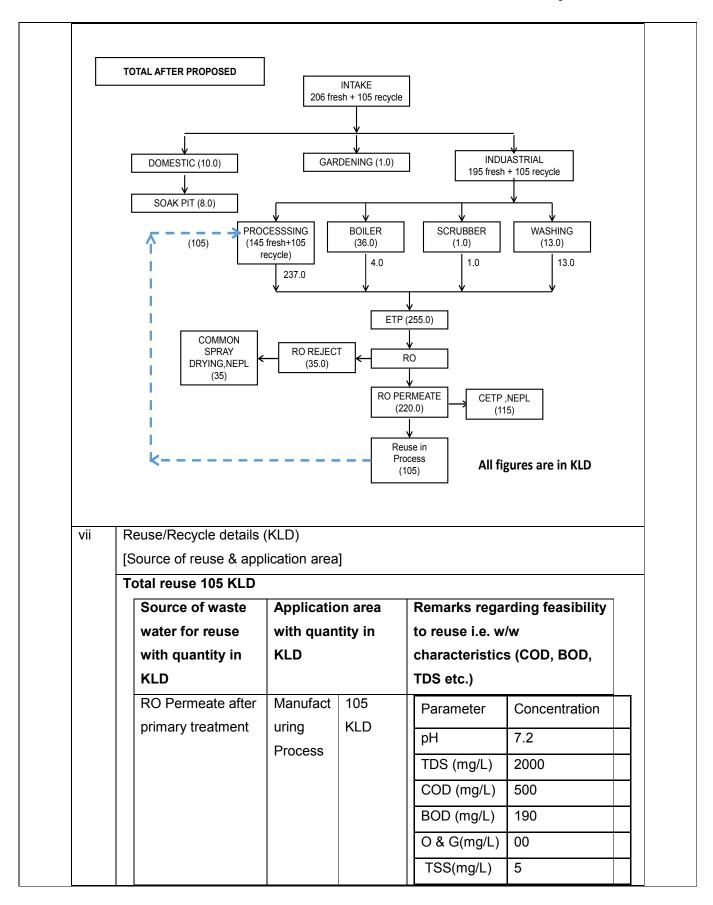
ii Water consumption (KLD)

Sr.		Р	roposed (KL	.D)
No.	Description	Existing	Proposed	After
140.		Laisting		Proposed
1)	Domestic	8.5	1.5	10
2)	Gardening	0.5	0.5	1
3)	Industrial			
	(a) Processing	145	105	250
	(b) Boiler	12	24	36
	(c) Washing	6.5	6.5	13
	(d) Scrubber	0.5	0.5	1
-	Total [a+b+c+d]	164	136	300
	Total [1 + 2]	173	138	311

4) Total water requirement for the project:311 KLD

5) Quantity to be recycled: 105 KLD

6) Total fresh water requirement: 206 KLD


iii Waste water generation (KLD)

Sr.	Description	Proposed (KLD)				
No.	Description	Existing	Proposed	After Proposed		
1.	Domestic	7.0	1.0	8.0		
2.	Gardening	0.0	0.0	0.0		
3.	Industrial					
	(a) Processing	108.5	128.5	237.0		
	(b) Boiler	1.5	2.5	4.0		
	(c) Washing	6.5	6.5	13.0		
	(d) Scrubber	0.5	0.5	1.0		
T	otal [a+b+c+d]	117	138	255		
	Total [1 + 2]	124	139	263		

NOTE:

• 255 KLD Generated industrial waste water treated in the ETP then Treated

	effluent	passed to the RO system.
	• 115 KL	D of RO permeate will be discharged to the CETP, Naroda as per
	CC&A c	discharged quantity & norms.
		of RO concentrated will be sent to the spray drier(35 KLD to the n spray drying facility).
	• 105 KLI	O of remaining effluent will be reuse in process again.
iv	Treatment fa	cility within premises with capacity [For existing and Proposed]
	[In-house ET etc	P (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP
	➤ ETP (Primary, Tertiary)
٧	Mode of Disp	posal & Final meeting point
	Domestic:	Soak Pit
	Domestic.	SUAN FIL
	Industrial:	CETP as per CC&A : 115 KLD
		Recycled in process : 105 KLD
		Common spray drying facilities : 35 KLD
vi		ommon facility (CF) like CETP, Common Spray dryer, Common MEE,
		Name of Common facility
		da Enviro Project Ltd. (CETP)
		mon Spray Drying Facility NEPL
		ty For Clean and Green Naroda
		of Common facility (CF)
	`	vater treatment)
vii	Simplified v	vater balance diagram with reuse / recycle of waste water

E	Air									
i	Flue gas emission details No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc. Existing & Proposed									
	Sr. No.	Name	Stack Attache to		Type of Fuel	Existi ng	Quantity Prop osed	After Prop osed	АРСМ	
	1.	Steam Boiler (6 Ton)	Steam Boiler (6 Ton)	31	Coal	4 MT/D ay	5 MT/D ay	9 MT/D ay	Dual Cyclone + Water Scrubber + Bag Filter	
	2.	Hot Air Generato r-I	Hot Air Generat r-I		PNG				Two stage	
	3.	Hot Air Generato r-II	Hot Air Generat r-II		PNG	230 SCM/ Hr.	310 SCM/F r.	540 I SCM/H r.	scrubber	
	4.	Hot Air Generato r-III	Hot Air Generat r-III		PNG				separator	
	5.	D.G. Set (125 KVA & 500 KVA) (Stand By)	D.G. Se (125 KVA & 500 KVA) (Stand	3	Diesel	20 Lit/Hr.	-	20 Lit/Hr.	Adequate Stack Height	
ii		l ess gas i.e. ting & Prop		pollutant gas	ses (SO	HCI, N	IH _{3,} Cl _{2,} NO	D _x etc.)	l	
	Sr. Name Stack Polluta Heigh t: m		AF	APCM						

F	Ha (as Mo	To oper <u>r</u> zardo per t veme	carry out re outine main	gula tena ous a 016.	uid materials r leak detecti nce of equipr nd Other Wa	on and red	epair activuces the li	kelihoo		
iii	Pro	pose asure	ed project is es will take f	of m	ils with its mit anufacturing xisting & propuse keeping r	of S. O. posed pro regularly	Chemicals	S(S.O. I	Dyes). Fo	ollowings
		3	Diazotizati Vessel	on	Lit./hr.) Diazotization Vessel		D ₂ ,	2	by dippin	age Alkali
		2	Spray Dry		Spray Drye (1000		M			Separator
		2	(3500 Lit./hr.) Spray Dry (1000 Lit./h	er	(1000	r		5	followed stage scrubber	Separate by two water follow

		Empty						supplier
		Bags						
		with Liner						
	2	Used Oil	5.1	Machinery	0.024	0.026	0.050	Reuse as
								lubricant in our
								plant
								machinery
	3	Process	26.1	Clarificatio	67.8	180.2	248.0	Collection,
		Waste		n of Dyes				Storage,
								Transportation
								, Disposal at
								TSDF.
	4	ETP	35.3	ETP	34.95	46.55	80.5	Collection,
		Sludge						Storage,
								Transportation
								, Disposal at
								TSDF.
	5	Dust	26.2	Spray	0.034	0.046	0.08	Spray Drying
		from Air		Drying &				& Receiving
		Flotation		Receivin				Dye powder
		System		g Dye				
				powder				
		Disast	00.4	0	20	40	70	O alla ati a a
	6	Bleed	26.1	Spray	30	40	70	Collection,
		Liquor		Dryer				Treatment in
				Scrubbing Process				ETP
ii	Mer	mbership det	tails of 1	rsdf, CHWIF	etc.	TSDF site:		
		r HW manag						ect Pvt. Ltd.,
	`	•	_	-		Kutchh	,	,
iii	Det	ails of Non-F	lazardo	us waste & its	S	Non Hazar	dous waste	will be disposal
	disp	osal(MSW a	and othe	ers)		by selling to	o the autho	rised vendor.
G	Sol	vent manag	ement,	VOC emission	ons etc.			
i	Тур	es of solven	ts, Deta	ils of Solvent	recover	y, % recover	y. reuse of	f recovered
1	''				-		-	

	No use of any Solvent.	Ī
ii	VOC emission sources and its mitigation measures	
	we will provide closed transferring system of raw materials during manufacturing to	
	avoid any leakages.	

- During the meeting dated 25/09/2019, the project proponent along with their expert/consultant M/s. B. S.
 Rana attended the meeting and made presentation before the committee.
- During SEAC meeting dated 25/09/2019, Committee asked about existing plant CCA and legal action compliance for existing plant. PP informed that closure order and legal notices issued by the Board and its revocation order issued by GPCB after compliance of closure order conditions by the unit. Also unit is having CCA for existing plant and CCA compliance report submitted by the unit. Committee asked about area adequacy for proposed expansion project, PP informed that proposed project is expansion in same group of S.O. dyes and having sufficient area to accommodate proposed expansion. Committee asked about waste water management, Technical expert of PP informed that waste water after ETP and RO treatment, as per existing CCA will be discharged into GIDC underground drainage leading to CETP of NEPL for further treatment and disposal. Additional waste water will be sent to CMEE/Spray dryer facility of NEPL and society for clean and green, Naroda after primary and RO treatment. RO permeate partly will be reused back in process. Committee insisted for install online TOC and flow meter at final outlet of ETP line leading to CETP. Natural gas will be used as fuel in Hot Water Generator and coal will be used as fuel in boiler. Dual cyclone, bag filter and water scrubber as APCM will be provided with boiler. Committee deliberated on Hazardous Waste management in details.
- Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering 10 Km radial distance from the project boundary.
 - 1. Unit shall install online TOC and flow meter at final discharge line leading to CETP.
 - 2. Details with respect to justification for proposed expansion: (1) To address proportionate availability of space for production plant. (2) To address proportionate availability of storage area for raw materials finished goods, utilities considering fire-safety norms & PESO standards and goods carrier movement within premises. (3) To address proportionate captive/common infrastructure available to accommodate additional load due to proposed expansion. (4) Environment impact and its mitigation measures for common/ captive infrastructure due to proposed production.
 - 3. Compliance of MoEFCC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein.

The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.

- 4. Explore the use of renewable energy to the maximum extent possible. Details of provisions to make the project energy-efficient through energy efficient devices and adoption of modes of alternative eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for energy conservation.
- 5. Permission of Narcotics department for usage of Acetic anhydride as Raw material.
- 6. Segregation of waste water streams based on characteristics and its proper management keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP. (COD, BOD, TDS etc. of each stream shall be given)
- 7. Membership certificate of Common facility (Common Spray dryer, Common MEE, Common Incinerator etc.) with booking quantity in KLD along with other details/information like Spare capacity of Common Facility (CF), quality of waste water by member industry and assurance by CF that there is no adverse impact on Environment and Human Health due to treatment of waste water received from your industrial effluent.
- 8. Submit status of compliance of Environmental norms of existing Common Infrastructure of M/s: NEPL and M/s Society for clean and green, Naroda.
- 9. PP shall furnish status of all the applicable Rules, Acts, Regulation, Clearances in a tabular form.
- The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs available in the MoEF&CC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006.
- Further Project Proponent may be advised to submit final EIA Report with EC application within 100 days from the date of issuance of this ToR to expedite processing of Environment Clearance application.
- The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/along with final EIA report.

16.	SIA/GJ/IND2/41388/2019	M/s. BBELL Industry LLP.	Screening and
		Plot No. DP-119, GIDC- Saykha, Ta - Vagra, Dist	scoping
		-Bharuch	

Project / Activity No.: 5(f)

Project status: New

 This office has received an application vide their online proposal no. SIA/GJ/IND2/40297/2019 dated 27/08/2019 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.

- Project proponent (PP) has submitted Form-1, PFR and relevant details/information.
- This is a new unit proposes for Synthetic Organic Chemicals manufacturing plant as tabulated below:

			Quantit		
Sr. No.	Name of Product	CAS. No.	y (MTPM	End Use	
)		
Α	DYE INTERMEDIATES	-	1		
1	CMBI	4414-88-4	40	For producing Dye	
В	Dyes	1	1		
1	Synthetic Organic Dyes 1				
1	Basic Red 46	79850-79-6	80	Dyeing	
2	Blue 159	93783-70-1		Dyenig	
2	Synthetic Organic Dyes 2	-	1		
1	Solvent Red 196	52372-36-8			
2	Basic Red 76	68391-30-0			
3	Solvent Red 197	52372-39-1			
4	Basic Brown 16	26381-41-9			
5	Basic Brown 17	68391-32-2			
6	Basic Orange 31	97404-02-9	110	Dyeing	
7	Basic Blue 99	68123-13-7			
8	Basic Red 51	88385-22-2			
9	Basic Yellow 87	68259-00-7			
10	Basic Red 1-1	3068-39-1			
11	Basic Red 1	989-38-8			
С	FORMULATION OF DYE		200	Dyoina	
C	(Solid and Liquid)		200	Dyeing	
	1	Total	430		

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 25/09/2019.
- Salient features of the project including Water, Air and Hazardous waste management :

Sr.	Particulars	Details
no.		
Α		
Α	Total cost of Proposed Project (Rs. in Crores):	8 Crores
В	Total Plot area (sq. meter)	9752.05 Sq. m.
	Green belt area (sq. meter)	3051.48 Sq. m.

;	Employment generation			60 nos.			
	Water						
	Source of Water Supply			GIDC Sayakha			
	(GIDC Bore well, Surface water,	, Tanker supply etc	:)				
	Status of permission from the co	oncern authority.		Permission letter no	: GIDC		
				DEE (WS)/BRH/589	dtd.		
				2.8.2019 is attached	with		
				ToR application.			
	Water consumption (KLD)						
	Cotogony	Quantity, KLD		Remarks			
	Category		Fron	sh water			
	(U) Domestic	3.00					
	(V) Gardening	7.00		sh water			
	(W)Industrial	0.40.00	Fres	sh and treated water			
	Process	218.33					
	Washing	6.00					
	Boiler and Hot Water	5.00					
	Generator						
	Cooling	10.67					
	Others	0.00					
	Industrial Total	240.00					
	Total (A + B + C)	250.00					
	 Total water requirement for the project: 250.00 KLD Quantity to be recycled: 186.00 KLD Total fresh water requirement: 64.00 KLD 						
	3) Total fresh water	1	UKLD				
_	3) Total fresh water Waste water generation (KLD)	·	U KLD				
	,	·		Remarks			
	Waste water generation (KLD))	ter	Remarks			
	Waste water generation (KLD)	Wastewa	ter	Remarks			
	Waste water generation (KLD)	Wastewa Generati	ter on	Remarks Sewage from domestic			
i	Waste water generation (KLD) - Category	Wastewa Generation KLD	ter on				

(N) Industrial		
Process – (Stream – 1)	186.00	Treated in in-house MEE
Process (Stream – 2)	108.12	After primary treatment
Washing	6.00	discharge to CETP
Boiler and Hot Water Generator	1.00	Sayakha
Cooling	2.67	
other	0	
Total Industrial	303.79	
Total w/w generation	306.29	

_

iv Treatment facility within premises with capacity

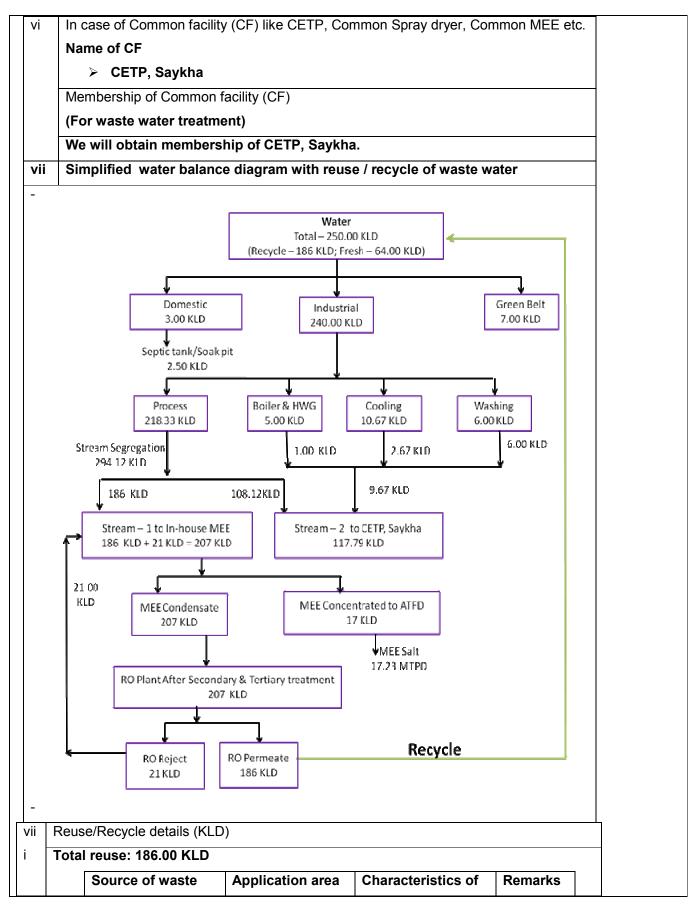
[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc.

- 1. In-house ETP (for Primary treatment): 303.79 KLD
- 2. In-house MEE: 207.00 KLD
- 3. In-house ETP (Secondary, Tertiary): 207.00 KLD

Treatment scheme including segregation at source.

- Effluent will be segregated at source. Stream 1 (186 KLD) having high TDS/COD and Stream – 2 (117.79 KLD) having low TDS/COD.
- Stream 1 after primary treatment will be passes through solvent stripper and treated in in-house MEE along with RO reject (21.00 KLD). MEE condensate will be further treated in secondary clarifier and tertiary treatment facility. Followed by RO plant. RO permeate (186 KLD) will be reused in process, while RO reject will be treated in MEE.
- Stream 2 after primary treatment effluent stream (117.79 KLD) will be discharge to CETP Sayakha.

Note: (In case of CETP discharge):


Management of waste water keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP.

Not Applicable.

Brief note on adequacy of ZLD (In case of Zero Liquid Discharge):

- Not applicable as treated waste water will be discharged in CETP Sayakha
- v Mode of Disposal & Final meeting point

Domestic:	Sewage from domestic activities will be treated in septic tank/soak pit.
Industrial:	Primary treated effluent achieving CETP norms will be discharge in
	CETP, Saykha.

water for reuse	with quantity in	waste water to be	regarding
with quantity in	KLD (Where it is	reused (COD, BOD,	feasibility
KLD (From where it	used)	and TDS etc.)	to reuse
is coming)			i.e.
RO plant -	Used in process	COD: 50 mg/L	
207.00 KLD	and washing	BOD: 5 mg/L	
	186.00 KLD	TDS: 100 mg/L	

_

E Air

i Flue gas emission details

No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc.

-

Sr. no	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantit y of Fuel MT/Day	Type of emission s i.e. Air Pollutant	Air Pollution Control Measures (APCM)
1	Thermic Fluid Heater – 2 Nos. (10 Lac Kcal/Hr)	30 (Common stack)	FO	6.05	PM SO ₂ NOx	Adequate stack Height with SMF
2	Thermic Fluid Heater – 1 No. (25 Lac Kcal/Hr)	30	FO	15.13	PM SO ₂ NOx	Adequate stack Height with SMF
3	Hot Water Generator (15 Lac Kcal/Hr)	30	FO	4.54	PM SO ₂ NOx	Adequate stack Height with SMF
4	Boiler (500kg/hr.)	20	Indones ian Coal	1.21	PM SO ₂ NOx	Cyclone Seperator with Bag filter
5	D.G. Sets – 2 nos. (250 KVA)	11	HSD	120 L/Hr	PM SO ₂	Adequate stack

					120	NOx	Height with		
					L/Hr		SMF		
P	roce	ss gas emis	sion details i.e. Ty	pe of pollutan	t gases (S0	D _{2.} HCl, NH ₃	3. Cl _{2.} NO _x etc.)		
-1	No p	rocess gas	emission from pro	posed project			· · · · · ·		
F	Fugitive emission details with its mitigation measures:								
A	As below:								
Fugitive emission will be expected from raw material handling, transportation activities,									
cc	oal h	andling, etc.	Following mitigat	ion measures	will be imp	lemented,			
	•	Water shal	l be sprinkled duri	ng the constru	uction activ	ities			
	•	Water shal	I be sprinkled on f	ly ash					
	•	Mechanica	l seals at pumps s	should be use	d and main	tained.			
	•	Closed unl	oading, conveying	and packing	system				
	•	All the read	ctors shall be close	ed.					
	•	Safety dev	ices shall be provi	ded to worker	s				
	•	Regular mo	onitoring of work z	one area.					
	•	Greenbelt	development arou	nd the plant.					
Н	lazar	dous waste	es						
(a	as pe	er the Hazard	dous and Other W	astes (Manag	ement and	Transbound	dary Movement)		
R	lules	2016.							
-									
\$	Sr.	Type/	Specific	Category	Quantity	Manag	gement of		
ľ	no.	Name of	Source of	&	(MT/Ann	u HW			
		Hazardou	generation	Schedule	m)				
		s waste	(Name of the	as per HW					
			Activity,	Rules.					
			Product etc.)		<u> </u>				
Hazardous Waste									
	1	ETP	Primary and	35.3	92.98		tion, Storage		
		Sludge	secondary	Sch-I			portation,		
			treatment plant				sal at GPCB		
			of ETP			approv	ved TSDF site		
						e	-1 £:11:		
			NA. C. C.	22.1	0054		d filling.		
	2	Spent Solvent	Manufacturing of CMBI	26.4 Sch- I	3651.4		process		

					solvent recovery
					(1311.43 MTPA)
					and reuse in
					process.
3	Distillation	Solvent	36.1	565.71	Collection, storage,
,	Residue	Distillation	Sche. – I	000.7 1	Transportation and
	residue	Didiliation	Conc. 1		sent for incineration
					or co/pre-
					processing to
					common TSDF
					facility.
4	MEE Salt	MEE	37.3	6287.13	Collection, storage,
			Sche. – I		Transportation and
					sent to common
					TSDF facility for
					land filling.
5	Used/	D. G. set and	5.1	1	Collection, Storage,
	Spent Oil	Utility	Sche. – I		Transportation,
					Disposal by selling
					to registered re-
					refiner
3	Discarded	RM/Chemical	33.1	30	Collection, Storage,
	Container	Handling	Sche. – I		Decontamination,
	S				Transportation,
					Disposal by selling
					to registered party.
			Solid Waste		
6	Fly Ash	Boiler		43.58	Collection,
					Storage,
					Transportation and
					selling to brick
					manufacturer or
					Cement Industries
عساد	pership detail	s of TSDF, CHWI	F etc.	TSDF mem	bership will apply after
	HW manager				

iii	Details of Non-Hazardous wa	aste & its disposal	Fly Ash: 43.58 MT	PA			
	(MSW and others)						
G	Solvent management, VOC emissions etc.						
i	Types of solvents, Details of	Solvent recovery, % re	ecovery, reuse of re	covered Solvents			
	etc. (Details in Table Format)					
	Solvents like Ortho dich	nlorobenzene (ODCB),	Methanol and Etha	anol will be used in			
	proposed project.						
	Methanol and Ethanol	will be recovered up t	o 95 – 97 % throu	gh in-built process			
	and reuse in process.						
	In-house solvent recover	ery plant will be instal	led for ODCB and	recovered 85% of			
	solvent.						
ii	VOC emission sources and it	ts mitigation measures					
	- Fugitive emission mainly i	n form of VOCs emiss	ions results from us	ses of solvents.			
	- VOC emission will be take	en place at solvents sto	orage and handling	area.			
	- Solvent storage will be in	n closed area/system	, which will reduce	chances of VOC			
	emission.						
Н	Details regarding st	orage of Hazardous	chemicals				
	Storage details	Name of major Haza	ardous Rema	arks			
		chemicals					
	Storage tanks	Ortho-dichlorobenz	ze (ODCB)				
		Ethanol					
		Methanol					
	Drum/Barrel storage	FO and HSD					
	Applicability of PES	O : Applicable for the	storage of HSD&FC).			

- During the meeting dated 25/09/2019, the project proponent along with their expert/consultant M/s.
 Envision Enviro Technologies Pvt. Ltd attended the meeting and made presentation before the committee.
- This is a new Greenfield project in GIDC Saykha.
- During SEAC meeting dated 25/09/2019, Committee asked about area adequacy for proposed production plant size, Technical expert of PP informed that proposed plot is of sufficient area for proposed production size. Committee asked about waste water management, PP informed that high COD effluent stream after primary treatment passing through solvent stripper evaporated in in-house MEE along with RO reject. Low COD effluent stream after primary treatment will be discharged into CETP Saykha. MEE condensate further will be treated in secondary ETP and tertiary ETP units and RO plant. RO permeate will be reused back in process. FO will be used as fuel in thermic fluid heater and hot water generator. Coal will be used as fuel in boiler and MCS and bag filter will be provided as APCM with

boiler.

- Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering 10 Km radial distance from the project boundary.
 - Details of the treatability and feasibility of waste water to be disposed off by means
 of in-house MEE & solvent stripper and its impact on Environment and Human
 Health. Submit Adequacy of in-house MEE & solvent stripper. Standard Operating
 Procedures (SOPs) for in-house MEE & solvent stripper shall be incorporated in
 EIA report.
 - Membership certificate of CETP with booking quantity in KLD along with other details/information like Spare capacity of CETP, quality of waste water by member industry and assurance by CETP that there is no adverse impact on Environment and Human Health due to treatment of waste water received from your industrial effluent.
 - 3. Compliance of MoEF&CC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.
 - 4. Explore the use of renewable energy to the maximum extent possible. Details of provisions to make the project energy-efficient through energy efficient devices and adoption of modes of alternative eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for energy conservation.
 - Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including vapor pressure. LDAR shall endeavor prevention of losses of solvents to the best minimum extent.
 - 6. PP shall furnish status of all the applicable Rules, Acts, Regulation, Clearances in a tabular form.
- The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs available in the MoEF&CC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006.

- Further Project Proponent may be advised to submit final EIA Report with EC application within 100 days from the date of issuance of this ToR to expedite processing of Environment Clearance application.
- The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/along with final EIA report.

Meeting ended with thanks to the Chairs.

Minutes approved by:

 Dr. Dinesh Misra, Chairman, SEAC Shri S. C. Srivastav, Vice Chairman, SEAC Shri V. N. Patel, Member, SEAC Shri Rajesh I Shah, Member, SEAC Shri A.K. Muley, Member, SEAC Shri A.K. Muley, Member, SEAC Shri N.M. Tabhani, Secretary, SEAC 		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
 Shri V. N. Patel, Member, SEAC Shri Rajesh I Shah, Member, SEAC Shri A.K. Muley, Member, SEAC 	1.	Dr. Dinesh Misra, Chairman, SEAC	
4. Shri Rajesh I Shah, Member, SEAC5. Shri A.K. Muley, Member, SEAC	2.	Shri S. C. Srivastav, Vice Chairman, SEAC	
5. Shri A.K. Muley, Member, SEAC	3.	Shri V. N. Patel, Member, SEAC	
	4.	Shri Rajesh I Shah, Member, SEAC	
6. Shri N.M. Tabhani, Secretary, SEAC	5.	Shri A.K. Muley, Member, SEAC	
	6.	Shri N.M. Tabhani, Secretary, SEAC	