APPLICATION FOR APPROVAL OF TERMS OF REFERENCE

FOR

OBTAINING ENVIRONMENT CLEARANCE (FOR EXPANSION)

OF

M/s. SYNTHOKEM LABS PVT.LTD, UNIT - II PLOT NO'S: 222 to 224 & 235 to 237, PHASE – II, IDA, PASHAMAILARAM, PATANCHERU (M), MEDAK (D), ANDHRA PRADESH.

Prepared By:

Rightsource Industrial Solutions Pvt. Ltd

Plot No.203, H.No.5-36/203, Prashanthi Nagar, IDA, Kukatpally, Hyderabad-500072. Ph: 040-65873137,23070602,23075699, 40126589 Fax: 040-23800602, Mail: info@rightsource.co.in.

LIST OF CONTENTS

S. No	Content	Page No	Annexure
1	Form -I	1-14	Attached
2	List of Products	1	Annexure-I
3	Торо Мар	1	Annexure-II
4	Site Plan	1	Annexure-III
5	Manufaturing Process Description	1-107	Annexure-IV
6	Water Consumption Details		Annexure-V
7	Hazardous waste		
8	Industrial Process waste		
9	Sewage sludge	1-2	Annexure-VI
10	Solid waste		
11	Stack Emission Details	1-3	Annexure-VII
12	Process Emission Details	1	Annexure-VIII
13	Draft TOR	1-2	Attached
14	Pre-Feasibility Report	1-15	Attached
	ENCLOS	SURES	
15	List of Raw Materials	1-16	Enclosure-1
16	Waste water Details	1-2	Enclosure-2
17	ETP Flow Chart	1	Enclosure-3
18	Solvents Details	1- 4	Enclosure-4
19	Pollution Load Details		Enclosure-5
20	Copy of GO's		Enclosure-6
21	Industrial Area Notification		Enclosure-7
22	Copy of CFO		Enclosure-8
23	CFO Compliance Report		Enclosure-9
24	Copy of EC		Enclosure-10
25	EC Compliance Report		Enclosure-11
26	Land Document		Enclosure-12
27	TSDF Membership		Enclosure-13
28	Accreditation Details		Enclosure-14

LIST OF CONTENTS

APPENDIX - I FORM -1

I) Basic	I) Basic information				
S.NO	ITEM	DETAILS			
1.	Name of the project/s	M/s. SYNTHOKEM LABS PVT. LTD., UNIT-II			
2.	S.No.in the schedule	5 (f)			
3.	Proposed capacity / area / length / tonnage to be handled/command area/lease area/ number of wells to be drilled	Area Existing: [Expansion within existing land area] Proposed capacity after Expansion : 2064.72 TPA Proposed products with capacities are Enclosed as Annexure - I			
4.	New/Expansion/Modernization	Expansion			
5.	Existing Capacity/Area etc.	Existing capacity : 165.99 TPA Area existing : 5.78 Acres (23390.65 SQM)			
6.	Category of Project i.e. 'A' or 'B'	Category – A			
7.	Does it attract the general condition? If yes, please specify.	Yes. The unit is located in notified Industrial area Critically polluted Area of Patancheru located at a distance of 8.0KM from the site			
8.	Does it attract the specific condition? If yes, please specify.	NO			
9.	Location	 17º 32'10.55" North Latitude 78º 10' 42.05"East Longitude Plot No's: 222-224 & 235-237, Phase-II, IDA, Pashamailaram Patancheru (M), Medak (Dt), - 502319. Andhra Pradesh. Topo Map Enclosed as Annexure-II 			
10.	Nearest railway station Airport Along with distance in kms.	Shankarpalli Railway Station – 10 KMs (NNE) Rajeev Gandhi International Air Port (shamshabad) - 42.8 KMs (SE)			
11.	Nearest Town, City, District Headquarters Along with distance in Kms.	Kukatpally - 23.70 KMs (ESE) Secunderabad – 35.4KMs (SE) Sangareddy –17 KMs			
12.	Village Panchayats, Zilla Parishad, Municipal Corporation, Local Body (Complete postal addresses with telephone nos. to be given)	IALA (Industrial Area Local Authority) Pashamailaram, Patancheru (M), Medak (Dt).			
13.	Name of the applicant	K. Lakshma Reddy			
14.	Registered Address	M/s. Synthokem Labs Pvt. Ltd., Unit-II. P. B. No.1911,B-5,Industrial Estate, Sanathnagar, Hyderabad - 500018. Andhra Pradesh.			

15.	Address for correspondence:	M/s. Right source Industrial Solutions Pvt. Ltd. Plot No.203,H.No.536/203,Prashantinagar,
	Nama	IDA, Kukatpally, Hyderabad-500072.
		N. Laksnina Reduy
	Designation (Owner/Partner/CEO)	Vice President, Corporate operations.
	Address	P. B. No.1911,B-5,Industrial Estate,
		Sanatinnagar, Hyderabad - 500018.
	Pin Code	Andria Pradesh.
	F-mail	info@rightsource.co.in
		sriram@svnthokemslabs.com
	Telephone No.	040-23812956.040-23075699, 40126589
	Fax No.	040-23070602
16.	Details of alternative sites	Not Applicable
	examined, if any. Location of	
	these sites should be shown on a	
	Topo sheet	
17.	Interlinked Projects	Not Applicable
18.	Whether separate application of	No
	interlinked project has been	
10	submitted?	
19.	If Yes, date of submission	
20.	If no, reason	
21.	whether the proposal involves	
	details of the same and their	
	status to be given	Not Applicable
	(a) The Forest (Conservation)	
	Act 1980?	
	(b) The Wildlife (Protection) Act.	
	972?	
	(c) The C.R.Z Notification, 1991?	
22.	Whether there is any Government	G.O.Ms No.62 (Ban Notification), Dt.20/04/1999
	Order/Policy relevant/relating to	Now it has lifted as per G.O.Ms No.95,
	the site?	(Ban relaxation), Dt.25/07/2013.
		Enclosed as Enclosure - 7
23.	Forest land involved (hectares)	No
24.	Whether there is any litigation	
	pending against the project and/or	
	land in which the project is	NIL
	propose to be setup?	
	(a) Name of the court	
	(D) Case NO.	
	(c) Urders/directions of the Court,	
	n any and its relevance with the	
	proposed project.	

II) Activity

1. Construction, operation or decommissioning of the Project involving actions, which will cause physical changes in the locality. (Topography, land use, changes in water bodies, etc.)

S. No	Information/Checklist	Yes/No	Details thereof(with approximate
	confirmation		quantities/rates, wherever
			data
1.1	Permanent or temporary	No	The proposal is expansion of the
	change in land use, land cover		manufacturing capacity in the existing
	or topography including		APT Manufacturing unit.
	(with respect to local land use		
	plan)		
1.2	Clearance of existing land,	No	Proposed expansion in existing plant
	vegetation and buildings?		area
1.3	Creation of new land uses?	No	Existing land use - Industrial
1.4	Pre-construction investigations e.g. bore houses, soil testing?	No	Existing unit.
1.5	Construction works?	Yes	Construction of Production Blocks and
			utility blocks.
			Site Plan Enclosed - Anneyure-III
16	Demolition works?	No	No demolition work
1.7	Temporary sites used for	No	Local Villagers will be employed for
	construction works or housing		construction Activities
	of construction workers?		
1.8	Above ground buildings,	No	Not Applicable.
	structures or earthworks		
	including linear structures, cut		
1.0	and fill or excavations		
1.9	Underground works including	NO	Not Applicable.
1 10	Reclamation works?	No	Not Applicable
1.10	Dredging?	No	Not Applicable
1.12	Offshore structures?	No	Not Applicable.
1.13	Production and manufacturing	Yes	Manufacturing processes Enclosed as
	processes?		Annexure - IV
1.14	Facilities for storage of goods	Yes	Common facility for storage of raw
	or materials?		materials and solvents will be used
1.15	Facilities for treatment or	Yes	All the Liquid Waste generated from the
	disposal of solid waste or liquid		plant will be treated in ZLD System.
			All the solid wastes will be segregated
			and stored at an elevated platform
			under roof with leachate collection
			system, and disposed to Cement
			Industries, TSDF based on their
			Calorific values.

			Some of the wastes like Containers, Liners etc., will be sold to SPCB authorized buyers. Used Oils and grease will be sold to authorize Reprocessors. Lead acid batteries send back to suppliers for buyback of New Batteries
1.16	Facilities for long term housing of operational workers?	No	Not Requires as there are nearby villages can accommodate the work force.
1.17	New road, rail or sea traffic during construction or operation?	No	Not Required.
1.18	New road, rail, air, waterborne or other transport infrastructure including new or altered routes and stations, ports, airports etc?	No	Not Required
1.19	Closure or diversion of existing transport routes or infrastructure leading to changes in traffic movements?	No	-
1.20	New or diverted transmission lines or pipelines?	No	-
1.21	Impoundment, damming, culverting, realignment or other changes to the hydrology of watercourses or aquifers?	No	-
1.22	Stream crossings?	No	-
1.23	Abstraction or transfers of water from ground or surface waters?	Yes	Water will be drawn from the APIIC (supply). Roof water harvesting will be suggested for recharge of Ground water to the maximum possible extent.
1.24	Changes in water bodies or the land surface affecting drainage or run-off?	No	Nil (There will not be any changes in water bodies or the land surface affecting drainage or run-off)
1.25	Transport of personnel or materials for construction, operation or decommissioning?	No	
1.26	Long-term dismantling or decommissioning or restoration works?	No	Not Applicable
1.27	Ongoing activity during decommissioning which could have an impact on the environment	No	Not Applicable

1.28	Influx of people to an area in either temporarily or permanently?	Yes	The proposed expansion shall increase the employment potential
1.29	Introduction of alien species?	No	No Introduction of alien species
1.30	Loss of native species or genetic diversity?	No	No Loss of native species or genetic diversity
1.31	Any other actions?	No	Every care shall be taken to protect the ecology of the surroundings

2. Use of Natural resources for construction or operation of the Project (such as land, water, materials or energy, especially any resources which are non-renewable or in short supply)

S. No	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
2.1	Land especially undeveloped or agricultural land (ha)	NO	Existing unit
2.2	Water (expected source & competing users) unit: KLD	Yes	190.88 KLD , APIIC water supply Requirement of Water Enclosed as - Annexure - V
2.3	Minerals (MT)	No	No Minerals required
2.4	Construction material – stone, aggregates, sand/soil (expected source (MT)	No	-
2.5	Forests and timber (source – MT)	No	No Timber will be used.
2.6	Energy including electricity and fuels (source, competing users) Unit: fuel (MT), energy (MW)	Yes	 Electricity–From-APCPDCL–1000KVA Generators Existing: 250 KVA – 2 No's 250 KVA – 1No - Dropped. Proposed: 500 KVA – 2No's. Fuel: HSD about 750 Liters per day. Boiler : Existing: 2.0 TPH as stand by. (Oil fired) Proposed: 4.0 TPH Coal Fired Boiler Coal to the maximum of 12.5 MT is required and will be procured from the local sources. Thermic Fluid Heater: Existing: 4,00,000 Kcl/hr (Dropped) Proposed: 6,00,000 Kcl/hr
2.7	Any other natural resources (use appropriate standard units)	No	None

3. Use, storage, transport, handling or production of substances or materials, which could be harmful to human health or the environment or raise concerns about actual or perceived risks to human health.

S. No	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible)with source of information data
3.1	Use of substances or materials, which are hazardous (as per MSIHC rules) to human health or the environment (flora, fauna, and water supplies)	Yes	Enclosed
3.2	Changes in occurrence of disease or affect disease vectors (e.g. insect or water borne diseases)	No	No such occurrence envisaged , since waste water generated will be treated properly and reused as per norms of PCB
3.3	Affect the welfare of people e.g. by changing living conditions?	Yes	Shall increase the employment potential for locals thereby effect the living conditions towards betterment
3.4	Vulnerable groups of people who could be affected by the project e.g. hospital patients, children, the elderly etc.,	No	None
3.5	Any other causes	No	Nil

4. Production of solid wastes during construction or operation or decommissioning (MT/month).

S. No	Information/Checklist confirmation	Yes/No	Details thereof(with approximate quantities / rates, wherever possible) with source of information data
4.1	Spoil, overburden or mine wastes	No	Not applicable
4.2	Municipal waste (domestic and or commercial wastes)	Yes	Commercial waste like empty cement bags, Iron scrap etc. will be sold to scrap buyers after the construction phase. Domestic waste like used paper, label, cartoons will be disposed to the scrap buyers. Organic waste from canteen will be disposed as per the local Panchayath / Municipal disposal mechanism.

4.3	Hazardous wastes (as per Hazardous Waste Management Rules)	Yes	As per the Annexure - VI
4.4	Other industrial process wastes	Yes	As per annexure –VI
4.5	Surplus product	No	Surplus production is not envisaged since production will be as per the market demand only.
4.6	Sewage sludge or other sludge from effluent treatment	Yes	As per Annexure -VI
4.7	Construction or demolition wastes	Yes	Construction activity involves creation of additional utilities.
4.8	Redundant machinery or equipment	No	None
4.9	Contaminated soils or other materials	No	Nil
4.10	Agricultural wastes	No	Nil
4.11	Other solid wastes	Yes	As per Annexure – VI

5. Release of pollutants or any hazardous, toxic or noxious substances to air (Kg/hr)

S. No	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
5.1	Emissions from combustion of fossil fuels from stationary or mobile sources	Yes	As per Enclosed - Annexure –VII
5.2	Emissions from production processes	Yes	All the reactors are connected with primary and secondary condensers with chilled brine Circulation to reduce the solvent losses and to control the emissions of volatile compounds. All the gaseous emissions generating during the production processes are mitigated by using suitable scrubbing system with suitable media. Quantities of gaseous emissions. As per the Enclosed Annexure – VIII
5.3	Emissions from materials handling including storage or transport	Yes	All the solvents are stored in storage tanks are connected with vent condensers .All the solvents will be pumped to the day tanks in production blocks in a closed pipe line system to avoid the fugitive losses of the volatiles.

5.4	Emissions from construction activities including plant and equipment	Yes	Negligible quantity of fugitive dust will generate.
5.5	Dust or odors from handling of materials including construction materials, sewage and waste	Yes	Negligible quantity of dust will arise in construction phase. During the operational phase possible sources are Coal storage areas and coal ash storage areas. Coal will be stored under the roof and on a Masonry platform under the roof. Coal ash will be stored on a platform and frequent sprinkling of water will arrest the flying dust.
5.6	Emissions from incineration of waste	No	No incineration of waste in the site
5.7	Emissions from burning of waste in open air (e.g. slash materials, construction debris)	No	No burning activity in the site. No emissions will generate
5.8	Emissions from any other sources	Yes	A little quantity of emissions will arise during the dispensing of Raw materials from the ware house, the dispensing area in the ware house is under the air handling system hence their will not be any health nuisance to the health of the workers as the air handling system will arrest these emissions and dispose into atmosphere as their quantity is very negligible

6. Generation of Noise and Vibration, and Emissions of Light and Heat

S. No	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
6.1	From operation of equipment e.g. engines, ventilation plant, crushers	Yes	Material transport and construction equipment shall be source of noise, while transfer pumps ,vacuum systems, DG sets are the sources of noise during operation
6.2	From industrial or similar processes	Yes	 There is a chance of noise pollution from DG sets which are used as stand by .the DG sets are covered with an acoustic enclosure and with silencers will mitigate this noise. Pumps, motors, gearboxes etc will generate little bit noise and will be mitigated with regular maintenance. Apart from all these a thick plantation of green belt is

			proposed along with periphery of the compound wall will arrest the noise nuisance during the operation phase.
6.3	From construction or demolition	Yes	The noise generating from the construction / commissioning equipment is very low as it is a small construction activity.
6.4	From blasting or pilling	No	None, since no blasting or pilling during construction
6.5	From construction or operational traffic	No	Negligible
6.6	From lighting or cooling systems	No	Negligible.
6.7	From any other sources	No	Nil

7. Risks of contamination of land or water from releases of pollutants into the ground or into sewers, surface waters, groundwater, coastal waters or the sea

S. No	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
7.1	From handling, storage, use or spillage of hazardous materials	Yes	All the solvents are stored in storage tanks will be pumped to the day tanks in production blocks in a closed pipe line system to avoid spillages. The hazardous materials which are sending for production purpose from the Ware House to production Blocks will be sent in closed containers to avoid the spillage of such components.
7.2	From discharge of sewage or other effluents to water or the land (expected mode and place of discharge)	Yes	All the effluent generated will be collected on Above ground Storage tanks to avoid the contamination with soil. These tanks are lined with acid/alkali proof lining. Domestic effluent will\ be sent to septic Tank and the overflow is used for biological treatment to achieve ZLD. All the effluent will be treated in ZLD System and the recovered water will be reused. Hence, There s no impact due to water effluent generating from this unit.
7.3	By deposition of pollutants emitted to air into the land or into water	Yes	Stack emission is controlled by providing adequate height of the chimney and Bag filters will be provided to the boiler.

7.4	From any other sources	Yes	A little quantity of emissions will arise during the dispensing of Raw materials from the warehouse ,the dispensing area in the ware house is under the air handling system hence their will not be any health nuisance to the health of the workers as the air handling system will arrest these emissions and dispose into atmosphere as their quantity is very negligible
7.5	Is there a risk of long term build up of pollutants in the environment from these sources?	No	Not Applicable

8. Risk of accidents during construction or operation of the Project, which could affect human health or the environment

S. No	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
8.1	From explosions, spillages, fires etc from storage, handling, use or production of hazardous substances	Yes	No explosions will occur during construction. During production-operations, all inbuilt safety precautions will be adopted and there will not be any damage to environment or human health.
8.2	From any other causes	Yes	Explosions and fire will be possible to occur, during the handling of hazardous chemicals through static electricity which is dissipated by provide earthing to the equipment.
8.3	Could the project be affected by natural disasters causing environmental damage (e.g. floods, earthquakes, landslides, cloudburst etc)?	No	No natural disasters are envisaged, since site is in an area where such occurrences do not arise

9. Factors which should be considered (such as consequential development) which could lead to environmental effects or the potential for cumulative impacts with other existing or planned activities in the locality.

S. No	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
9.1	Lead to development of supporting laities, ancillary development or development stimulated by the project which could have impact on the environment e.g. * Supporting infrastructure (roads, power supply, waste or waste water treatment, etc.) * Housing development * Extractive industries * Supply industries * Other	Yes	The project shall enhance the socioeconomic status of the area by increasing the demand for housing, and improving employment. there are no major support industries for this plant
9.2	Lead to after-use of the site, which could have an impact on the environment	No	
9.3	Set a precedent for later developments	No	
9.4	Have cumulative effects due to proximity to other existing or planned projects with similar effects	No	The baseline environmental status of the surrounding areas is within the prescribed limits as observed from the secondary.

10. Environmental Sensitivity

S. No	Areas	Name/ Identity	Aerial distance (within 25 km) Proposed project location boundary
10.1	Areas protected under international conventions, national or local legislation for their ecological, landscape, cultural or other related value	-	None
10.2	Areas which are important or sensitive for ecological reasons – Wetlands, watercourses or other water bodies, coastal zone, biospheres, mountains, forests	Water bodies	Tank – Isnapur – 1.0 KMs (ENS) Kotta cheruvu – 1.6 KMs (N) Pedda cheruvu – 4.25 KMs (NE) Lakdaramcheruvu – 5.2 KMs (NNE)

10.3	Areas used by protected, important or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration	-	None
10.4	Inland, coastal, marine or underground waters	-	None
10.5	State, National boundaries	-	None
10.6	Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas	-	None
10.7	Defense installations	-	None
10.8	Densely populated or built-up area	Yes	Patancheru – 8.8 KMs (E)
10.9	Areas occupied by sensitive man- made land uses (hospitals, places of worship, community facilities)	Yes	Pashamailaram -1.4 KMs (SE) Kukatpally – 23.70 KMs (ESE)
10.10	Areas containing important, high quality or scarce resources (ground water resources, surface resources, forestry, agriculture, fisheries, tourism, minerals).	Water bodies	Kotta cheruvu – 1.6 KMs (N) Pedda cheruvu – 4.25 KMs (NE) Lakdaram cheruvu – 5.2 KMs (NNE)
10.11	Areas already subjected to pollution or environmental damage. (Those where existing legal environmental standards are exceeded)	No	None
10.12	Areas susceptible to natural hazard which could cause the project to present environmental problems (earthquakes, subsidence, landslides, erosion, flooding or extreme or adverse climatic conditions).	No	None

"I hereby given undertaking that the data and information given in the application and enclosures are true to the best of my knowledge and behalf and I am aware that if any part of the data and information submitted is found to be false or misleading at any stage, the project will be rejected and clearance give, if any to the project will be revoked at our risk and cost

Date: Place: Hyderabad

for Synthokem Labs Pvt. Ltd., Unit-II.

K. Lakshma Reddy Vice President, Corporate operations.

LIST OF PRODUCTS

,

•••

• •

•

LIST OF PRODUCTS

S. No	Product Name	CAS No's	Therapeutic Category	Quantity In	Quantity In
				Kg/Month	Kg/Day
			Alpha adrenergic		
1	Alfuzosin Hydrochloride	81403-68-1	blocking agent	170	5.67
2	Chlorphenesin	104-29-0	Anti fungal	15000	500
3	Chlorphenesin carbamate	886-74-8	Muscle relaxant	3000	100
4	Dextromethorphan Hydrobromide	125-69-9	Anti tussive	10000	333.33
5	Drotaverine Hydrochloride	985-12-6	Antispasmodics	3000	100
6	Guaifenesin	93-14-1	Expectorant	100000	3333.33
7	1-(4-Hydroxyphenyl) piperazine	56621-48-89	Drug intermediate	500	16.67
8	Mebeverine Hydrochloride	2753-45-9	Antispasmodics	3000	100
9	Mephenesin	59-47-2	Skeletal Muscle		
			Relaxant	15000	500
10	Methocarbamol	532-03-6	Skeletal Muscle		
			Relaxant	10000	333.33
11	Potassium guaiacol sulfonate	1321-14-8	Expectorant	1700	56.67
12	Prazosin Hydrochloride	19237-84-4	Anti hypertensive	420	14
13	Ribavirin	36791-04-5	Antiviral agent	50	1.67
14	Ropinirole Hydrochloride	91374-20-8	Anti dyskinetic	50	1.67
15	Terazosin Hydrochloride	63074-08-8	Anti hypertensive	170	5.67
16	Veratrole	91-16-7	Drug intermediate	10000	333.33
	Total			172060.00	5735.33

M/s. Synthokem Labs Pvt. Ltd.

Annexure II

ANNEXURE-III

PROCESS DESCRIPTION

1. ALFUZOCIN HYDROCHLORIDE

Process Description

Stage-1

4-Amino-2-chloro-6, 7-dimethoxy quinazoline reacts with N-Methyl-3-amino propionitrile in presence of 2-Methoxy ethanol as a solvent media to give stage-1 as a product.

Stage-2

Stage-1 undergoes hydrogenation in presence of Raney nickel and Isopropyl Alcohol as a solvent media to give Stage-2 as a product.

Stage-3

Stage-2 reacts with 2-tetrahydro methyl furoate in presence of MDC as a solvent media to give stage-3 as a product.

Stage-4

Stage-3 reacts with Isopropyl Alcohol Hydrochloride in presence of Isopropyl Alcohol as a solvent media to give Alfuzocin Hydrochloride as a product.

ALFUZOCIN HYDROCHLORIDE

Route of Synthesis:

Stage-1

 $\mathrm{C_{10}H_{10}N_{3}ClO_{2}}$ 239.66

84.12

3-[(4-Amino-6,7-dimethoxy-quinazolin -2-yl)-methyl-amino]-propionitrile

> C₁₄H₁₈CIN₅O₂ 323.78

Stage-2

291.35

Stage-3

ALFUZOCIN HYDROCHLORIDE

Flow Chart:

ALFUZOCIN HYDROCHLORIDE

Material Balance:

Material balance of Alfuzosin Hydrochloride				
	St Datab Si			
	Batch Si	ze:100.0 Kg		
Name of the input	Quantity	Name of the out put	Quantity	
	in Kg		In Kg	
4-Amino-2-chloro 6,7-	225.00	Stage-1	145.00	
Dimethoxy quinazoline				
Isopropyl alcohol	250.00	Isopropyl alcohol Recovery	236.50	
2-Methoxy Ethanol	700.00	Isopropyl alcohol Loss	12.50	
Methanol 1800.00 Methanol Recovery				
N-Methyl-3-amino propionitrile 80.00 Methanol Loss			90.00	
Sodium Hydroxide(47%)	85.00	2-Methoxy Ethanol Recovery	665.00	
Hydrochloric acid	30.00	2-Methoxy Ethanol Loss	35.00	
Water	1800.00	Effluent water	1918.95	
		(Water-1800,Sodium chloride-		
		48.02,Water from Sodium		
		hydroxide-45.05,Sodium		
		hydroxide-7.08.Generated water-		
		14.8,Methanol-3,IPA-1)		
		Organic Residue	160.05	
		(Organic impurities-159.02, N-		
		Methyl-3-amino propionitrile-1.03)		
Total	4970.00	Total	4970.00	

Material balance of Alfuzosin Hydrochloride							
	Stage-2						
	Batch Siz	ze:100.0 Kg					
Name of the input	Quantity	Name of the out put	Quantity				
	in Kg		In Kg				
Stage-1	145.00	Stage-2	120.00				
Isopropyl alcohol	800.00	Isopropyl alcohol Recovery	757.00				
Raney Nickel 35.00 Isopropyl alcohol Loss			40.00				
Ammonia gas	Effluent water	818.34					
Hydrogen	5.00	(Water-800, Hydrochloric acid-					
		16.34,IPA-2)					
Nitrogen gas	10.00	Spent catalyst for Reuse	35.00				
Water 800.00 Process emissions							
		(Ammonia -100,Hydrogen-					
5,Nitrogen-10)							
Or		Organic Residue	9.66				
(Organic impurities-8.66,IPA-1)							
Total	1895.00	Total	1895.00				

Material balance of Alfuzosin Hydrochloride					
Stage-3					
	Batch Siz	ze:100.0 Kg			
Name of the input	Name of the input Quantity Name of the out put				
	in Kg		In Kg		
Stage-2	120.00	Stage-3	100.00		
2-Tertahydro methyl furoate	55.00	MDC Recovery	1897.00		
Methylene Dichloride	2000.00	MDC Loss	100.00		
Sodium Hydroxide(47%)	50.00	Ethyl acetate Recovery	285.00		
Ethyl acetate 300.00 Ethyl acetate Loss					
Activated carbon 20.00 Effluent water					
Anhydrous Sodium Sulfate	20.00	(Water-3500,Water from sodium			
		hydroxide-23.50,Sodium			
		methoxide-22.82,Generated			
		water-8.63,Sodium hydroxide-			
		4.30,Sodium chloride-3.36,Water			
		from Hydrochloric acid-3.9)			
Hydrochloric acid(35%)	6.00	Spent carbon	20.00		
Water	3500.00	Inorganic Residue	20.00		
		(Sodium sulfate-20)			
		Organic Residue	67.49		
		(Organic impurities-64.49,MDC-3			
Total	6071.00	Total	6071.00		

Material balance of Alfuzosin Hydrochloride			
Stage-4			
Batch Size:100.0 Kg			
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		In Kg
Stage-3	100.00	Alfuzosin Hydrochloride	100.00
Isopropyl alcohol HCI(10%)	120.00	Isopropyl alcohol Recovery	413.68
Isopropyl alcohol	360.00	Isopropyl alcohol Loss	18.00
Activated carbon	20.00	Spent Carbon & Hyflow	40.00
Hyflow	20.00	Organic Residue	38.95
		(Organic impurities-35.95,	
		IPA-3)	
		Process Emissions	9.37
		(Hydrogen chloride-9.37)	
Total	620.00	Total	620.00

2. CHLORPHENESIN

Process Description:

Stage-1

Epichlorohydrin undergoes Hydrolysis to give Stage-1 as product.

Stage-2

Stage-1 product reacts with P-Chloro phenol and sodium hydroxide in the presence of EDC as solvent media to give Stage-2 as product.

Stage-3

Stage-2 product undergoes purification in the presence of Toluene as solvent media to give Chlorophenesin as product.

CHLORPHENESIN

Route of Synthesis:

Stage-1

Stage-3

CHLORPHENESIN

Flow Chart:

CHLORPHENESIN

Material Balance:

Material Balance of Chlorphenesin				
	Sta	ge-1		
	Batch Size	: 100.0Kgs		
Name of the input	Quantity in Kg	Name of the out put	Quantity in Kg	
Epichlorohydrin	50.00	Stage-1 Layer	122.00	
Phosphoric acid	2.00			
Water	70.00			
Total	122.00	Total	122.00	

Material Balance of Chlorphenesin				
	Stage-2			
	Batch Size	: 100.0Kgs		
Name of the input	Quantity	Name of the out put	Quantity	
	in Kg		in Kg	
Stage-1	122.00	Stage-2	101.00	
p-Chloro phenol	80.00	EDC Recovery	33.50	
Sodium hydroxide (47%)	70.00	EDC Loss	1.50	
EDC	35.00	Effluent water	277.46	
Hydrochloric acid (30%)	4.00	(Water-190,Sodium hydroxide-		
		9.17,Sodium chloride-27.5,		
		Generated water-8.46,		
		Sodium phosphate-2.43,Water		
		from Sodium hydroxide-37.10,		
		Water from HCI-2.80)		
Water	120.00	P-Chloro phenol Recovery	10.54	
		Organic Residue	7.00	
Total	431.00	Total	431.00	

Material Balance of Chlorphenesin						
	Sta	ge-3				
	Batch Size	: 100.0Kgs				
Name of the input	Quantity	Name of the out put	Quantity			
	in Kg		in Kg			
Stage-2	101.00	Chlorphenesin	100.00			
Toluene	35.00	Toluene Recovery	33.40			
Water	60.00	Toluene Loss	1.40			
		Effluent water	60.20			
		(Water-60,Toluene-0.2)				
		Organic Residue	1.00			
		(Organic impurities-0.8,Toluene-				
0.2						
Total	196.00	Total	196.00			

3. CHLORPHENESIN CARBAMATE

Process Description:

Stage-1

Epichlorohydrin undergoes Hydrolysis to give Stage-1 as product.

Stage-2

Stage-1 product reacts with P-Chloro phenol and sodium hydroxide in the presence of EDC as solvent media to give Stage-2 as product.

Stage-3

Stage-2 product undergoes purification in the presence of Toluene as solvent media to give Chlorophenesin as product.

Stage-4

Stage-3 product reacts with Dimethyl carbonate and Ammonia in the presence of Toluene as solvent media to give Chlorphenesin carbamate as product.

CHLORPHENESIN CARBAMATE

Route of Synthesis:

202.63

CHLORPHENESIN CARBAMATE

Flow Chart:

CHLORPHENESIN CARBAMATE

Material Balance:

Material Balance of Chlorphenesin Carbamate				
	Sta	ige	e-1	
	Batch Size	: :	100.0Kgs	
Name of the input	Quantity		Name of the out put	Quantity
	in Kg			in Kg
Epichlorohydrin	50.00		Stage-1Layer	122.00
Phosphoric acid	2.00			
Water	70.00			
Total	122.00		Total	122.00

Material Balance of Chlorphenesin Carbamate					
	Stage-2				
	Batch Size	: 100.0Kgs			
Name of the input	Quantity	Name of the out put	Quantity		
	in Kg		in Kg		
Stage-1	122.00	Stage-2	101.00		
p-Chloro phenol	80.00	EDC Recovery	33.50		
Sodium hydroxide (47%)	70.00	EDC Loss	1.00		
EDC	35.00	Effluent water	285.73		
Hydrochloric acid (30%)	4.00	(Water-190,Water from			
		Hydrochloric acid-2.8,Water			
		from sodium hydroxide-37.1,			
		Generated water-10.69,Sodium			
		hydroxide-9.15,Sodium			
		phosphate-2.45,Sodium			
		chloride-33.54)			
Water	120.00	P-Chloro phenol un reacted	9.77		
Total	431.00	Total	431.00		

Material Balance of Chlorphenesin Carbamate			
	Sta	ge-3	
	Batch Size	: 100.0Kgs	
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		in Kg
Stage-2	101.00	Chlorphenesin	100.00
Toluene	35.00	Toluene Recovery	31.00
Water	60.00	Toluene Loss	1.00
		Effluent water	62.00
		(Water-60,Toluene-2)	
		Organic Residue	2.00
		(Organic Impurities-1,Toluene-1)	
Total	196.00	Total	196.00

Material Balance of Chlorphenesin Carbamate			
	Sta	ge-4	
	Batch Size	: 100.0Kgs	
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		in Kg
Chlorphenesin	100.00	Chlorphenesin Carbamate	100.00
Di methyl carbonate	23.77	Toluene Recovery	474.00
Ammonia solution (7%)	125.00	Toluene Loss	25.00
Toluene	500.00	Effluent water	249.77
Water	100.00	(Water-100,Water from	
		ammonia-116.25,Dimethyl	
		carbonate-0.56,Ammonia-0.35,	
		Methanol-31.61,Toluene-1)	
Total	848.77	Total	848.77

4. DEXTROMETHORPHAN HYDROBROMIDE

Process Description:

Stage-1

2-Cyclohex-1-en-1-yl ethamine reacts with 4-Methoxy phenyl acetic acid and Phosphorous oxy chloride in presence of Toluene as a solvent media to give Stage-1 as a product.

Stage-2

Stage-1 reacts with hydroxy phenyl acetic acid in presence of Toluene as a solvent media to give Stage-2 as a product.

Stage-3

Stage-2 reacts with Sodium Hydroxide in presence of toluene as a solvent media to give Stage-3 as a product.

Stage-4

Stage-3 reacts with Formic acid in presence of Toluene as a solvent media to give Stage-4 as a product.

Stage-5

Stage-4 reacts with Methanol and Sodium Hydroxide in presence of Toluene as a solvent media to give Stage-5 as a product.

Stage-6

Stage-5 reacts with Formaldehyde in presence of Toluene as a solvent media to give Stage-6 as a product.

Stage-7

Stage-6 reacts with Hydrobromic acid in presence of Acetone as a solvent media to give Dextromethorphan Hydrobromide.

DEXTROMETHORPHAN HYDROBROMIDE

Route of Synthesis:

Stage-1

Step-A

Step-B

Prepared By

1-(4-Methoxy-benzyl)-1,2,3,4,5,6,7,8 -octahydro-isoquinoline Mandalate

> C₂₅H₃₁NO₄ 409.52

СНО

OCH₃

Stage-4

carbaldehyde

 $C_{18}H_7NaO_3$

285.38

Step-B

Stage-5 C₁₇H₂₃NO 257.37

engeoona	
Sodium Acetate	
82.03	

18.00

Prepared By Rightsource Industrial Solutions Pvt. Ltd.

Stage-6)
---------	---

DEXTROMETHORPHAN HYDROBROMIDE

Flow Chart:

DEXTROMETHORPHAN HYDROBROMIDE

Material Balance:

Material balance of Dextromethorphan Hydrobromide			
Stage-1			
	Batch Siz	e:100.0Kg	
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		In Kg
PMPPA	449.00	Stage-1	695.00
CHEA	338.34	Toluene Recovery	475.00
Phosphorous oxy chloride	415.00	Toluene Loss	25.00
Caustic lye	218.00	Effluent water	1302.03
Toluene	500.00	(Water-473.9,Generated	
		water-48.63,Hydrochloric	
		acid-296.3, Phosphoric acid-	
		265.2, Caustic lye-218)	
Water	620.00	Process Emission	43.31
		(Oxygen)	
Total	2540.34	Total	2540.34

Material balar	Material balance of Dextromethorphan Hydrobromide				
	Sta	ge-2			
	Batch Siz	ze:100.0Kg			
Name of the input	Quantity	Name of the out put	Quantity		
	in Kg		In Kg		
Stage-1	695.00	Stage-2	231.50		
Toluene	163.00	Toluene Recovery	536.50		
Mandelic acid	55.00	Toluene Loss	46.00		
		Organic Residue	99.00		
		(Organic Impurities-97,			
		Toluene-2)			
Total	913.00	Total	913.00		

Material balance of Dextromethorphan Hydrobromide				
	Sta	ge-3		
	Batch Siz	e:100.0Kg		
Name of the input	Quantity	Name of the out put	Quantity	
·	in Kg		In Kg	
Stage-2	231.50	Stage-3	134.27	
Toluene	520.00	Toluene Recovery	492.00	
CS Lye	70.00	Toluene Loss	26.00	
Water	278.00	Effluent water	408.90	
		(Water-278, Generated water-		
		31.5,Sodium mandalate-98.4,		
		Toluene-1)		
		Organic Residue	38.33	
		(Organic Impurities-37.33,		
		Toluene-1)		
Total	1099.50	Total	1099.50	

Material balance of Dextromethorphan Hydrobromide			
Stage-4			
	Batch Siz	e:100.0Kg	
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		In Kg
Stage-3	134.27	Stage-4	150.43
Toluene	319.00	Toluene Recovery	303.00
Formic acid	13.88	Toluene Loss	15.00
Sodium methoxide powder	3.41	Generated water	5.42
Phosphoric acid	1480.00	Phosphoric acid Reuse	1480.00
Phosphorous pentoxide	54.00	Inorganic solid waste	4.29
		(Sodium formate-4.29)	0
		Methanol Recovery	2.01
		Organic Residue	44.41
		(Organic Impurities-43.41,	
		Toluene-1)	
Total	2004.56	Total	2004.56

Material balance of Dextromethorphan Hydrobromide					
Stage-5					
	Batch Siz	e:100.0Kg			
Name of the input	Quantity	Name of the out put	Quantity		
	in Kg		In Kg		
Stage-4	150.43	Stage-5	127.45		
Methanol	245.00	Toluene Recovery	431.00		
CS Lye	128.03	Toluene Loss	22.00		
Toluene	453.00	Methanol Recovery	215.20		
Water	570.00	Methanol Loss	12.00		
		Effluent water	738.81		
		(Water-570,CS Lye-105,			
		Generated water-19.8,			
		Sodium acetate-43.01,			
Methanol-1)					
Total	1546.46	Total	1546.46		

Material balance of Dextromethorphan Hydrobromide			
Stage-6			
	Batch Siz	e:100.0Kg	
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		In Kg
Stage-5	127.45	Stage-6	90.90
Formaldehyde	45.45	Toluene Recovery	378.00
Toluene	398.00	Toluene Loss	19.00
Acetone	163.00	Acetone Recovery	153.00
CS Lye	30.00	Acetone Loss	8.00
Activated carbon	4.50	Effluent water	275.71
Hyflow	4.50	(Water-228,CS Lye-30,	
		Formaldehyde-15.71,	
		Acetone-2)	
Water	228.00	Spent carbon & Hyflow	9.00
		Process Emission	22.77
		(Carbon dioxide-21.78,	
		Hydrogen-0.99)	
		Organic Residue	44.52
		(Organic Impurities-43.52,	
		Toluene-1)	
Total	1000.90	Total	1000.90

Material balance of Dextromethorphan Hydrobromide Stage-7 Batch Size:100.0Kg			
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		In Kg
Stage-6	90.90	Dextromethorphan	100.00
		Hydrobromide	
Acetone	273.00	Acetone Recovery	261.00
Hydrobromic acid	9.10	Acetone Loss	12.00
Total	373.00	Total	373.00

5. DROTAVERINE HYDROCHLORIDE

Process Description:

Stage-1

Pyro catechol reacts with Diethyl sulphate and sodium hydroxide in the presence of Toluene as solvent media to give Stage-1 as product.

Stage-2

Stage-1 product reacts with Para formaldehyde and Hydrochloric acid in the presence of Toluene as solvent media to give Stage-2 as product.

Stage-3

Stage-2 product reacts with Sodium cyanide in water media to give Stage-3 as product.

Stage-4

Stage-3 product undergoes hydrogenation by using Raney Nickel as catalyst in the presence of Methanol as solvent media to give Stage-4 as product.

Stage-5

3, 4-Diethoxy benzyl cyanide reacts with Sodium hydroxide and Hydrochloric acid in the presence of Toluene as solvent media to give Stage-5 as product.

Stage-6

Stage-5 product reacts with Stage-4 in the presence of Toluene as solvent media to give Stage-6 as product.

Stage-7

Stage-6 product reacts with Phosphorous oxychloride and Sodium hydroxide by using Toluene as solvent media to give Stage-7 as product.

Stage-8

Stage-7 product undergoes purification by using IPA as solvent media to give Drotaverine Hydrochloride as product.

DROTAVERINE HYDROCHLORIDE

Route of Synthesis:

Stage-3

Stage-5

DROTAVERINE HYDROCHLORIDE

Flow Chart:

DROTAVERINE HYDROCHLORIDE

Material Balance:

Material Balance of Drotaverine Hydrochloride			
	Sta	age-1	
	Batch Size	e: 100.0Kgs	
Name of the input	Quantity	Name of the out put Quantity	
	in Kg	in Kg	
Pyro catechol	147.00	Stage-1in Toluene (85+370) 455.0	
Diethyl sulfate	191.62	Effluent water 549.1	
Toluene	310.00	(Water-300, Generated water-	
		71.1,Water from sodium	
		hydroxide-178)	
Sodium hydroxide (47%)	336.00	Inorganic solid waste 280.5	
Water	300.00	(Sodium sulfate)	
Total	1284.62	Total 1284.6	

Material Balance of Drotaverine Hydrochloride			
Stage-2			
	Batch Size	e: 100.0Kgs	
Name of the input	Quantity	Name of the out put Quantity	
	in Kg	in Kg	
Stage-1in Toluene (85+370)	455.00	Stage-2 (104+440) 544.00	
Para formaldehyde	19.85	Effluent water 588.62	
Hydrochloric acid (35%)	293.00	(Water-300, Generated water-	
		11.34,Sodium chloride-6.95,	
		Hydrochloric acid-79.88,Water	
		from Hydrochloric acid-190.45)	
Toluene	60.00	Process Emissions 5.23	
Sodium bicarbonate	10.00	(Carbon dioxide)	
Water	300.00		
Total	1137.85	Total 1137.85	

Material Balance of Drotaverine Hydrochloride					
	Stage-3				
	Batch Size	: 100.0Kgs			
Name of the input	Quantity	Name of the out put	Quantity		
	in Kg		in Kg		
Stage-2 in Toluene (104+440)	544.00	Stage-3	75.00		
Sodium cyanide	27.00	Toluene Recovery	416.00		
Sodium hypochlorite (5%)	1577.50	Toluene Loss	20.00		
Water	250.00	Effluent water	1887.50		
		(Water-250,Sodium chloride-			
		32.2,Sodium cyanide-3.3,Water			
		from sodium hypochlorite-1520,			
		Toluene-2,Sodium hypochlorite-			
80)					
Total	2398.50	Total	2398.50		

Material Balance of Drotaverine Hydrochloride			
Stage-4			
	Batch Size	. 100.0Kgs	
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		in Kg
Stage-3	75.00	Stage-4	75.00
Methanol	500.00	Methanol Recovery	472.00
Ammonia gas	45.00	Methanol Loss	25.00
Hydrogen	3.00	Raney Nickel Reuse	6.00
Nitrogen	1.00	Organic Residue	4.46
Raney Nickel	6.00	(Organic Impurities-3.46,	
		Methanol-1)	
		Process Emissions	47.54
		(Ammonia-45,Hydrogen-1.54,	
		Nitrogen-1)	
Total	630.00	Total	630.00

Material Balance of Drotaverine Hydrochloride			
Stage-5			
	Batch Size	. 100.0Kgs	
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		in Kg
Stage-3	80.00	Stage-5	75.00
Sodium hydroxide (47%)	165.00	Toluene Recovery	141.00
Hydrochloric acid (35%)	120.00	Toluene Loss	7.00
Toluene	150.00	Effluent water	535.61
Water	250.00	(Water-250, Generated water-	
		6.66,Water from sodium	
		hydroxide-87.45,Water from	
		Hydrochloric acid-78,Sodium	
		chloride-44.48,Ammonium	
		chlorie-20.88,Sodium hydroxide-	
		47.14,Toluene-1)	
		Organic Residue	6.39
		(Organic Impurities-5.39,	
		Toluene-1)	
Total	765.00	Total	765.00

Material Balance of Drotaverine Hydrochloride						
	Stage-6					
	Batch Size	: 100.0Kgs				
Name of the input	Quantity	Name of the out put	Quantity			
	in Kg		in Kg			
Stage-5	75.00	Stage-6	120.00			
Stage-4	75.00	Toluene Recovery	284.00			
Toluene	300.00	Toluene Loss	15.00			
		Stage-4 un reacted	5.02			
		Generated water	6.03			
		Organic Residue	19.95			
		(Organic Impurities-18.95,				
Toluene-1)						
Total	450.00	Total	450.00			

Material Balance of Drotaverine Hydrochloride			
Stage-7			
	Batch Size	: 100.0Kgs	
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		in Kg
Stage-6	120.00	Stage-7	115.00
Phosphorous oxy chloride	139.65	Toluene Recovery	665.00
Toluene	700.00	Toluene Loss	35.00
Sodium hydroxide (47%)	600.00	Effluent water	1144.65
Water	400.00	(Water-400, Generated water-	
		52.77,Sodium chloride-154.58,	
		Tri sodium phosphate-160.25,	
		Sodium hydroxide-59.05, Water	
		from sodium hydroxide-318)	
Total	1959.65	Total	1959.65

Material Balance of Drotaverine Hydrochloride			
Stage-8			
Batch Size: 100.0Kgs			
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		in Kg
Stage-7	115.00	Drotaverine Hydrochloride	100.00
IPA	350.00	IPA Recovery	332.00
		IPA Loss	17.00
		Organic Residue	16.00
		(Organic Impurities-15, IPA-1)	
Total	465.00	Total	465.00

6. GUAIFENESIN

Process Description:

Stage-1

Step-A

Pyro catechol reacts with Dimethyl sulfate and Sodium carbonate to give Step-A as product.

Step-B

Step-A Product reacts with Sodium hydroxide to give Step-B (Stage-1) as product.

Stage-2

Stage-1 reacts with Epichloro hydrine and water in the presence of Toluene as solvent media to give Guaifenesin as product.

GUAIFENESIN

Route of Synthesis:

Stage-1

Step-A

Step-B

Prepared By Rightsource Industrial Solutions Pvt. Ltd.

GUAIFENESIN

Flow Chart:

GUAIFENESIN

Material Balance of Guaifenesin			
Stage-1			
	Batch Size:	100.0Kgs	
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		in Kg
Pyrcatechol	61.40	Stage-1	176.00
Di methyl sulfate	45.00	Toluene Recovery	95.50
Sodium carbonate	38.00	Toluene Loss	4.00
Hydrochloric acid (36%)	1.00	Effluent water	113.46
Sodium hydroxide (47%)	60.00	(Water-56.75, Hydrochloric acid-	
		0.26,Sodium chloride-0.16,	
		Methanol-11.43,Water from HCI-	
		0.64,Water from Sodium	
		Hydroxide-31.80,Generated	
		water-11.92,Toluene-0.5	
Toluene	100.00	Process Emissions	15.77
Water	100.00	(Carbondioxide-15.77)	
		Inorganic Residue	0.67
		(Sodiumsulfate-0.67)	
Total	405.40	Total	405.40

Material Balance of Guaifenesin				
Stage-2				
	Batch Size	: 100.0Kgs		
Name of the input	Quantity	Name of the out put	Quantity	
	in Kg		in Kg	
Stage-1	176.00	Guaifenesin	100.00	
Epichlorohydrin	55.00	Toluene Recovery	95.50	
Phosphoric acid	2.00	Toluene Loss	4.00	
Toluene	100.00	EDC Recovery	71.25	
EDC	75.00	EDC Loss	3.75	
Hydrochloric acid (36%)	7.00	Effluent water	281.96	
Water	200.00	(Water-233.39,Sodium		
		phosphate-2.43,SodiumChloride		
		-34.83, Generated water-1.23		
		Hydrochloric acid-0.75,		
		Epichlorohydrin-4.35,Toluene-		
		0.5,Water from HCI-4.48)		
		Inorganic Residue	50.00	
		(Sodium sulfate-50)		
		Organic Residue	8.54	
Total	615.00	Total	615.00	

7. 1-(4-HYDROXY PHENYL) PIPERAZINE

Process Description:

Stage-1

Bis-(2-Chloro ethyl)amine HCl undergoes condensation with P-Amino phenol and further treatment with Acetic anhydride in the presence of Methanol as a solvent media to give Stage-1 as product.

Stage-2

Stage-1 undergoes hydrolysis with aq.Sodium hydroxide in water media to give 1-(4-Hydroxy phenyl)Piperazine as product.

1-(4-HYDROXY PHENYL) PIPERAZINE

Route of Synthesis:

Stage -1:

Step-A

Stage-2:

NaOH

+

1-[4-(4-Hydroxy-phenyl)-piperazin-1-yl]-ethanone

Sodium hydroxide 40.00

 $C_{12}H_{16}N_2O_2$

220.27

ONa H₃C

+

1-(4-Hydroxyphenyl)piperazine

C₁₀H₁₄N₂O 178.23 Sodium acetate Trihydrate 136.08

1-(4-HYDROXY PHENYL) PIPERAZINE

Flow Chart:

1-(4-HYDROXY PHENYL) PIPERAZINE

Material Balance of 1-(4-Hydroxy phenyl)Piperazine			
Stage-1			
	Batch Size	e: 100.0Kgs	
Name of the input	Quantity	Name of the out put Quantity	
	in Kg	in Kg	
Bis-(2-Chloro ethyl)amine HCl	250.00	Stage-1 135.00	
P-Amino phenol	155.00	Methanol Recovery 946.00	
Methanol	1000.00	Methanol Loss 50.00	
Sodium acetate trihydrate	300.00	Effluent water 6246.72	
Acetic anhydride	250.00	(Water-5000, Acetic acid-279.48,	
		Sodium chloride-292.58,	
		Generated water-169.51,Sodium	
		hydroxide-258.5,Water from	
		Sodium hydroxide-241.5,P-	
		Amino phenol-2.15,Methanol-3)	
Sodium hydroxide(47%)	550.00	Organic Residue 127.28	
Wator	5000.00	(Organic impurities-	
	5000.00	126.28,Methanol-1)	
Total	7505.00	Total 7505.00	

Material Balance of 1-(4-Hydroxy phenyl)Piperazine			
	Sta	ge-2	
	Batch Size	: 100.0Kgs	
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		in Kg
Stage-1	135.00	1-(4-Hydroxy phenyl)Piperazine	100.00
Sodium hydroxide(47%)	163.00	Effluent water	2888.74
Water	2700.00	(Water-2700,Water from Sodium hydroxide-86.39,Sodium acetate -50.25,Sodium hydroxide-52.10)	
		Organic Residue	9.26
Total	2998.00	Total	2998.00

8. MEBEVERINE HYDROCHLORIDE

Process Description:

Stage-1

Vaniline undergoes Methylation with Dimethyl sulphate in presence of Sodium carbonate Toluene as a solvent media to give Stage-1 as a product.

Stage-2

Stage-1 undergoes Oxidation with Potassium permanganate and further reacts with Hydrochloric acid to give Stage-2 as a product.

Stage-3

Stage-2 reacts with Sodium methoxide in presence of Methanol as a solvent media to give Stage-3 as a product.

Stage-4

Stage-3 undergoes esterification with 1, 4-Dibromo butane to give Stage-4 as a product.

Stage-5

Anisic aldehyde reacts with 2-Chloro methyl propionate in presence of Sodium methoxide to give Stage-5 as a product.

Stage-6

Stage-5 undergoes reductive amino ethylation with Hydrogen gas in presence of Pd/C Methanol as a solvent media to give Stage-6 as a product.

Stage-7

Stage-4 and Stage-6 reacts with Sodium carbonate in presence of MIBK as a solvent media to give Mebeverine Hydrochloride as a product.

MEBEVERINE HYDROCHLORIDE

Route of Synthesis

Dimethyl Sulphate

+

+

Toluene

Vaniline C₈H₈O₃ 152.15

C₂H₆O₄S 126.13

Na₂CO₃

CHO OCH₃

+ Na_2SO_4 + CO_2 + CH_3OH Sodium Sulphate Carbon Dichloride Methanol 142.04 44.01 32.04

C₉H₁₀O₃ 166.17

Veratraldehyde

MEBEVERINE HYDROCHLORIDE

Flow Chart:

MEBEVERINE HYDROCHLORIDE

Material Balance of Mebeverine Hydrochloride				
Stage-1				
	Batch Siz	e:	100.0 Kgs	
Name of the input	Quantity		Name of the out put	Quantity
	in Kg			in Kg
Vaniline	75.00		Stage-1	75.00
Dimethyl Sulfate	31.35		Toluene Recovery	711.00
Sodium Carbonate	30.00		Toluene Loss	38.00
Toluene	750.00		Effluent water	380.45
Water	370.00		(Water-370,Sodium carbonate-0.56,	
			Methanol-8.89, Toluene-1)	
			Process Emissions	12.45
			(Carbon Dioxide-12.45)	
			Inorganic Residue	39.45
			(Sodium sulfate-39.45)	
Total	1256.35		Total	1256.35

Material Balance of Mebeverine Hydrochloride			
Stage-2			
	Batch Size	e: 100.0 Kgs	
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		in Kg
Stage-1	75.00	Stage-2	75.00
Potassium Permanganate	68.20	Effluent water	449.97
Hydrochloric acid (35%)	50.00	(Water-370, Generated water-8.13,	
		WaterfromHydrochloricacid-32.5,	
		PotassiumChloride-33.64,	
		Potassium Permanganate-3.67,	
		Hydrochloric acid-1.03	
		Sodium Bisulfite-1)	
Sodium Bisulfite	1.00	Inorganic solid waste	39.23
Hydrogen	1.00	(Manganese Dioxide-39.23)	
Water	370.00	Process Emissions	1.00
		(Hydrogen-1)	
Total	565.20	Total	565.20

Material Balance of Mebeverine Hydrochloride			
	Sta	ge-3	
	Batch Size	: 100.0 Kgs	
Name of the input Quantity Name of the out put Quan			
	in Kg		in Kg
Stage-2	75.00	Stage-3	95.00
Sodium Methoxide	52.75	Methanol Recovery	712.00
Methanol	750.00	Methanol Loss	38.00
		Sodium Methoxide (Un reacted)	32.75
Total	877.75	Total	877.75

Material Balance of Mebeverine Hydrochloride			
Stage-4			
	Batch Size	. 100.0 Kgs	
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		in Kg
Stage-3	95.00	Stage-4	115.00
1,4-Dibromo butane	800.00	1,4-Dibromo butane Recovery	695.00
Water	110.00	Effluent water	164.28
		(Water-110,SodiumBromide-41.4,	
		Methanol-12.88)	
		1,4-Dibromo butane (Un reacted)	18.16
		Organic Residue	12.56
		(Organic Impurities-12.56)	
Total	1005.00	Total	1005.00

Material Balance of Mebeverine Hydrochloride				
Stage-5				
	Batch Size	e: 100.0 Kgs		
Name of the input	Quantity	Name of the out put	Quantity	
	in Kg		in Kg	
p-Anisic aldehyde	60.00	Stage-5	60.00	
Methanol	110.00	Methanol Recovery	103.00	
2-Chloromethyl propionate	74.56	Methanol Loss	6.00	
Sodium Methoxide	25.00	Toluene Recovery	56.00	
Toluene	60.00	Toluene Loss	3.00	
Water	250.00	2-Chloromethyl propionate (Un	25.99	
		reacted)		
		Effluent water	306.17	
		(Water-250,SodiumChloride-25.74,		
		Sodium Methoxide-1.2,		
		Methanol-28.23,Toluene-1)		
		Process Emissions	19.40	
		(Carbondioxide-19.4)		
Total	579.56	Total	579.56	

Material Balance of Mebeverine Hydrochloride			
Stage-6			
	Batch Siz	ze: 100.0 Kgs	-
Name of the input	Quantity	Name of the out put	Quantity
	in Kg		in Kg
Stage-5	60.00	Stage-6	60.00
Monoethyl Amine (70%)	66.81	Methanol Recovery	189.00
Hydrochloric acid (35%)	40.00	Methanol Loss	10.00
Methanol	200.00	Toluene Recovery	236.00
Sodium Hydroxide (47%)	40.00	Toluene Loss	13.00
Hydrogen	2.00	Mono methyl amine (Un reacted)	37.00
Nitrogen	2.00	Effluent water	312.54
Toluene	250.00	(Water-200, Generated water-13.47,	
		Sodium Hydroxide-3.46,	
		Sodium Chloride-22.41,	
		WaterfromMonomethylamine-24.00,	
		WaterfromSodiumHydroxide-21.2,	
		Water from Hydrochloric acid-26,	
		Methanol-1,Toluene-1)	
Water	200.00	Process Emissions	3.27
		(Hydrogen-1.27,Nitrogen-2)	
Total	860.81	Total	860.81

Material Balance of Mebeverine Hydrochloride				
Stage-7				
	Batch S	biz(e: 100.0 Kgs	
Name of the input	Quantity		Name of the out put	Quantity
	in Kg			in Kg
Stage-6	60.00		Mebeverine Hydrochloride	100.00
Stage-4	115.00		Methyl Isobutyl Ketone Recovery	142.00
Methyl Isobutyl Ketone	150.00		Methyl Isobutyl Ketone Loss	8.00
Toluene	200.00		Toluene Recovery	188.00
Ethyl Acetate	250.00		Toluene Loss	10.00
Methylene Dichloride	150.00		Ethyl Acetate Recovery	237.00
Sodium Carbonate	40.00		Ethyl Acetate Loss	13.00
Hydrochloric acid (35%)	35.00		Methylene Dichloride Recovery	142.00
Water	200.00		Methylene Dichloride Loss	8.00
			Stage-4 (Un reacted)	15.00
			Effluent water	289.79
			(Water-200,SodiumBicarbonate-26.11	
	1		SodiumBromide-31.93,	
	1		SodiumCarbonate-7.05,	
	1 '		Hydrochloricacid-0.95,	
	1		WaterfromHydrochloricacid-22.75,	
			Toluene-1)	
			Organic Residue	47.21
	'		(Organic Impurities-46.21,Toluene-1)	
Total	1200.00		Total	1200.00

9. MEPHENESIN

Process Description:

Stage-1

Ortho Cresol reacts with Epichlorohydrin and Sodium Hydroxide in presence of Ethylene Dichloride as a solvent media to give Mephenesin as a product.

MEPHENESIN

+

Route of Synthesis:

Stage-1

Ortho Cresol C₇H₈O 108.14

Epichlorohydrin
C ₃ H ₅ ClO
92.52

+

NaOH	+	H ₂ O	EDC
Sodium Hydroxide		18.00	
40.00			

Mephenesin $C_{10}H_{14}O_{3}$

58.44

182.22

MEPHENESIN

MEPHENESIN

Material Balance of Mephenesin					
Stage-1					
Batch Size: 100.0Kg					
Name of the input	Quantity	Name of the out put	Quantity		
	in Kg		in Kg		
Ortho cresol	68.00	Mephenesin	100.00		
Epichlorohydrin	42.34	Ethylene Dichloride Recovery	65.80		
Phosphoric acid	5.00	Ethylene Dichloride Loss	4.20		
Sodium Hydroxide (47%)	65.00	Toluene Recovery	103.60		
Ethylene Dichloride	70.00	Toluene Loss	4.40		
Toluene	110.00	Effluent water	342.34		
Hydrochloric acid (30%)	10.00	(Water-250,Water from Sodium			
		hydroxide-34.45,Sodium			
		phosphate-24.49,Generated			
		water-13.74.Sodium chloride-			
		8.83.Water from HCI-7.			
		Epichlorohydrin-1.83,Toluene-2)			
Water	250.00				
Total	620.34	Total	620.34		

10. METHOCARBAMOL

Process Description

Stage-1

Pyro Catechol reacts with Dimethyl sulphate and Sodium Hydroxide in presence of Toluene as a solvent media to give Stage-1 as a product.

Stage-2

Stage-1 Reacts with Epichlorohydrin in presence of Toluene as a solvent media to give Stage-2 as a product.

Stage-3

Stage-2 reacts with Dimethyl Carbonate and Ammonia in presence of toluene as a solvent media to give Methocarbamol as a product.

METHOCARBAMOL

Route of Synthesis:

Stage-1

Step-B

METHOCARBAMOL

Flow Chart:

METHOCARBAMOL

Material Balance of Methocarbamol				
Stage-1				
	Batch Size	e: 100.0Kg		
Name of the input	Quantity in Kg	Name of the out put	Quantity in Kg	
Pyrocatechol	70.00	Stage-1 Layer	176.00	
Dimethyl Sulfate	43.72	Toluene Recovery	95.50	
Sodium Carbonate	38.00	Toluene Loss	4.00	
Hydrochloric Acid (36%)	1.00	Effluent water	120.77	
Sodium Hydroxide (47%)	60.00	(Water-56.75, Water from HCl -0.64, Sodium chloride-0.16, HCl -0.26, Methanol-30.65, Toluene -0.5, Water from Sodium Hydroxid-31.8, Generated water- 0.01		
Toluene	100.00	Process Emissions	15.78	
Water	100.00	(Carbon dioxide-15.78)		
		Inorganic Residue	0.67	
		(Sodium sulfate-0.67)		
Total	412.72	Total	412.72	

Material Balance of Methocarbamol				
Stage-2				
	Batch Size	: 100.0Kg		
Name of the input	Quantity	Name of the out put	Quantity	
	in Kg		in Kg	
Stage-1 Layer	176.00	Stage-2	100.00	
Epichlorohydrin	49.64	Toluene Recovery	95.00	
Phosphoric acid	2.00	Toluene Loss	4.00	
Toluene	100.00	EDC Recovery	71.25	
Ethylene Dichloride	75.00	EDC Loss	3.75	
Hydrochloric Acid (36%)	7.00	Effluent water	285.64	
Water	200.00	(Water-233.40,Sodium chloride-		
		34.74,Sodium phosphate-2.45,		
		Generated water-1.24,Water		
		from HCI-4.48, Epichlorohydrin		
		-4.35,Toluene-0.5,HCI-4.48)		
		Inorganic Residue	50.00	
		(Sodium sulfate-50)		
Total	609.64	Total	609.64	

Material Balance of Methocarbamol				
Stage-3				
Batch Size: 100.0Kg				
Name of the input	Quantity		Name of the out put	Quantity
	in Kg			in Kg
Stage-2	100.00		Methocarbamol	100.00
Di methyl Carbonate	26.29		Toluene Recovery	192.00
Ammonia (8%)	115.00		Toluene Loss	8.00
Toluene	200.00		Effluent water	240.68
Water	100.00		(Water-100,Water from NH ₃	
			105.8,Methanol-32.32,Toluene-1,	
			Di methyl carbonate-1.56)	
			Process Emissions	0.61
			(Ammonia-0.61)	
Total	541.29		Total	541.29

11. POTASSIUM GUAIACOL SULFONATE

Process Description:

Stage-1

Guaiacol reacts with Sulfuric acid and Potassium Carbonate in presence of Methanol as a solvent media to give Potassium Guaiacol Sulfonate as a product.

POTASSIUM GUAIACOL SULFONATE

Route of Synthesis:

POTASSIUM GUAIACOL SULFONATE

Flow Chart:

POTASSIUM GUAIACOL SULFONATE

Material Balance of Potassium Guaiacol Sulfonate				
Stage-1				
	Batch Size	: 100.0Kg		
Name of the input	Quantity	Name of the out put	Quantity	
	in Kg		in Kg	
Guaiacol	50.00	Potassium Guaiacol Sulfonate	100.00	
Sulfuric acid	45.00	Methanol Recovery	24.00	
Potassium Carbonate	30.00	Methanol Loss	1.00	
Methanol	25.00	Effluent water	103.51	
Barium Carbonate	15.00	(Water-75, Potassium carbonate-		
		2.21,Barium carbonate-3.87,		
		Barium sulfate13.17,Methanol-1,		
		Generated water-8.26)		
Water	75.00	Process Emissions	11.34	
		(Carbon dioxide-11.34)		
		Organic Residue	0.15	
Total	240.00	Total	240.00	

12. PRAZOSIN HYDROCHLORIDE

Process Description:

Stage-1

2-Furoic Acid reacts with Methanol in presence of Sulfuric acid to give give Stage-1 as a product.

Stage-2

Stage-1 reacts with Piperazine and Hydrochloric acid in presence of Toluene as a solvent media to give Stage-2 as a product.

Stage-3

Stage-2 reacts with 4-Amino-2-Chloro-6, 7-dimethoxy quinozoline in presence of Isopropyl Alcohol as a solvent media to give Prazosin Hydrochloride as a product.

PRAZOSIN HYDROCHLORIDE

Route of Synthesis:

Stage-1

126.11

180.20

PRAZOSIN HYDROCHLORIDE

Flow Chart

PRAZOSIN HYDROCHLORIDE

Material Balance of Prazosin Hydrochloride						
Stage-1						
Batch Size: 25.0Kg						
Name of the input	Quantity		Name of the out put	Quantity		
	in Kg			in Kg		
2-Furoic acid	36.25		Stage-1	33.75		
Methanol	56.25		Methanol Recovery	53.25		
Sulfuric acid	1.25		Methanol Loss	2.25		
Sodium carbonate	1.50		Effluent water	127.70		
Water	125.00		(Water-125,Sodium sulfate-1.82,			
			Generated water-0.23,Sodium			
			carbonate-0.15,Methanol-0.5)			
			Process Emissions	0.56		
			(Carbon dioxide-0.56)			
			Organic Residue	2.74		
			(Organic impurities-2.49,			
			Methanol-0.25)			
Total	220.25		Total	220.25		
Material Balance of Prazosin Hydrochloride						
--	--------------------	--	-----------------------------------	----------	--	--
Stage-2						
	Batch Size: 25.0Kg					
Name of the input	Quantity		Name of the out put	Quantity		
	in Kg			in Kg		
Stage-1	33.75		Stage-2	25.00		
Piperazine	50.00		Toluene Recovery	235.00		
Sodium hydroxide (47%)	25.00		Toluene Loss	12.50		
Hydrochloric acid (35%)	30.00		Chloroform Recovery	475.00		
Toluene	250.00	250.00Chloroform Loss500.00Piperazine Recovery				
Chloroform	500.00					
Sodium Sulfate	5.00		Piperazine Loss	2.50		
Water	25.00		Effluent water	91.30		
			(Water-25,Sodium hydroxide-0.25,			
			Sodium chloride-16.82, Generated			
			water-5.18,Methanol-8.58,Water			
			from Sodium hydroxide-13.25,			
			Water from Hydrochloric acid-			
			19.50,Toluene-2,Piperazine-0.72)			
			Inorganic Residue	5.00		
			(Sodium sulfate-5)			
			Organic Residue	0.67		
			(Organic impurities-0.17,Toluene-			
			0.5)			
Total	918.75		Total	918.75		

Material Balance of Prazosin Hydrochloride					
Stage-3					
	Batch Siz	ze: 100.0Kg			
Name of the input	Quantity	Name of the out put	Quantity		
	in Kg		in Kg		
Stage-2	25.00	Prazosin Hydrochloride	25.00		
4-Amino-2-chloro-6,7-Dimethoxy auinozoline	33.75	IPA Recovery	82.95		
2-Methoxy Ethanol	75.00	IPA Loss	3.50		
Hydrochloric acid (35%)	1.25	Methanol Recovery	179.00		
Isopropyl alcohol	87.50	Methanol Loss	7.50		
Methanol	187.50	2-Methoxy Ethanol Recovery	70.75		
Water	150.00	2-Methoxy Ethanol Loss	3.75		
		Effluent water	153.75		
		(Water-150,Water from HCI-0.81,			
		HCI-0.44,2-Methoxy ethanol-0.5,			
		IPA-1,Methanol-1)			
		Organic Residue	33.80		
		(Organic impurities-33.19,4-			
		Amino-2-chloro6,7-Dimethoxy			
		quinazoline-0.51,IPA-0.1)			
Total	560.00	Total	560.00		

13. RIBAVIRIN

Process Description:

Stage-1

1, 2, 3, 5-Terta-O-Acetyl ribo furanose reacts with Methyl-1, 2, 4-triazole-3carboxylate in the presence Stannic chloride by using MDC as solvent media to give Stage-1 as product.

Stage-2

Stage-1 product reacts with Ammonia in the presence of Methanol as solvent media to give Stage-2 as product.

Stage-3

Stage-2 product undergoes Purification by using Methanol and Activated carbon to give Ribavirin as product.

RIBAVIRIN

Route of Synthesis

Stage-1

SnCl₄

Acetic acid 3,4,5-triacetoxy-tetrahydro -furan-2-ylmethyl ester

> C₁₃H₁₈O₉ 318.28

C₁₃H₁₈O₉ 127.10

C₁₅H₁₉N₃O₉ 385.33

Stage-2

Stage-3

RIBAVIRIN

Flow Chart:

RIBAVIRIN

Material Balance:

Material balance of Ribavirin					
	Stage-1				
	Batch Siz	ze:50.0Kg			
Name of the input	Quantity in Ka	Name of the out put	Quantity In Ka		
1,2,3,5-Terta-o- acetylribofuranose	90.00	Stage-1	107.50		
Methyl-1,2,4-triazole-3- carboxylate	37.50	MDC Recovery	143.00		
Stannic chloride	85.00	MDC Loss	7.00		
MDC	150.00	Toluene Recovery	260.00		
Toluene	275.00	Toluene Loss	13.00		
Water	1500.00	Effluent water	1602.98		
		(Water-1500,Acetic acid- 16.98,Stannic chloride-85, Toluene-1)			
		Organic Residue	4.02		
		(Organic Impurities- 3.02,Toluene-1)			
Total	2137.50	Total	2137.50		

Material balance of Ribavirin					
Stage-2					
	Batch Siz	ze: 50.0Kg			
Name of the input	Quantity	Name of the out put	Quantity		
	in Kg		In Kg		
Stage-1	107.50	Rabavirin (Tech)	57.50		
Methanol	550.00	Methanol Recovery	522.00		
Ammonia gas	21.00	Methanol Loss	27.00		
Water	250.00	Effluent water	308.33		
		(Water-250, Acetamide-49.4,			
		Methanol-8.93)			
		Organic Residue	11.64		
		(Organic Impurities-10.64,			
		Methanol-1)			
		Process Emissions	2.03		
		(Ammonia)			
Total	928.50	Total	928.50		

Material balance of Ribavirin					
Store 2					
	Batch Siz	2e: 50.0Kg			
Name of the input	Quantity	Name of the out put	Quantity		
	in Kg		In Kg		
Rabavirin (Tech)	57.50	Ribavirin (Pure)	50.00		
Methanol	400.00	Methanol Recovery	378.00		
Activated carbon	0.05	Methanol Loss	20.00		
Hyflow	0.25	Spent carbon &Hyflow	0.30		
Water	25.00	Effluent water	26.00		
		(Water-25,Methanol-1)			
		Organic Residue	8.50		
		(Organic Impurities-7.5,			
		Methanol-1)			
Total	482.80	Total	482.80		

14. ROPINIROLE HYDROCHLORIDE

Process Description:

Stage-1

4-(min-Bromo ethyl)-3-chloror-1,3-dihydro-2H-Indol-2-one reacts with Hydrogen by using Raney Nickel as catalyst in the presence of Ethyl acetate as solvent media to give Stage-1 as product.

Stage-2

Stage-1 product reacts with Di-n-propyl amine and Hydrochloric acid in the presence of IPA as solvent media to give Stage-2 as product.

Stage-3

Stage-2 product undergoes purification by using Methanol as solvent media to give Ropinirole Hydrochloride as product.

ROPINIROLE HYDROCHLORIDE

Route of Synthesis:

Stage-1

4-(2min-Bromoethyl)-3-chloro -1,3-dihydro-2H-indol-2-one C₁₀H₉BrClNO 274.54

ОH

NaO

2X18=36.0

 $2H_2O$

Ethyl acetate

4-(2-Bromo-ethyl)-1,3dihydro-indol-2-one $C_{10}H_{10}BrNO$ 240.10

+	NaCl	+	H ₃ PO ₄	+	H₂∱
	Sodium chloride 58.44		Phosphoric acid 98.00		Hydrogen 2.00

Stage-3

ROPINIROLE HYDROCHLORIDE

Flow Chart:

ROPINIROLE HYDROCHLORIDE

Material Balance:

Material Balance of Ropinirole Hydrochloride						
	Stage-1					
	Batch Size	100.0Kgs				
Name of the input	Quantity	Name of the	out put Quantity			
	in Kg		in Kg			
4-(2-min bromo ethyl)-3-chloro-	51.25	Stage-1	40.00			
1,3-dihydro-2H-Indol-2-one	51.25					
Sodium hypo phosphite	21.25	Ethyl acetate Recov	ery 403.75			
Palladium carbon	5.00	Ethyl acetate Loss	21.25			
Ethyl acetate	425.00	Effluent water	1527.27			
Water	1500.00	(Water-1492.30,Pho	osphoric acid			
		-18.30,Sodium hypo	Phosphite			
		Monohydrate-5.77,	Sodium			
		chloride-10.90)				
		Process Emissions	0.37			
		(Hydrogen-0.37)	9.86			
		Organic Residue-9	86)			
Total	2002.50	Total	2002.50			

aterial Balance of Ropinirole Hydrochloride					
	Stage-2				
	Batch Size	: 100.0Kgs			
Name of the input	Quantity	Name of the out put	Quantity		
	in Kg		in Kg		
Stage-1	40.00	Stage-2	30.00		
Di-n-propyl amine	150.00	Ethyl acetate Recovery	261.25		
Ethyl acetate	275.00	Ethyl acetate Loss	13.75		
IPA	500.00 IPA Recovery				
Hydrochloric acid (35%)	ydrochloric acid (35%) 17.50 IPA Loss				
Water	150.00	Di-n-Propyl amine Recovery	125.10		
		Di-n-Propyl amine Loss	5.25		
		Effluent water	167.97		
		(Water-150,Hydrochloric acid-			
		0.05,Water from HCI-11.37,IPA-			
		5,Di-n-propylamine-1.55)			
		Process Emissions	13.48		
		(Hydrogen Bromide-13.48)			
		Organic Residue	22.70		
		(Organic impurities-19.45, IPA-2,			
		Di-n-Propylamine-1.25)			
Total	1132.50	Total	1132.50		

Material Balance of Ropinirole Hydrochloride					
	St	ag	Je-3		
	Batch Siz	e:	100.0Kgs		
Name of the input	Quantity		Name of the out put	Quantity	
	in Kg				
Stage-2	30.00		Ropinirole Hydrochloride	25.00	
Methanol 75.00 Methanol Recovery 69					
Activated carbon	6.25		Methanol Loss	3.75	
			Spent carbon	6.25	
			Organic Residue	6.5	
(Organic impurities-5,Toluene-1.5)					
Total	111.25		Total	111.25	

15. TERAZOSIN HYDROCHLORIDE

Process Description:

Stage-1

2-Furoic acid reacts with Hydrogen and Methanol by using Methanol as solvent media to give Stage-1 as product.

Stage-2

Stage-1 product reacts with Piperazine by using Toluene as solvent media to give Stage-2 as product.

Stage-3

Stage-2 product reacts with Stage-1 by using IPA as solvent media to give Terazosin Hydrochloride as product.

TERAZOSIN HYDROCHLORIDE

Route of Synthesis:

Stage-1

Stage-2

Stage-3

TERAZOSIN HYDROCHLORIDE

Flow Chart:

TERAZOSIN HYDROCHLORIDE

Material Balance:

Material Balance of Terazosin Hydrochloride					
	Stage-1				
	Batch Size	e: 50.0Kgs			
Name of the input	Quantity	Name of the out put	Quantity		
	in Kg		in Kg		
2-Furoic acid	52.50	Stage-1	50.00		
Sodium carbonate	3.00	Methanol Recovery	80.00		
Methanol	100.00	Methanol Loss	4.00		
Sulfuric acid	acid 2.50 Effluent water 11				
Palladium carbon	0.50	(Water-100,Generated water-			
		8.9,Sodium carbonate-0.29,			
		Methanol-1)			
Hydrogen	2.50	Palladium carbon Reuse	0.50		
Nitrogen	1.50	Organic Residue	10.94		
Water	100.00	(Organic Impurities-10.84,			
		Methanol-0.1)			
		Process Emissions	3.245		
		(Hydrogen-0.625,Nitrogen-1.5,			
		Carbon dioxide-1.12)			
		Inorganic solid waste	3.625		
		(Sodium sulfate)			
Total	262.50	Total	262.50		

Material Balance of Terazosin Hydrochloride						
	Sta	ge-2				
	Batch Size	e: 50.0Kgs				
Name of the input	Quantity	Name of the out put	Quantity			
	in Kg		in Kg			
Stage-1	50.00	Stage-2	36.50			
Piperazine	100.00	Toluene Recovery	378.00			
Sodium hydroxide (47%)	45.00	Toluene Loss	20.00			
Hydrochloric acid (35%)	45.00	Chloroform Recovery	712.00			
Toluene	400.00 Chloroform Loss					
Chloroform	oroform 750.00 Piperazine Recovery					
Sodium sulfate	7.50 Piperazine Loss 2					
Water	25.00	Effluent water	129.42			
		(Water-25,Sodium chloride-				
		25.24,Sodium hydroxide-3.89,				
		Piperazine-1.92, Methanol-12.3,				
		Toluene-0.25,Water from				
		sodium hydroxide-23.85,				
		Generated water-7.77,Water				
		from Hydrochloric acid-29.2)				
		Organic Residue	37.08			
		(Organic Impurities-34.08				
		Toluene-2, Chloroform-1)				
		Inorganic solid waste	7.50			
		(Sodium sulfate)				
Total	1422.50	Total	1422.50			

Material Balance of Terazosin Hydrochloride					
Stage-3					
	Batch Size	: 50.0Kgs			
Name of the input	Quantity	Name of the out put	Quantity		
	in Kg		in Kg		
Stage-2	36.50	Terazosin Hydrochloride	50.00		
4-Amino-2-chloro-6,7-dimethoxy	50.00	IPA Recovery	117.00		
quinazoline	50.00				
2-Methoxy ethanol	100.00	IPA Loss	6.00		
IPA	125.00	Methanol Recovery	258.00		
Hydrochloric acid (35%)	2.50	Methanol Loss	13.00		
Methanol	275.00	2-Methoxy ethanol Recovery	89.00		
Water	175.00	2-Methoxy ethanol Loss	10.00		
		Effluent water	182.74		
		(Water-175,2-Methoxy ethanol-			
		1, IPA-1.25, Methanol-3, Water			
		from Hydrochloric acid-1.62,			
		Hydrochloric acid-0.87)			
		Organic Residue	38.26		
		(Organic Impurities-36.51,IPA-			
		0.75,Methanol-1)			
Total	764.00	Total	764.00		

16. VERATROLE

Process Description:

Stage-1

Pyrocatechol reacts with Dimethyl sulfate and Sodium hydroxide in the presence of Toluene as a solvent media to give Veratrole as product.

VERATROLE

Route of Synthesis:

Stage-1: OH	+ (CH ₃) ₂ SO ₄	+ 2NaOH ───►	OCH ₃ OCH ₃
Pvrocatechol	Dimethyl sulphate	Sodium hydroxide	Veratrole
$C_{c}H_{c}O_{2}$	126.13	2X40=80.0	$C_8H_{10}O_2$
110 11			138.16
110.11			

+
$$Na_2SO_4$$
 + $2H_2O$
Sodium sulfate 2X18=36.0

142.04

VERATROLE

Toluene Rec Generated water

VERATROLE

VERATROLE

Material Balance:

Motorial Dalance of variation							
Material Balance of veratrole							
	Stage-1						
	Batch Size	: 100.0Kgs					
Name of the input	Quantity	Name of the out put	Quantity				
	in Kg		in Kg				
Pyrocatechol	85.00	Veratrole	100.00				
Dimethyl sulfate	100.00	Toluene Recovery	143.00				
Sodium hydroxide(47%)	136.00	Toluene Loss	6.00				
Toluene	150.00	Effluent water	703.05				
Water 600.00		(Water-600,Water from sodium					
		hydroxide-72.08,Generated					
		water-27.8, Sodium hydroxide-					
		2.17,Toluene-1)					
		Inorganic Residue	112.61				
		(Sodium sulfate-112.61)					
		Organic Residue	6.34				
Total	1071.00	Total	1071.00				

WATER CONSUMPTION DETAILS

• · · ·

WATER REQUIREMENT DETAILS

S. No	Purpose	Water Requirement In KLD
1	Process	26.88
2	Washings	3.00
3	Boiler Make up	47.00
4	Cooling towers Make up	96.00
5	DM Plant	2.00
6	Scrubbing system	2.00
7	Domestic Usage	8.00
8	Gardening	6.00
	Total	190.88

SOLID WASTE DETAILS

•

•

•

SOLID WASTE DETAILS

S. No	Name of the Solid Waste	Quantity In Kg/Day	Disposal method
1	Organic Residue	1377.00	Sent to Cement Industries
2	Inorganic solid waste	2613.00	Sent to TSDF
3	Spent carbon	34.00	Sent to Cement Industries
4	MEE salts	6158.00	Sent to TSDF
5	ETP Sludge	60.00	Sent to TSDF
6	Coal ash from Boiler	4700.00	Sent to Brick Manufacturers
7	Solvent Distillation Bottom	35.00	Sent to Cement Industries
	Residue		

HAZARDOUS WASTE DETAILS

S. No	Description	Quantity	Mode of Disposal
1	Waste Oils & Grease	150 Ltrs /Month	APPCB Authorized Agencies for Reprocessing/Recycling
2	Detoxified Containers	300 No's/Month	After Detoxification sent back to suppliers/APPCB Authorized Parties
3	Used Lead Acid Batteries	10 No's/Annum,	Send back to suppliers for buyback of New Batteries

STACK EMISSION DETAILS

STACK	EMISSIONS	FOR BOILER

Particulars	Units	4.0TPH Coal
		fired Boiler
Type of Fuel		Indian Coal
Coal Consumption	TPD	10.0
Ash Content	%	47
Sulphur Content	%	0.8
Nitrogen Content	%	1.07
No. of Stacks	No	1.0
Height of stack	М	30
Diameter of Stack	М	1.0
Temperature of Flue Gas	°C	110
Velocity of Flue Gas	m/s	9.5
Particulate Matter at outlet of Bag filter	gm/sec	0.26
(Based on 115 mg/Nm3 at outlet)		
Sulphur dioxide emission	gm/sec	0.92
Oxides of Nitrogen emission	gm/sec	1.23

> 2.0 TPH Coal Fired Boiler is kept as standby.

STACK EMISSIONS FOR THERMOPACK BOILER

Particulars	Units	6,00,000 kcal/hr. Thermo pack Boiler
Thermo pack Boiler Capacity	Kcal/hr.	6,00,000
Type of Fuel		Coal
Stack Temperature Before Air preheater	°C	350
Stack Temperature After Air pre heater	°C	200
Combination Air Temperature	°C	140
Efficiency Increased By	%	5.0
Stack Height	m	10.0
Fuel Consumption per Day	TPD	1.4

STACK EMISSIONS FOR DG SETS

Capacity In KVA	Emission of SPM in Mg/Nm ³	Emission Of SO ₂ in Mg/Nm ³	Emission of NO _x in Mg/Nm ³	Stack dia. In m	Flue Gas Temp. in ^o C	Stack Height in (m)	Flue gas Velocity In m/sec.
500KVA	80.0	190.0	235.0	0.30	220	10	23.20
250KVA	58.0	24.0	30.0	0.30	250	10	18.24

PROCESS EMISSION DETAILS

•

••

•

•

.

PROCESS EMISSION DETAILS

POLLUTING PROCESS EMISSION DETAILS:

S. No	Name of the Gas	Quantity In Kg/Day	Disposal Method
1	Ammonia	53.00	Scrubbed by using water media
2	Hydrogen Bromide	0.90	Scrubbed by using C. S. Lye solution
3	Hydrochloric acid	0.53	Scrubbed by using water media

NON- POLLUTING PROCESS EMISSION DETAILS:

S. No	Name of the Gas	Quantity In Kg/Day	Disposal Method
1	Carbon dioxide	695.00	Dispersed into Atmosphere
2	Nitrogen	3.00	Dispersed into Atmosphere
3	Hydrogen	7.50	Diffused with Flame arrestor
4	Oxygen	144.50	Dispersed into Atmosphere

<u>Proposed Draft Terms of Reference for Preparation of EIA & EMP</u> <u>For M/s. Synthokem Labs Pvt. Ltd., Unit-II.</u>

- 01. Executive summary of the project
- 02. Justification of the project
- 03. Promoters and their back ground
- 04. Regulatory framework
- 05. A map indicating location of the project and distance from severely polluted areas

06. Project site location along with site map of 10 km area and site details providing various industries, surface water bodies, forests etc.

07. A copy of Gazette Notification issued by the Govt. of Andhra Pradesh indicating location of the project in Notified Industrial Area

08. Plant Layout

09. Infrastructure facilities including power sources

10. Total cost of the project along with total capital cost and recurring costs environmental pollution control measures

- 11. Present land use based on satellite imagery for the study area of 10 km radius.
- 12. Details of the total land and break-up of the land use for green belt and other uses
- 13. Location of National Park/Wild life sanctuary/Reserve Forest within 10 km radius of the project
- 14. List of products along with the production capacities

15. Maximum number of products and its production capacity to be manufactured at a time (worst-case scenario)

- 16. Detailed list of raw material required and source, mode of storage and transportation.
- 17. Explore the use of solvent other than benzene
- 18. Manufacturing process details along with the chemical reactions and process flow chart.

19. Site-specific micro-meteorological data using temperature, relative humidity, hourly wind speed and direction and rainfall is necessary

20. Ambient air quality monitoring at 6 locations within the study area of 10 km., aerial coverage from project site

21. One season site-specific micro-meteorological data using temperature, relative humidity, hourly wind speed and direction and rainfall and AAQ data (excluding monsoon season) for $PM_{2.5}$, PM_{10} , SO_2 , NOx and VOCs including

22. The monitoring stations should take into account the pre-dominant wind direction, population zone and sensitive receptors including reserved forests. Data for water and noise monitoring should also be included

- 23. Air pollution control measures proposed for the effective control of gaseous emissions within permissible limits. Multi cyclone followed by bag filter to be provided to boiler to control particulate emissions
- 24. Name of all solvents to be used in the process and details of solvent recovery system.
- 25. Design details of ETP, incinerator, boiler, and scrubbers/bag filters etc.
- 26. Details of water and air pollution and its mitigation plan
- 27. An action plan to control and monitor secondary fugitive emissions from all the Sources
28. Determination of atmospheric inversion level at the project site and assessment of ground level concentration of pollutants from the stack emission based on Site-specific meteorological features

29. Air quality modelling for proposed plant

30. Action plan for Zero Liquid Discharge of effluent should be included. Segregation of the Wastewater should be based on the pollution load and high TDS effluent should be treated in MEE

31. Ground water quality monitoring minimum at 6 locations should be carried out.

32. Geological features and Geo-hydrological status of the study area and ecological status (Terrestrial and Aquatic)

33. The details of solid and hazardous wastes generation, storage, utilization and disposal particularly related to the hazardous waste calorific value of hazardous waste and detailed characteristic of the hazardous waste. Action plan for the disposal of fly ash generated from boiler should be included

34. Precautions to be taken during storage and transportation of hazardous chemicals should be clearly mentioned and incorporated

35. Membership for the disposal of liquid effluent in CETP or Zero Liquid discharge action plan and solid/hazardous waste in TSDF

36. An action plan to develop green belt in 33 % area

37. Occupational health of the workers needs elaboration including evaluation of Noise, heat, illumination, dust, any other chemicals, metals being suspected in Environment and going into body of workers either through inhalation, ingestion or through skin absorption and steps taken to avoid musculo-skeletal disorders (MSD), backache pain in minor and major joints, fatigue etc. Occupational Hazards specific pre-placement and periodical monitoring should be carried out

38. Socio-economic development activities should be in place

39. Note on compliance to the recommendations mentioned in the CREP guidelines

40. Detailed Environment management Plan (EMP) with specific reference to details of air pollution control system, wastewater management, monitoring frequency, responsibility and time bound implementation plan for mitigation measure should be provided

41. Any litigation pending against the project and/or any direction/order passed by any Court of Law against the project, if so, details thereof

42. A tabular chart with index for point wise compliance of above TORs

PRE FEASIBILITY REPORT

OF

P.B.NO. 1911, B-5INDUSTRIAL ESTATE, SANATHNAGAR HYDERABAD - 500 018, ANDHRA PRADESH.

EXPANSION OF BULK DRUGS UNIT

At

PLOT NO: 222-224 & 235- 237, PHASE-II, IDA PASHAMAILARAM, PATANCHERU MANDAL, MEDAK (DT), ANDHRA PRADESH.

<u>Contents</u>

S. No.	Description		
1.0	Executive Summary	1	
2.0	Introduction of The Proposed Project	2	
2.1	Project Proponent	2	
2.2	Brief description of nature of the project.	2	
2.3	Need for the project and its importance to the country and or region	2	
2.4	Demand-Supply Gap.	3	
2.5	Employment Generation(Direct and Indirect) due to the project	5	
3.0	Project description	6	
3.1	Products and Production Capacity	8	
3.2	Raw materials required and Quantities	9	
3.3	Manufacturing Process	9	
3.4	Resource – Utilize and Recycling	10	
3.4.1	Water	10	
3.4.2	Power Requirement	10	
3.4.3	Fuel Requirement	10	
3.5	Quantity of wastes to be generated	10	
3.5.1	Waste Water Generation and utilization	10	
3.5.2	Solid waste generation and Disposal		
3.6	Schematic representations of the feasibility drawing which give information of EIA purpose.	12	
4.0	Site Analysis	13	
4.1	Connectivity	13	
4.2	Land Form, Land use and Land ownership.	13	
4.3	Existing Infrastructure	13	
4.4	Soil classification	13	
4.5	Climatic data from secondary sources.		
4.6	Social Infrastructure available.	14	
5.0	Planning brief	14	
6.0	Proposed infrastructure	14	
6.1	Industrial Area	14	
6.2	Residential Area	14	
6.3	Green Belt:	14	
6.4	Social Infrastructure	14	

6.5	Water management	15	
6.6	Sewerage System	15	
6.7	Industrial Waste Management	15	
7.0	Rehabilitation and Resettlement (R&R) Plan		
8.0	Project Schedule and Cost estimates	15	
9.0	Analysis of project	15	

LIST OF TABLES

Table No	Description	Page no.
2.1	Employment Requirements	5
3.1	Proposed Products and Quantities	
3.2	Water Requirement Details	
3.3	Wastewater generation and Treatment Method	11
3.3	Solid waste generation and Disposal	11

LIST OF FIGURES

Figure No	Description	Page no.
1.1	Location Map	7

LIST OF FLOW CHART

Flow Chart No	Description	Page no.
3.1	Generalized Flow Chart for Bulk Drug	9
	Manufacturing	

1.0 EXECUTIVE SUMMARY

M/s. Synthokem Labs Pvt Ltd., was incorporated in the year of 1978 to produce bulk drugs with registered address at P. B. No.1911, B-5 Industrial Estate, Sanathnagar, Hyderabad - 500 018, Andhra Pradesh.

The company proposes for expansion of its bulk drug and intermediate manufacturing capacity at unit- II, at Plot No: 222-224 & 235- 237, Phase-II, IDA Pashamailaram, Patancheru Mandal, Medak (Dt), Andhra Pradesh.

S. No	Parameter	Description	
1	Project Location	Plot No: 222-224 & 235- 237, Phase-II, IDA	
1		Pashamailaram, Patancheru (M), Medak (Dt), AP	
	Category of Project as per		
	EIA Notification &	5(f) "B" Treated as Category-A i.e. Critically Polluted	
2	Amendments	areas is within the 10 KMs	
		Existing : 2.90 Crores	
3	Project cost	Proposed : 15.0 Crores	
4	Plot area	2.34 Ha	
		Existing: 13.8 MT/Month of Bulk Drugs	
5	Proposed Products	Proposed : 172.06 MT/Month	
Ŭ		The details of products& Quantities are mentioned in	
		Section 3.1	
6	Resources		
	(I)Electricity Requirement	t 1250 KVA	
	Source of electricity	APCPDCL	
		Existing : 2 No's 250 KVA D.G Sets (one 250 KVA	
		will be dropped)	
	D. G. Sets	Proposed: 2 No's 500 KVA D.G Sets	
		Existing: 64.31 KLD	
	(II)Water consumption	Proposed : 198.88 KLD	
	Source of water	APIIC	
	Waste water generation	76.77 KLD	
	Mode of disposal	Zero Liquid Discharge System	
	(III)Boiler	Existing : 2.0 TPH (Oil Fired Boilers)	
		Proposed : 4.0 TPH Coal Fired Boiler & Existing	
		2.0TPH (Oil Fired Boilers) is Kept as Stand by	
	IV) Thermic Fluid Heater	Existing : 4 Lakh K. Cal/hr Capacity (Will be	
		dropped)	
		Proposed 6Lakh K.Cal/ hr Capacity	
	(V)Fuel	Coal - 10 MT / Day	
7	Solid waste generation	Mentioned in Para 3.3 of report	
8	Nearest Highway	National Highway No.9 -2.4 KMs	
9	Nearest Railway Station	Shankarpally Railway Station – 10.8 KMs	
10	Nearest Air Port	Rajeevgandhi International Air Port - 43 KMs	

Pre- Feasibility Report

2.0 INTRODUCTION OF THE PROJECT

The objective of this pre- feasibility study is to provide information for the proposed expansion of Bulk Drugs and its Intermediates manufacturing unit –II by **M/s. Synthokem Labs Pvt Ltd., Unit - II** at Plot No: 222-224 & 235- 237, Phase-II, IDA Pashamailaram, Patancheru Mandal, Medak (Dt), Andhra Pradesh.

2.1 Project Proponent

M/s. Synthokem Labs Pvt Ltd is promoted by **Mr. M. Rabindranath Tagore** in the year 1978 as a private limited company to be in the business of research, developing, manufacturing and marketing of pharmaceutical substances and intermediates for Indian and International markets.

Mr. M Jayanth Tagore is the Managing Director of the company and has more than three decades of experience in Bulk drugs manufacturing.

2.2 Brief description of nature of the project.

The **M/s. Synthokem Labs Pvt Ltd** proposes to expand its manufacturing products and capacity of Bulk Drugs and its intermediates, to meet the increasing demand.

2.3 Need for the project and its importance to the country and or region

In the last few decades, India's population is skyrocketing and so is the demand for Drugs to support this population. In order to satisfy this need, more production of bulk drugs and active pharma ingredients is needed. The expansion of the industry will be beneficial to the region. The company will bring new job opportunities for the local people. They will, therefore, become economically stronger.

M/s. Synthokem Labs Private Limited is a manufacturer of Active Pharmaceutical Ingredients and drug intermediates, located in Hyderabad.

Our commitment lies in providing the required quality API's and Intermediates to our exacting customers worldwide. We cater to a cross section of clients in Asia, Europe, North and South America.

Pre- Feasibility Report

Our inherent strength lies in producing cutting edge intermediates, for new as well as off patent API's within the requisite time frame stipulated by our customers. Fifty percent of our business has evolved from custom synthesis projects, which start from gram level and rise to multi ton supplies.

Hyderabad has developed as a major production center for bulk drugs due to the location if the many major Pharmaceutical Industries such as Dr. Reddy's Laboratories, Aurobindo Pharma, Neuland Laboratories, Siris, Hetaro Drugs, Divis Labs, Natco Pharma Limited, Matrix Labs, Nicholas Piramal etc., besides a large number of medium and small industries manufacturing bulk drugs of all kinds.

In support of this growth in Hyderabad and Bangalore, many basic chemical units and drug intermediate units have also come up to meet the input requirements of Bulk Drug manufacturing Companies. Large numbers of these units are still dependent on supply of basic chemicals mainly from Mumbai, Gujarat and other parts of the country involving heavy expenditure on transport and transit risks.

2.4 Demand-Supply Gap.

The demand for APIs and API intermediates is a derived demand. It gets derived from the demand for various medicinal formulations (final administrable drugs) for the formulation industry.

- The APIs and API intermediates being manufactured by basic drug manufacturers are exported as such or used by domestic formulators in their production processes. The formulation firms further produce final medicines and export these as well as sell these in the domestic market.
- There is a wide gap in the demand and availability of cheap and quality medicines in India and the world over.
- Generic medicines and off patent drugs have significant potential to increase access to cheap and effective medicines to poor people and in general to bridge the demand supply gap.
- Indian basic drug manufacturers are playing a significant role in increasing access to affordable off patent drugs.

 The products envisaged include third generation antibiotics, anticancer, antipsychotic, etc drugs which address the problems associated with present day stressful lifestyles and demand for these outstrips their demand and is increasing by the day.

Pharmaceutical Industry – Domestic Scenario

The Indian Pharmaceutical Industry today is in the front rank of India's Sciencebased industries with wide ranging capabilities in the complex field of drug manufacture and technology. The Indian Pharmaceutical industry is estimated to be worth US \$ 8.0 billions at present, growing at a CAGR of over 15 % annually. If India's high Economic growth rate holds steady, the pharmaceuticals market will triple to \$ 24 billion by 2015 and become one of the world's top 10 markets according to a study by McKinsey and company ,a leading management consulting firm. At a compounded annual growth rate of 15.0 %, the absolute growth of \$ 24 billion will be next to the growth potential of the US and China, and in the same league as the growth in Japan and Canada and the UK. Five factors will drive the growth of the Indian Pharmaceuticals market over the next decade; Doubling of disposable incomes and the increase in numbers of middle class households, significant expansion of medical infrastructure, greater penetration of health insurance, a gradual shift in disease profile and adoption of patented products, and finally population growth.

It ranks very high in the third world, in terms of technology, quality and range of medicines manufactured. Playing a key role in promoting and sustaining development in the vital field of medicines, the Indian Pharmaceutical Industry boasts of quality producers and many units approved by regulatory authorities in USA and UK.

The Indian Pharmaceutical sector has more than 20,000 registered units. It has expanded drastically in the last two decades. The leading 250 pharmaceutical Companies control 70% of the market. The pharmaceutical industry in India meets around 70% of the country's demand for bulk drugs, drugs intermediates, pharmaceutical formulations, chemicals, tablets, capsules, orals and injectables.

There are about 250 large units and about 8000 small Scale Units, which form the core of the pharmaceutical industry in India (including 5 Central Public Sector Units). These units produce the complete range of pharmaceutical formulations, i.e. medicines ready for consumption by patients and about 350 bulk drugs, i.e. chemicals having therapeutic value and used for production of pharmaceutical formulations.

2.5 Employment Generation (Direct and Indirect) due to the project Teamwork is paramount at SYNTHOKEM:

At present the company has over 250 employees spread across various administrative and technical functions in two units and Administration office. We have a strong team of R&D, Manufacturing, Quality Control and Quality Assurance chemists with very pertinent skills in process development, manufacture and testing of our product range. The team comprises of Doctorates, Post Graduates, Graduates and Chemical Engineers from some of the premier institutes in India. Hyderabad has emerged as major drug manufacture city with a presence in global market. Pharma industry in the state contribute more than one third to the country's total production.

Most of the companies have set up their R&D facilities in the state, thus making the state the pharmaceutical capital of the country.

The Details of employment during operational phase in this unit shown in below Table.

Particulars	No. of employees	Functional Area		
Key managerial staff	8	Finance, Marketing, Production,		
		Quality control, R&D, Logistics etc.		
Administration	4	Office work		
Skilled and semi	50	Production Process, Maintenance,		
skilled		stores, Safety.& Un skilled workers		
Total	62			

TABLE 2.1: EMPLOYMENT	REQUIREMENTS
-----------------------	--------------

3.0 Project Description

M/s. Synthokem Labs Private Limited., Unit – II Proposes for expansion of its products and production quantities at manufacturing unit- II at IDA Pashamailaram. The Location map is shown at **Figure** – 1.

The site coordinates are

Latitude: 17°32'10.55"N

Longitude: 78°10'42.05"E

There are no archaeological, historical sites located nearby. Therefore, the project site does not offer any negative impact on the local area, but rather has a positive impact on socio economic conditions of the habitants around it.

The proposed plant is well connected both to National Highway No- 9 and Railway line at Shankarpally Railway Station

The present expansion will not require any additional land and the unit is located in an area

Pre- Feasibility Report

3.1 Products and Production Capacity

M/s. Synthokem Labs Private Limited. is proposes to produce the below mentioned shown in Table3.1.

S.No	Product Name	CAS No's	Quantity	Quantity
			In MT/Month	In Kg/Day
1	Alfuzosin Hydrochloride	81403-68-1	0.17	5.67
2	Chlorphenesin	104-29-0	15.00	500
3	Chlorphenesin carbamate	886-74-8	3.00	100
4	Dextromethorphan	125-69-9		
	Hydrobromide		10.00	333.33
5	Drotaverine Hydrochloride	985-12-6	3.00	100
6	Guaifenesin	93-14-1	100.00	3333.33
7	1-(4-Hydroxyphenyl)piperazine	56621-48-89	0.50	16.67
8	Mebeverine Hydrochloride	2753-45-9	3.00	100
9	Mephenesin	59-47-2	15.00	500
10	Methocarbamol	532-03-6	10.00	333.33
11	Potassium guaiacol sulfonate	1321-14-8	1.70	56.67
12	Prazosin Hydrochloride	19237-84-4	0.42	14
13	Rabavirin	36791-04-5	0.05	1.67
14	Ropinirole Hydrochloride	91374-20-8	0.05	1.67
15	Terazosin Hydrochloride	63074-08-8	0.17	5.67
16	Veratrole	91-16-7	10.00	333.33
	Total		172.06	5735.33

Table3.1: Proposed Products and Quantities

3.2 Raw materials required and Quantities

All the raw materials required for manufacturing of above products will be sourced from local market. The products wise required raw materials and quantities are enclosed in the annexure.

3.3 Manufacturing Process

The manufacturing process of bulk drugs consists of chemical synthesis extending to stages of processing involving different type of chemical reactions. The generalized Flow chart for bulk drug manufacturing is shown in **Flow chart 3.1**.

Flow Chart 3.1: Generalized Flow Chart for Bulk Drug Manufacturing

3.4 Resource – Utilize & Recycling

3.4.1 Water

Water requirement of the project for domestic and industrial activity during operation phase will be 190.88 KLD. The water requirement will be met through APIIC. The detailed water requirement shown in below **Table3.2**.

S. No	Purpose	Water Requirement In KLD
1	Process	26.88
2	Washings	3.00
3	Boiler Make up	47.00
4	Cooling towers Make up	96.00
5	DM Plant	2.00
6	Scrubbing system	2.00
7	Domestic Usage	8.00
8	Gardening	6.00
	Total	190.88

Table 3.2: WATER REQUIREMENT DETAILS

3.4.2 Power Requirement

Power requirement of proposed project will be made available through APCPDCL. Total power requirement of proposed expansion is 1250 KVA.

Two No's of D. G. sets of capacity 500 KVA will be installed in addition to existing one 250 KVA DG set (another 250 KVA existing DG Set is disposed) to meet the emergency power requirement of the plant.

3.4.3 Fuel Requirement

M/s. Synthokem Labs Private Limited. is proposes to install 4 TPH coal fired boiler and the existing 2.0TPH Oil fired Boiler is Kept as Standby. Total fuel requirement will be around 10.0 TPD. Coal is procured form local sources.

Existing 4 Lakh K Cal/Hr Thermic Fluid Heater will be replaced with 6 Lakh K Cal/Hr Thermic Fluid Heater for plant operations

3.5 Quantity of wastes to be generated

3.5.1 Waste Water Generation and utilization

Total effluent generated in the project is 76.77 KLD. The treated water will be reused for plant operations.

The process waste water from Process, floor Washes, scrubbers, QC and R&D are evaporated in MEE with stripper and ATFD after neutralization. The condensate from MEE and ATFD will be collected and treated in effluents treatment plant along with effluents from utilities followed by RO. RO rejects will be send back to MEE and RO Permeate will be re-used back.

To treat the sewage generated due to domestic activities will be disposed through septic tank following by soak pit.

S. No	Unit	HTDS KLD	LTDS KLD	Effluent Generation	Treatment Method
				in KLD	
1	Process	26.88	(+)12.89	39.77	HTDS effluent sent to ETP
2	Washings	3.00	0.00	3.00	with MEE System
3	Boiler make up	47.00	40.00	7.00	LTDS effluents treated in
4	Cooling towers Makeup	96.00	80.00	16.00	ETP – RO Plant / RO Rejects to MEE System
5	DM Plant	2.00	0.00	2.00	and RO permeate to
6	Scrubber system	2.00	0.00	2.00	reuse, Condensate from
7	Domestic	8.00	1.00	7.00	MEE to reuse and MEE residue to ATFD.
8.	Gardening	6.00	6.00	0.00	Septic tank followed by soak pit
	Total	190.88	127.00	76.77	

Table3.3: Wastewater generation and Treatment Method

3.5.2Solid waste generation and Disposal

The types of Hazardous and non Hazardous wastes generated from the project, method of disposal is shown in below table3.4.

Table 3.4: Solid waste ger	neration and Disposal
----------------------------	-----------------------

S.	Name of the Solid Waste	Quantity	Disposal Method
No		Kg/Day	_
1	Inorganic Solid Waste	2613.00	Sent to TSDF
2	Organic solid waste	1377.00	Sent to Cement Industries
3	MEE Salts	6158.00	Sent to TSDF
4	Spent Carbon	34.00	Sent to Cement Industries
5	ETP Sludge	60.00	Sent to TSDF
6	Solvents residue	35.00	Recovered and reuse
7	Coal ash from Boiler	4700.00	Sent to Brick Manufacturers
8	Waste Oils & Grease	150 L/Annum	APPCB Authorized Agencies for
			Reprocessing/Recycling
9	Detoxified Containers	300 No's /	After Detoxification sent back to
		Month	suppliers/APPCB Authorized
			Parties

			Pre- Feasibility Report
10	Used Lead Acid Batteries	10 No's/ Annum	Send back to suppliers for buyback of New Batteries

3.6 Schematic representations of the feasibility drawing which give information of EIA purpose.

The applicability of the S.O 1533 for the proposed project was explored by considering different possibilities & provision made in the said notification. Considering the products & project location of the proposed project it is noticed that the proposed project falls under Category 5 (f) "A" of the Schedule-I of EIA Notification SO 1533.

As per the provision of the SO 1533, it is necessary to get Environmental Clearance by applying to MoEF along with the Environmental Impacts Assessment Study Report for the proposed project prior to commissioning of the project activities. Therefore the EIA is required to conduct to comply with provisions of SO 1533 made for Category 5(f) "A" of schedule –I of the notification.

4.0Site Analysis

4.1 Connectivity

M/s. Synthokem Labs Private Limited. is located at Plot No: 222-224 & 235-237, Phase-II, IDA Pashamailaram, Patancheru Mandal, Medak (Dt), Andhra Pradesh

- The nearest habitation from the site is Pashamylaram (Village) at a distance of 1.3Km(ESE).
- The nearest railway station is Shankarpalli Railway station at a distance of 10.8 KMs from the site (SW).
- The nearest airport is Rajeev Gandhi International Air port at a distance of 43 KMs (SSE)
- The Nearest road ways

National Highway No.9 - 2.4 KMs

4.2 Land Form, Land use and Land ownership.

The proposed project is located in Non Agricultural Land. There would be no any change in Land Use, Land Cover or Topography of plot. After implementation of project a dense green belt would be developed. Total 33 % of Plant area will be allocated for green belt development.

4.3 Existing Infrastructure.

Proposed expansion project is a located in industrial Estate and the basic infrastructure is already there.

4.4 Soil classification

The district is mainly covered by three types of soils Sandy Loam, Black clay Loam, Laterate types of soil.

4.5 Climatic data from secondary sources.

Temperature Maximum: 44.4° C Minimum: 6.9 ° C Normal annual rainfall **873 mm**

4.6 Social Infrastructure available.

Well developed social infrastructure facilities are available at nearby Habitations.

5.0 Planning Brief

Proposed plant activities will be started after getting statutory clearance form related authorities. The project will be completed within two years.

Further proposed project activities will take care of all the rules and regulation of statutory authority and provide the control measure and devices to achieve the standard norms

6.0 Proposed Infrastructure

6.1 Industrial Area

The present proposal is expansion of existing unit, the infrastructure and other facilities are already well developed and it is also located in Industrial Estate. Only additional Building and Plant & machinery need to constructed and installed

6.2 Residential Area

No residential area is involved in the proposed project. The employs are accommodated in nearby Residential areas

6.3 Green Belt:

Approximately 33 % of Green Belt will be provided and maintained.

6.4 Social Infrastructure:

Facilities like road and communication are good..Banks, ATM's and medical facilities are also adequate.

Amenities:

Education- schools including middle, secondary and higher secondary schools, social welfare hostels.

Medical and Health- Community Health Centre, & Primary Health center Are available near villages

M/S. Synthokem Labs Pvt. Ltd.

Power and water- All the villages are electrified and drinking water facilities are extended to all villages.

Rail and Road- The project site is very well connected by road through National Highway no. 9, Southern railways.

6.5 Water management

Water requirement will be fulfilled through APIIC.

6.6 Sewerage System:

There will be no discharge of industrial effluent (Zero Liquid Discharge). The treated effluent will be reused. Domestic waste water will be disposed off through soak pit system.

6.7 Industrial Waste Management:

Due to proposed project, the effluent from cooling and Plant/Equipment washing will be generated and treated in the well designed Effluent Treatment Plant. The treated effluent will be reused.

7.0 Rehabilitation and Resettlement (R & R) Plan

Rehabilitation & Resettlement (R&R) plan is not applicable to proposed project.

8.0 Project Schedule & Cost Estimates

Proposed project activities will be started after getting statutory clearance form related authorities. The project will be completed within two years.

Proposed activity will provide benefits to the local people in terms of financial and social welfare. Project cost for the proposed Expansion projects is Rs. 15.0 Crores which includes the cost of new Buildings and plant & machinery.

9.0 Analysis of proposal (Final Recommendations)

- Local people will get direct financial benefit by way of employment.
- Local people will get some contracts of supply and services to get indirect income.
- Company will contribute in improving education and health facilities in nearby area.

ENCLOSURES

• **•**

LIST OF RAW MATERIALS

1. ALFUZOSIN HYDROCHLORIDE

S. No	Raw Material	Consumption/ Batch in Kgs	Consumption/ Day in Kgs
1	4-Amino-2-chloro 6,7-Dimethoxy		
	quinazoline	225.00	12.75
2	Isopropyl alcohol	1410.00	79.90
3	2-Methoxy Ethanol	700.00	39.67
4	Methanol	1800.00	102.00
5	N-Methyl-3-amino propionitrile	80.00	4.53
6	Sodium Hydroxide	90.00	5.10
7	Hydrochloric acid	32.10	1.82
8	Raney Nickel	35.00	1.98
9	Ammonia gas	100.00	5.67
10	Hydrogen	5.00	0.28
11	Nitrogen gas	10.00	0.57
12	2-Tertahydro methyl furoate	55.00	3.12
13	Methylene Dichloride	2000.00	113.33
14	Ethyl acetate	300.00	17.00
15	Activated carbon	20.00	1.13
16	Anhydrous Sodium Sulfate	20.00	1.13
17	Isopropyl alcohol HCI	12.00	0.68
18	Activated carbon	20.00	1.13
19	Hyflow	20.00	1.13

2. CHLORPHENESIN CARBAMATE

S. No	Raw Material	Consumption/ Batch in Kgs	Consumption/ Day in Kgs
1	Epichlorohydrin	50.00	50.00
2	Phosphoric acid	2.00	2.00
3	p-Chloro phenol	80.00	80.00
4	Sodium hydroxide	70.00	70.00
5	EDC	535.00	535.00
6	Hydrochloric acid	4.00	4.00
7	Toluene	35.00	35.00
8	Di methyl carbonate	23.77	23.77
9	Ammonia solution	125.00	125.00

3. CHLORPHENESIN

S. No	Raw Material	Consumption/ Batch in Kgs	Consumption/ Day in Kgs
1	Epichlorohydrin	50.00	250.00
2	Phosphoric acid	2.00	10.00
3	p-Chloro phenol	80.00	400.00
4	Sodium hydroxide (47%)	70.00	350.00
5	EDC	35.00	175.00
6	Hydrochloric acid (30%)	4.00	20.00
7	Toluene	35.00	175.00

4. DEXTROMETHORPHAN HYDROBROMIDE

S. No	Raw Material	Consumption/	Consumption/
		Batch in Kgs	Day in Kgs
1	PMPPA	449.00	1496.67
2	CHEA	338.34	1127.80
3	Phosphorous oxy chloride	415.00	1383.33
4	Caustic lye	446.03	1486.77
5	Toluene	2353.00	7843.33
6	Mandelic acid	55.00	183.33
7	Formic acid	13.88	46.27
8	Sodium methoxide powder	3.41	11.37
9	Phosphoric acid	1480.00	4933.33
10	Phosphorous pentoxide	54.00	180.00
11	Methanol	245.00	816.67
12	Formaldehyde	45.45	151.50
13	Acetone	436.00	1453.33
14	Activated carbon	4.50	15.00
15	Hyflow	4.50	15.00
16	Hydrobromic acid	9.10	30.33

5. DROTAVERINE HYDROCHLORIDE

S. No	Raw Material	Consumption/ Batch in Kgs	Consumption/ Day in Kgs
1	Pyro catechol	147.00	147.00
2	Diethyl sulfate	191.62	191.62
3	Toluene	1520.00	1520.00
4	Sodium hydroxide	1101.00	1101.00
5	Para formaldehyde	19.85	19.85
6	Hydrochloric acid	413.00	413.00
7	Sodium bicarbonate	10.00	10.00
8	Sodium cyanide	27.00	27.00
9	Sodium hypochlorite	1577.50	1577.50
10	Methanol	500.00	500.00
11	Ammonia gas	45.00	45.00
12	Hydrogen	3.00	3.00
13	Nitrogen	1.00	1.00
14	Raney Nickel	6.00	6.00
15	Phosphorous oxy chloride	139.65	139.65
16	IPA	350.00	350.00

6. GUAIFENESIN

S. No	Raw Material	Consumption/	Consumption/
		Batch in Kgs	Day in Kgs
1	Pyrcatechol	61.40	2046.67
2	Di methyl sulfate	45.00	1500.00
3	Sodium carbonate	38.00	1266.67
4	Hydrochloric acid	8.00	266.67
5	Sodium hydroxide	60.00	2000.00
6	Toluene	100.00	3333.33
7	Epichlorohydrin	55.00	1833.33
8	Phosphoric acid	2.00	66.67
9	Toluene	100.00	3333.33
10	EDC	75.00	2500.00

7. 1-(4-HYDROXYPHENYL) PIPERAZINE

S. No	Raw Material	Consumption/ Batch in Kgs	Consumption/ Day in Kgs
1	Bis-(2-Chloro ethyl)amine HCl	250.00	41.67
2	P-Amino phenol	155.00	25.83
3	Methanol	1000.00	166.67
4	Sodium acetate trihydrate	300.00	50.00
5	Acetic anhydride	250.00	41.67
6	Sodium hydroxide	335.11	55.85

8. MEBEVERINE HYDROCHLORIDE

S. No	Raw Material	Consumption/	Consumption/
		Batch in Kgs	Day in Kgs
1	Vaniline	75.00	75.00
2	Dimethyl Sulfate	31.35	31.35
3	Sodium Carbonate	70.00	70.00
4	Toluene	1260.00	1260.00
5	Potassium Permanganate	68.20	68.20
6	Hydrochloric acid	125.00	125.00
7	Sodium Bisulfite	1.00	1.00
8	Hydrogen	3.00	3.00
9	Sodium Methoxide	52.75	52.75
10	Methanol	1060.00	1060.00
11	1,4-Dibromo butane	800.00	800.00
12	p-Anisic aldehyde	60.00	60.00
13	2-Chloromethyl propionate	74.56	74.56
14	Sodium Methoxide	25.00	25.00
15	Monoethyl Amine	66.81	66.81
16	Sodium Hydroxide	40.00	40.00
17	Nitrogen	2.00	2.00
18	Methyl Isobutyl Ketone	150.00	150.00
19	Ethyl Acetate	250.00	250.00
20	Methylene Dichloride	150.00	150.00

9. MEPHENESIN

S. No	Raw Material	Consumption/ Batch in Kgs	Consumption/ Day in Kgs
1	Ortho cresol	68.00	340.00
2	Epichlorohydrin	42.34	211.70
3	Phosphoric acid	5.00	25.00
4	Sodium Hydroxide (47%)	65.00	325.00
5	Ethylene Dichloride	70.00	350.00
6	Toluene	110.00	550.00
7	Hydrochloric acid (30%)	10.00	50.00

10. METHOCARBAMOL

S. No	Raw Material	Consumption/ Batch in Kgs	Consumption/ Day in Kgs
1	Pyrocatechol	70.00	233.33
2	Dimethyl Sulfate	43.72	145.73
3	Sodium Carbonate	38.00	126.67
4	Hydrochloric Acid	1.00	3.33
5	Sodium Hydroxide	60.00	200.00
6	Toluene	400.00	1333.33
7	Epichlorohydrin	49.64	165.47
8	Phosphoric acid	2.00	6.67
9	Ethylene Dichloride	75.00	250.00
10	Hydrochloric Acid	7.00	23.33
11	Di methyl Carbonate	26.29	87.63
12	Ammonia	115.00	383.33

11. POTASSIUM GUAIACOL SULFONATE

S. No	Raw Material	Consumption/ Batch in Kgs	Consumption/ Day in Kgs
1	Guaiacol	50.00	28.33
2	Sulfuric acid	45.00	25.50
3	Potassium Carbonate	30.00	17.00
4	Methanol	25.00	14.17
5	Barium Carbonate	15.00	8.50

12. PRAZOSIN HYDROCHLORIDE

S. No	Raw Material	Consumption/	Consumption/
		Batch in Kys	Day III Kys
1	2-Furoic acid	36.25	20.30
2	Methanol	56.25	31.50
3	Sulfuric acid	1.25	0.70
4	Sodium carbonate	1.50	0.84
5	Piperazine	50.00	28.00
6	Sodium hydroxide (47%)	25.00	14.00
7	Hydrochloric acid (35%)	30.00	16.80
8	Toluene	250.00	140.00
9	Chloroform	500.00	280.00
10	Sodium Sulfate	5.00	2.80
11	4-Amino-2-chloro-6,7-Dimethoxy	33.75	18.90
	quinozoline		
12	2-Methoxy Ethanol	75.00	42.00
13	Hydrochloric acid (35%)	1.25	0.70
14	Isopropyl alcohol	87.50	49.00
15	Methanol	187.50	105.00

13. RIBAVIRIN

S. No	Raw Material	Consumption/ Batch in Kgs	Consumption/ Day in Kgs
1	1,2,3,5-Terta-o-acetylribofuranose	90.00	3.00
2	Methyl-1,2,4-triazole-3-carboxylate	37.50	1.25
3	Stannic chloride	85.00	2.83
4	MDC	150.00	5.00
5	Toluene	275.00	9.17
6	Methanol	950.00	31.67
7	Ammonia gas	21.00	0.70
8	Activated carbon	0.05	0.00
9	Hyflow	0.25	0.01

14. ROPINIROLE HYDROCHLORIDE

S. No	Raw Material	Consumption/ Batch in Kgs	Consumption/ Day in Kgs
1	4-(2-min bromo ethyl)-3-chloro-1,3-	51.25	3.42
	dihydro-2H-Indol-2-one		
2	Sodium hypo phosphite	21.25	1.42
3	Palladium carbon	5.00	0.33
4	Ethyl acetate	700.00	46.67
5	Di-n-propyl amine	150.00	10.00
6	IPA	500.00	33.33
7	Hydrochloric acid (35%)	17.50	1.17
8	Methanol	75.00	5.00
9	Activated carbon	6.25	0.42
15. TERAZOSIN HYDROCHLORIDE

S. No	Raw Material	Consumption/ Batch in Kgs	Consumption/ Day in Kgs
1	2-Furoic acid	52.50	5.95
2	Sodium carbonate	3.00	0.34
3	Methanol	375.00	42.50
4	Sulfuric acid	2.50	0.28
5	Palladium carbon	0.50	0.06
6	Hydrogen	2.50	0.28
7	Nitrogen	1.50	0.17
8	Piperazine	100.00	11.33
9	Sodium hydroxide	45.00	5.10
10	Hydrochloric acid	47.50	5.38
11	Toluene	400.00	45.33
12	Chloroform	750.00	85.00
13	Sodium sulfate	7.50	0.85
14	4-Amino-2-chloro-6,7-dimethoxy	50.00	5.67
	quinazoline		
15	2-Methoxy ethanol	100.00	11.33
16	IPA	125.00	14.17

16. VERATROLE

S. No	Raw Material	Consumption/ Batch in Kgs	Consumption/ Day in Kgs
1	Pyrocatechol	85.00	283.33
2	Dimethyl sulfate	100.00	333.33
3	Sodium hydroxide	63.92	213.07
4	Toluene	150.00	500.00

WASTE WATER DETAILS

2

WASTE WATER DETAILS

S. No	Purpose	Effluent Generation In KLD
1	Process	39.77
2	Washings	3.00
3	Boiler Blow down	7.00
4	Cooling towers Blow down	16.00
5	DM Plant Regeneration	2.00
6	Scrubbing system	2.00
7	Domestic	7.00
	Total	76.77

HTDS & LTDS DETAILS

Unit	HTDS	LTDS	Effluent	Treatment Method
	KLD	KLD	Generation	
			in KLD	
Process	36.85	2.92	39.77	HTDS effluent sent to ETP
Washings	0	3.00	3.00	with MEE System
Boiler Blow Down	7.00	0.00	7.00	LTDS offluents treated in
Cooling towers	0.00	16.00	16.00	FTP – RO Plant / RO
Blow Down				Rejects to MEE System and
DM Plant Regeneration	2.00	0.00	2.00	RO permeate to reuse,
Scrubber System				Condensate from MEE to
				reuse and MEE residue to
	2.00	0.00	2.00	ATFD.
Domestic	0.00	7.00	7.00	Septic tank followed by soak
				pit
Total	47.85	28.92	76.77	

ETP FLOW CHART

FLOW CHART FOR EFFLUENT TREATMENT

Effluent	Treatment Flow
Туре	
HTDS/HCOD	Collection \rightarrow Equalization & neutralization \rightarrow
	Stripper \rightarrow MEE \rightarrow ATFD \rightarrow TSDF
	MEE Condensate will be Reused.
HTDS	Collection \rightarrow Equalization & neutralization \rightarrow
	MEE \rightarrow ATFD \rightarrow TSDF
	MEE Condensate will be Reused.
LTDS/LCOD	Collection \rightarrow ETP (Biological Treatment) \rightarrow
	Sand Filter \rightarrow Carbon Filter \rightarrow Booster pump to
	Membrane Filter set \rightarrow RO Plant \rightarrow RO Reject to
	MEE RO Permeate to Reused.

SPENT SOLVENTS

Solvent Details

			Per Day						
S.No	Product Name	Production/ Month	Solvent Name	Solvent Input	Solvent Recovery	Solvent Loss	Solvent to waste water	Solvent to Residue	Fugitive Loss
1	Alfuzosin Hydrochloride	170.00	Isopropyl alcohol	79.90	75.91	4.00	0.06	0.10	0.04
			2-Methoxy Ethanol	39.67	37.68	1.98	0.03	0.05	0.02
			Methanol	102.00	96.90	5.10	0.08	0.13	0.05
			Methylene Dichloride	113.33	107.67	5.67	0.09	0.14	0.06
			Ethyl acetate	17.00	16.15	0.85	0.01	0.02	0.01
	Total			351.90	334.31	17.60	0.26	0.44	0.18
2	Chlorophenesin Carbamate	3000.00	EDC	35.00	33.25	1.75	0.03	0.04	0.02
			Toluene	535.00	508.25	26.75	0.40	0.67	0.27
	Total			570.00	541.50	28.50	0.43	0.71	0.29
2	Chlorophenesin	15000.00	EDC	175.00	166.25	8.75	0.13	0.22	0.09
			Toluene	175.00	166.25	8.75	0.13	0.22	0.09
	Total			350.00	332.50	17.50	0.26	0.44	0.18
3	Dextromethorphan HBr	10000.00	Toluene	7843.33	7451.17	392.17	5.88	9.80	3.92
			Methanol	816.67	775.83	40.83	0.61	1.02	0.41
			Acetone	1453.33	1380.67	72.67	1.09	1.82	0.73
	Total			10113.33	9607.67	505.67	7.59	12.64	5.06
4	Drotaverine Hydrochloride	3000.00	Toluene	1520.00	1444.00	76.00	1.14	1.90	0.76

			Methanol	500.00	475.00	25.00	0.38	0.63	0.25
			IPA	350.00	332.50	17.50	0.26	0.44	0.18
	Total			2370.00	2251.50	118.50	1.78	2.96	1.19
5	Guiafenesin	100000.00	Toluene	6666.67	6333.33	333.33	5.00	8.33	3.33
	Total			6666.67	6333.33	333.33	5.00	8.33	3.33
	1-(4-								
	Hydroxyphenyl)piperazi								
6	ne	500.00	Methanol	166.67	158.33	8.33	0.13	0.21	0.08
				166.67	158.33	8.33	0.13	0.21	0.08
0	Mebeverine	0000.00	T . I	4000.00	4407.00	<u> </u>	0.05	4 50	0.00
6	Hydrochloride	3000.00	Toluene	1260.00	1197.00	63.00	0.95	1.58	0.63
			Methanol	1060.00	1007.00	53.00	0.80	1.33	0.53
			MIBK	150.00	142.50	7.50	0.11	0.19	0.08
			Ethyl acetate	250.00	237.50	12.50	0.19	0.31	0.13
			MDC	150.00	142.50	7.50	0.11	0.19	0.08
	Total			2870.00	2726.50	143.50	2.15	3.59	1.44
7	Mephenesin	15000.00	EDC	350.00	332.50	17.50	0.26	0.44	0.18
			Toluene	550.00	522.50	27.50	0.41	0.69	0.28
	Total			900.00	855.00	45.00	0.68	1.13	0.45
8	Methocarbamol	10000.00	Toluene	1333.33	1266.67	66.67	1.00	1.67	0.67
			EDC	250.00	237.50	12.50	0.19	0.31	0.13
	Total			1583.33	1504.17	79.17	1.19	1.98	0.79
	Potassium Guaiacol								
9	Sulfonate	1700.00	Methanol	14.17	13.46	0.71	0.01	0.02	0.01
	Total			14.17	13.46	0.71	0.01	0.02	0.01
10	Prazosin Hydrochloride	420.00	Methanol	136.50	129.68	6.83	0.10	0.17	0.07
			Toluene	140.00	133.00	7.00	0.11	0.18	0.07
			Chloroform	280.00	266.00	14.00	0.21	0.35	0.14
			Piperazine	28.00	26.60	1.40	0.02	0.04	0.01

			IPA	49.00	46.55	2.45	0.04	0.06	0.02
	Total			633.50	601.83	31.68	0.48	0.79	0.32
	Rabavirin	50.00	MDC	5.00	4.75	0.25	0.00	0.01	0.00
			Toluene	9.17	8.71	0.46	0.01	0.01	0.00
			Methanol	18.33	17.42	0.92	0.01	0.02	0.01
				32.50	30.88	1.63	0.02	0.04	0.02
	Ropinirole								
11	Hydrochloride	50.00	Ethyl acetate	46.67	44.33	2.33	0.04	0.06	0.02
			IPA	33.33	31.67	1.67	0.03	0.04	0.02
			Di-n-propyl						
			amine	10.00	9.50	0.50	0.01	0.01	0.01
			Methanol	5.00	4.75	0.25	0.00	0.01	0.00
	Total			95.00	90.25	4.75	0.07	0.12	0.05
	Terazosin								
12	Hydrochloride	170.00	Methanol	42.50	40.38	2.13	0.03	0.05	0.02
			piperazine	11.33	10.77	0.57	0.01	0.01	0.01
			Toluene	45.33	43.07	2.27	0.03	0.06	0.02
			Chloroform	85.00	80.75	4.25	0.06	0.11	0.04
			IPA	14.17	13.46	0.71	0.01	0.02	0.01
	Total			198.33	188.42	9.92	0.15	0.25	0.10
16	Veratrole	10000.00	Toluene	500.00	475.00	25.00	0.38	0.63	0.25
				500.00	475.00	25.00	0.38	0.63	0.25
	Grand total of solvents details of all products			27415.40	26044.63	1370.77	20.56	34.27	13.71

								•									
	Consolidated State	ment of M/s.S	ynthokem i	labs Pvt.Ltd	•								·	Enclosure	-5		
		 				Eff	luent detai	łs					Solid was	te Details		Emisi	SONS
 		•			Inorganic										Total		
		Prodn/	Water	Water In	5	Organics					Total		. ★`*_;:	Spent	saild		
S.No	Product Name	Month	Input	Effluent	in water	in water	70S	ĝ	HTDS	LTOS	Effluent	Organic	Inorganic	carbon	waste	Process	Fugitive
		Kg/Month	Ka/Day	Kg/Day	Kg/Day	Kg/Day	Kg/Day	Kg/Day	Kg/Day	Kg/Day	Kg/Day	Kg/Day	Kg/Day	Kg/Day	Kg/Day	Kg/Day	Kg/Day
	1 Alfuzocin Hydrochloride	170.00	345.67	351.10	5.78	0.34	5.78	0.66	357.22	0.00	357.22	15.65	1.13	3.40	20.18	7,05	17.60
	2 Chlorophenesin	15000.00	1250.00	1491.80	195.50	1.00	195.50	3.10	1688.30	0.00	1688.30	40,00	0.00	0.00	40.00	0.00	14.50
	3 Chlorophenesin Carbamate	3000.00	350.00	516.84	45,14	34.61	45.14	56.77	597.50	0.00	597.50	2.00	0.00	0.00	2.00	0.00	27.00
	4 Dextromethorphan Hydrobromide	10000.00	5653.33	5517.50	3091.70	13.33	3091.70	30.13	9084.83	18.07	9102.90	827.43	14,30	30.00	871.73	220.27	616.67
	5 Drotaverine Hydrochloride	3000.00	1500.00	4019.80	314.83	3.00	314.83	9.36	4156.38	555.13	4711.51	69.30	280.52	0.00	349.82	52.77	119.00
	6 Guaifenesin	100000.00	10000.00	11340.33	1426.00	414.33	1426.00	675.33	13180.67	0.00	13180.67	284.67	1689.00	0.00	1973.67	525.67	391.67
	7 1-(4-Hydroxy phenyl)piperazine	500.00	1283.33	1366.23	155.84	0.50	155.84	0.75	1522.58	0.00	1522.58	22.76	0.00	0.00	22.76	0.00	8,33
	8 Mebeverine Hydrochlorlde	3000.00	1500.00	1648.05	176.57	52.71	176.57	77.06	1903.20	0.00	1903.20	59.77	78.68	0.00	138.45	36.12	147.00
	9 Mephenesin	15000.00	1250.00	1525.95	175.75	10.00	175.75	31.20	1711.70	0.00	1711.70	0.00	0.00	0.00	0.00	0.00	43.00
	10 Methocarbamol	10000.00	1333.33	1780.40	160.00	216.57	160.00	335.63	2156.97	0.00	2156.97	0.00	168.90	0.00	168.90	54,63	65.83
	11 Potassium Guaiacol sulfonate	1700.00	42.50	47.18	10.91	0.57	10.91	0.85	58.66	0.00	58.66	0.09	0.00	0.00	0.09	6.43	0.57
	12 Prazosin Hydrochloride	420.00	168.00	189.82	11.59	7.32	11.59	13.31	208.74	0.00	208.74	20.84	3.82	0.00	24.66	0.31	31.92
	13 Rabavirin	50.00	58.33	58.33	5.05	0.33	5.05	0.55	63.71	0.00	63.71	0.52	0.00	0.00	0.52	0.07	1.57
	14 Ropinirole hydrochloride	50.00	110.00	110.24	2.44	0.33	2.44	0.80	113.02	0.00	113.02	2.60	0.00	0.42	3.02	0.92	4.60
	15 Terazosin hydrochloride	170.00	34.00	42,09	3.76	2.01	3.76	3.20	47.87	0.00	47.87	9.78	1.26	0.00	11.04	0.37	10.48
	16 Veratrole	10000.00	2000.00	2332.93	7.23	3.33	7.23	10.40	0.00	2343.50	2343.50	21.13	375.37	0.00	396.50	0.00	20.00
	Total	172060.00	26878.49	32338.59	5788.09	760.28	5788.09	1249.10	36851.35			SPACE 1			4023.34	904,61	1519.74
Ĩ																	

.

3	
2	l
0	l
9	I
5	l
б.	l
	ŀ
UI.	

GOVERNMENT OF ANDHRA PRADESH <u>ABSTRACT</u>

Ban – Permanent Ban on Establishment/Expansion of certain Polluting Industries in Medak, Ranga Reddy, Mahaboobnagar and Nalgonda Districts- Notification - Orders-Issued.

ENVIRONMENT, FORESTS, SCIENCE & TECHNOLOGY (ENV) DEPARTMENT

G.O.Ms.No.95

Dated:21-9-2007 Read the following:-

IT & C Dept. INWARD	
No. 2183	ļ
Bt. 27/9/07.	-

1.	Notification of the Andhra Pradesh Pollution Control Board
	dated:14-10-1996.
•	

- G.O.Ms.No. 62, Environment, Forests, Science & Technology (ENV) Department, dated: 28-04-1999.
- Resolution No. 1682 of 115th Board Meeting of Andhra Pradesh Pollution Control Board, dated:21-03-2007.
- Letter No.44144/PCB/Plg/AEE-I/2007-56, Andhra Pradesh Pollution Control Board, Dated:07-04-2007.

ORDER:-

In the reference 1st read above, the Andhra Pradesh Pollution Control Board has issued a Notification imposing Ban on the establishment/expansion of certain categories of polluting industries in all the Industrial Estates/Industrial Development Areas and other industrial areas as mentioned in the annexure to the notification and 1km around these industrial areas of Medak, Rangareddy, Mahaboobnagar and Nalgonda districts. These ban orders were subsequently extended by the Andhra Pradesh Pollution Control Board until further orders.

2) In the reference 2nd read above, orders were issued by the Government making permanent the Ban imposed by the Andhra Pradesh Pollution Control Board in their Notification dated:14-10-1996 on the establishment/expansion of certain categories of polluting industries in all the Industrial Estates/Industrial Development Areas and other industrial areas in the Districts of Medak, Rangareddy, Mahaboobnagar and Nalgonda.

3) The Andhra Pradesh Pollution Control Board vide Resolution No.1668 of 113th Board Meeting held on 27-12-2006 had constituted a Sub-Committee to define the industries falling under "Highly Water Polluting Industries" category of the ban notification to have clarity. The sub-committee submitted a report. The Andhra Pradesh Pollution Control Board in its 115th Board meeting held on 21-03-2007 vide resolution No.1682 had agreed to the recommendations of the sub-committee to include only W1 and W2 categories of water polluting industries, as defined by Central Pollution Control Board (CPCB) in the criteria issued in 2004 for preparation of Zoning Atlas for siting of industries, in the ban area. The Member Secretary, Andhra Pradesh Pollution Control Board, has been authorized to communicate the same to Environment, Forests, Science & Technology Department for issuing necessary amendments to the ban notification vide G.O.Ms. No.62, dated: 28-04-1999. Accordingly, the Member Secretary, Andhra Pradesh Pollution Control Board vide reference 4th read above has communicated the report of the sub-committee and the resolution of the Board to the Government.

4) The Government, after careful examination of the matter, have decided to issue a fresh notification by superseding the notifications issued in the matter. Accordingly, the following notification shall be published in the next extra-ordinary issue of the Andhra Pradesh Gazette:

P.T.O.

NOTIFICATION

In exercise of the powers conferred under section 19 of the Water (Prevention and Control of Pollution) Act, 1974 (Central Act No.6 of 1974) and section 19 of the Air (Prevention and Control of Pollution) Act, 1981 (Central Act No. 14 of 1981), and in supersession of the notification issued by the Andhra Pradesh Pollution Control Board, Hyderabad, dated 14-10-1996 and the notification issued by the Government in G.O.Ms.No.62, Environment, Forests, Science & Technology Department, dated: 28-4-1999, the Government of Andhra Pradesh, on the recommendations of the Andhra Pradesh Pollution Control Board, Hyderabad, hereby impose restrictions on establishment/expansion of the following categories of industries in all the Industrial Estates/Industrial Development Areas and other industrial areas as mentioned in the annexure appended to this notification and 1 K.M. around these industrial areas in the Districts of Medak, Rangareddy, Mahaboobnagar and Nalgonda, subject to out come of W.P.19661/02, pending before the Hon'ble High Court:

(a) All types of Bulk Drug manufacturing units except formulation.

- (b) All'-types of Pesticides (technical) manufacturing units except formulations
- (c) All types of Dyes & Dye Intermediate manufacturing units.
- (d) All other types of highly water polluting industries as per the criteria mentioned below:

Industry	Criterion	T-dianti Tita China
Category		inducative List of industries
Industry Category W1	 Criterion Industry with ≥ 25 kLD discharge of effluents (irrespective of organic load) that are not easily biodegradable (BOD/COD ≤ 0.4) or toxic or having TDS generation more than 10,000 mg/l Industry with 100-500 kLD discharge of non-toxic effluents with organic load of > 100 kg/d with BOD/COD ratio=0.4-0.7. Industry with > 500 kLD of discharge of non-toxic effluents (irrespective of organic load) that are less bio-degradable (BOD/COD=0.4-0.7). 	 Indicative List of industries 1. Oil Refinery, Petroleum Refining. 2. Petrochemicals 3. Integrated Iron and Steel 4. Fertilizer 5. Caustic Soda - Mercury cell 6. Leather Tannery (a) Chrome Tanneries / Combined Chrome and Vegetable Tanneries (b) Vegetable Tanneries 7. Pulp and Paper - Agro Based
		8. Distillery (Alcohol distillery)
		9. Electro Plating
		10. Coke Oven

Industry	Criterion	Indicative Link of the
Category		indicative List of industries
W2.	 Industry with 100-500 kLD discharge of non-toxic effluents with organic load of < 100 kg/d with BOD/COD < 0.7. 	 Thermal Power Plants-Coal or coke based less than 210 MW. Nitric Acid
	 Industry with >500 kLD discharge of non-toxic 	 Sulphuric Acid Phospharic Acid
	effluents (irrespective of organic load) that are less biodegradable (BOD/COD ratio of > 0.7)	5. Sugar
	1010 01 × 0.7).	6. Organic Chemicals *
	 Industry with ≥ 25 kLD discharge of effluents 	7. Paint (excluding formulation)
	(irrespective of organic load) having TDS generation >	8. Inorganic Chemicals *
	$m_{g/l}$ mg/l but $\leq 10,000$ mg/l.	9. Man – Made Fibres (Synthetic; Semi Synthetic)
	-	10. Composite Woolen Mills- Common, Chromium and Sulphide
	-	11. Pulp and Paper – Waste Paper Based
	-	12. Fermentation (Maltries and Breweries)
		13.Slaughter House, Meat and Sea Food Industry
		14.Cotton Textile Industries
		15.Synthetic Rubber
	-	16.Starch and Glucose
		17.Bone Mills and allied industries

Note:

* All units including fine chemicals irrespective of Pollution Load generated, quantity of effluent generated.

If any industry is not listed /missing in the above list, the same can be categorized as W1, W2 based on the criteria as given by the CPCB mentioned above.

(BY ORDER AND IN THE NAME OF THE GOVERNOR OF ANDHRA PRADESH)

JANAKI R. KONDAPI SPECIAL CHIEF SECRETARY TO GOVERNMENT

То

The Commissioner, Printing, Stationary & Stores Purchase (Plg.wing), Chenchalguda, Hyderabad, with a request to publish the Notification in the next extra-ordinary issue of the Andhra Pradesh Gazettee, and furnish 200 copies of the same.

То

The Member Secretary, Andhra Pradesh Pollution Control Board, Paryavaran Bhavan, A - 3, Industrial Estate, Sanathnagar, Hyderabad - 500 018.

Copy to:

All the Departments of Secretariat.

The Collectors of Medak, Rangareddy, Mahaboobnagar and Nalgonda districts

The Commissioner of Industries, Chirag-ali-lane, Abids, Hyderabad.

The Director Agriculture, Andhra Pradesh, Hyderabad,

The Commissioner, Information & Public relations Department, Andhra Pradesh, Hyderabad.

The Commissioner, Environment Protection Training Research Institute (E.P.T.R.I), Andhra Pradesh, Hyderabad,

The Chairman, Andhra Pradesh Transco, Somajiguda, Vidyuth Soudha, Andhra Pradesh, Hyderabad.

The Secretary to Hon'ble Chief Minister,

P.S. to M (FES&T),

P.S. to Special Chief Secretary (EFS&T).

All Senior Officers of Environment, Forests, Science & Technology Department.

All Sections in Environment, Forests, Science & Technology Department.

Law (B) Department.

The Information and Technology Department (both Soft & Hard copies) with a request to place on web-site.

SF/SC.

// FORWARDED: BY ORDER //

SECTION OFFICER

ANNEXURE (Annexure to G.O.Ms.No.95 Environment, Forests, Science & Technology (ENV) Department, dt:21-9-2007)

LIST OF EXISTING INDUSTRIAL ESTATES/INDUSTRIAL DEVELOPMET AREAS

I. Medak District:		
1. Patancheru	-	I.E. & I.D.A.
2. Pashamylaram	-	I.D.A.
3. Ramachandrapura	ım -	I.E.
4. Yelumela	-	I.D.A.
(Ramachandrapura	am Mar	ndal)
5. Zaheerabad	-	R.I.E. (Rural Industrial Estate)
6. Bollarum	-	A.I.E. (Anrich Industrial Estate)
7. Bollarum	-	S.V.C.I.E.(Sri Venkateswara Co-operative
		Industrial Estate)
8. Gaddapotharam	-	I.D.A.
Khazipally		
9. Boothapally	-	I.D.A.
II. Rangareddy Dis	strict:	
1.Kattedan	-	I.E.
Mallapur	-	I.D.A.
3. Nacharam	-	I.E.
Vikarabad	-	I.E.
5. Chevella	-	I.E.
6. Jeedimetla	-	I.D.A.
Phase I to V		
Medchal	-	I.E.
8. Gundlapochampa	a III -	I.E.
9. Balangar	-	I.E.
10. Cherlapally	-	I.E.
11. Uppal	-	I.E.
12. Moula Ali	-	I.E.
13. Kushaiguda	-	I.E.
III. Nalgonda Dist	rict:	
1. Bhongir	-	I.D.A.
2. Chityal	-	I.E.
3. Nalgonda	-	I.D.A & M.I.E.(Mini Industrial Estate)
4. Survapet	-	I.E.
5 Mirvalguda	-	I.D.A.

6. Nagarjuna Sagar -I.E.

IV. Mahaboobnagar District

ŧ

1. Kothur Phase I & I 2. Mahaboobnagar	1- -	I.D.A I.H.C. (Industrial Housing Corporation) I.D.A.	
4. Gadwal	-	I.D.A.	F

P.T.O.

I. Medak District:

- 1. Gummadidala
- 2. Kallakal Toopran
- 3. Gundlamachanoor Narsapur
- 4. Rudram
- 5. Sadasivpet
- 6. Chitkul Isnapur
- 7. Yawapur
- 8. Gajwel Pregnapur
- 9. Siddipet

II. Mahaboobnagar District:

- 1. Balanagar
- 2. Nandigam

III. Nalgonda District:

- 1. Existing Industrial areas of Choutuppal Mandal
- 2. Gundrampally(V) of Chityal Mandal

IV. Rangareddy District:

- 1. L.B.Nagar
- 2. Ghatkesar
- 3. Gaganpahad
- 4. Catchment area of Shameerpet Tank
- 5. Shameerpet
- 6. Shamshabad.

JANAKI R. KONDAPI SPECIAL CHIEF SECRETARY TO GOVERNMENT

//TRUE COPY//

Hancemanles SECTION OFFICER NA

COPY OF G.O.Ms.No:64 (Ban Relaxation), Dt. 25/07/2013.

GOVERNMENT OF ANDHRA PRADESH ABSTRACT

Ban – Permanent Ban on Establishment of certain Polluting Industries in Medak, Ranga Reddy, Mahaboobnagar and Nalgonda Districts- Amendment Notification – Orders-Issued.

ENVIRONMENT, FORESTS, SCIENCE & TECHNOLOGY (ENV) DEPARTMENT

G.O. Ms. No. 64

Dated: 25-07-2013. Read the following:-

- G.O. Ms. No. 95, Environment, Forests, Science & Technology (ENV) Department, dated: 21-09-2007.
- Representation of Bulk Drug Manufacturer's Association (BDMA), Hyderabad to APPCB, dated 18-09-2012 and Government dated 16-07-2012.
- 3. Order of the Hon' ble Appellate Authority dated 20-10-2012.
- 4. Resolution No. 1949 of 130th Board Meeting of Andhra Pradesh Pollution Control Board, dated:04-12-2012.
- Letter No.44144/PCB/PLG/2012-65, Andhra Pradesh Pollution Control Board, dated:03-04-2013.
- Commerce Secretary, Government of India D. O. Letter No.15/36/2013/EP (Engg/Pharma). Dated 30-04-2013.

<u>ORDER:</u>

In the G.O. 1st read above, Ban was imposed on the establishment/expansion of certain categories of polluting industries in all the Industrial Estates/Industrial Development Areas and other industrial areas as mentioned in the Annexure to the notification and 1km around these industrial areas of Medak, Rangareddy, Mahaboobnagar and Nalgonda districts.

In the representation 2nd read above, the Bulk Drug Manufacturer's (2) Association (BDMA), Hyderabad requested the APPCB to allow the expansion of existing Bulk Drug and its Intermediate Manufacturing Units with Zero Liquid Discharge Facilities and Industries who could send less contaminated non-process water such as domestic, cooling tower and boiler blow down to Common Effluent Treatment Plants (CETPs) and to consider pollution load at Point of Discharge instead of Point of Generation before installation of pollution control systems as provided in Water (Prevention and Control of Pollution) Act, 1974 and Air (Prevention and Control of Pollution) Act, 1981. They enumerated the improvements in the technology adopted by them such as Zero Liquid Discharge (ZLD) / Zero Process Liquid Discharge (ZPLD) process comprising of latest equipment such as Stripper, Multiple Effect Evaporator, Agitated Thin Film Drier (ATFD) and Reverse Osmosis (RO) etc, to control water pollution through considerable reduction in High Total Dissolved Solids (HTDS) discharges and also to bring down emission of gaseous substances mainly Volatile Organic Compounds (VOC) to control Air Pollution.

3) The Principal Secretary to Government, Industries and Commerce (CIP) Department offered his views on the present state of pollution control measures implemented by Bulk Drug and Bulk Drug Intermediates industrial units. Keeping the fact that Hyderabad attained the status as International Capital of Pharmaceutical industry, a level playing field is a dire necessity to maintain its leadership position without compromising on pollution control. As there is overall improvement in water pollution control measures adopted by the industry, a suggestion has been made to permit the increase in production capacity to enable them to compete in the international market and to assess the pollution load at the point of discharge.

In the order 3rd read above, the Hon'ble A. P. Pollution Control 4) Appellate Authority observed that there is much improvement in the environmental conditions after industries implemented better pollution treatment techniques and Ministry of Environment and Forests (MoEF) has lifted moratorium in establishment of industries in the earlier notified Imposing ban or restrictions on the industries through industries. Administrative Orders is not justifiable and such ban and restrictions are against the Statutory provisions under (Section 2, Rule 5) of Environment (Protection) Act, 1986. The Hon'ble Appellate Authority disposed the appeals filed by the Bulk Drug and Intermediate industries with the direction that the State Government shall take a decision on the representation made by the Bulk Drug Manufacturers Association in the light of the orders passed by MoEF and the Statutory position as explained above within three months from today.

In the resolution 4th read above, the Andhra Pradesh Pollution Control 5) Board in its Resolution No.1949 of 130th Board meeting resolved to recommend to the Government, the recommendations of the High Level Expert Committee (HLEC) constituted to study the request of Bulk Drug Manufacturer's Association (BDMA) to amend the G. O. Ms. No.95, dated 21-09-2007. The Committee in their report stated that the regulsite treatment facilities are in place and Ministry of Environment and Forests (MoEF), Government of India has withdrawn the moratorium in Patancheru -Bollaram area after implementation of Joint Action Plan. The High Level Expert Committee recommended to the Andhra Pradesh Pollution Control Board that the expansion of capacities could be considered subject to the availability of water resources, Ambient Air Quality including Volatile Organic Compounds (VOC), Capacity of Treatment, Storage and Disposal Facility (TSDF) & Common Effluent Treatment Plants (CETP's) and their performance and scope for using organic waste in cement plants for co-processing.

In the letter 5th read above, the Andhra Pradesh Pollution Control 6) Board communicated the Agenda with minutes of the 130th Board meeting of Andhra Pradesh Pollution Control Board and the report of the High Level Expert Committee with their recommendations from the technical point of view. The Andhra Pradesh Pollution Control Board recommended the expansion of existing industries on a case to case basis in relaxation of ban order issued vide G. O. 1st read above, based on legal advice. The recommendations of the Andhra Pradesh Pollution Control Board is based on four parameters namely (i) Availability of Water resources, (ii) Ambient air quality including Volatile Organic Compound (VOC) (iii) Capacity of Treatment, Storage and Disposal Facility (TSDF) & Common Effluent Treatment Plant (CETP) and their performance and (iv) Scope for using organic waste in cement plants for co-processing. The Andhra Pradesh Pollution Control Board recommended comprehensive Zero Liquid Discharge (ZLD) for large industries with effluent generation above 25 KLD and partial ZLD / common ZLD for small industries with effluent generation below 25 KLD of total effluent. The Andhra Pradesh Pollution Control Board recommendation includes the transportation of low TDS effluent generated by the industries to the Common Effluent Treatment Plants (CETPs), meeting the inlet standards stipulated by the Andhra Pradesh Pollution Control Board.

7) In the letter 6^{th} read above, Commerce Secretary, Government of India stated that the share in exports of Drugs and Pharmaceutical Industry from A. P. State is about 35% of the total exports from the Country. He recommended for expansion of existing units subject to compliance of pollution control norms in order to give further boost to the exports from this sector.

8) The Learned Additional Advocate General, High Court of Andhra Pradesh in his letter dated 28-03-2013 has opined that the Government may consider to amend the condition of restriction imposed on expansion of existing industries in G. O. Ms. No.95, dated 21-09-2007, so far as expansion of production of the existing units.

9) The Government, after careful examination of the matter, have decided to issue an amendment to the G. O. Ms. No.95, Environment, Forests, Science & Technology (ENV) Department, dated: 21-09-2007 to enable the expansion of production of the existing Bulk Drug and Bulk Drug Intermediates manufacturing units only subject to the installation of Zero Liquid Discharge (ZLD) facilities by such units and to assess the Pollution load at the Point of Discharge, as provided in Water (Prevention and Control of Pollution) Act, 1974 and Air (Prevention and Control of Pollution) Act, 1981.

10. Accordingly, the following notification will be published in the Extraordinary Issue of the Andhra Pradesh Gazette dated 25-07-2013:

NOTIFICATION

In exercise of the powers conferred by section 19 of the Water (Prevention and Control of Pollution) Act, 1974 (Central Act No.6 of 1974) and section 19 of the Air (Prevention and Control of Pollution) Act, 1981 (Central Act No.14 of 1981) the Government of Andhra Pradesh on the recommendations of the A. P. Pollution Control Board, Hyderabad hereby makes the following amendment to the notification issued in G. O. Ms. No.95, Environment, Forests, Science & Technology (ENV) Department, dated: 21-09-2007.

AMENDMENT

In the said notification, after the existing Note, the following shall be added namely:-

"Provided that the expansion of production of all types of existing Bulk Drug and Bulk Drug Intermediate manufacturing units are permitted, subject to the installation of Zero Liquid Discharge (ZLD) facilities by such units and subject to the outcome of cases pending in the National Green Tribunal, Southern Zone, Chennai or in any other court. The Pollution load of industrial unit shall be assessed at the Point of Discharge, as provided in Water (Prevention and Control of Pollution) Act, 1974 and Air (Prevention and Control of Pollution) Act, 1981."

(BY ORDER AND IN THE NAME OF THE GOVERNOR OF ANDHRA PRADESH)

M. SAMUEL SPECIAL CHIEF SECRETARY TO GOVT.

Тο

The Commissioner, Printing, Stationary & Stores Purchase (Plg.wing), Chenchalguda, Hyderabad, with a request to publish the Notification in the next extra-ordinary issue of the Andhra Pradesh Gazettee, and furnish 200 copies of the same.

The Member Secretary, Andhra Pradesh Pollution Control Board, Paryavaran Bhavan, A - 3, Industrial Estate, Sanathnagar, Hyderabad.

Copy to:

All the Departments of Secretariat.

The Collectors of Medak, Rangareddy, Mahaboobnagar and Nalgonda districts. The Commissioner of Industries, Chirag-ali-lane, Abids, Hyderabad. The Director Agriculture, Andhra Pradesh, Hyderabad, The Commissioner, Information & Public relations Department, Andhra Pradesh, Hyderabad.

The Commissioner, Environment Protection Training Research Institute (E.P.T.R.I), Andhra Pradesh, Hyderabad,

The Chairman, Andhra Pradesh Transco, Somajiguda, Vidyuth Soudha, Andhra Pradesh, Hyderabad.

The Prl. Secretary to Hon'ble Chief Minister.

P.S. to M (FES&T), P.S. to Special Chief Secretary to Govt., E.F.S. & T. Dept.

All Senior Officers of Environment, Forests, Science & Technology Department.

All Sections in Environment, Forests, Science & Technology Department. The Law (B) Department.

SF / SC.

//Forwarded::By Order//

Section Officer

ENCLOSURE-7

OF ANDHRA PRADESH GOVERNMENT

e - - -

STRAC

Andhra Pradesh Panchayat Eaj Act, 1994 (Act, No. 13 of 1994) Andhra Pradesh Industrial Infrastructure Corporation Andhre Pradesh Industrial Infrestructure Limited - Declaration as Local Authority for Maintenance of Industrial Estates/Industrial Development Areas/Autonagars -Under Socition 147 of the Andhra Pradesh Panchayat Raj Act, 1994 - Orders - Issued. PANCHAYAT RAJ & RURAL DEVELOPMENT (PANCHAYATS.IV) DEPARTMENT Date : 9-3-1998, Read the following :-G.O.Ms.No. 109 G.O.Ms.No. 113, PR & RD (Pts.IV) Dept., dt. 1. From the Chairman & M.D. APIIC Ltd., D.C.Lr.No. 61120/APIIC/LAC/GPS/94, dt. 29.8,1997. 2. Govt.D.C.Lr.No. 34599/Pts.1V/A2/97-2, dt. 3. Govt.Memo.No. 34599/Pts.IV/A2/97, dt. 21.10.97. From the Dist. Collector (PW) R.R.Dist. Lr.Roc.No.B3/2443/94. dt. 24.11.1997. 4. Lr.Roc.No.B3/2443/94, dt. 24.11.1997. From the Dist.Collector (PW) Srikekulam Dist. 5. Lr. Ro. No. 4128/97/P4, dt. 25.11.1997. 6. From the Dist. Collector, Krishna Dist. Lr.Ro.No. 5540/97/Pts.5, dt. 6.12.1997. 7. From the Dist. Collector (PW) Prakasam Dist. Lr.Ro.No. 7043/97 (Pis.).dt. 3.12.1997. 8. Govt. Fax Message No. 34599/Pts.IV/A2/97-4, PR & RD (Pts.IV) Dept., dt. 22,12,1997. 9. From the D.P.C., Cuddapah Lr.Roc.No. 1995/95-A2, 10. From the Director (Bstates) APIIC Ltd., Lr.No. dt. 18,12.1997. 51120/APIIC/LAC/Gr.Pts/94, dt. 23.12.1994. From the Dist. Collector (PR) Nelgonda Dist. Lr.Roc.No.E/2584/97, dt. 22.12.1997. 11. 12. From the Dist.Collector (PW) Mahabubnagar Lr.No.A1/2089/97, dt. 30.12.1997. Govt. Telegram No. 34599/Pts.IV/A2/97, dt. 13. 14. 12.1.1998. From the Dist.Collector (PW) Kurnool Lr.Roc.No.4735/Pts-A1/97, dt. 8.1.1998. 15. From APIIC D.O.Lr.No. 51120/APIIC/LAC/GPs/94, 16. dt. 7.1.98. *****

ORDER :

, P .-. في جدً

> Chairman and Managing Director, Andhra Pradesh Industrial Infrastructure Corporation Limited, has requested for declaration of Andhra Pradesh Industrial Infrastructure

ANNEXURE - I LIST OF POWERS AND FUNCTION OF GRAM PANCHAYAT TO BE EXERCISED BY THE APTICALTD.

	, 	Of Power/
Sl. No.	Section in the APPR Act 199 (Nature of powers & function in Brief)	4 Nature of states
	(2)	(3)
(1)		
1.	60 to 69 71 and 72	Provisions relating to Taxation and Finance.
2.	93 to 103 120 to 123	Provisions relating to public safety, Convenience and Health.
3.	126 to 129 131, 132, 134 to 142 and 145	General and Miscellaneous (Gram Panchayats) provisions.
4 -	254 to 257 and 267	Miscellancous provisions.
5.	271 and 272 Schodules - III	Provisions relating
6,	and IV	and penalities.

G.S.E.C.V.PRASADA RAO, SECRETARY TO GOVERNMENT.

LIST BE INDUSTRIES REA IN URBEN INC FOR MEL/HUNCHEDIC. OF GRAN PERMINETE IN THE LEADERTSED OF FRANK PERMINETED.

ł

		Hame of the Estate	Here of the	gant al Can ce an Danchayat
' Si. ' 10.	zune 1 histrict.	, ,	Yillagn	
) 			[1]	(*1
: III 1	(7) 		• • •	
1 	Chandolal -Naradat	I. I. IDA-Kather	Kolim:	gallen,
ir.	reproduction of the second s	PH, 54, 33 11 101 101 101	tolluir	Kether
1		2. stituterer 2. stituterer	1 sectors 12	1 a grand 1 h
		4.][66. Pales	bijimspell:	þalen.
		5, 30 4-62duel	tainal	Chenjon191119
1	ه.	r st staasija	Shrvel 14	thore]}#
1	jgediselli,	2. 11-12.0C.bel	· their like	nearbei 13
:	#124216041.	1. IE -Mancher La	Hancher 14	
			المعلومة والمعا	Landa (algo 1 -
	t takipada.	1. INA-Robierta		R to that should
ł	Tral Codivati	2. 106-Eatista	E SE VERSIONS	t tanal spirit
	•	£ 44831984	Research State	Espanel shpet
i i		5, BIT Kakinana		SAIDAVATAR
	•	4. HA Sattara	Panaasiaheet	Egyanal algor
•		5: GC-KAKINANA	ibnostsist in	Ystatapud1
•		P. But Assessed	· · · · · · · · · · · · · · · · · · ·	C thismarsfee
		i iait buile	·	forge and sea states
		1. Part Manager	ceran boulassia: 15	beulessal an
		y ji lanach	the Ranger Bradayaran	Raspichesvar an
		varak		Capilabu?##
		18,12-Socalar	uran Separapuran	Kadiyan
		11,10A Sad13d	P 34401451484	-
8.	•	A SET CLASS	· Valluth ·	Yatini
	į Likiaada,	. <u>1. 8735-6</u> 3911	Second Walland	Vetime
sЕ,	RCPS CogsAct	i er batemi	Banger, nat 24	PHD (April 1)
		4. 1E-1anut#	tateti	ICLOIT
) të Panita	ada Yeskalaroddy-	Ynnknisnaky patti
() ()	s forault.), it (para	palli	
	Survey and a survey of the sur	9. APEE-ANN	alapur Papampil	- H' Hel alempter
		(Espans)	bn)	manu and an-all 1
		5; Ildi Karli	FI Annual sugarant	tooly X
		6, the want	y souly	
		· · · · · · · · · · · · · · · · · · ·	La Géneleistés	Vdessiapul 29
á.	, taracel,	[]])#-9400]]	Dimoc	pieren -
41	former	5. 10-000	•	
K.		*	· ·	
1.				· · · · · ·
58			۰ ۱	
钳				•
·				-

Ż .

- :

•

2

LIST OF INDUSTRIAL AREA IN WHICH THE POMERS/FUNCTIONS OF GRAM PANCHAYAT TO THE EXERCISED BY THE APPLIC LIMITED.

١.

A PARTY AND A PARTY AND A

.....

********	And the second s	f.the	Hane of the
SI. Hand of the	Haus of the Est to wella	1	GIAN PARCHAYAT
	(4)		(7)
(1) (2)	V +1	•	
2	LIGA TH AND TO AD	mai Lavali	Chambell Favores
ių sulyapet,	a stif formation that	ldt ·	
làassin ⁰		chupsilli	Chuncher 11
	2. 15-Formedinana		50,08 AES
	c. Ing. Bhadrachalan Nhad	leauitai an	Bjerg Lacht an
		L_L_dringles	vogkaladriga)en
II SKEVEDEČ.	1. IDA-Hiryalaguda TEG	CILISI IPELO»	Ar istabavi
i si onoda	5 308-Mildowys pL3	STADAAT	ar talabavi
	s Hit Halgonda All	ALANATI . 	Shongil
	- 4, ica-khongit Ino	#G 14	Handi tonda
	5. 199-8ågar june Hall	OTROBON	
	- 5 3971		Gon Javan 11
	6. Chilyala ing	pelayapatta	William and and an an a
	i Apis-InLi) Ye	r ranraidy päl en	l hook i vakair
12 Tijepathi.	L. HUL (MAR)		
chiltoo:		nok i vakan	1700E1A3252
	the state of the s		
	Elimparar (ener	MORT 1 100.48	(hoak Ly akan
	5. IF SITUPSION I		-individual.
,	4, 513 [1899] (a	manned walds	Shook i valian
	5. 1E-115884181	Alice when the	Theokivakan
	6 HIE-TICUPSEDT	Sirahiyakan Kashiyakan	1hookivatas
	7. IOA+firupalhi 3		
	(Halda Lands)		et karampalli
	8. All-firmpathi A	Bitti antes (e	I Happalan
		Babba Al	Sa Willandy 20
	9. 10A-Gajulamand f	a ju lana nayar	
l .	yan PH-1,116111		C., ye i savayiyan
•	to. THE Galietaning	in formula te	aller finn a mannen all
n I .	736. (HUDCO		
1	SCHEME)		8
	LL IL SLIKALABARATI	jLar, herpärsmol H	
4	17 11 Serbalaharti	Her Spaka	ikel lähten
ŋ	[fectaneous]	-	مر <u>۴. – ۱۰</u> ۴ م م
4	12 IDA-ELANSLEAM	LEBALLAR	LINGELLAD
	13.100° MADONNA 18 37-931 MADARU	Palanaqo: y	Palananaru
ч	04 11°-02Ì3833851₽	Gangavar as	CTUĞSA41.m
Į.	((unincial)		N. 4
• i	Lipersteven	Valasapalli	AF198954713
1	17.68-hadaoapalli	, Basini Londa	8921#1 Marce
		Namiiladalli	ijamillapalli i
]]]] [jrepathi	J. IL-CUQQADAN	**************************************	•
7	•		
и () 4	•		
1. F.	•		•
\$	1		
	;		• '
,		•	
			•
ſ			

ANDHRA PRADESH POLLUTION CONTROL BOARD PARYAVARAN BHAYAN, A-3, INDUSTRIAL ESTATE, SANATHINAGAR, HYDERABAD - 500 018.

Phone: 040-23887500 Fax: 040-23815631 Grams : Kalusya Nivarana Website : appoblap.nic.in

RED CATEGORY RENEWAL CONSENT & AUTHORISATION ORDER BY REGISTERED POST WITH ACKNOWLEDGEMENT DUE

Consent Order No : APPCB/RCP/SRD/399/HO/CFO/2012- 3/29

Date :04.10.2012

(Consent Order for Existing/New or altered discharge of sewage and/or trade effluents/outlet under Section 25/26 of the Water (Prevention & Control of Pollution) Act, 1974 and amendments thereof, Operation of the plant under section 21 of Air (Prevention & Control of Pollution) Act 1981 and amendments thereof and Authorisation / Renewal of Authorisation under Rule 5 of the Hazardous Wastes (Management, Handling & Transboundary, Movement) Rules 2008 & Amendments thereof.

CONSENT is hereby granted under section 25/26 of the Water (Prevention & Control of Pollution) Act, 1974, under Section 21 of Air (Prevention & Control of Pollution) Act 1981 and Authorisation under the provisions of HW (MH & TM) Rules, 2008 (hereinafter referred to as "the Acts", "the Rules") and the rules and orders made thereunder to

M/s. Synthokem Labs PvL, Ltd., Unit-II, Plot No.222-224 & 235 – 237, Phase-IL IDA, Pashamailaram, Patancheru (M), Medak District - 602 319 E_mail : snram@synthokemslabs.com

(hereinafter referred to as 'the Applicant') authorizing to operate the industrial plant to discharge the effluents from the outlets and the quantity of emissions per hour from the chimneys as detailed below.

i) Out lets for discharge of effluents;

Outlet No.	Outlet Description	Max Daily Discharge	Point of Disposal
1.	High TDS Effluents.	18.0 KLD	 Stripper condensate for recovery of organics or disposed to TSDF. Dundigial for incineration or to cament plants for co-processing. Stripper concentrates to MEE feed Condensate from MEE & ATFD for treatment in the ETP and to reuse MEE concentrate to ATFD feed
2.	Low TDS Effluents Process & Washings – 2 KLD + DM Ptant re-generation water – 2.0 KLD + Boiler blow down – 4.0 KLD + Cooling towar blow down – 2.5 KLD + Domestic effluents – 8.0 KLD* after pre-treatment	18.5 KLD	CETP, Patancheru ROTermesterjosreuse ROTermesterjosreuse ROTERIA

* The industry should not use soak pits for final disposal of domestic effluents of 8.0 KLD and they should send these effluents along with LTDS (rade effluents to CETP, Patancheru.

ii) Emissions from chimneys:

 β

Chimney No.	Description of Chimney	Quantity of Emissions at
1.	Attached to 2 TPH Oil Fired Boiler	peak now
2.	Attached to 4 Lakh K.Cal/hr Thermic Fluid heater	
3.	Attached to 2 x 250 KVA D.G. Sets	

(iii) HAZARDOUS WASTE AUTHORISATION (FORM - II) [See Rule 5 (4)]

1. Number of Authorisation and date of issue - APPCB/RCP/MDKI/182/HWM Dt:04 /10/2012

 M/s. Synthokem Labs Pvt. Ltd., Unit – II, Plot No. 222-224 & 235 - 237, Phase – II, IDA, Pashamailaram (V), Patancheru (M), Medak District, Is hereby granted an authorization to operate a facility for collection, reception, storage, treatment, transport and disposal of Hazardous Wastes namely:

8. No.	Name of the Hazardous wastes	Stream	Quantity	Disposal option
1.	Process Organic Residue	28.1 of Schedule - [301.11 Ko/day	Authorised cement plants
2,	Spent Carbon	28.2 of Schedule - I	27.08 Kalday	Dundical Bancareddy
3.	Distillation Residue	28.1 of Schedule - I	35 Kg/day	District for incineration
4.	Inorganic and Evaporation salts	28.1 & 34.3 of Schedule -	1399.74 Ka/dev	TSDF, Dundigal for secured land filling
5.	ETP skudge	34.3 of Schedule -	20.0 Kg/day	www.wastericitiin.cg.

HAZARDOUS WASTES WITH DISPOSAL OPTION;

HAZARDOUS WASTES WITH RECYCLING OPTION:

8. No.	Name of the Hazardous wastes	Stream	Quantity	Disposal option
1	Waste oil	5.1 of Schedule - I	150 LPM	Authorized Reprocessors / Recyclers,
2	Defoxified containers & container liners of Hazardous Chemicals	33:3 of Schedule - I	100 nos./month	After complete detoxification, it should be disposed to the outside adencies
3.	Spent/Mixed Solvents	28.5 of Schedule - I	6.2 KLD	Recover within the own premises

This consent order is valid for the manufacturer of the following products with quantities indicated only :

S. Products No		Quantity	Remarks	
1	Guiafensin	100 Kg/day		
2	Methocarbamol	100 Kg/day		
3	Chlorphenesin	33.33 Kg/day	-	
4	Chlorphenesin carbamate	33.33 Ko/day		
5	Mephenesin	33.33 Kg/day	The industry should not	
6	Potassium gualacol sulfonate	33.33 Kg/day	produce more than any six	
7	Drotaverine hydrochloride	36.11 Kg/day	products at any given time. The	
8	Mebeverine hydrochloride	41.67 Kg/day	maximum production capacity	
9	Terazosin hydrochloride	1.67 Kg/day	from cumulative of any six	
10	Prazosin hydrochloride	1.67 Kg/day	monthering appointed and annual	
11	Alfuzosin hydrochioride	1.87 Kg/dav	- produces should not exceed	
12	Ropinirole hydrochloride	1.67 Ko/day	461.11 Kg/day at any given	
13	Rabavirin	1.67 Kg/dav	time.	
14	Norfioxacin	91.67 Ka/dav	-1	
15	Giproflocacin hydrochloride	33.33 Kg/day		
16	Diclofenac sodium	91.67 Kg/day		

This order is subject to the provisions of 'the Acts' and the Rules' and orders made thereunder and further subject to the terms and conditions incorporated in the schedule A, B & C enclosed to this order."

This combined order of consent & Hazardous Waste Authorisation should be valid for a period ending with the 30th day of June, 2015.

То

Sd/-MEMBER SECRETARY

M/s. Synthokem Labs Pvt., Ltd., Unit-II, Plot No.222-224 & 235 - 237, Phase-II, IDA, Pashamailaram, Patancheru (M), Medak District - 502 319

4

F.B.O. // **Chief Envir** ntal Engineer (FAC)

SCHEDULE - A

- 1. The applicant should make applications online for renewal of Consent (under Water and Air Acts) and Authorisation under HWM Rules at least 120 days before the date of expiny of this order, along with prescribed fee under Water and Air Acts for obtaining Consent & HW Authorisation of the Board and along with detailed compliance on the conditions issued in :this order.
- 2. All the conditions stipulated in the Schedule A of the earlier combined order of CFO No. APPCB/RCP/SRD/399/HO/CFO/2011-1147, dated 16-07-2011 remains same. The industry should ensure consistent compliance of each condition of Schedule -A.
- 3. Any person aggrieved by an order made by the State Board under Section 25, Section 26, Section 27 of Water Act, 1974 or Section 21 of Air Act, 1981 may within thirty days from the date on which the order is communicated to him, prefer an appeal as per Andhra Pradesh Water Rules, 1976 and Air Rules 1982, to such authority (hereinafter referred to as the Appellate Authority) constituted under Section 28 of the Water(Prevention and Control of Pollution) Act, 1974 and Section 31 of the Air(Prevention and Control of Pollution) Act, 1981

SCHEDULE - B

Special Conditions

- The industry should extend Bank Guarantee of Rs.10 lakhs submitted to the Board under JAP, for a period upto 30.06.2015 immediately.
- The pre-treated effluents sending to M/s. PETL, Patancheru should not contain constituents 2. in excess of the tolerance limits mentioned below.

Outlet No.	Parameter	Limiting Standards
2.	P	
	TDS (Inorganic)	
	Chromium Hexavalent (as Cr*5)	
	Temperature °C	
	Oil & Grease	
	Phenolic Compounds (as 011 015	20:00 mg/
	Antipolitic Compounds (as CarlaOH)	5:00,000/
	Charles (as N)	58.00 mo/
		2.004780/
	Chicomacini (total) (as Cr)	2.00 800/
	Copper (as Cir)	3.00 mail
	Load (as Pb)	1.00 mg/
	Nickel (as Ni)	3 00 mg/
	Zinc (as Zn)	15 00
	Arsenic (as As)	
	Mercury (as Hg)	0.20 mg/l
	Cadmium (as Cd)	
	Selenium (as Se)	<u>1.00 mg/l</u>
	Fluoride (as F)	0.05 mg/l
	Boron (as B)	<u>15.00 mg/t</u>
· F	COD	2.00 mg/l
		15000 mg / fit

Page 3 of 7
The industry should take steps to reduce water consumption to the extent possible and consumption should NOT exceed the quantities mentioned below:

3

S.No	Purpose	Qua	ntity
1.	Process	15.	31 KLD
2	Washings	· 2.	00 KLD
3.	Boiler feed	33.	00 KLD
4.	DM Water Plant	2.	00 KLD
5,	Gardening	4	00 KLD
6.	Domestic	. 8.	00 KLD
· .		Total 64.	31 KLD

- The industry should file the water Cess returns in Form-I as required under section (5) of Water (Prevention and Control of Poliution) Cess Act, 1977 on or before the 5th of every calendar month, showing the quantity of water consumed in the previous month along with water meter readings. The industry should remit water Cess as per the assessment orders as and when issued by Board.
- The emissions should not contain constituents in excess of the prescribed limits mentioned below.

Chimney No.	Parameter	Emission Standards
182	Particulate Matter	115 mg/Nm ³

- 6. The industry should comply with emission limits for DG sets of capacity upto 800 KW as per the Notification G.S.R.520 (E), dated 01.07.2003 under the Environment (Protection) Amendment Rules, 2003 and G.S.R.448(E), dated 12.07.2004 under the Environment (Protection) Second Amendment Rules, 2004. In case of DG sets of capacity more than 800 KW should comply with emission limits as per the Notification G.S.R.489 (E), dated 09.07.2002 at serial no.96, under the Environment (Protection) Act, 1966.
- The industry should comply with ambient air quality standards of PM₁₀(Particulate Matter aize less than 10µm) - 100 μg/m³; PM_{2.6}(Particulate Matter size less than 2.5 µm) - 60 μg/ m⁵; SO₂ - 80 μg/m³; NO_x - 80 μg/m³, outside the factory premises at the periphery of the industry.

Standards for other parameters as mentioned in the National Ambient Air Quality Standards CPCB Notification No.B-29016/20/90/PCI-I, dated 18.11.2009

Noise Levels: Day time (6 AM to 10 PM) - 75 dB (A)

Night time (10 PM to 6 AM) - 70 dB (A).

- The industry should not increase the capacity beyond the permitted capacity mentioned in this order, without obtaining CFE & CFO of the Board.
- 9. The industry should earmark an amount of Rs. 1.01 lakits per annum for 10 years towards the Enterprise Social Responsibility (ESR) activities. The industry should spend the amount and submit certificate from the District Collector regarding the utilisation of the funds earmarked for ESR activities for this amount.
- 10. The industry should not operate 2 TPH Coal fired boller without CFE & CFO of the Board.
- The industry should install Reverse Osmosis Plant for Low TDS efficients within two months.
- 12. Vide order dt. 31.07.2007, the Board has directed your industry for implementation of Joint Action Plan accepted by the Hon'ble Supreme Court vide order dated. 17.07.2007 in W.P.(C). No. 441/2005, 476/2005 & batch of cases. The Industry should explicitly comply with the directions given by the Board without any deviation from the Joint Action Plan accepted by the Hon'ble Supreme Court of India.
- 13. Inclusion of returns of the production details of other / their sister concern units in the existing industry's Excise Returns is not be permitted under any circumstances.
- 14. Trading of finished /semi finished products of OTHER INDUSTRIES and its inclusion in the axisting industry's Excise Returns should not be permitted under any circumstances.
- 15. The returns of products manufactured and the Excise returns should reflect concurrently
- 16. The industry should install VOC analyzers with recording facility at all the strategic locations.
- 17. The industry should provide & maintain flow meter with digital totalizer to quantify the effluents evaporating in MEE system and report the compliance to the R.O. of the Board.

18. The industry should implement waste minimization measures as stipulated in the E.C and should submit progress report to the Board once in 6 months. The plan of action on proposed waste minimization measures should be submitted to the Board within two months.

 The industry should maintain the following records and the same should be made available to the Board Officials during the inspection.

- a. Daily production details, RG-I records and Central Excise Returns.
- b. Quantity of Effluents generated and forced evaporated & effluents sent to CETP.
- c. Log Books for poliution control systems.
- d. Daily solid waste generated and disposed to TSDF.
- 20. The industry should notify to the MoE&F, Gol as per the explanatory note under impact Assessment Notification dt. 27.01.1994 issued under E(P) Act, 1986 regarding change of product mix on no increase of pollution load and should submit the compliance report to the Board within a month, failure to submit the same to the Board the consent order now issued will be valid for the only old products as consented by the Board vide order dated. 10.08.2005.
- 21. As per G.O.Rt.No.286, the industry should transport the industrial effluents and plying on the roads between 6 A.M. to 8 P.M. only.
- The industry should maintain the 6-Copy manifest system for transport of effluents to the 22 CETP.
- 23. The industry should submit mock drill report carried out at least once in siz months, as required under the Manufacture, Storage and Import of Hazardous Chemicals Rules, 1989.
- 24. The industry should establish AAQM stations where maximum GLCs are expected & should establish network of AAQM stations due co-onfination with other industries in the industrial cluster in consultation with Regional Officer of the Board.
- 25. The industry should explore monitoring of Hazardous Air Pollutants (HAP) & odorous compounds and should submit action plan to the Board within three months.
- 26. All the rules & regulations notified by Ministry of Law and Justice, Government of India regarding Public Liability Insurance Act, 1991 should be followed.
- 27. The applicant should submit Environment statement in Form V before 30th September of every year as per Rule No.14 of E(P) Rules, 1986 & amendments.
- 28. The industry should maintain the compliance conditions stipulated in CFE order dated 03.06.2010 issued by the Board,
- 29. Industry shall achieve zero ocour nuisance in the surroundings.
- 30. There shall not be any spillages / chemicals / effluents on ground. The drums containing chemicals & wastes shall be stored on elevated platform with a provision to collect leachate / spillages in the collection pit. In no case the drums shall be stored on the naked open ground.
- 31. The consolidated daily records on the details of the following shall be submitted to the Regional office of the Board on every month:
 - a. Effluent generated.
 - b. Quantity of treated effluents evaporated in the Forced Evaporation system.
 - c. Quantity of condensate generation & characteristics.
 - d. Quantity & characteristics of pretreated efficients.
 - e. Solid waste generation.
 - f. Effluents sent to PETL

32. Separate meters with necessary pipe-line should be provided for assessing the quantity of water used for each of the purposes mentioned below.

- a. Industrial cooling, boiler feed.
- b. Domestic purposes.
- c. Process, whereby water gets polluted and pollutants are easily bio degratiable.
- d. Processing, whereby water gets polluted and the pollutants are not easily bio degradable.
- 33. Rain water should not be allowed to mix with either trade or domestic effluents.
- 34. The industry shall install and operate the multi stage scrubber with online pH meter for scrubbing of process emissions at all emission sources. The details of chemicals consumption used in the scrubber shall be recorded & kept accessible for the inspecting officials of the Board. Industry shall control fugitive emissions by property maintaining chilled brine circulation, closed room operations and condensers with receivers,
- 35. The industry shall not send the spent / mixed solvents to the recyclers. They shall process the same at spivent recovery plant within the plant premises. Solvents shall be recovered to the maximum extent possible and shall be reused. 36. The evaporation losses in solvents should be controlled by taking the following measures:
 - - Chilled brine circulation to effectively reduce the solvent losses into the atmosphere. Ł ñ.
 - Transfer of solvents by using instead of manual handling. iii.
 - Closed centrifuges be used due to which solvent losses will be reduced drastically. iv.
 - The reactor vents connected with primary & secondary condensers to catch the v.
 - All the solvent storage tanks connected with vent condensers to prevent solvent

- 37. Solvent shall be taken from underground storage tanks to reactors through closed pipeline. Storage tanks shall be vented through trap received and condenser operated on chilled water.
- Proper earthling shall be provided in all the electrical equipment wherever solvent handling is done.
- 39. Thick green belt should be developed covering an area of minimum 33% of the total area, without disturbing existing green belt. Action plan to comply with this condition shall be submitted to the Board with in two months.
- 40. System of leak detection and repair of pump / pipeline shall be installed in the plant and immediate response team shall be identified for preventive maintenance.
- 41. The industry shall isolate the storage of highly inflammable chemicals solvents and other new materials from the rest of the facilities in the plant premises.
- 42. The industry should ensure implementation of requisite measures to prevent air pollution & odour nuisance in the surrounding area. If it is found any activity of the industry is causing odour nuisance & air pollution, this consent order now issued will be revoked without further intimation.
- 43. The industry should submit mock drift report carried out at least once in six months, as required under the Manufacture, Storage and Import of Hazardous Chemicals Rules, 1989.
- 44. The industry should comply with the Task Force directions issued from to time.
- 45. The industry should provide elevated platform with collection pit for storage of drams containing chemicals / solvents.
- 46. The industry should construct elevated lined platform with dyke wall and leachate collection sump for storage of solvent drums, raw material drums, waste drums etc. under shed. In no circumstances the drums should be stored on a naked open ground.
- 47. The industry shall provide all safety measures including fire fighting system.
- 48. The conditions are without prejudice to the rights and contentions of this Board in the Hon'ble Supreme Court of India.

SCHEDULE - C

[CONDITIONS OF AUTHORISATION FOR OCCUPIER OR OPERATOR HANDLING HAZARDOUS WASTES]

- The industry should give top priority for waste minimization and cleaner production practices.
- The industry should not store hazardous waste for more than 90 days as per the Hazardous Wastes (Management, Handling and Transboundary Movement) Rules, 2008 and amendments thereof.
- The industry should store Used / Waste Oil and Used Lead Acid Batteries in a secured way in their premises till its disposal.
- The industry should not dispose Waste cits to the traders and the same should be disposed to the authorized Reprocessors/ Recyclers.
- 5. The industry should dispose Used Lead Acid Batteries to the manufacturers / dealers on buyback basis.
- 6. The industry should not dispose spent solvents / mbad spent solvents to the traders.
- The industry should take necessary practical steps for prevention of oil spillages and carry over of oil from the premises.
- The industry should maintain 6 copy manifest system for transportation of waste generated and a copy should be submitted to Board Office and concerned Regional Office.
- The industry should maintain good house keeping & maintain proper records for Hazardous Wastes stated in Authorisation.

- 10. The industry should maintain proper records for Hazardous Wastes stated in Authorisation in FORM-3 i.e., quantity of Incinerable waste, land disposal waste, recyclable waste etc., and file annual returns in Form- 4 as per Rule 22(2) of the Hazardous Wastes (Management, Handling & Transboundary Movement) Rules, 2008 and amendments thereof.
- 11. The industry should submit the condition wise compliance report of the conditions stipulated in Schedule B & C of this Order on half yearly basis to Board Office, Hyderabad and concerned Regional Office.
- 12. The industry should dispose of e-waste to the authorised recyclers only.
- The industry should conform to the co-processing guidelines of CPCB in sending wastes to co-processing for cament plants.

Sđĺ-MEMBER SECRETARY

27017

To Ms. Synthokem Labs Pvt., Ltd., Unit-il, Plot No.222-224 & 235 - 237, Phase-II, IDA, Pashamallaram, Patancheru (M), Medak District - 602 319

G.F.B.O. //

Chief Environmental Engineer (FAC)

COMPLIANCE OF CFO

Enclosure - 9

COMPLIANCE REPORT FOR CONSENT FOR OPERATION OF M/S. SYNTHOKEM LABS PVT. LTD UNIT-II

S. No	CFO Conditions	Compliance
	SCHEDULE-A	
1 .	The applicant should make applications through online for renewal of Consent (under Water and Air Acts) and Authorization under HWM Rules at least 120 days before the date of expiry of this order, along with prescribed fee under water and air acts for obtaining Consent & HW Authorization of the Board along with detailed compliance to the conditions issued in this order.	Condition has been noted and following the same.
2	All the conditions stipulated in the Schedule – A of the earlier combined order of CFO No. APPCB/RCP/SRD/399/HO/CFO/2011-1147, dated 16-07-2011 remains same. The industry should ensure consistent compliance of each condition of Schedule –A.	Noted and followed
3	Any person aggrieved by an order made by the State Board under section 25, Section 26, Section27, of Water Act, 1974 or Section 21 of Air Act, 1981 may within thirty days from the date on which the order is communicated to him, prefer an appeal as per Andhra Pradesh Water Rules, 1976 and air Rules 1982, to such authority (hereinafter referred to as the Appellate Authority) constituted under Section 28 of the Water(Prevention and Control of Pollution)Act, 1974 and Section 31 of the Air (Prevention and Control of Pollution) Act, 1981	Noted
	SCHEDULE-B	
1	The industry should extend Bank Guarantee of Rs.10 lakhs submitted to the Board under JAP, for period upto 30.06.2015 immediately.	Will be submitted

ſ	2	The pre-treated offluents conding to have		
	-	PETI Patapohory abould not could	Noted and followed	
		Constituente in execce of the fellow of the		
		mentioned below		
Ĺ				
	ა	The industry should take steps to reduce	We will try to reduce and recycle the	-
1		water consumption to the extent possible and	effluent water to maximum possible	
		consumption should NOT exceed the	extent	
┝		quantities mentioned below.		
	4	The industry should file the water Cess returns	Will be followed	1
		in Form-I as required under section (5) of		
i		water (Prevention and Control of Pollution)		
		Cess Act, 1977 on or before the 5th of every		
		calendar month, showing the quantity of water		ĺ
		consumed in the previous month along with	· .	Ì
		water meter readings. The industry should		
		remit water Cess as per the assessment		
		orders as and when issued by Board.		ĺ
	5	The emissions should not contain constituents	Conditions will be followed	_
		in excess of the prescribed limits mentioned	Contraction with the followed	İ
		below		
ļ	6	The industry should comply with emission	Condition has been complied	-
ľ		limits for DG sets up to 800 KW as per the	- complete and been complete.	
		Notification G.S.R.520 (E), dated 01.07.2003		
		under the Environment (Protection)		
		Amendment Rules, 2003and G.S.R.448 (E)		1
ļ		dated 12.07.2004 under the Environment		
		(Protection) Second Amendment Rules, 2004.		Ĺ
		In case of DG sets more than 800 KW shall		
		comply with emission limits as per the		
ĺ		Notification G.S.R.489 (E), dated 09.07.2002		
		at serial no.96, under the Environment		
		(Protection) Act, 1986.		
	7	The industry should comply with ambient air	Ambient air quality standards	
		quality standards of PM10 (Particulate Matter	being maintained as montioned in	
	1	size less than $10\mu g$) $-100\mu g$ / m3; PM _{2.5}	the consent	
		(Particulate Matter size less than 2.5 ug) -		
		200 µg/ m3; SO ₂ -80 µg /m3; NOX -80 µg/m3.		
		outside the factory premises at the periphery		
		of the industry.		
		Standards for other parameters as mentioned		
		in the National Ambient Air Quality Standards		
		CPCB Notification No. B-29016/20/9/PCI-I		
		dated 18.11.209		
			i	

	Noise Levels: Day time –(6 AM to 10 PM) - 75 Db (A)	
÷	Night time-(10PM to 6PM)- 70 Db(A)	
8	The industry should not increase the capacity beyond the permitted capacity mentioned in this order, without obtaining CFE & CFO of the Board.	Condition will be complied
9	The industry should earmark an amount of Rs. 1.01 lakshs per annum for 10 years towards the enterprise Social Responsibility (ESR) activities. The industry should spend the amount and submit certificate from the District Collector regarding the utilization of the funds earmarked for ESR activities for this amount.	We will spend the amount for ESR activities
10	The industry should not operate 2 TPH coal fired boiler without CFE & CFO of the Board.	Noted
11	The industry should install Reverse Osmosis Plant for Low TDS effluents within two months.	We will install
12	Vide order dt.31.07.2007, the Board has directed your industry for implementation of Joint Action Plan accepted by the Hon'ble Supreme Court vide order dated. 17.07.2007 in W.P. (C) No. 441/2005, 476/2005 & batch of cases. The industry should explicitly comply with the directions given by the Board without any deviation from the Joint Action Plan accepted by the Hon'ble Supreme Court of India.	Noted
13	Inclusion of returns of the production details of other / their sister concern units in the existing industry's Excise Returns should not be permitted under any circumstances.	Condition has been complied
14	Trading of finished / semi finished products of OTHER INDUSTRIES and its inclusion in the existing industry's Excise Returns should not be permitted under any circumstances.	Condition has been complied
15	The returns of products manufactured and the Excise returns should reflect concurrently	Will be complied

16	The industry should install VOC analyzers with recording facility at all the strategic locations.	Will be installed and provided recording facility
17	The industry should provide & maintain flow meter with digital totalizer to quantify the effluents evaporating in MEE system and report the compliance to the R.O. of the Board.	Flow meters are provided and compliance report will be submitted to R.O
18	The industry should implement waste minimization measures as stipulated in the E.C. and should submit progress report to the Board once in 6 months. The plan of action on proposed waste minimization measures should be submitted to the Board within two months.	Waste minimization measures will be taken and submitted
19	The industry should maintain the following records and the same should be made available to the Board Officials during the inspection.	The following records will be maintained and available to the officials
	 a. Daily production details, RG-I records and Central Excise Returns. b. Quantity of Effluents generated and force evaporated c. Log Books for pollution control systems d. Daily solid waste generated and disposed to TSDE 	
20	The industry should notify to the MoE&F, Gol as per the explanatory note under Impact Assessment Notification dt. 27.01.1994 issued under E(P) Act, 1986 regarding change of product mix on no increase of pollution load and should submit the compliance report to the Board within a month, failure to submit the same to the Board the consent order now issued will be valid for the only old products as consented by the Board vide order dated. 10.08.2005.	Condition has been complied
21	As per G.O.Rt.No.286, the industry should transport the industrial effluents and plying on the roads between 6 A.M. to 6P.M. only.	Complied
22	The industry should maintain the 6-copy manifest system for transport of effluents	Will be maintained

	to the CETP.	
23	The industry should submit mock drill report carried out at least once in six months, as required under the Manufacture, Storage and Import of hazardous Chemicals Rules 1989	Mock drills will be conducted once in six months and submitted
24	The industry should establish AAQM stations where maximum GLCs are expected & should cluster in consultation with Regional Officer of the Board.	We will establish AAQM stations
25	The industry should explore monitoring of Hazardous Air Pollutants (HAP) & odorous compounds and should submit action plan to the Board within three months.	We will monitor of HAP & odorous compounds
26	All the rules & regulations notified by Ministry of Law and Justice, Government of India regarding Public Liability Insurance Act, 1991 should be followed.	Noted and followed
27	The applicant should submit Environment statement in Form V before 30 th September of every year as per Rule No. 14 of E (P) Rules, 1986 & amendments.	Noted
28	The industry should maintain the compliance conditions stipulated in CFE order dated 03.06.2010 issued by the Board.	Will be maintained
29	Industry shall achieve zero odour nuisance in the surroundings.	Complied
30	There shall not be any spillages/ chemicals/ effluents on ground. The drums containing chemicals & wastes shall be stored on elevated platform with a provision to collect leachate / spillages in the collection pit. In no case the drums shall be stored on the naked open ground	Provisions are provided for spillages/chemicals/effluents on ground.
31	 The consolidated daily records on the details of the following shall be submitted to the Regional office of the Board on every month: a. Effluent generated. b. Quantity of treated effluents evaporated in the Forced Evaporation system c. Quantity of condensate generation & characteristics. 	All records are will be maintained and submitted

	effluents	· · · · · · · · · · · · · · · · · · ·
	e. Solid waste generation	
	f. Effluents sent to PETL.	
32	Separate meters with necessary pipe-line should be provide for assessing the quantity of water used for each of the purposes mentioned below.	Separate water meters have been provided.
	 a. Industrial cooling, boiler feed. b. Domestic purposes. c. Processing, whereby water gets polluted and pollutants are easily biodegradable. d. Processing, whereby water gets polluted and pollutants are not easily biodegradable. 	
33	Rain water should not be allowed to mix with either trade or domestic effluents	Noted and followed
34	The industry shall install and operate the multi stage scrubber with online pH meter for scrubbing of process emissions at all emission sources. The details of chemicals consumption used in the scrubber shall be recorded & kept accessible for the inspecting officials of the Board. Industry shall control fugitive emissions by properly maintaining chilled brine circulation, closed room operations and condensers with receivers.	Installed and followed
35	The industry shall not send the spent / mixed solvents to the recyclers. They shall process the same at solvent recovery plant within the plant premises. Solvents shall be recovered to the maximum extent possible and shall be reused.	Solvents are will be recycled to the max.possible extent
36	 The evaporation losses in solvents should be controlled by taking the following measures. i. Chilled brine circulation to effectively reduce the solvent losses into the atmosphere ii. Transfer of solvents by using instead of manual handling. iii. Closed centrifuges be used due to which solvent losses will be reduced drastically iv. The reactor vents connected with 	All measures are will be taken for solvent evaporation losses

ſ ··		
	primary & secondary condensers to	
	catch the solvent vapours.	
	v. All the solvent storage tanks	1
	connected with vent condensers to	
	prevent solvent vapours.	
37	Solvent shall be taken from underground	Followed the condition
	storage tanks to reactors through closed	
	pipeline. Storage tanks shall be vented	
1	through trap received and condenser	
	operated on chilled water.	
38	Proper earthling shall be provided in all the	To all electrical
	electrical equipment wherever solvent	equipments,earthings are
	handling is done.	provided
39	Thick green belt should be developed	Green belt is developed and
	covering an area of minimum 33% of the	maintaining
	total area, without disturbing existing green	
	belt. Action plan to comply with this	
	condition shall be submitted to the Board	
	with in two months.	
40	System of leak detection and repair of	Preventive maintenance &Leak
	pump / pipeline shall be installed in the	detection system will be
	plant and immediate response team shall	developed
	be identified for preventive maintenance.	
41	The industry shall isolate the storage of	Storage facilities are provided for
	highly inflammable chemicals solvents and	highly inflammable chemicals
	other raw materials from the rest of the	solvents and other raw materials
	facilities in the plant premises.	
42	The industry should ensure	Condition is noted and will be
	implementation of requisite measures to	taken measures to prevent air
	prevent air pollution & odour nuisance in	pollution and odor nuisance in the
	the surrounding area. If it is found any	surrounding area
	activity of the industry is causing odour	
	nuisance & air pollution, this consent order	i
	now issued will be revoked without further	
	intimation.	
43	The industry should submit mock drill	Mock drills are will be conducted
	report carried out at least once in six	and submitted
	months, as required under the	
	Manufacture, Storage and import of	
	Hazardous Chemicals Rules, 1989.	
44	I ne industry should comply with the Task	VVIII be complied
	Force directions issued from to time.	
45	I ne industry should provide elevated	Provided elevated platforms with
	platform with collection pit for storage of	collection pit for storage of drums
	orums containing chemicals / solvents.	
46	ine industry should construct elevated	Provided elevated lined platform

	lined platform with duke wall and looghate	
	collection sump for storage of asheet	with dyke wall and leachate
	druma row material druma	collection sump for storage of
	drums, raw material drums, waste drums	drums and other raw materials
	etc. under shed. In no circumstances the	
	drums should be stored on a naked open	
	ground.	
47	The industry shall provide all safety	Safety measures and firefighting
	measures including fire fighting system	systems are provided
18	The conditions are without and if	
+0	The conditions are without prejudice to the	Condition noted
	rights and contentions of this Board in the	
	Hon'ble Supreme Court of India.	
	SCHEDULE-C	
1	The Industry shall give top priority for	Waste minimization will be given
	waste minimization and cleaner production	importance
	practices.	
2.	The industry shall not store hazardous	Condition will be followed
	waste for more than 90 days as per the	Soliditori Mil Do Ioliomed.
	Hazardous Wastes (Management	
	Handling and Transboundary Movement)	
	Rules 2008 and amondmente thereaf	
3	The Industry shall store Used Atlasta -its	
J.	me moustry shall store Used /waste ons	Condition will be followed.
	and Used Lead Acid Batteries in a secured	
	way in their premises till its disposal.	
4.	The industry shall not dispose Waste oils	Waste oils will be disposed to
	to the traders and the same shall be	authorized
1	disposed to the authorized	reprocessors/recyclers.
	Reprocessors/Recyclers.	
5.	The industry shall dispose Used Lead Acid	Used Lead Acid Batteries will be
	Batteries to the manufactures/ dealers on	disposed to the manufactures/
[buvback basis.	dealers on huvback basis
6.	The industry shall not dispose spent	We will not dispose eport
	solvents / mixed spent solvents to the	solvente (mixed epent solvente te
	tradere	solvents / mixed spent solvents to
	The industry shall take assesses as it at	the traders.
'	the industry shall take necessary practical	necessary steps will be taken for
	steps for prevention of oil spillages and	prevention of oil spillages and
	carryover of oil from the premises.	carryover of oil from the premises.
8	The industry shall maintain 6 copy	We are maintaining 6 copy
	manifest system for transportation of waste	manifest system.
	generated and a copy shall be submitted	
	to Board Office and concerned Regional	
ŀ	Office.	
9	The industry shall maintain good house	We are maintaining good
	keeping & maintain proper records for	housekeeping and proper recorde
]	Hazardous Wastee stated in	of bazardous wastes
	Authourisation	01 HAZAIUUUS WASIES.
10	The industry shall maintain answer 1	
<u></u>	The muusiry shall maintain proper records	Records will be maintained as

No. J-11011/ 75/2005 - IA II (i) Government of India Ministry of Environment & Forests I. A. Division

Plahujarai@vahoo.com Tel: 2436 3973 Paryavaran Bhawan. CGO Complex, Lodi Road, New Delhi - 110 003

Dated the July 14, 2005

The Authorised signatory M/s Synthokem Labs Private Limited Unit - II P.B.No. 1911, B-5, Industrial Estate, Sanathnager, Hyderabad-500018

Sub: Bulk Drug unit by M/s Synthokem Labs Private Limited Unit - II at village. Pashamylaram , Tehell Patancheru in District Medak in Andhra Pradesh -Environmental clearance - Reg.

Sir.

÷.-

. Sort A

cif.

12. 20 1.1

lite 🔬

ü

Τo

This has reference to your letter no. nli dated 03.05.2005 on the above subject along with EIA /EMP report, questionnaire and seeking environmental clearance for the above project under the Environmental Impact Assessment Notification, 1994.

The Ministry of Environment and Forests has examined your application along with EIA / EMP report. It is noted that the proposal is for environmental clearance of bulk drug 2.0. unit for manufacture of Norfloxacin 50 TPA, Ciprofloxacin 20 TPA, Omeprazole 1TPA, Didofenac Sodium 50 TPA, Cloxacillin, 25 TPA and Amproleum HCL 20 TPA. The unit is located in an area of 2.34 ha. in District Medak in Andhra Pradesh. Water requirement of 75m3/d will be met from the ground water and municipal sources. The solid waste generated in the form of process sludge (1.58 TPD), ETP sludge (0.04 TPD) and fly ash (0.002 TPD) will be sent to the TSDF of Hyderabad Waste Management Project at Dundigal. Solid waste is collected in polyethylene bags sent to the TSDF of Hyderabad. Waste Management Project at Dundigal. NOC from Andhra Pradesh Pollution Control Board was obtained on 3.5.1993. Public hearing panel has considered the project in the meeting heid on 13.4.2005. 1121 Cost of the Project is Rs. 2.90 crores.

The Ministry of Environment and Forests hereby accords environmental clearance to the above project under EIA Notification dated 27th January, 1994 as amended subsequently, subject to strict compliance of the following conditions:

SPECIFIC CONDITIONS.

The gaseous emissions (SOX, NOX, & HCl) particulate matter from various process units shall conform to the standards prescribed by the concerned authorities form time to time. At no time, the emission levels shall go beyond the stipulated standards. In the event of failure of pollution control system(s) adopted by the unit, the respective unit shall not be restarted until the control measures are rectified to achieve the desired efficiency.

Ambient air quality monitoring stations shall be set up in the downwind direction as well as where maximum ground level concentration are anticipated in consultation with the SPCB.

24

For control of particulate emissions, boilers shall be provided with cyclone separators and stack height as per Central Pollution Control Board guidelines.

Spent solvents shall be recovered as far as possible & recovery shall not be less than 95 percent. During purification process, solvent vapours are emitted from purification tanks as fugitive emissions. Action shall be taken to reduce the emission as far as possible. Use of toxic solvents like Methylene Chloride (M.C.) etc. shall be minimum. All venting equipment shall have vapour recovery system.

Industry shall switch over to aqueous based coating film in place of use of Methylene Chloride in coating operation, in a phased manner.

vi) Industry shall ewitch, over to use of non halogenated solvents in place of halogenated solvents in a phased manner.

The company shall undertake following. Waste Minimization measures :-

> Metering and control of quantities of active ingredients to minimize waste.

Reuse of by-products from the process as raw materials or as raw material substitutes in other processes.

> Use of automated filling to minimize splilage.

> Use of "Close Feed" system into batch reactors.

> Venting equipment through vapour recovery system.

> Use of high pressure hoses for equipment clearing to reduce wastewater generation.

(viii)

viil)

ii)

勖

iv)

v١

vii)

Fugitive emissions in the work zone environment, product, raw material storage area shall be regularly monitored. The emissions shall conform to the limits imposed by SPCB.

Effluent generation shall not exceed 65m3/d. The effluent shall be segregated into high TDS and iow TDS streams. The iow TDS effluent after primary treatment and meeting the norms shall be sent to CETP at Patancheru through tankers for further treatment. Due care shall be taken to prevent leakage of effluent while loading, unloading and transportation. Waste wate manifest system shall be provided along with every tanker for proper handling of effluent. The high TDS effluent shall be evaporated in Multiple Effect Evaporator. The condensate shall be given biological treatment. The concentrate shall be dried in evaporator. The salt obtained after drying shall be disposed into secured larid fill (TSDF) after packaging in HDPE bags. The domestic waste water shall be sent to the septic tank followed by the soak pit.

Solid waste generated from the process shall be sent to TSDF of M/s Hyderabad Waste Management Project at Dundigal. Bolier ash shall be sold to the brick manufacturers.

The company shall develop rainwater harvesting structures to harvest the run off water for recharge of ground water.

Green belt shall be provided in an area of 0.58 ha. to mitigate the effects of fugitive emissions all around the plant. Development of green belt shall be as per the Central Pollution Control Board guidelines.

Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.

The company shall undertake eco-development measures including community welfare measures in the project area for the overall improvement of the environment. The eco-development plan should be submitted to the APPCB within three months of receipt of this letter for approval.

GENERAL CONDITIONS

(X)

xii).

xiii)

R.

īŧ.

ÌV.

N.

vi.

وبر فكركتهم الأرمي أن

3. **2. 1** 2. 1

CONTRACTOR OF STREET

11.1

The project authorities shall strictly adhere to the stipulations made by the Andhra Pradesh State Pollution Control Board.

At no time, the emissions shall exceed the prescribed limits, in the event of failure of any pollution control system adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieved.

No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.

The project authorities shall strictly comply with the rules and regulations under Manufacture, Storage and Import of Hazardous Chemicals Rules, 1989. as amended in Odober, 1994 and January, 2000. Authorization from the SPCB shall be obtained for collection, treatment, storage, disposal of hazardous wastes.

The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Wastes (Management and Handling) Rules, 2003; Authorization from the State Pollution Control Board must be 'obtained for collections/treatment/storage/disposal of hazardous wastes.

The overall noise levels in and around the plant area shall be kept well within the standards (85 dBA) by providing noise control massures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels shall ponform to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989 viz. DBA (day time) and 70 dBA (night time).

The project proponent shall also comply with all the environmental protection . measures and safeguards recommended in the Environmental impact Assessment Notification, 1994 report . A separate Environmental Management Cell equipped with full fiedged isboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

The project authorities shall earmark separate funds to implement the conditions atjouisted by the Ministry of Environment and Forests as well as the State Government slong with the implementation schedule for all the conditions stipulated herein. The funds so provided shall not be diverted for any other purpose. 5

The implementation of the project vis-d-vis environmental action plans shall be monitored by Ministry's Regional Office et Bangalore/ SPCE/Central Poliution Control Board . A six fillificitity compliance status report shall be submitted to monitoring agencies.

The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance latter are available with the SPCB/Committee and may also be seen at Website of the Ministry at <u>http://envior.nic.in</u>. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernecular language of the locality concerned and a copy of the same shall be forwarded to the Ministry's Regional Office at Bangalors.

xii. The project authorities shall inform the Regional office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.

4.0. The Ministry may revoke or suspend the clearance, if implementation of any of the above conditions is not satisfactory.

5.0. The Ministry reserves the right to stipulate additional conditions, if found necessary. The company in a time bound manner will implement these conditions.

6.0. The above conditions will be enforced, inter alia under the provisions of Water(Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 Hazardous Wastes (Management and Handling) Rules, 2003 and the Public Liability Insurance Act, 1991 along with their amendments and rules.

10 1. 4. huiart Sinactor

ملهم

Yİ.

Copy to :-

- 1. The Secretary, State Deptt: of Environment, Government of Andhra Pradesh, Mantralaya, Hyderabad.
- 2. The Chairman, Central Pollution Control Board, Parivesh Bhavan, CBD-cum-Office Complex, East Arjun Nagar, Delhi-110032.
- 3. The Chairman, Andima Pradesh State Pollution Controls Board, 2nd Floor, HUDA Complex, Maitrivaram, S.R.Nagar, Hyderabad- 560 038.
- 4. The Chief Conservator of Forests (Central), Regional Office (SZ), Kendriya Sadan, Win Floor, E&F Wing, 17^{at} Main Road, Koramangala, Bangalore 560034.
- Floor, Edit VVIng, 1% Maintercood, Noralitaligata, pargonal Southern, CGO Complex, 5. JS(CCI-I), Ministry of Environment and Forests, Paryavaran Bhavan, CGO Complex, New Delhi-110003.
- New Demi- 110003. 6. Monitoring Cell, Ministry of Environment and Forests, Paryavaran Bhaven, CGO Complex, New Delhi- 110003.
- 7. Guard file.
- 8: Record file.

 (\mathbb{C})

9. Monitoring file.

(Dr. P. L. Ahujarai) Director

Room # 1070.

COMPLIANCE REPORT FOR ENVIRONMENTAL CLEARANCE REPORT

OF

M/S. SYNTHOKEM LABS PVT. LTD UNIT-II

S. No	EC Conditions	Compliance
Α.	Specific Conditions:	
i	The gaseous emissions (SO2, HCI, & NOx))	We will comply with emission
	particulate matter from various process units	standards stipulated by concerned
	shall conform to the standards prescribed by	authorities.
	the concerned authorities from time to time. At	
	no time, the emission levels shall go beyond	
	the stipulated standards In the event of failure	
	of pollution control system(s) adopted by the	
	unit, the respective unit shall not be restarted	
	until the control measures are rectified to	
	achieve the desired efficiency.	
II	Ambient air quality monitoring stations shall	vve will comply the same
	be set up in the downwind direction as well as	
	where maximum ground level concentration	
	are anticipated in consultation with the SPCB.	All the conditions will be followed by
111	For control of all emissions, the reactors shall	All the conditions will be followed by
	stacks of appropriate beight as per the Control	concerned authonties
	Pollution Control Roard guidelines The	
	scrubbod water after neutralization shall be	
	sent to CETP for further treatment. The	
	boilers shall be provided with cyclone	
	separator to control the particulate emission.	
	The company shall provide stack height as	
	per the Central Pollution Control Board	
	guidelines for the DG set and boilers.	
iv	Spent solvent shall be recovered as far as	All the spent solvents will be
	possible & recovery shall not be less than 95	recovered and recycled to the
	percent. During purification process, solvent	maximum possible extent
	vapours are emitted from purification tanks as	The venting systems having vapour
	fugitive emissions, Action shall be taken to	recovery by providing secondary
	reduce the emissions as far as possible. Use	condenser with chilled water.
	of toxic solvents like Methylene Chloride	
	(M.C) etc. shall be minimum. All venting	
	equipment shall have vapour recovery	
	system.	

V	Industry switch over to aqueous based	We will try to switch over where
	coating film In place of use Methylene	ever it is possible
	Chloride in coating operation and to non-	
	halogenated solvents in place of halogenated	
	solvents in a phased manner	
VI	Industry shall switch over to use of non	We try to avoid usage of
VI	halogonated solvents in place of halogonated	halogonated solvents
	nalogenaled solvents in place of halogenaled	nalogenated solvents
\/II	Solvents in a phased manner.	
VII	I ne company snall undertake following waste	vve will i try to implement waste
	Minimization measures	minimization measures as
	Metering and control of quantities of	mentioned by you
	active ingredients to minimize waste.	
	Reuse of by-products from the process	
	as raw materials or as raw material	
	substitutes in other processes.	
	\succ Use of automated filing to minimize	
	spillage.	
	> Use of Close Feed system into batch	
	reactors	
	> Venting equipment through vapour	
	recoverv system.	
	> Use of high pressure hoses for	
	equipment clearing to reduce	
	wastewater generation	
VIII	Fugitive emissions in the work zone	We will be monitored the the work
VIII	environment product raw material storage	zone environment product raw
	area shall be regularly manifered. The	material storage area on regular
	area shall be regularly monitored. The	hatenal storage area on regular
		pasis and will not be exceed the
\/!!!	by SPCD.	
VIII	Effluent generation shall not exceed 65 m ⁻ /d.	Effluents are segregated based on
	The effluent shall be segregated into high	the characteristics and treated as
	TDS and low TDS streams. The low TDS	per the procedure.
	effluent after primary treatment and meeting	
	the norms shall be sent to CETP at	
	Patancheru through tankers for further	
	treatment. Due care shall be taken to prevent	
	leakage of effluent while loading, unloading	
	and transportation. Waste water manifest	
	system shall be provided along with every	
	tanker for proper handling of effluent. The	
	high TDS effluent shall be evaporated in	
	Multiple Effect Evaporator The condensate	
	shall be treated in FTP. The salt obtained	
	after drying shall be disposed into secured	
	land fill (TSDF) after nackaging in HDPF	
	have The demostic waste water shall be sent	
	Days. The domestic waste water shall be sell	

	to the septic tank followed by the soak pit.	
IX	Solid waste generated from the process and	We will send the ETP sludge and
	ETP sludge shall be sent to TSDF of M/s	MEE salts to TSDF and Boiler ash
	Hyderabad Waste Management Project at	to Bick Manufacturing institutes.
	Dundigal. Boiler ash shall be sold to the brick	
	manufacturers.	
Х	The company shall develop rainwater	We will comply
	harvesting structures to harvest the run off	
	water for recharge of ground water.	
XI	Green belt shall be provided in an area of 4.2	We will comply
	ha. To mitigate the effects of fugitive	
	emissions all around the plant. Development	
	of green belt shall be as per the Central	
	Pollution Control Board guidelines.	
xii	Occupational health surveillance of the worker	We will comply
	shall be done on a regular basis and records	
	maintained as per the Factories Act.	
XIII	The Company shall undertake eco-	We will implement
	development measures including community	
	welfare measures in the project area for the	
	overall improvement of the environment. The	
	eco-development plan should be submitted to	
	the APPCB within three months of receipt of	
CENE		
GENER	The project outborition shall strictly adhere to	Ma will comply with Andhro
I	the stipulations made by the Andhra Dradeab	We will comply with Anunia Bradeab Ballution control board
	State Pollution Control Board	Stipulations
li	At no time, the emissions shall exceed the	We will not exceed the prescribed
	prescribed limits. In the event of failure of any	limits and we will operate pollution
	pollution control system adopted by the unit	control equipment continuously
	the unit shall be immediately put out of	
	operation and shall not be restarted until the	
	desired efficiency has been achieved.	
lii		
	No further expansion or modifications in the	We will follow as per the guidelines
	No further expansion or modifications in the plant shall be carried out without prior	We will follow as per the guidelines
	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and	We will follow as per the guidelines
	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in	We will follow as per the guidelines
	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to	We will follow as per the guidelines
	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference	We will follow as per the guidelines
	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the	We will follow as per the guidelines
	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add	We will follow as per the guidelines
	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures	We will follow as per the guidelines
	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.	We will follow as per the guidelines
Iv	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.	We will follow as per the guidelines We will comply

	Manufacture, Storage and Import of Hazardous Chemicals Rules, 1989 as amended in October, 1994 and January, 2000. Authorization from the SPCB shall be obtained for collection, treatment, storage, disposal of Hazardous wastes.	
	with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Wastes (Management and Handling) Rules, 2003. Authorization from the State Pollution Control Board must be obtained for collections/storage/disposal of hazardous wastes.	We will comply with Hazardous Wastes (Management and Handling) Rules, 2003
Vi	The overall noise levels in and around the plant area shall be kept well within the standards (85 Dba) by providing noise control measure including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels shall conform to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989 viz.DBA (day time) and 70 Dba (night time)	We will kept noise levels within the standards
Vii	The project proponent shall also comply with all the environmental protection measure and safeguards recommended in the Environmental Impact Assessment Notification, 1994 report.	We will implement and comply
Viii	A separate Environmental Management Cell equipped with full fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.	We will be comply
Ix	The project authorities shall earmark separate funds to implement the conditions stipulated by the Ministry of Environment and Forests as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so provided shall not be diverted for any other purpose.	We will allocate funds for Implementation of conditions stipulated by the MoEF and the State Government
X	The implementation of the project vis-à-vis environmental action plans shall be monitored by Ministry's Regional Office at Bangalore /SPCB/Central Pollution Control Board. A six monthly compliance status report shall be	Noted and we will comply

	submitted to monitoring agencies.	
Xi	The project proponent shall inform the public that project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB/Committee and may also be seen at Website of the Ministry at <u>http://envfor.nic.in</u> This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the Ministry's Regional Office at Bangalore.	Noted
Xii	The project authorities shall inform the Regional office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.	Complied
4.0	The ministry may revoke or suspend the clearance, if implementation of any of the above conditions is not satisfactory	Noted
5.0	The Ministry reserves the right to stipulate additional conditions, if found necessary The company in a time bound manner will implement these conditions.	Agreed
6.0	The above conditions will be enforced, inter alia under the provisions of the Water (Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 Hazardous Wastes (Management and Handling) Rules, 2003 and the Public Liability Insurance Act, 1991 along with their amendments and rules.	Noted

ENCLOSURE-12 001 0 50 RS 50R 400 FIFTYRURES ° 🏶 8. No. 4-7.761 DATE Smt. R. VIJAYA LAKSHMI

sto. WHO. Brown. La

for whom

Stamp Vender L.No. 5 1490, A.L.No. 30/2002

H.No 7-1-821/287 S.R Nagar.

L HYDERABAD-FOO 038

Shri M.Jayant Tagore, Managing Director of M/s.SYNTHOKEM LABS PRIVATE LIMITED, B-5, Industrial Estate; Sanathnagar, Hyderabad = 500 018, has purchased the immovable property specified below for a sum of Rs. 9000.000/- (Rupees Three Crores Ninty lacs only) at a sale by public auction held on 31st March, 2004 in execution of Certificate II R > No.450 of 2003 in O.A. No.1617 of 1999 dated 28.08.2003 issued by the Distribution Of Strategy Tribunal, Hyderabat for recovery of arrears from

GOVERNMENT OF INDIA MINISTRY OF FINANCE DEBTS RECOVERY TRIBUNAL Sth Floor, Triveni complex, Abids, HYDERABAD - 500'001.

> R.P.No.450 Of 2003 IN O.A.No.1617 of 1999

<u>CERTIFICATE OF SALE OF IMMOVABLE PROPERTY</u> (See Section 25 to 29 of Recovery of Debts Due to Banks and Financial Institutions Act, 1993 and See Rule 63(1) of the Second Schedule of the Income Tax Act, 1961)

Fiding Officer, Debts Receivery Tribunal, Hyderabad for recovery of arrears from 10th Contd...2. 5. M. HUSSAIN Resover, Officer, Donta ligen ery Libuard HYDERABAD For Synthokem Labs Pvt. Ltd. Managing Director

Ò) 100 Rs. 124-24-0017 Xry U. 1 £ Ϋ́, 5 H. ఆంద్ర ప్రదేశ్ ANDHRA PRADESI आध्र प्रदेश 00AA 700438 ite : 03-05-2004 Sertel No : 2 (ou inclused fly : For Whom : D.L.NNM BIARNIA SCLATE SURYANARAYANA SYNTHESSION LADS BY FETD Manager HYDERAHAD HYDRAMAD SR MALINE artinia ma

The full amount of the sale consideration has been paid on 15.04,2004. Accordingly the said sale is hereby confirmed.

DESCRIPTION OF IMMOVABLE PROPERTY

11

- FIL

All those pieces and parcels of lands admeasuring acres 5.78 Cents comprised in Survey Nos 219 to 246 and Plot Nos 222,223,224, 235, 236 and 237 situated at Pashamylaram, IDA Phase - II, Sanga Reddy Taluk, Medak District in the State of Andhra Pradesh togethar mildings, structures, erections and godowns and fixed plant, machinery strings and fixtures attached to the earth or permanently fastened to anything attached to the earth bounded as under-

S. M. THISSAN

Recovery Privar. Depts Becovery fillounal HYDERABAD.

¥,

5. 7.1.

 $V_{ij} u_j$

Contd 3 ...

50 Rs. 10 间方齿电 477 Ś. No Smt. R. VIJAYA LAKSHMI Stamp Vendor L.No. 51/99, R.L.No. 30/2002 5/0. W/or-9/ the second second H.No 7-1-821/287 S.R. Nagai, HYDERABAD FOD 035 FOR WHOM ٦. 化合体 :: 3 :: North : 18.3 Meters Wide Road South 18.3 Meters Wide Road East : 18:3 Meters Wide Road West : Plot No.221 and 238 Copy sent under Rule 21 of the Income Tax (Certificate Proceedings) Rules 1962 to the Registering Officer concerned (viz. Sub-Registrar at Sangareddy, Medak District at . Sangareddy Under the Indian Registration Act 1908 (Act XVI of 1908) within the local limits of whose jurisdiction the whole of the immovable property comprised in this certificate is situated. MAND AND THE SEAL OF THIS TRIBUNAL AT neiujau (S.M.HUSSAIN) A_{ec} RECOVERY OFFICER S. M. HELISAIN Resovery Deals Recovery Libras HYDERABA

आध्र प्रदश

1040

) Concerts Conce

అంద సదేశ్

96

Tto.

Ňo.,

ю,

ANDHRA PRADESH

સનમાન ગયત

们的

J)

191

03AA 015916

Stamp Vender L No. 51/90. P.F.H. 30/2002 H. No. 7-1-62//015 HYDERADAL

E NUNDRED RUPEES

GOVERNMENT OF INDIA MINISTRY OF FINANCE DEBTS RECOVERY TRIBUNAL HYDERABAD.

> R.P.No.450/2003 In O.A.No.1617 / 1999

ANNEXURE-I TO CERTIFICATE OF SALE OF IMMOVABLE PROPERTY

In continuation to our Certifecate of Sale of Immovable Property issued to M.Jayanth Tagore, M.D., M/s.Synthokem Labs Private Limited 10th Day of May,2004 we are furnishing hereunder break-up of the said Auction Sale Consideration relating to R.P.No.450/2003 in O.A.No.1617/1999.

Vehrof Land & Building : Rs. 167.00 Lakhs

liven under and hand and the seal of this Tribunal at Hyderabad on 5th July 2004.

P Hyderwood

(S.M.HUSSAIN) Begovery Officer, Renovery Officer, Buils Recovery Tribunat HYDERABAD.

 \mathcal{O}

100Rs.

Ì 100Rs. व्युक्त भाती 10 9 I RUPEES 2.5ANDHRA PRADESH 03AA 015917 ...6.9655 DATE . ÷ Smt. R. VIJAYA LAKSHM \$01.D TO Stemp Vandor L Na. 51/80. P L.Ma 30'2002 H.No. 7-1-62/787 5 P . Ma 30'2002 HYDERABAD - 100 2009 8 NLG. D F۹ we that P. GOVERNMENT OF INDIA MINISTRY OF PINANCE DEBTS RECOVERY TRIBUNAL HYDERABAD. R.P.No.450/2003 In O.A.No.1617 / 1999 ANNEXURE-II TO CERTIFICATE OF SALE OF IMMOVABLE PROPERTY In continuation to our Certifecate of Sals of Immovable Property issued to M.Jayanth Tagore, M.D., M/s.Synthokem Labs Private Limited 10th Day of May,2004 we are furnishing hereunder break up of the said Auction Sale Consideration relating to R.P.No.450/2003 in O.A.No.1617/1999. Value of Plant & Machinery - : Rs.223.00 Lakhs Debts sen under my hand and the seal of this Tribunal at Hyderabad on 5th July ,2004. (S.M.HUSSAIN) Robovery SHEAT Read dry Officer. Beels Resevery Tribunal HYUERABAD.

Section 1

\$

QCI - NARET Scheme for Accreditation of EIA Consultant Organizations

Annexure I-A

Name of the Consultant: Rightsource Industrial Solutions Pvt. Ltd.

2nd Floor, "Sri Laomi Srinivasa Nilayam", Plot No. 7, Road No. 1, Czech Colony, Santhnagar, Hyderabad - 500018

Sectors Approved -- 01 No.

şl	Sector	Name of Sector	Category
No.	No.		A/B
1	21	Synthetic organic chemicals industry (dyes & dye intermediates; but drugs and intermediates excluding drug formulations; synthetic rubbers; basic organic chemicals, other synthetic organic chemicals and chemical intermediates}	A

Total = 01 Sector*

*Sectors allocated to individual EIA Coordinators are mentioned in Annexure J-B

(Vipin Sahni) Director