Deepak Nitrite Limited (Hyderbad Specialities Division), Unit-III

RISK ASSESSMENT REPORT Chapter 7 of EIA Report

Contents

ltem				Page No.
Chapte	er 7: Add	itional Stud	dies: Risk Assessment	7.1 to 7.46
7.0	Introduc	ction		7.1
7.1	Hazard	Identificati	on	7.2
	7.1.1	7.2		
	7.1.2		ity of Manufacture, Storage and Import of Hazardous s Rules, 1989 & subsequent amendments	7.3
	7.1.3		acilities of Hazardous Chemicals	7.4
	7.1.4	•		7.5
7.2	Hazard	Analysis		7.6
	7.2.1	•	Explosion Index	7.10
7.3	MCA Ar			7.10
-	7.3.1		e Analysis	7.11
	7.3.2		bgy of Modeling exercise	7.13
7.4			ICA analysis	7.16
	7.4.1		Vapour cloud explosion	7.16
	7.4.2		ses/ vapors) Release (gases/ vapors)	7.17
7.5		tigation mea	. , ,	7.18
	7.5.1	General		7.18
			Fire Prevention and Protective Equipment	7.19
		7.5.1.2	Solvent Storage Tanks / Drums Handling Precautions	7.19
	7.5.2	Specific R	Recommendations	7.24
		7.5.2.1		7.25
		7.5.2.2		7.26
		7.5.2.3	Toxic Releases	7.26
7.6	Hazard	Control me		7.30
7.7			s for Natural Disasters	7.32
7.8		r Managem		7.33
	7.8.1		mergency Preparedness Plan	7.36
		7.8.1.1	Purpose	7.36
		7.8.1.2	Accident Prevention Procedures / Measures	7.37
		7.8.1.3	Before Emergency	7.39
		7.8.1.4	During Emergency	7.40
		7.8.1.5	After Emergency	7.40
	7.8.2		mergency Preparedness Program	7.40
		7.8.2.1	Purpose of Plan	7.42
		7.8.2.2	Before Emergency	7.42
		7.8.2.3	During Emergency	7.43
		7.8.2.4	After emergency	7.44
7.9	Conclus		ommendations	7.45

List of Figures

Fig. No.	Particulars	Page No.
7.1	Plant Layout	7.9
7.2	Typical flow Chart of Accidental Release of Hazardous Chemicals	7.12
7.3	Factory management organisation chart	7.37
7.4	Organization chart : Off –Site Emergency preparedness plan	7.41

List of Tables

Table	Particulars	Page			
No.		No.			
7.1	Description of applicable provisions of Gol rules 1989 as amended in1994 & 2000	7.4			
7.2	List of Hazardous Chemicals, daily consumption, Maximum Storage, Type of Storage and Nature of Material	7.5			
7.3	Hazardous materials properties, rating and TLV value - Solvent storage yard	7.6			
7.4	Hazard Maximum Storage and NFPA Rating – Open storages				
7.5	Classification of Flammable/ Combustible Liquids				
7.6	Description of National Fire Protection Agency (NFPA) Classification				
7.7	Event Classification	7.14			
7.8	Various Physical Effects Due to Heat Radiation	7.15			
7.9	Over Pressure Effect of Explosion	7.15			
7.10	Consequences of MCA Analysis – Storages	7.16			
7.11	Consequence Analysis for Toxic Release Scenario	7.17			
7.12	2 Safety data which are common to all raw materials and solvents				
7.13	Recommended Personal Protective Equipment's	7.24			
7.14	Major incompatibilities for storage and handling of hazardous chemicals	7.25			

Chapter 7 Additional Studies: Risk Assessment

7.0 Introduction

Hazard is an intrinsic property of a chemical substance at a given point and at given plant of certain phenomenon that can have an adverse effect on the human life and health, on the environment or on anything else you consider important. Hazard is anything (e.g. condition, situation, practice, behavior) that has the potential to cause harm, including injury, disease, death, environmental, property and equipment damage and Risk is the likelihood, or possibility, that harm (injury, illness, death, damage etc.) may occur from exposure to a hazard.

The principal objective of the risk assessment study is to identify and quantify the major hazards and the risk associated with various operations of the proposed project, which may lead to emergency consequences (disasters) affecting the public safety and health.

Risk analysis: provides a relative measure of the likelihood and severity of various possible hazardous events by critically examining the plant storages, process and operating units, deal with different materials in their production, some of which are hazardous in nature i.e. flammable, explosive, toxic and corrosive. Fire, explosion, toxic release or combinations of these are the hazards associated with industrial plants using hazardous chemicals. Risk Assessment has now been developed to improve upon the integrity, reliability and safety of the plant.

Scope of study involves - Hazard Identification and analysis, evaluation of risks due to the Maximum Credible Accident (MCA) analysis, consequence analysis and preparation of disaster management plan (DMP) by evaluation of risks due to fire and explosion, atmospheric release of Toxic dispersion. Based on this information, an emergency preparedness plan will be prepared to mitigate the consequences.

7.1 Hazard Identification

Identification of hazards is of primary significance in the analysis, quantification and cost effective control of accidents involving chemical handling and process thereof. A classical definition of hazard states that hazard is in fact the characteristics of system/ plant/ process that present potential for the accident. Hence, all the component sofa system/ plant/process need to be thoroughly examined to assess the potential for initiating or propagating an unplanned events/sequence of events, which can be termed as an accident.

Estimation of probability of unexpected event and its consequences form the basis of quantification of risk in terms of damage to property, environment and personnel. Therefore, the type, quantity, location and condition of release of toxic or flammable substances have to be identified in order to estimate its damaging effects, the area involved, and the possible precautionary measures required to be taken.

Once a hazard is identified, it is necessary to evaluate it in terms of the risk it presents to the employees and the neighbouring community. In principle, both probability and consequences will be considered.

The following two methods for hazards identification have been employed in the study:

- Identification of major hazardous units based on Manufacture, Storage and
 Imports of Hazardous chemicals Rules, 1989 of Government of India and
- Amended rules1994 & 2000 and Identification of Fire-Explosion and Toxicity Index (FE&TI)

7.1.1 Identification of Major Hazard Installations based on Gol Rules, 1989 as amended in 1994 & 2000

By studying accidents occurred in Indian industries in over a few decades, a specific legislation covering major hazard activities has been enforced by Government of India in 1989 in conjunction with Environment Protection Act, 1986. This is referred here as GOI rules 1989. For the purpose of identifying major hazard installations the rules employ certain criteria based on toxic, flammable and explosive properties of chemicals.

Indicative Criteria for Identification of Toxic, Flammable & Explosive Chemicals (GOI Rules, 1989) & Amended rules 1994 & 2000

(a) Toxic Chemicals:

Chemicals having the following values of acute toxicity and which owing to their physical and chemical properties are capable of producing major accident hazards:

SI. No.	Toxicity	Oral toxicity LD50 (mg/kg)	Dermal toxicity LD50 (mg/kg)	Inhalation toxicity LC50 (mg/l)	
1.	Extremely toxic	> 5	< 40	< 0.5	
2.	Highly toxic	>5–50	>40-200	< 0.5-2.0	
3.	Toxic	>50-200	>200-1000	>2-10	

(b) Flammable Chemicals:

- (i) Flammable gases: Gases which are at 20°C and at standard pressure of 101.3 KPa are:-
 - 1. Ignitable when in a mixture of 13% or less by volume with air, or
 - 2. Have a flammable range with air of at least 12 % points regardless of the lower flammable limits.

Note: The flammability will be determined by tests or by calculation in accordance with methods adopted by International Standards Organization (ISO)-10156 of 1990 or by Bureau of Indian Standards (1446 of 1985).

- (i) Extremely flammable liquids: Chemicals which have flash point lower than or equal to 23°C and boiling point less than 35°C
- (ii) Very highly flammable liquids: Chemicals which have a flash point lower than or equal to 23°C and initial boiling point higher than 35°C.
- (iii) **Highly flammable liquids**: Chemicals which have a flash point lower than or equal to 60°C but higher than 23°C.
- (iv) **Flammable liquids**: Chemicals which have a flash point higher than 60°C but lower than 90°C.
- (c) **Explosives:** Explosive means a solid or liquid or pyrotechnic substance (or a mixture of substances) or an article:
 - Which is in itself capable by chemical reaction of producing gas at such a temperature and pressure and at such a speed as to cause damage to the surroundings
 - ii. Which is designed to produce an effect by heat, light, sound, gas or smoke or a combination of these as the result of non-detonative self-sustaining exothermic chemical reaction

7.1.2 Applicability of Manufacture, Storage and Import of Hazardous Chemicals Rules, 1989 & subsequent amendments

A systematic analysis of the chemicals and the quantities of storage of chemicals has been carried out to determine threshold quantities as notified by GOI Rules 1989 and the applicable rules are identified. As per applicable rules, there would be Hazardous chemicals stored at the proposed site, which would attract the GOI rules 4, 5, 7-9 and 13-

15, as the quantity likely to be stored at site lies above the stipulated threshold quantities. The description of applicable rules is summarized in **Table 7.1.**

Applicable Rules	Description					
	Identify Major accident					
Take adequate steps to prevent major						
	accidents					
4	Provide information to persons working onsite Impart training, provide					
	equipment and antidotes					
	Notification of major accidents to concerned authority					
5	If any major accident occurs, occupier to inform Concerned authority as					
U	listed in SC-5 and submit report as per the formatinSC-6					
(applies after commencing of the activity)						
7	Notification of site to competent authority					
8	Updating of site notification following changes in threshold quantity					
9	Transitional provision for the existing activity					
10	Preparation of safety reports for commencement of activity					
11	Updating of safety reports based on modification					
12	Provision of further information on safety reports to the authority					
13	Preparation of on – site emergency plan by the occupier					
14	Preparation of off-site emergency plan by the occupier					
15	Information to be given to persons liable to be effected by a major Accident					
17	Collection, development and dissemination of information on hazardous					
Chemicals employed by the occupier						
	levelop information in the form of safety data sheet as specified in SC-9.					
	ner of the hazardous chemical will be labeled with name of the manufacturer					
or importer of	the hazardous chemical.					

Table 7.1: Description of applicable provisions of Gol rules 1989 asamended in 1994 & 2000

7.1.3 Storage Facilities of Hazardous Chemicals

The maximum storage capacities, daily consumption, type of storage and physical status of identified hazardous chemical, which are proposed to be used for manufacturing various products are given in **Table 7.2**. The project proponent deals with different materials in their production, some of which are hazardous in nature i.e. flammable, explosive, toxic and corrosive. Chemicals consumed in this plant are in solid, liquid and gaseous and for the same the Hazard analysis is required. The information on Material safety data sheet (MSDS) for all the identified hazardous chemicals is presented in **Annexure-XXXV**.

S. No	Name of the Material	Daily consumption kg/day	Maximum Storage facility	Nature of the Material	Type of Storage & Maximum
1.	Acetic Acid	1223	12 KL x 1	Combustible& Corrosive	12 KL HDPE vertical tank - tank farm area
2	p- Nitro toluene	14730	730 20 KL x 2 – E		20 KL vertical SS tank - tank farm area
3	Oleum (30%)- (Oleum+ H ₂ SO ₄)	28750	20 KL x 2 – 40 T	Toxic & corrosive	20 KL MS vertical tank- tank farm area
4	Sodium Hydroxide	820	12 KL x 1 - 10 tons	Reactive	12 KL MS vertical tank- tank farm area
5	Soda ash	650	100 bags x 50 kg – 5 Tons	Corrosive/ reactive	100 x 50 kg– HDPE bags
6.	Iron powder	17280	1500 bags x 50 kg – 75 tons	Flammable & Reactive	50 kg bags
7	Activated carbon	9700	2000 bags- x10 - 20 T	Combustible	10 kg bags

Table 7.2: List of Hazardous chemicals, Daily consumption, Maximum Storage,Type of Storage and Nature of Material

7.1.4 Potential Hazards

The following are the potential areas in an existing / proposed project that can lead to major accidents.

- Hazardous chemicals in tank form area.
- Hazard chemical Storage (drums) in ware house.
- Different hazard cylinders at dedicated sites
- Hazard handling and process area
- Coal handling and storage area
- Electric zone

Present study (Table 7.2) indicate that Flammable/ Combustible liquids in vertical tanks in tank form area, whereas hazard solid material in ware house in specific bags including specific toxic hazard. Apart from these there is a proposal to store necessary Acetic acid in 12 KL tank and Oleum (30%) in 20 KL tanks, which are going to be consumed in proposed process units

7.2 Hazard Analysis

Identification of hazards is an important step in Risk Assessment as it leads to the generation of accidental scenarios. Once a hazard is identified, it is necessary to evaluate it in terms of the risk it presents to the employees and the neighbouring community. In principle, both probability and consequences will be considered.

Nature of the hazard most likely to accompany the hazardous material is its spill or release airborne toxic vapours / mists and fire/ explosion due to large storage or processes in its handling. On release, the hazardous substance can cause damage on a large scale. The extent of the damage is dependent upon the nature of the release, the physical state of the material and the micro-meteorological condition prevailing at the time of accident. As part of Risk Analysis, the damage distances are computed based on probable meteorological conditions.

List of hazardous chemicals along with maximum storage facility, per day consumption Flash Ignition Point (FIP), Boiling Point (BP) along with IDLH, TLV, UEL and LEL values is presented in **Table 7.3**. Further material analysis are made as per NFPA rating along with material factor is presented in **Table 7.4**. Classification of Flammable / Combustible liquids and description of National Fire Protection Agency (NFPA) classification are presented in **Tables 7.5** and **7.6** respectively. Hazard chemicals are store of in respective tanks in tank form area. Apart from tank form area the hazard chemicals are also storing in specified drums mostly in ware house and gas cylinder at dedicated areas, details of storage of chemicals are depicted in plant layout **Fig. 7.1**.

	Contoint Storage Jara									
S. No.	Description	Physical Status of Chemical	Rating	Melting Point (°C)	Boiling Point (°C)	Flash Point (°C)	IDLH (ppm)	TLV Value (ppm)	Lower Exposure limit (LEL) (%)	Upper Exposure Limit (UEL) (%)
1	Acetic Acid	Liquid	3	17	118.1	39	50	10	4	19.9
2	Para Nirro toluene	Liquid	3	52	220.2	106	200	5	1.6	
3	Oleum (30%)- (Oleum+ H2SO4)	Liquid	3	-	150	-	10 mg/m ³	0.2 mg/m ³	-	-
4	Sodium Hydroxide	Liquid	3	323	1388	-	-	-	na	na
5	Soda ash	Solid	2	851	-	-	-	10 mg/m ³	na	na
6	Iron powder	Solid	1	1535	3000	-	-	-	na	na
7	Activated carbon	Solid	1	450	4000	93.3	na	na	-	-

Table 7.3: Hazardous materials properties, rating and TLV value -Solvent storage yard

Note: Chemical Listing and Documentation of Revised IDLH Values (as of 3/1/95)

		Physical			NFPA Rating			
S. No.	Description Status of		Maximum storage	Nh- health	Nf- Fire	Nr- Reaction	Material Factor (MF)	
1	Acetic Acid	Liquid	10 Tons	3	2	1	14	
2	p- Nitro Toluene	Liquid	30 tons	3	1	1	14	
3	Oleum (30%)- (Oleum+ H ₂ SO ₄)	Liquid	40 tons	3	0	2	24	
4	Sodium Hydroxide	Liquid	10 tons	3	0	1	14	
5	Soda ash	Solid	5 tons	2	0	1	14	
6	Iron powder	Solid	75 tons	1	2	1	14	
7	Activated carbon	Solid	20 tons	1	1	0	4	

 Table 7.4: Hazard Maximum Storage and NFPA Rating – Open storages

Table 7.5: Classification of Flammable/Combustible Liquids

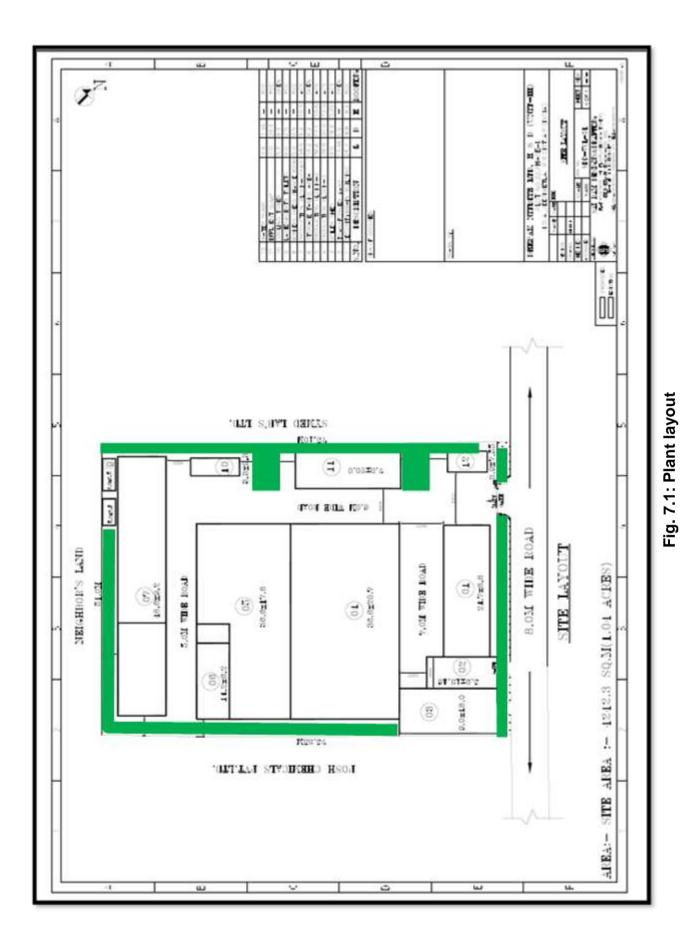

Class IA flammable liquid	Flash Point below 22.78°C and Boiling Point below 37.78°C.
Class IB flammable liquid	Flash Point below 22.78°C and Boiling Point at or above
	37.78°C.
Class IC flammable liquid	Flash Point at or above 22.78°C and below 37.78°C.
Class II combustible liquid	Flash Point at or above 37.78°C and below 60°C.
Class IIIA combustible liquid	Flash Point at or above 60°C and below 93.33°C.
Class IIIB combustible liquid	Flash Point at or above 93.33°C.

Table 7.6: Description of National Fire Protection Agency (NFPA) Classification

Rating	Type of possible	Rating	Susceptibility of material	Rating	Susceptibility to release
Nh	injury	Nf	to burning	Nr	of energy
4	Materials which on very short exposure could cause death or	4	Materials which will rapidly or completely vaporize at atmospheric pressure and	4	Materials which in themselves are readily capable of detonation or of
	major residual injury even though prompt medical treatment is given		normal ambient temperature or which are readily dispersed in air and which will burn readily		explosive decomposition or reaction at normal temperatures and pressure
3	Material which on short exposure could cause serious temporary or residual injury even though prompt medical treatment is given	3	Liquids and solids that can be ignited under almost all ambient temperature conditions	3	Materials which in themselves are capable of detonation of explosive reaction; but require a strong initiating source or which must be heated under confinement before explosively with water
2	Materials which on intense or continued exposure could cause temporary, incapacity or possible residual injury unless prompt medical treatment is given	2	Materials that must be moderately heated or exposed to relatively high ambient temperature before ignition can occur	2	Materials which in themselves are normally unstable and readily undergo violent chemical change but do not detonate. Also materials which may react violently with water to form explosive mixture

Rating	Type of possible	Rating	Susceptibility of material	Rating	Susceptibility to release
Nh	injury	Nf	to burning	Nr	of energy
1	Materials which on exposure would cause irritation but only minor residual injury even if no treatment is given	1	Materials that must be preheated before ignition can occur	1	Materials which in themselves are normally stable, but which can become unstable at elevated temperatures and pressure or which may react with water
0	Materials which on exposure under fire conditions would offer no hazard beyond 0 that of ordinary combustible material	0	Materials that will not burn	0	Materials which in themselves are normally stable, even under fire exposure conditions and which are not reactive with water

Nh- Health, Nf- Fire, Nr-Reaction

7.9 KKB Envirocare Consultants Pvt. Ltd., Hyderabad

7.2.1 Fire and Explosion Index

Fire and Explosion Index (FEI) is useful in identification of areas in which the potential risk reaches a certain level. It estimates the global risk associated with a process unit and classifies the units according to their general level of risk. FEI covers aspects related to the intrinsic hazard of materials, the quantities handled and operating conditions. This factor gives index value for the area which could be affected by an accident, the damage to property within the area and working days lost due to accidents. The method for evaluation of FEI involves the determination of Unit Hazard Factor and the determination of Material Factor (MF). Fire and explosion index is then calculated as the product of Material Factor (MF) and Unit Hazard Factor.

The Unit Hazard Factor is obtained by multiplication of General Process Hazard (GPH) factor and Special Process Hazard (SPH) factor. GPH factor is computed according to presence of exothermic reactions and loading & unloading operations. The penalties due to each of these reactions / operations are summed up to compute GPH factor. Similarly, SPH factor can be evaluated for the operations close to flammable range or pressures different from atmospheric pressures. Penalties of these operations for both factors can be obtained from Dow's FEI index form.

Material Factor for a given chemical is evaluated from NFPA indices of danger, health, flammability and reactivity data. It can be directly obtained from Dow's Fire and Explosion Index Hazard classification Guide of American Institute of Chemical Engineers, New York. The Material Factor for a given substance in the process unit gives intrinsic potential to release energy in case of fire or an explosion.

FEI Range	Degree of Hazard
0 - 60	Light
61 – 96	Moderate
97 – 127	Intermediate
128 – 158	Heavy
159 and Above	Severe

7.3 MCA Analysis

As part of Environmental Impact Assessment / Environmental Management Plan (EIA/EMP), the risk due to the Maximum Credible Accident (MCA) scenario will be quantitatively assessed. MCA stands for an accident with maximum damage distance, which is believed to be probable. In practice the selection of accident scenarios for MCA analysis is carried out on the basis of engineering judgment and expertise in the field of risk analysis especially in accident analysis.

The MCA analysis involves ordering and ranking of various sections in terms of potential vulnerability. The data requirements for MCA analysis are:

- Operating manual
- Flow diagram and P&I diagrams
- Detailed design parameters
- Physical and chemical properties of all the chemicals
- Detailed plant layout
- Detailed area layout

MCA analysis encompasses defined techniques to identify the hazards and compute the consequent effects in terms of damage distances due to heat radiation, toxic releases, vapour cloud explosion etc. A list of probable or potential accidents of the major units in the arising due to use, storage and handling of the hazardous materials are examined to establish their credibility. Depending upon the effective hazardous attributes and their impact on the event, the maximum effect on the surrounding environment and the respective damage caused can be assessed.

7.3.1 Event Tree Analysis

The accident scenarios of hazard chemicals can be divided into the following categories.

- Flammable gases
- Liquefied gas or boiling liquid release under pressure
- Non boiling liquid release
- Toxic gas release

Different consequences of accidental release of hazard due to undesirable conditions of failure are possible depending on type of event such as continuous or instantaneous releases in gas/ vapour / liquid. Event Tree Analysis for rupture and leak scenarios for continuous/ instantaneous release of gas/ liquid and for delayed or immediate ignition or toxic cloud. Typical flow chart of accidental release of hazardous chemicals is given in **Fig.7.2**.

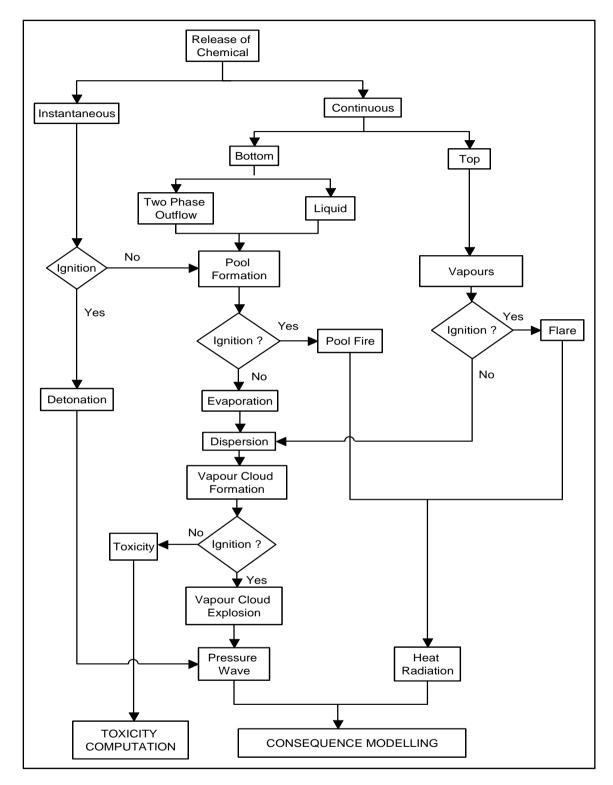


Fig. 7.2: Typical Flow Chart of Accidental Release of Hazardous Chemicals

7.3.2 Methodology of modeling exercise

Source models represent the material release process. They provide useful information for determining the consequences of an accident including the rate of material release, the total quantity released and the physical state of the material. The source models that are used repeatedly are:

- Flow of liquid /vapor through a hole in a tank/ pipes
- Flowing liquids
- Liquid pool evaporation or boiling

The purpose of source model is to determine:

- Form of material released is solid/ liquid/ vapour
- Total quantity of material released
- Rate at which it is released

Dispersion Model: Dispersion model describes the transportation of air borne toxic material away from the accident site and in to the surrounding areas. After the release, the air borne toxic substances are carried away by the wind in a characteristic plume or a puff. The maximum concentration of toxic material occurs at the point of release. The concentration at downwind is less due to turbulent mixing and dispersion of toxic substances with air. A number of parameters that affect the atmospheric dispersion of toxic material are wind speed, atmospheric stability, general conditions such as buildings, water bodies and trees, height of release and initial movement of the material released.

Fire and Explosion Scenarios: Flammable substances on release may cause Jet fire and less likely unconfined vapour cloud explosion causing possible damage to the surrounding area. The extent of damage depends upon the nature of the release. The release of flammable materials and subsequent ignition result in heat radiation wave or vapour cloud depending upon the flammability and its physical state. Damage distances due to release of hazardous materials depend on atmospheric stability and wind speed. It is important to visualize the consequence of the release of such substances and the damage caused to the surrounding areas.

- First, before the ignition, a cloud of sufficient size must have been formed. Normally
 ignition delays of few minutes are considered the most probable for generating the
 vapour cloud explosions
- Second a sufficient amount of the cloud must be within the flammable range of the material to cause extensive overpressure.

• Third, the flame speed determines the blast effects of the vapour cloud explosions, which can vary greatly

Combustible materials within their flammable limits of (UEL and LEL) may ignite and burn if exposed to an ignition source of sufficient energy. On process plants, this normally occurs as a result of a leakage or spillage, which will depends on the physical properties of the material and the operating parameters. The event Classification of fire and explosion scenarios is described in **Table 7.7**.

Type of	Explanation				
Event					
	Boiling Liquid Evaporating Vapor Explosion; may happen due to				
BLEVE	catastrophic failure of refrigerated or pressurized gases or liquids stored				
	above their boiling points, followed by early ignition of the same, typically				
	leading to a fire ball				
Explosion	A release of large amount of energy that form a blast wave				
Fireball	The burning of a flammable gas cloud on being immediately ignited at the				
Tilebali	edge before forming a flammable/ explosive mixture.				
Flash	A flammable gas release gets ignited at the farthest edge resulting in				
Fire	flash-back fire				
	A jet fire occurs when flammable gas releases from the pipeline (or hole)				
Jet Fire	and the released gas ignites immediately. Damage distance depends on				
	the operating pressure and the diameter of the hole or opening flow rate.				
	Pool fire is a turbulent diffusion fire burning above a horizontal pool of				
Pool Fire	vaporizing hydrocarbon fuel where the fuel has zero or low initial				
	momentum				
Vapor	Explosion resulting from vapor clouds formed from flashing liquids or non-				
Cloud	flashing liquids and gases				
Explosion					

Table 7.7: Event Classification

Models for the Calculation of Heat load and Shock Waves: If a flammable gas or liquid is released, damage resulting from heat radiation or explosion may occur on ignition. Models used in this study for the effects in the event of immediate ignition (torch and pool fire) and the ignition of a gas cloud. These models calculate the heat radiation or peak overpressure as a function of the distance from the torch, the ignited pool or gas cloud. The physical significance of the various heat loads is presented in **Table 7.8**.

Flux / Intensity (KW/m²)	Thermal Effects
49	<u>3rd degree burns</u>
	Severe burns due to fire ball zone
37.5	100% lethality
	Severe burns, 80% or more leading to 100% fatality
25	50% lethality
	Severe burns due to explosion of gas, within lower and upper limit leading
	to 50% fatality
12.5	<u>1% lethality</u>
	Burns and injuries due to exposure to thermal radiation
4.5	First degree burns
	Blistering and first degree burns due to exposure to thermal radiation
1.6	No perceptible discomfort

 Table 7.8: Various Physical Effects Due to Heat Radiation

Boiling Liquid Expanding Vapour Explosion (**BLEVE**): If the liquid is stored under pressure at a temperature above its boiling point, the initial physical explosion that breaks the receptacle produces a sudden decompression giving rise to a massive evaporation of the saturated liquid. This is known as Boiling Liquid Expanding Vapour Explosion (BLEVE). These explosions are of great destructive power due to the high increase in pressure caused by the sudden incorporation of liquid into the gas phase. The ignition of BLEVE produces a mass of gases at high temperature known as 'fireball' with significant thermal effects. Historically, BLEVEs have been produced with some frequency and have almost caused human casualties.

Model for Pressure Wave: A pressure wave can be caused by gas cloud explosion. The following damage criteria are assumed as a result of the peak overpressure of a pressure wave: 0.03 bar over pressure wave is taken as the limit for the occurrence of wounds as a result of flying fragments of glass. Physical significance of various pressure waves is presented in **Table 7.9.** Methodology (Yellow book) and Software applied for the study TNO and also EPA based one).

SI. No.	Press (psig)	Damage
1	0.03	Occasional breaking of large glass windows already under strain
2	0.1	Breakage of small windows under strain
3	0.3	" Safe distance " (probability 0.95 no serious damage beyond this value); projectile limit; some damage to house ceiling; 10% window glass broken
4	1.0	Partial demolition of houses, made uninhabitable
5	1-2	Corrugated asbestos shattered; corrugated steel and aluminum panels, fastenings fail followed by buckling wood panels (standard housing) fastening fail, panels blown in
6	1.3	Steel frame of clad building slightly distorted

Table 7.9: Over Pressure Effect of Explosion

SI. No.	Press (psig)	Damage
7	3.0	Heavy machines (3000lb) in industrial building suffered little damage;
		steel frame building distorted and pulled away from foundations
8	5.0	Wooden utility pollen
9	7.0	Loaded train vapour over turned
10	10.0	Probable

7.4 Consequence of MCA Analysis

Based on the hazard identification and nature of hazard occurrence, MCA scenario is short listed below.

- Pool fire due to rupture / leakage and accumulation
- Fire/ explosion of flammable gas / vapour
- Dispersion of Toxic gas

7.4.1 Pool Fire/ Vapour cloud explosion

This scenario was visualized for p-Nitro toluene is storing in tank form area including Combustible liquid Acetic acid analyzed for selected stability class and wind velocity. The damage distances for pool fire due to leak and catastrophic rupture (BLEVE) of storage tank for heat radiation of 37.5, 12.5 and 4.5 Kw/m² are given in **Table 7.10**. Pressure wave's values are also calculated for vapour cloud explosion and reported for damage distance due to over pressure 0.3, 0.1 and 0.03 bar in Table 7.10.

Hazard Material	Capacity	Heat Radiation (KW/m ²) - Meters			Over Pressure (bar) - Meters		
		37.5	12.5	4.5	0.3	0.1	0.03
Acetic Acid 12 KL	Poo fire dia. 3.6m	-	-	<10	-	-	-
p-Nitro toluene 15 Tons (20 KL)	Pool fire dia 4.6 m	-	<10	11	-	-	-
p-Nitro toluene 15 Tons (20 KL)	VCE/ BLEVE	102	207	353	313	365	612

Table 7.10: Consequences of MCA Analysis – Storages (Pool Fire/ Fir Ball/ VCE- (*Catastrophic Damage distances in meter*)

Other hazard chemicals are storing in specified MS tanks in tank farm area and bags of different capacity in Ware house. The materials stored are combustible, toxic and corrosive in nature. Capacity and is considered as source strength to estimate for effect of heat radiation and over pressure for flammable liquids.

Flammable liquids: Analysis indicate that Confined pool fire of flammable liquid, nitro toluene heat radiation effect 4.4KW/m² covers up to 11 meter from center of pool, whereas heat radiation effect of 37.5 KW/m² within the pool only. In the case of catastrophic rupture of storage tank with ignition radiation effect 4.5 KW/m² up to maximum distance up to 353 meters and overpressure effect of 0.03 bar up to 612 meters.

Combustible liquids: Acetic acid is proposed to store in 12 T capacity MS vertical tanks in tank form area and it is considered as combustible as well as toxic one. In case of instantaneous release of acetic acid forms confined pool, if ignite radiation effect 4.5 KW/m² is less than 10 meters from centre of pool.

Consequence analyses of above are shown in Annexure XXXVI for p-Nitro Toluene.

7.4.2 Toxic (gases/ vapors) Release (gases/ vapors)

The toxic hazard chemicals are going to be used by proponent in their proposed plant and are mainly 30% Oleum, Nitro toluene and Acetic acid including Sodium hydroxide and are stored in specified vertical tanks in tank form area. Apart from these other toxic hazard solid material i.e. Soda ash, Iron powder and Activated carbon are proposed to store in 10 kg to 50 kg bags capacity. Toxic hazard chemicals are selected on basis of IDLH and TLV value for the study. Some of the chemicals, such as Nitro toluene and Acetic acid are combustible/Flammable as well as toxic. Hence Acetic acid fumes and Nitro toluene are selected for toxic dispersion along with Oleum. For the purpose of risk assessment study, consequences due to release of these toxic elements are analyzed for estimation of damage distances due to toxic releases from confined. Consequences results are reported in **Table 7.11.**

Consequence analysis indicate that IDLH concentration of Oleum fumes 10 mg/m³ covers a distances up to 28 m at wind ward side of plant due to leak. Analysis indicate that if any incident occurs effected area is on site as well as off-site area, whereas in case of Nitro toluene IDLH level 200 ppm covers a distance of 5 m due to leak for instantaneous release covers a distance of 1700 m.

Scenario Considered	IDLH (ppm)	TLV (ppm)	Leak Size (mm)	Source Strength (kg/sec)	IDLH Distance (m)	TLV (m)
Acetic acid 10 T	50	10	Pool evaporation dia 3.6 m	.00218	16	39
0leum 2x20kl	10mg/m ³	0.2 mg/m3	Pool evaporation Pool dia 4.6 m	0.00103	28	208
P- Nitro			Leak	4.167	5	2700
toluene 15 T	200	5	Instantaneous	273	1700	5000

 Table 7.11: Consequence Analysis for Toxic Release Scenario

The damage contour of p-Nitrotoluene and Oleum (30%) are shown in **Annexure – XXXVII** and **Annexure - XXXVIII** respectively. For all these toxic hazard are predicted and distance of exposure of IDLH level as well as for TLV (PEL) are reported in Table 7.11.

Handling of Hazardous Materials

- Material hazards: Coal is the major fuel for existing/ proposed steam boiler and High Speed Diesel (HSD) Oil for DG sets.
- **Process hazards** due to loss of containment during handling of hazardous materials or processes resulting in fire, toxic dispersion and explosion, etc.
- Mechanical hazards due to "mechanical" operations such as welding, maintenance, falling objects etc. - basically those NOT connected to hazardous materials.
- Electrical hazards: electrocution, high voltage levels, short circuiting, etc.

Out of these, the material and process hazards are the one with a much wider damage potential as compared to the mechanical and electrical hazards, which are by and large limited to only very small local pockets.

7.5 Risk mitigation measures

Consequences analysis indicate that the damage distances for fire and explosion situations and IDLH distances due to toxic release of hazardous chemicals fall well within the plant site as well as outside the boundary specially in the case of instantaneous release of Nitro Toluene and Oleum for the same distance of effect as per its IDLH and PEL is reported.

In the case of combustible and flammable liquids effect of pool fire distance is onsite and its effected area up to maximum of 11 meters from center of pool. Delayed ignition /spark of vapour cloud of the Nitro toluene under over pressure effect crosses plant boundary including effect of radiation.

For the above incorporating certain mitigation measures at source of release, the consequences to the members of public in and outside the plant will be further reduced.

Since the scope of the risk assessment studies cover the risk mitigation measures based on Maximum Credible Accident (MCA) Analysis, certain general and specific recommendations are suggested and listed in this chapter. In this regard, the recommended mitigation measures for natural disasters are also included.

7.5.1 General

The industry has to provide appropriate independent fire combat facility and personal

protection system and also should have a mutual aid with industries located in and around Deepak Nitrite Ltd, Unit-III Jeedimetla, Medchal Malkajigiri (D), Telangana state. On-site emergency plan with effective fire combat facility is available and it has to be upgraded along with off-site emergency plan with appropriate mitigation measures.

7.5.1.1 Fire Prevention and Protective Equipment

Existing fire-fighting facility to be upgraded for proposed plant to utilise the same as and when required. The following fire fighting facility is to be checked, if not procured and maintain the same as in case of basic fire preventive measures.

- > Water
- Water Tenders
- > Foam Tenders
- > Fire hydrant and monitor nozzle installation
- > Dry powder extinguisher
- Water fog and sprinkler system
- > Mobile Fire-fighting equipment
- > DCP fire extinguishers
- ➢ CO₂ Fire extinguishers
- High expansion foam generator
- > For large fire Dry chemical, CO_2 and alcohol resistant foam.
- > Fire extinguishers will be tested periodically and will be kept in operational mode

Apart from above specific preventive/ safety measures on long term basis to be followed as follows:

- First aid appliances
- > Critical switches and alarm will be kept in-line
- > Shut off valves isolation will be easily approachable in emergencies
- Signboard for toxic or flammable hazard and no smoking signs and type of risk will be provided at various locations
- A wind direction pointer will also be provided at storage site, tanks and location of drums storage. So that in emergency the wind direction can be directly seen accordingly downwind population cautioned specially in toxic gas release.
- Sufficient/adequate space in the storage areas such that to escape from fire and at the same time it will allow emergency procedures to be mobilized.
- Dykes are provided for most of the solvent storage tanks for existing / proposed one if any. However for all the storage tanks of existing chemicals/ solvents wherever necessary, it may be provided and keep safe distance between tanks to avoid

domino effect in case of fire.

- Fire proofing materials will have adequate adhesion, strength and durability in the area.
- > Seal all the waste in vapour tight plastic bags for eventual disposal or incineration.
- Use face shield, PVC gloves, and safety boots while handling and contaminated clothing has to be removed immediately.
- In case of accidental release, shut-off leaks without risk. Prevent spillage from entering drains or water sources.
- For small spills, take up with sand or other non-combustible material and placed into closed containers for later disposal.
- For large liquid spills, build dyke far ahead of the spill to contain the spilled material for reclamation or disposal as per environmental safety guidelines and decontaminant the area.
- > Cool containers/ drums with flooding quantity of water until well after fire is quit.
- Periodical mock drills will be conducted so as to check the alertness and efficiency of the DMP.
- In any case of large fire occurs, cool the tanks/ drums with flooding quantity of water until fire is quit.

7.5.1.2 Solvent Storage Tanks / Drums Handling Precautions

Storage tanks: At present storage tanks are proposed in tank form area for solvents as well as for acids i.e. solvent such as Nitro Toluene. Apart from solvents, acid tank such as acetic acid and Oleum (30%) tank including Sodium hydroxide is proposed in tank form area, if any should transferred to the day tank situated at the production block with the help of mechanical seal pump through pipe lines from the tank, from day tank to reaction vessel unloading by gravity.

Occupational Health: Each chemical has its specific character. Hence, chemicals do not co-exist. They need their independent space, while storing. When two chemicals come in contact may generate heat, and gases by-product. Ambient temperature and moisture can trigger the reaction. Halogenated compounds, Acid fumes/ vapor and amine compound acquire aggravated properties. It is only wise to treat every chemical as toxic. Any accidental release of hazard of flammable / toxic, distance of radiation and toxic exposure including over pressure effect is reported in Table 7.10 and 7.11. For the same risk mitigation measures (general and specific) followed by DMP discussed in next chapters.

Chemicals are potential enough to destroy the flesh and the skin is ultrasensitive to chemicals. Chemicals on contact, the affected parts of the body will be washed thoroughly

with plenty of water for at least 15 minutes, to dilute the aggressive nature of the chemical, as water is the only universal solvent and the best diluent. Then only further treatment is to be followed.

Eye wash/drench shower is to be provided at a strategic location for emergency purpose. Chemical safety data sheets and handling procedure, First aid measures are to be prepared and displayed for information and safety of the working personnel. The common safety data of the raw materials and solvents are given in **Table 7.12** including fire-fighting measures.

1. Fire Fighting Measures					
Extinguisher media	Water spray, dry chemical and carbon dioxide or foam as appropriate for surrounding fire and materials. In case of fire of water/air reactant chemicals like sodium boro hydride, water/foam shall not be used. Dry sand, dry chemical/lime may be used.				
Special firefighting procedure As with all fires, evacuate personnel to safe area. Fire fighte should use self-contained breathing apparatus and protective clothing.					
Unusual fire and explosion hazard This material is assumed to be combustible. As with all powders it is advisable to earth the mechanical equipment contact with dry material to dissipate the potent buildup of sta electricity.					
Firefighting Procedures	As with all fires, evacuate personnel to a safe area. Fire fighters should use self-contained breathing apparatus and protective clothing.				
2. Physical Hazards					
Hazardous Decomposition Products	When heated to decomposition, materials emit toxic fumes under fire conditions.				
Hazardous Polymerization	Will not occur				
3. Health Hazard Informatio	n				
Adverse Effects Adverse effects may include dizziness, fainting, headacher diarrhea, and nausea, loss of taste, dry cough, rash feve pain, and unusual tiredness. Possible allergic reaction occumaterial if inhaled, ingested or in contact with skin.					
Acute	Possible eye, skin, gastro-intestinal and/or respiratory tract irritation.				
Chronic	Possible hyper sensitization				
Inhalation	May cause irritation. Remove to fresh air.				
Eyes	May cause irritation. Flush out with copious quantity of water by keep opening both eyelids of the affected eye/s. Obtain medical attention immediately.				
Skin	May cause irritation. Flush out with copious quantity of water.				
Ingestion	May cause irritation. Flush out mouth with required quantity of water by gargling. Obtain medical attention immediately.				
4. First Aid Measures					
Precautions to consider	Persons developing hypersensitive (anaphylactic) reactions must receive immediate attention; material may be irritating to mucous membranes and respiratory tract. When handling, avoid all contact and inhalation of dust, fumes, mists, and/or vapors associated with				

Table 7.12: Safety data which are common to all raw materials and solvents

	the material. Keep container tightly closed and use with adequate ventilation. Wash thoroughly after handling. Individuals working with chemicals should consider all chemicals to be potentially hazardous even if their individual nature may be uncharacterized or unknown.		
Emergency and first aid procedures	Remove from exposure. Remove contaminated clothing. Person developing serious hypersensitive reactions must receive immediate medical attention. If a person is not breathing, give artificial respiration. If breathing is difficult, give oxygen. Obtain medical attention immediately.		
5. Exposure Controls / Pers	onal Protection		
Respiratory protection	Use the NIOSH approved respirator, if it is determined to be necessary by an industrial hygienic survey involving air monitoring. In the event of a respirator is not required, an approved dust mask will be used.		
Ventilation	Recommended		
Protective gloves	Rubber		
Eye protection	Safety goggles/face shield		
Other protective clothing	Appropriate laboratory apparels/Apron. Protect exposed skin.		
6. Handling / Spill / Disposa	al Measures		
Handling	As a general rule, when handling the materials, avoid all contact and inhalation of dust, mists, and/or vapors associated with the material. Wash thoroughly with soap water after handling.		
Storage	Store in airtight containers. This material should be handled and stored as per label instructions to ensure product integrity.		
spill response	Wear approved respiratory protection, chemically compatible gloves and protective clothing. Wipe up spillage or collect spillage using a high efficiency vacuum cleaner. Avoid breathing dust. Place spillage in an appropriately labeled container for disposal. Wash out the spilled site thoroughly.		

Measures to Avoid Evaporation

Keep chemical holding tank/ containers/ drums tightly closed. Keep away from, sparks, flame and sources of ignition. Avoid utilizing common shed for different hazard chemicals specially in compactable chemical in same shed, if not keep safe distance. MS drums are has to be stored on spill containment pallets. In case of any leakage from the drum it should collect in the tub space provided in the pallet itself as containment.

If drums are any transferred from ware house to manufacturing area along with spill pallets, It is necessary to store of drums in a cool, dry, well-ventilated area away from incompatible substances sufficient buffer space should be provided between containers/ drums, so that it can be isolated during leak/ spill and respective remedial measures can be undertaken to minimize the effect on-site area. If any chemical to be dispensed for part quantities, the dispensing operation will be done in the dispensing room with local exhaust ventilation system connected to scrubber Following contaminant procedure and safety systems is to be followed to minimise/ avoid release of hazard chemical and to control at source if leak/ spill of gas/ vapor/ liquid.

Spill containment procedure:

- 1. In case of minor spill isolate the chemical/ material
- 2. Neutralize the spill with the chemical
- 3. Sweep the area
- 4. Decontaminate the area with suitable de-contaminer as mentioned in the above table

It is also necessary that every chemical industry to be maintained spill control kit with minimum of these items is to be followed and updated in regular interval.

- 1. Sorbent rolls
- 2. Sorbent brooms
- 3. Sorbent pads
- 4. Air tight goggles
- 5. Half face cartridge mask
- 6. Chemical resistant suit
- 7. Antistatic gloves
- 8. PVC gloves

Safety Systems

- 1. Designated areas with proper indication flammable/ toxic / explosive & safety signs
- 2. Double earthing systems
- 3. Flame arrestor to the vent
- 4. Flame proof transferring pumps
- 5. Handling precautions/sop protocol
- 6. Pressure Gauges
- 7. Level indicators
- 8. Flame proof lighting to storage yard

Personal Protective Equipment (PPE)

Personal Protective Equipment (PPE) provides additional protection to workers exposed to workplace hazards in conjunction with other facility controls and safety systems. Selection of PPE will be based on the hazard and risk ranking and will be according to the criteria on performance and testing established. The generally recommended measures for use of PPEs in the work place are given in **Table 7.13**.

Objective	Workplace Hazards	Suggested PPEs			
Eye and face	Flying particles, molten	Safety glasses with side-shields, Chemical splash			
protection	metal, liquid chemicals,	glasses protective shades, Fiber glass resistant to			
	gases or vapors, light radiation.	most chemicals etc.			
Head	Falling objects,	Plastic helmets with top and side impact			
protection	inadequate height	protection.			
	clearance, and overhead				
	power cords.				
Hearing protection	Noise, ultra-sound.	Hearing protectors (ear plugs or ear muffs)			
Foot	Failing or rolling objects,	Safety shoes and boots for protection against			
protection	points objects. Corrosive	moving and failing objects, liquids and chemicals.			
	or hot liquids.				
Hand	Hazardous materials,	Gloves made of rubber, PVC coated gloves or			
protection	cuts, vibrations, extreme				
	temperatures.	insulation materials, etc.			
Respiratory	Dust, fogs, fumes, mists,	Facemasks with appropriate filters for dust			
protection	gases, smokes, vapors	removal and air purification (chemical, mists,			
		vapors and gases). Canisters for toxic gas Single			
		or multi-gas personal monitors, if available.			
	Oxygen deficiency	Portable or supplied air (fixed lines). Onsite			
Deaths / 1		rescue equipment.			
Body / leg	•	Fire Entry Suit; Insulating clothing, body suits,			
protection	hazardous materials.	aprons etc. of appropriate materials			
		Stud safety shoes, PVC knee boots			

 Table 7.13: Recommended Personal Protective Equipment's

7.5.2 Specific Recommendations

Specific attention to be made during storage, transport and handling mode specially for combustible, flammable/ explosive and toxic material.

The major hazard situations in the unit are: The pool fire occurs due to:

- Possible rupture/ leak of storage tanks / drums
- Dispersion of liquid to confined or unconfined area
- Ignition of releasing liquid/ vapour

To prevent accident due to fire and explosion, it is necessary to know:

- Fire and explosion properties of the material
- Nature of fire and explosion process and
- Procedure to reduce fire and explosion

To avoid or reduce Vapor Cloud Explosion (VCE) to minimise dispersion of flammable vapor by operating water/ foam tenders and to avoid further dispersion by maintaining water/ foam curtain.

- Sudden release of large quantity of flammable vapour, typically this phenomenon occurs when a storage tank containing suspended and pressurized liquid ruptures
- Dispersion of vapour in nearby areas while mixing with air
- Ignition of the released vapour cloud

Vapor clouds are normally ignited at the edge as they drift and stop further spreading of the cloud in that direction causes Unconfined Vapour Cloud Explosion (UVCE).

However vapour cloud explosion unlikely occur in Deepak Nitrite Ltd., Unit-III, being released vapour cloud in most of the case below the LEL as per analysis.

Each chemical has specific character and hence all the chemicals will not be stored in one storage shed, being not supposed to mixed, stored together, during storage and handling. It is the nature of chemicals that they do not co-exist. The major incompatibilities for storage and handling of hazard chemicals are presented in **Table 7.14**.

	Chemicals
Chemical	Incompatible with
Acetic acid	Solvents, oxidizing agents, water, other chemicals
p- Nitro Toluene	may react violently with sodium, tetra nitro methane, strong oxidizing agents, sulfuric acid and other acid
Oleum (30%)- (Oleum+ H2SO4)	Alkali, metal alkaline, compound alkaline earth metals, bases, acids, metals alloys, attack many metals, producing hydrogen may form explosive mixtures with air, alkali
Sodium hydroxide	Highly reactive with metals. Reactive with oxidizing agents, reducing agents, acids, alkalis, moisture chemically active - such as sodium, potassium, magnesium and aluminium
Soda ash	May React with aluminum, acids, fluorine, lithium, and 2,4,6- Trinitrotoluene
Iron powder (60%)	Organic acids, strong oxidizing agents,, water Mineral acids
Activated carbon	Strong oxidizing and reducing agents such as ozone, liquid oxygen or chlorine

Table 7.14: Major incompatibilities for storage & handling of hazardouschemicals

Specific precautionary measures are to be taken by M/s Deepak Nitrite Limited on case by case for following accidental release of hazard chemicals.

7.5.2.1 Combustible materials

Industry proposed to store combustible liquids, Acetic acid in 12 MT capacity tank and others in drums and are proposed if any to store in ware house. MCA analysis of Acetic acid indicates that pool fire heat radiation effect is at edge of pool. In case of fire start using the fire hydrant points, water sprinklers. As precautionary measures water monitor and foam gun kept near the tank farm area. In case of spill in ware house for other material carefully throw polypropylene booms/ pillows around and on the spill to prevent the spread of the spill. Absorb the spill with polypropylene pads and squeeze the pads into disposable container. In case of small fire -water and for large fire dry chemical, alcohol foam, water spray and keep away source of ignition. Send the disposable container containing liquid to effluent treatment plant, disposable container containing Polypropylene pads, Booms to Incinerator.

7.5.2.2 Flammable – Pool Fire/ vapour cloud Explosions / BLEVE

In case of leak or catastrophic rupture of storage tanks in tank form area and drums if any in ware house (Table 7.4), total material taken as source strength and forms a pool in respective dyke. In the case of leak, pit tank is to be provided in tank form area to collect leaked solvent as precautionary measure to collect and disposed accordingly and simultaneously leakage control with safe precautionary measures. If pool fire occurs, start using the fire hydrant points, water sprinklers, water monitor and foam gun kept near the tank farm area. The following emergency procedure is to be followed in case leak/ rupture of tank in tank form area.

- Evacuate all the personnel in the tank farm area.
- Stop all activities/loading unloading in the tank farm area
- Cordon off the area and do not allow any person inside tank farm.
- Follow emergency procedure for fire protection measures in storage tank form area.

If ignition takes after vapour cloud formation or BLEVE takes due to exposure of storage tank by external heat or any other means. Result causes over pressure and heat radiation effect on-site area and crosses plant boundary (off-site) area closed by plant. The risk mitigation measures is as follows

- All solvent tanks having condenser cooling with Flame arrestor provided.
- Appropriate fire-fighting system is to be applied in case of accidental release of other flammable liquids.
- Lightening arrestors provided to near tank
- Breather valves facility with Nitrogen blanketing provided to all
- MCP provided inside the solvent tank farm area

In the above case use alcohol form, water spray or fog, cool containing water jet to prevent pressure buildup or auto ignition or explosion. In case of small fire due to leak of flammable liquid / vapour appropriate fire-fighting system may be deployed accordingly on basis of Risk level.

7.5.2.3 Toxic Release

Industry is proposed to handle proposed Acetic acid, oleum (30%) and Nitro Toluene in tank form area including sodium hydroxide, whereas solids such as activated carbon,

caustic soda and iron powder and others in bags in ware house.

Accidental Release Measures: Ventilate area of leak or spill. Remove all sources of ignition. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Carefully throw polypropylene booms / pillows around and on the spill to prevent the spread of the spill. Absorb the spill with polypropylene pads and squeeze the pads into disposable container. Pour dry sand on the spill and collect into disposable container. Send the disposal container containing solvent & Booms & Pads to Incinerator and disposal container containing contaminated sand to ETP Sludge drying beds for proper disposal. During handling and exposure to the chemical the following precautionary measures may be taken is as follows.

Inhalation: Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention immediately.

<u>Ingestion</u>: If swallowed, give large quantities of water to drink and get medical attention immediately. Never give anything by mouth to an unconscious person.

<u>Skin Contact</u>: Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention immediately. Wash clothing before reuse. Thoroughly clean shoes before reuse.

Eve Contact: Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

Oleum (30%): Plant has a provision to store maximum of 2x20 KL vertical MS tanks

Wear appropriate personal protective clothing to prevent skin contact and avoid breathing vapors if any leak

Avoid contact with eye, Wear appropriate eye protection to prevent eye contact. The worker should immediately wash the skin when it becomes contact with acid.

Filling/ Transfer operation should be stopped immediately in the event of:

- Uncontrolled leakage occurring
- A fire occurring in the vicinity
- Lightning and thunder storm

In case of small leaks increase ventilation and allows gas/vapor to vent, bounding with sand earth dilute spill with water. In case of large spell use water fog to dampen cloud of sulphuric acid fumes to reduce vapours. Some of the specific chemical, which are highly toxic corrosive and immediate with water discussed below and respective spill control procedure.

P- Nitro Toluene: The plant has a provision to store 2x20 KL capacity of vertical SS tank stable under normal temperatures and pressure. It is a combustible solid, and stored in liquid form at above melting point. It is a strong oxidizer and reactive with sulfuric acid

Exposure Routes -inhalation, skin absorption, ingestion, skin and/or eye contact

Target Organs Blood, central nervous system, cardiovascular system, skin, gastrointestinal tract

Acetic acid: There is a provision of storage in 12 KL HDPE storage tank, daily consumption 1223 Kg/day. It is fuming / corrosive liquid. And it is incompatible with bases, oxidisers and reducing agents. In case of leak it forms confined pool, Stop leak if without risk keep the airborne concentrations of vapors below Threshold limit value (10 ppm) towards downwind side of confined pool covers a distance up to 39 met causes effected area within the plant For the same a self-contained breathing apparatus should be used to avoid inhalation of the product. Leaked material disposed to confined areas of dike and disposed.

Other hazard chemicals:

Activated carbon: Industry has a provision to store 10 kg bags of 2000 no. to store in ware house. It may cause irritation to the lungs and mucous membranes. Although considered non-toxic through inhalation, avoid inhalation of dust, Avoid prolonged contact with skin also may cause eye irritation. Non-toxic through ingestion and it is a potential combustible hazard.

Powdered material may form explosive dust-air mixture, which can be ignited by a spark heat or flame. Powdered form is self-heating and may catch fire. Dry activated carbon burns slowly in air hotter than 450°C. Organic impurities lower the auto ignition temperature and increase the ignition hazard. Powdered dry activated carbon accumulates static charge. When evaluating the dust explosion hazard of a specific process or sample of material, the important factors to consider include: particle size and shape, dust concentration, the nature of any impurities, oxygen concentration, humidity, and extent of containment. Wet activated carbon removes oxygen from air and can lower the concentration of oxygen inside vessels containing carbon and other confined spaces. During a fire, toxic gases are generated. **Small fires**: Carbon dioxide dry chemical powder or sand. **Large fires**: regular foam

Special Fire Fighting Procedures: Wear NIOSH-approved self-contained breathing apparatus and protective clothing. Wet activated carbon removes oxygen from air and can lower the concentration of oxygen inside vessels containing carbon and other confined spaces. During a fire, toxic gases are generated.

Ventilation Requirements: Mechanical ventilation (dilution or local exhaust), process or personnel enclosure and control of process conditions must be provided in accordance with

all fire codes and regulatory requirements. Supply sufficient replacement air to make up for air removed by exhaust systems.

Iron Powder: Industry has a provision to store 50 kg bags of 1500 number in ware house

Exposure to the spilled material may be irritating or harmful. Follow personal protective equipment recommendations. Additional precautions may be necessary based on special circumstances created by the spill including; the material spilled, the quantity of the spill, the area in which the spill occurred. Avoid the generation of dusts during clean-up. Avoid creating and inhaling dust. Prevent the spread of any spill to minimize harm to human health and the environment if safe to do so. Dike with suitable absorbent material like granulated clay. Gather and store in a sealed container pending a waste disposal evaluation. Vacuum or sweep up material and place in a disposal container. Slight ecological hazard. In high concentrations, this product may be dangerous to plants and/or wildlife. Keep out of waterways

Most of the hazard chemicals are storing in ware houses in specified drums / carboys in liquid and solid form, these chemicals flammable, toxic as well as corrosive in nature, and storing in ware house.

Small spillage: Any hazardous chemical spill that does not involve highly toxic, highly reactive, or explosive chemicals in a situation that is not life threatening. This type of spill present a manageable physical or health hazard to personnel who, when wearing proper Personal Protective Equipment (PPE), will not be exposed to any chemical at a level that exceeds any level or permissible exposure

Smaller Spillage Response & Cleanup Procedure:

If the spillage is of smaller quantity, cleanup the spilled material with suitable absorbent as per MSDS and collecting suitable portable container and send it to Effluent Treatment Plant (ETP) where it be treated / incinerated.

Large spillages: Any hazardous chemical spill involves highly toxic, highly reactive, explosive or life threatening chemicals. (OR) Any spill situation that presents significant fire, explosion, or other physical or health hazard risks, particularly if a person may be or has been significantly exposed, contaminated or injured to such an extent that medical or other assistance is required. Situation that may arise adverse impact on internal/ external environment of the industrial unit, whether or not the spill occurred internally or external to a building.

Large Spillage Response & Cleanup Procedure

- The area should be immediately evacuated particularly downwind area and Restrict access to the area until completion of recovery and cleanup.
- Eliminate all ignition sources and provide adequate ventilation depending upon the chemical.
- Stop or reduce leak if safe to do so.
- Contain the material with earth sand or absorbent material which does not Reactive with spilled material.
- Recovery and cleanup should be done the trained personnel only. The person cleaning the material should wear required Personal Protective Equipment (PPE) such as respiratory cartridge mask, safety goggles, gumboots, PVC Suit and rubber hand gloves etc.
- Do not touch the spilled material and avoid prolonged and repeat exposure to Toxic
- Prevent spilled material entering waterways, sewers or drainages.
- Ground the containers if the spilled materials generate the static electricity.
- Vacuum/ sweep up the spilled material in approved, portable and suitable containers as mentioned the MSDS.
- Place the containers with covers, labels and in suitable locations.
- After recovering the material, cleanup the area with suitable absorbent Material as mentioned in the MSDS.
- Flush the area with water if it is required.

Disposal of Larger Spillages Materials:

- After recovering the material, sent it to Effluent Treatment Plant (ETP).
- Depending on the nature (physical & chemical properties) of material either the material is to be neutralized or incinerated or it shall send for treatment and land filling

However in all the case of above and other chemicals are used by M/s Deepak Nitrite NIOSH data sheet guidelines for First aid, accidental release measures, fire-fighting if any

7.6 Hazard Control Measures

- 1. Procedures and actions will be well defined and known to all operating for safe shut down of plant in case of failure of any power, instrumentation, cooling water, air, etc.
- 2. All the storage tanks will be provided with temperature indicator, pressure gauge and safety valves as depending upon the process and operating parameters.

- 3. Plant specific HAZOP studies will be carried out using P & IDs for identification of hazards during operation considering deviation of operational parameters, their possible cause of material loss and consequence and safe guards.
- 4. Interlocks and DCS control will be provided during reaction process.
- 5. All the motors and other rotating equipment machines will be provided with suitable safety guards.
- 6. Existing Fire extinguishers fixed/ movable will be up graded in the plant area.
- 7. Movable fire tenders may be arranged, being it need of hour during emergency.
- 8. Flame arrestors will be provided at all vent lines for proposed solvent tanks.
- Suitable fire extinguishers, such as, DCP, CO₂ & foam type will be kept in every plant area at easily approachable spots. Fire hydrant points with sufficient length of hose reel will be provided at major emergency spots.
- 10. Bound walls, bonded wire fencing, detached storage area will be kept away from probable ignition sources; Dykes should be provided by giving sufficient space provision between all liquid storage tanks.
- 11. Safety shower and eye washer will be installed at storages/ handling of hazard, process/ operation units.
- 12. Sufficient space will be provided for free movement in the plant area. Avoid transfer of hazard material from storage to process units by manually if any.
- 13. Safe distances have been considered between storages and process operation units and utilities in designing of plant lay out.
- 14. Regarding all components of the plant proper certificate will be taken. Testing and inspection will not be compromised before deliveries.
- 15. Certificate of structure stability will be taken from competent person.
- 16. Insulation of piping will be provided as per requirement.
- 17. All elevated structures will be provided with lightening arrestors.
- 18. All exposed parts of moving machineries will be provided with suitable guards for personnel safety.
- 19. All piping and equipment will be provided with earthing connection and it will be tested regularly.
- 20. Safety valves & rupture disc will be provided to prevent over Pressure in tanks/ vessels and reactors.
- 21. SOP will be available of safe shut-down of plant during any emergency

7.7 Mitigation Measures for Natural Disasters

(A) Flood

Mitigative measures can be structural or non-structural. Structural measures use technological solutions, like flood levels that is only possible during local seasonal heavy rains. There is no possibility of water logging being area is slightly sloppy (undulated elevated terrain). As such there is the least possibility of flooding since the area is located in Deccan plateau and moreover, the average rainfall is 60/70 cm. However, the following procedure is followed in case of flooding.

- Focus resources on minimizing the spread of water into other areas of the plant
- Stop all operations immediately. Close all valves of solvent storage tank.
- Switch off power supply to avoid electrocution due to short circuit.
- Protect property and records by removing items from floors and/or covering with water resistant coverings.
- Evaluated information will be disseminated to personnel.
- Shift the water reactive material to elevated places like racks / building. Attempt to move items of value to "higher ground" if possible
- Activate the on-site warning and instructional system as necessary.
- Follow unit shutdown procedures and shutdown Electrical power.
- Control water flow by dike arrangement using sandbags, and or pumping.
- Start up after checking and clearing water from each and every unit.

(B) Cyclones and Severe Storms

Location of M/s Deepak Nitrite Limited is at elevated area and is not in flood prone area; location of site is around 600 MSL. However, during storm and if any flood water enters from outside plant area, land use management will provide protection from wind and storm surge.

- Engineering of structures would withstand wind forces and building will be constructed with wind-resistant capacity.
- Securing elements such as metal sheeting, roofing, and fences will be done to avoid severe damages.

Cyclone and severe weather warning systems will be installed and awareness regarding cyclone risk and evacuation plan will be addressed.

(C) Earthquake

The factory is situated in existing notified Jeedimetla Industrial area, Quthubullapur (M), Malkajigiri (d), Telangana which falls under Zone II under Seismic zone, classification

and accordingly the probability and impact will be least to moderate. However steps should be taken for Personal structural mitigation in earthquake prone areas includes seismic retrofits of property.

- Precautionary measure such as securing of items inside a building to enhance household seismic safety.
- Stay away from glass, windows, outside doors and walls, and anything that could fall Lighting fixtures or furniture.
- Stay inside until the shaking stops after that it is safe to go outside
- Do not attempt to move to a different location inside the building or try to leave
- DO NOT use the elevators

7.8 Disaster Management Plan

Introduction

A major emergency is one, which has the potential to cause serious injury or loss of life. It may cause extensive damage to property and serious disruption, both inside and outside a plant. Sometimes, it requires the assistance of outside emergency services to handle it effectively. Emergency may be caused by a number of factors, e.g. plant failure, human error, natural calamities, crash or sabotage, if any other means. Several Government agencies, both at the Central and State levels, are entrusted with the responsibility of ensuring safety and management of hazardous chemicals under Acts and Rules made for the purpose. Despite these measures, the possibility of accidents cannot be ruled out. In order to be ready to face risk of accidents during processing, a disaster management plan will be prepared to mitigate the impact. The overall objectives of DMP are to:

- Minimize the occurrence of Leak/ Catastrophic events leading to human, property and material damage/losses by a suitable policy initiative.
- Prevent injury, loss of life or damages by a timely and appropriate response of emergency preparedness plan for on-site and off-site area of M/s Deepak Nitrite Limited, Unit-III.
- Obtain early warning of emergency conditions so as to prevent impact on personnel, assets and environment
- Activate and ensure involvement of all personnel and agencies in emergency response planning and community preparedness.
- Immediate response to emergency scene with effective communication network and organized procedures.
- Involve citizens and other emergency response team members in design, testing and implementation of the DMP.

Key Elements of DMP

Following are the key elements of Disaster Management Plan:

- Basis of the plan
- > Accident/ emergency response planning procedures
- > On-site Emergency Preparedness Plan
- > Off-site Emergency Preparedness Plan

Basis of the Plan

Identification and assessment of hazards is crucial for on-site emergency planning and it is therefore necessary to identify what emergencies could arise in production of various products and their storages including hazard transfer pipeline. Hazard analysis or consequence analysis gives fire, explosive and toxic scenarios due to accidental release of flammable/ toxic chemicals from storage (tanks / drums) and any other means.

Accident/ Emergency Response Planning Procedures: There are four emergency levels of incident management and response to industrial accidents that the public be aware of.

Level I: An incident has occurred and can be controlled by facility personnel. The situation is under control.

Level II: An incident has occurred; the situation is not under control but is confined. The incident is confined to a small area or to a fixed-site and does not pose a threat of spreading to a larger area or off-site.

Level III: An incident has occurred the situation is not under control and protective action may be necessary for the surrounding or off-site area.

Level IV: An incident has occurred and the situation is not under control. Actions by more than first responders or facility personnel are necessary. Incident involving a severe hazard or an area which poses an extreme threat to life and property and will probably require an evacuation.

Emergency rarely occurs therefore activities during emergencies require coordination of higher order than for planned activities and will be carried out according to fixed time schedule or on a routine day-to-day basis. To effectively coordinate emergency response activities, an organizational approach to planning is required. The important areas of emergency planning are Organization and Responsibilities, Procedures, Communication, Transport, Resource requirements and Control centre.

Off-site emergency requires additional planning over and above those considered under onsite plans, which will be properly integrated to ensure better coordination. An emergency core group (ECG) is constituted to pool and analyze the necessary information for effective decision making.

Emergency core group (ECG) consists of different task of specific coordinators i.e. Plant General Manager, Plant Manager of Process and Maintenance, Engineering group, Safety officer and Fire officer, who in turn mobilise and formulate requisite number of action teams who will provide necessary emergency response.

An emergency action groups (EAG) will be constituted as a part of first response team. Thus the first response team for the plan includes all the members of both ECG and EAG. The constituents have been assigned specific responsibilities for the plan. The responsibility of managing on-site crisis lies solely with the concerned organization, whereas the organization structure for off-site emergency includes both Local/ State government agencies. The functions of the ECG are:

- Formulation and implementation of emergency plan.
- Provide guidance / making basic policy decisions.
- Convening the emergency core group meeting after receipt of emergency call.
- Review of operational preparedness of emergency machinery
- Hold periodic mock/ training to ensure optimum preparedness at operational levels
- Develop and update various hazard scenarios, and cascading effect based on the on-site plan
- Mobilize the financial resources for expenditure in case of emergency
- Depute nodal officer with the district or state authority for off-site crisis
- Transfer the information collected from the advisory group to EAG
- Liaises with external and mutual aid agencies and identify cases where material aid is needed
- Provide information on the incident to district, state / level authorities and if needed call for assistance from competent bodies
- Liaises with press / media, to report the emergency
- Declare rehabilitation centers in case of evacuation of people.
- Takes care of emergency situation like continual health care, re-establishment and creation of social compatibility
- Declare all clear, once everything is normal

Emergency action group (EAG) is the front line team which responds based on the instructions given by ECG. It coordinates among itself for various activities. The functions of EAG are:

- Rushes to the emergency area
- Make systematic assessment of hazard

- Liaises with emergency control centre
- Warns the personnel of an impending danger
- Cordon off the people and control the traffic
- Render first aid medical service
- Seek rehabilitation centers

7.8.1 On-site Emergency Preparedness Plan

An on-site emergency is caused by an accident that takes place in the plant itself and the effects are confined to the factory premises involving only the people working in the factory. On-site emergency plan to deal with such event and it is responsibility of the occupier and also mandatory.

The preparation of an on-site emergency plan and furnishing relevant information to the District Emergency Authority for the preparation of the off-site emergency plan are statutory responsibilities of the occupier of every industry and other units handling hazardous substances. An on-site emergency plan will contain the following key elements:

- Basis of the plan
- Hazard analysis
- Accident prevention procedure/ measures
- Accident/ emergency response procedure /measures and
- Recovery procedure.

7.8.1.1 Purpose

- To protect persons and property of process/ operation equipments in case of all kinds of accidents/ emergencies
- To inform people and surroundings about emergency, if it is likely to adversely affect them
- To inform authorities including helping agencies (doctors, hospitals, fire, police transport etc.) in advance, and also at the time of actual happening
- To identify, assess, foresee and work out various kinds of possible hazards their places, potential and damaging capacity and area
- In case of M/s. Deepak Nitrite Limited, Unit-II MCA analysis indicates that the following places required Emergency preparedness plan.

Storage tank of flammable liquid in tank form area and specified tank - pool fire/ vapour cloud explosion / fire ball.

Location of drums/bags (HDPE, MS) if any storages are proposed in ware house - fire/ explosion/ toxic release whereas in the case of dispersion of toxic gas/ vapour due to

instantaneous release and delayed ignition of vapour cloud an it may cross over plant boundary, need off-site emergency preparedness plan. However in present plant as on today there is no possibility.

Emergency level depends on extent of material release and vapour cloud formation. Delayed ignition or spark explosion causes thermal radian and over pressure effect mainly within plant boundary. In case of spillage/ instantaneous release of toxic chemicals released to atmosphere, as gas/ vapor form dispersed towards downwind direction covers off-site area, if delayed in control at source mainly Oleum (30%) and Para Nitro Toluene being considered including acid fumes.

Location of material transfer points (Process/ operation unit) – fire/ explosion/ toxic release – however depends on material and extent of material leaked/ releases.

In order to handle disaster / emergency situations, an organizational chart entrusting responsibility to various personnel of industrial unit should be available as shown in following **Fig. 7.3.** However Designation of emergency core group and action team will be changed as per responsibility vary industry to industry.

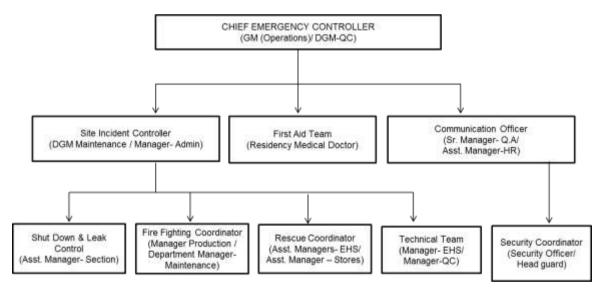


Fig. 7.3: Factory Management Organization chart

7.8.1.2 Accident Prevention Procedures / Measures

A separate plan is provided to deal with the situations, which necessitate emergency action. The emergency response plan includes details of the organizational response to emergencies and the safety precautions to be observed in preventing loss of life and damage to property. Risk mitigation measures based on consequence analysis are recommended above based on the consequences analysis:

Fire Prevention Planning and Measures

Fire is one of the major hazards apart from toxic gas in this unit, Fire prevention and code enforcement is the area of responsibility of the fire service. Safe operating practices reduce the probability of an accidental fire in a plant. Personnel will understand their duties and responsibilities and be attentive to conditions that might lead to fire. The following precautions are recommended:

- There should be provision for safe handling and storage of dirty rags, trash and waste oil flammable liquids and chemicals spilled on platform will be immediately cleaned.
- Containers of paints and hydrocarbon samples, gas cylinders for welding and cutting will be stored properly.
- Cutting and welding operations will be conducted in accordance with safe procedures. Smoking will be restricted to designated platform areas and "no smoking" areas will be clearly identified by warning signs.
- Particular attention will be given to oil pumps, seals; diesel and gas engines which could be potential source of ignition in the event of a failure.

Basic Actions

Basic actions required to handle any emergency are as follows:

- > Operation of emergency shut-down systems
- > Maintenance of communication ECG/ EAG groups as long as possible
- > Persons to be nominated to prepare for evacuation
- > Liaison with fire-fighting agencies local government/ private agencies required.
- > Effective internal communication by public address system and walkie-talkie sets

Communication Link

A multi-user wireless paging system with selective call facility is useful for promptly locating key operating personnel in the plant, both during normal conditions and during emergencies. A public address (PA) system with loud speaker installed at vital installations can be extremely useful during emergencies. Adequacy and efficiency of fire-fighting and fire detection equipment's, personal, detective measures and medical aids will be ensured through proper communication link.

There are various facilities available in the site for communication

- i. Intercom facility
- ii. Public addressing system
- iii. Walki Talkies, Mega phone,
- iv. Mobile phone facility at security

Apart from above industry has commitment, to safety and health, and for continual improvement of OH & S system by the following principles. Industry has commitment

- Business with an active commitment to safety and health into their business strategies to enhance our competitive advantage.
- Comply with applicable safety and health laws and regulations and implement prudent standards where none exist.
- Hold each employee and contractor accountable for integrating safety and health into their work activities.
- Encourage their business partners to adopt this same accountable
- Strive for continuous improvement in safety and health programs by setting challenging goals, measuring and evaluating performance, and learning from existing experience.

Industry also has to be followed Environmental policy is as follows and has an integral part of production i.e.

- Maintaining a clean, green and safe environment
- Maintaining health, safety and environmental matters as an integral part of the business
- Strive for continual improvement in the effectiveness of environmental management and pollution prevention
- Provide appropriate environmental training and educate employees to be environmentally responsible on the job
- Comply with all applicable laws regulations by adopting procedures specifically designed to prevent activities and/or conditions that pose threat to human health, safety or the environment.

7.8.1.3 Before Emergency

Prepare a plan for installations of storage and process/ operation equipments clearly indicating probable areas of various hazards like fire, explosion, toxic releases etc. Locations of assembly points, fire station, telephone room, first aid or ambulance room, emergency control room, main gate, emergency gates, will be noted in plot plan.

The fire protection equipment will always be kept in good operating condition and fire-fighting system will be periodically tested. The training regarding fire-fighting techniques will be provided to all officers/ employees.

There will be a regular mock fire drill periodically; record of such drills will be maintained. Every employee or authorized person working in the plant will be familiarized with the fire alarm signal and will know the location of closed by fire alarm point; Assign key personnel and alternate responsible for site safety. In case of toxic liquid/ gas suitable adsorbent and inert material (sand, earth) and water to arrange at site of storage and process/ operation units including absorbents.

7.8.1.4 During Emergency

In the event of fire from accidental release of flammable gas or liquid, a person seeing the incident will follow the laid down procedure in the plant and report as follows:

- Will dial the nearest telephone
- Will state his name and exact location of emergency
- Will contact affected officers on duty and will remain at the location of site to guide crew
- Perform no other duties that may interfere with their primary responsibilities

Notify the attendant if they experience any warning signs or symptoms of exposures or dangerous condition and exit the permit space when instructed by attendant.

In case of fire emergency, person will activate the nearest available push button type instrument which will automatically sound an alarm in fire control room indicating the location of fire.

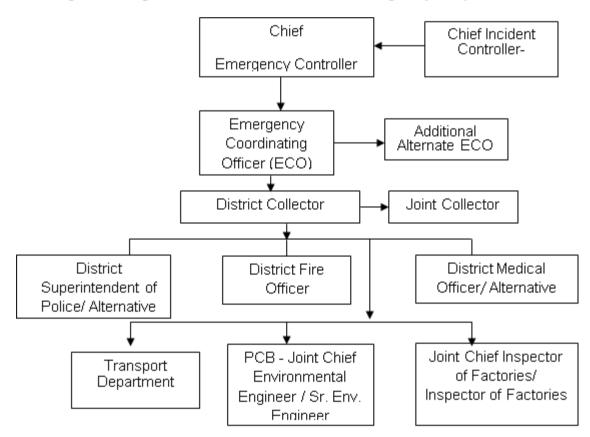
In case of toxic liquid drum leak/ rupture, immediately isolate and control not to spread and border the liquid with inert material (earth, sand if any non-reactive). Control leak if possible. However, it depends on material to material as per MSDS sheet.

Adsorbed material will depose environmental friendly not to contaminate water and soil. And toxic flooded with water also controlled and neutralized, if necessary.

7.8.1.5 After Emergency

Report injuries or blood/ body fluid exposures to the appropriate supervisor, immediately wash wounds and skin sites by soap and water.

Provide information to the relevant public authority and community including other closely located facilities regarding the nature of hazard and emergency procedure in event of major accident. Record and discuss the lessons learned and the analysis of major accident.


7.8.2 Off-site Emergency Preparedness Program

Emergency is a sudden unexpected event, which can cause serious damage to personnel life, property and environment as a whole, which necessitate delineating off-site Emergency Plan to combat any such eventuality. In off-site disaster management plan, many agencies like Revenue, Public Health, Fire Services, Police, Civil Defence, Home Guards, Medical Services and other Voluntary organization are involved. Thus, handling of such emergencies requires an organized multidisciplinary approach.

Evacuation of people, if required, can be done in orderly way. The different agencies involved in evacuation of people are civil administration, non-Govt. organizations, factory Inspectorate including mutual aid partners of industrial unit and Police authorities.

In the present case off-site emergency mainly occurs for fire explosion, fire ball and toxic dispersion causing people in and outside of plant exposed to heat radiation, shock waves and toxic vapour/gas. Organization chart of typical off-site emergency plan is shown in **Fig. 7.4.**

Fig. 7.4: Organization Chart: Off - Site Emergency Preparedness Plan

Fire: Effects of fire on population will be mainly due to thermal radiation. In such cases, houses situated to the proximity of disaster need to be evacuated, although a severe smoke hazard due to fire is to be reviewed periodically.

Explosion: An explosion will give a very little time to warn population and areas affected may be much longer than that in case of fire. The effects of explosion on population will be mainly due to shock waves, flying splinters, collapse of structures and simultaneously exposure to thermal radiation.

Toxic: Toxic dispersion will affect at down distance of industrial unit, for the same people will be evacuated within 15-30 minutes, being people may expose to IDLH level of identified toxic gases, by giving necessary warnings and move towards crosswind side. For the same evacuation is needed.

7.8.2.1 Purpose of Plan

- To save lives and injuries and to prevent or reduce property losses and to provide for quick resumption of normal situation or operation
- To make explicit inter related set of actions to be undertaken, being event of an industrial accident posing hazards to the community
- To inform people surrounding about type of emergency and disaster and it is likely to adversely affect and to guide the people in proper way.
- > To rescue and recuperation of injuries and plan for relief and rehabilitation
- To plan for prevention of harms, total loss and recurrence of disaster and it will be ensured that absolute safety and security is achieved within the shortest time

7.8.2.2 Before Emergency

Safety procedure followed before during an emergency through posters, talks and mass media in different languages including local language. Leaflets containing do's/ don'ts before and during emergency will be circulated to educate the people in vicinity and provide information about hazardous installation, who are potentially affected in the event of an accident, will aware of the risks of accidents. Explain concerning the installation, and understand what to do in the event of an accident. Non-governmental Organizations (NGO's) (Such as environmental, humanitarian and consumer group) will motivate their constituents and others, to be involved in risk reduction and accident prevention efforts and will provide technical assistance to help the public analyze and understand information that is made available.

Public authorities (at all levels) and management of hazardous installation will establish emergency planning activities/ programs for accidents. In this respect public health authorities, including experts from research organisation will be involved in relevant aspects of offsite emergency planning.

Emergency warning alert system will be in place to warn the potentially affected public, and about an imminent threat of an accident. The system chosen will be effective and provide timely warning. Suitable warning system could include e.g.: sirens, automatic telephone message, and mobile public address system.

7.8.2.3 During Emergency

As the off-site plan is to be prepared by industrial unit by involving the government and other agencies of control committee will be formed under the chairmanship of area head the group include officers from local units, police, fire, medical, engineering, social welfare, publicity, transport and requisite departments will be incorporated as members. Some experts will also be included for guidance.

The functions of committee will be:

- To work as main co-coordinating body constituted of necessary district heads and other authorities with overall command, coordination, guidance, supervision, policy and doing all necessary things to control disaster in shortest times
- To take advice and assistance from experts in fields to make plan more successful
- To prepare, review, to keep it document with all details
- The incident control committee, traffic control committee and press publicity committee will first be informed

Hospital Committee consisted of doctors for medical help to the injured persons because of disaster. Injuries may be of many types. As such doctors are rarely available we have to mobilize and utilize all available doctors in the area.

Functions and duties of the committee include:

- On receiving information to rush to spot, he will immediately inform his team and will proceed with all necessary equipments to give medical help to all injured as early as possible;
- First aid and possible treatment will be provided at the spot or at some convenient place and patients may be requested to shift to hospitals for further treatment
- Continuity of the treatment will be maintained till the disaster is controlled

Traffic Control, Law and Order: Functions and duties of this committee will be:

- To control traffic towards and near disaster to maintain law and order
- To evacuate the places badly affected or likely to be affected
- To shift the evacuated people to safe assembly points and rehabilitate them after disaster is over.

However, necessary vehicles, wireless sets and instruments for quick communications will be maintained and used as per need.

7.8.2.4 After emergency

Functions and duties of emergency (ECG/EAG) committee are:

- To find out persons in need of human help owing to disastrous effect. They may give first aid if medical team is not available
- They will serve the evacuated people kept at assembly points. They will arrange for their food, water, shelter, clothing, sanitation and guidelines to reach any needful places
- They will look for removal and disposal of dead bodies if any and for help of sick, weak, children and needy persons for their essential requirements
- The team will also work for restoration of detached people, lost articles, essential commodities etc.
- The team will also look after the restoration of government articles
- The team will also ensure that the original activities, services and systems are resumed again as they were functioning before the disaster

Police Department

- The police will assist in controlling of the accident site, organizing evacuation and removing of any seriously injured people to hospitals.
- Co-ordination with the transport authorities, civil defence and home guards
- Arrange for post mortem of dead bodies
- Establish communication centre.

Fire officer / District or Divisional fire officer

The team will organize to put out fires and provide assistance as required.

Hospitals and Doctors

Hospitals and doctors must be ready to treat any injuries, Co-ordinate the activities of Primary Health Centres and Municipal Dispensaries to ensure required quantities of drugs and equipments. Secure assistance of medical and paramedical personnel from nearby hospitals/ medical institutions.

Media

The media will have ready and continuous access to designated officials with relevant information, as well as to other sources in order to provide essential and accurate information to public throughout the emergency and to help avoid confusion

Efforts will be made to check the clarity and reliability of information as it becomes available, and before it is communicated to public.

Public health authorities will be consulted when issuing statements to the media concerning health aspects of chemical accidents

Members of the media will facilitate response efforts by providing means for informing the public with credible information about accidents involving hazardous substances

Non-governmental organizations (NGO)

NGOs could provide a valuable source of expertise and information to support emergency response efforts. Members of NGOs could assist response personnel by performing specified tasks, as planned in the emergency planning process. Such tasks could include providing humanitarian, psychological and social assistance to members of community and response person.

Duties of NGO are listed below:

- Evacuation of personnel from the affected area
- Arrangements at rallying posts and parking yards
- Rehabilitation of evacuated persons
- Co-ordination with other agencies such as police, medical, agriculture, electricity board, fire services, home guards and civil defence.
- Establishing shelters for rescue, medical, fire-fighting personnel.

7.9 Conclusion & Recommendations

- Fire / Explosion considered as considerable accident scenario in Ms Deepak Nitrite Ltd. Unit-III being there is a provision of to store flammable liquid para-Nitro Toluene of two 20 KL capacity tanks in tank form area and considered as flammable.
- 2. Being stored in tank form area with respective dykes, leak and release of material causes pool fire if spark or ignited it indicates heat radiation effect few meters from edge of pool, need of on-site emergency plan.
- In case of Fire/ explosion due to delayed ignition/ spark after vapour cloud formation causes effect of heat radiation and pressure wave crosses the industry boundary in need of on- site emergency preparedness plan.
- 4. Specific measures to be taken to avoid or minimise the accidental release of flammable liquid material at storage yard. Specific measures such as fixed and movable fire-fighting system should be provided to control vapour cloud formation in case of leak/ discharge as well as to minimise exposes to external heat by storage tanks/ drums.
- 5. Ms Deepak Nitrite Itd, Unit-III is proposed to store Oleum tank (30%) and Acetic acid including p-nitro Toluene in respective tanks. Due to leak / instantaneous release of

material, the toxic acid form confined pool and evaporates, toxic vapor / fumes travels towards windward direction IDLH level covers on-site area, where as PEL even covers off- site area also, needs on site/ off-site emergency preparedness plan depends on material release.

- 6. Spill contaminant pallets/ adsorbent to be used effectively to minimise the spill over material and control leak effectively and contaminated material disposed environmental friendly.
- 7. Specific remedial measures to be adopted to minimise the leak and control at source and simultaneously off- site emergency plan may be initiated including evacuation plan followed by medical aid with need of hour.
- 8. Steps should be taken to control at source to minimise spill of chemical if any in ware house and spread of unconfined area by bordering inert material adsorbent, control the leak if possible. In case of uncontrolled situation delineated emergency preparedness plan including evacuation.
- 9. Presence of several hazard storages and simultaneous handling as per on-site plan, necessary risk mitigation measures has to be adopted as per guidelines. However time to time emergency plan may be upgrade as when needed and. as per regulations.