
EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

E.1 INTRODUCTION

Good transportation systems are lifeline to the area they serve. Roads bring about all-round development in the region. A good road network helps in the success of all development activities, be it in the sphere of movement of people and goods, agriculture, commerce, education, health, and social welfare, or even maintenance of law and order and security.

Anantapur and Chittoor finds itself at crossroads. 40% of the land in the new state is in the Rayalseema region, which is a huge tract of land quite inhospitable for agriculture. Keeping this view in mind, the Govt. of Andhra Pradesh plans to develop the region by providing better infrastructure facilities and thus make this region a major potential hub for industrial development. In this regard, an access-controlled expressway is planned, in pursuance of connecting the new capital city of Amaravathi, to solve the development issues of Rayalaseema.

As part of this endeavor, the Roads and Buildings (R&B) Department of Andhra Pradesh, has been entrusted the ambitious work of *Preparation of Detailed Project Report for 4/6 Lane Access Controlled Green Field Expressway Connecting New Capital City Amaravathi to Ananthapuramu in the State of Andhra Pradesh through BOT/ EPC Basis* by the Govt. of Andhra Pradesh. R&B (NH&CRF), Govt. of AP (*herein after referred to as the "Client"*), has appointed M/s. Aarvee Associates Architects Engineers & Consultants Pvt. Ltd. (*herein after referred to as the "Consultant"*) to provide consultancy services for preparation of Detailed Project Report for the proposed expressway. The Agreement for consultancy services was signed on 04/04/2018. The current draft feasibility report has been prepared based on analysis of data derived from the surveys, observations made during site visits and in accordance with contractual stipulations.

E.2 SCOPE OF SERVICES

As per Terms of Reference (ToR), the project study consists of preparation of the following:

- · Initial traffic surveys and demand assessment
- Initial social impact assessment and assessment of land to be acquired
- Initial Environmental impact assessment

- Preparation of general arrangement drawings for Structures
- Preparation of Plan & Profile of the proposed road & pavement design
- Preparation of indicative BOQ and rough cost estimates
- Economic and Financial analysis of the project

E.3 PROJECT STRETCH

The proposed expressway connects the new capital city of Andhra Pradesh, Amaravathi with Ananthapuramu. The spinal corridor takes off from NH-44 near Maruru in Ananthapuramu district and ends at Pedaparimi near Sakhamuru, thereby crossing the Vijayawada IRR near Tadikonda and ORR near Velavarthipadu. Few fragments of proposed expressway pass through Nallamala Forest area. The expressway traverses across the districts of Ananthapuramu, Kurnool, Kadapa, Prakasam and Guntur. 6-lane road starts from Yadavalli which forms a single straight stretch to the state capital. The expressway is proposed to be designed as high-speed corridor by making it completely access-controlled.

Table-E.1: Details of Project Corridor

S.No.	Stretch	Length	Major Settlements Nearby	District(s)						
1	Ananthapuramu - Yadavalli (4 lane)	173 km	Narapala, Kadavakallu, Tadipatri, Allagadda, Giddalur, Yadavalli	Ananthapuramu, Kurnool, Prakasam						
2	Yadavalli - Amaravathi (6 lane)	211 km	Guddimetta, Cumbum, Dekanakonda, Nuzendla, Kommalapadu, Chilakaluripet, Nadendla, 113 Talluru, Medikonduru, Tadikonda	Prakasam, Guntur						
	Total Length of Expressway = 384 km									

EXECUTIVE SUMMARY

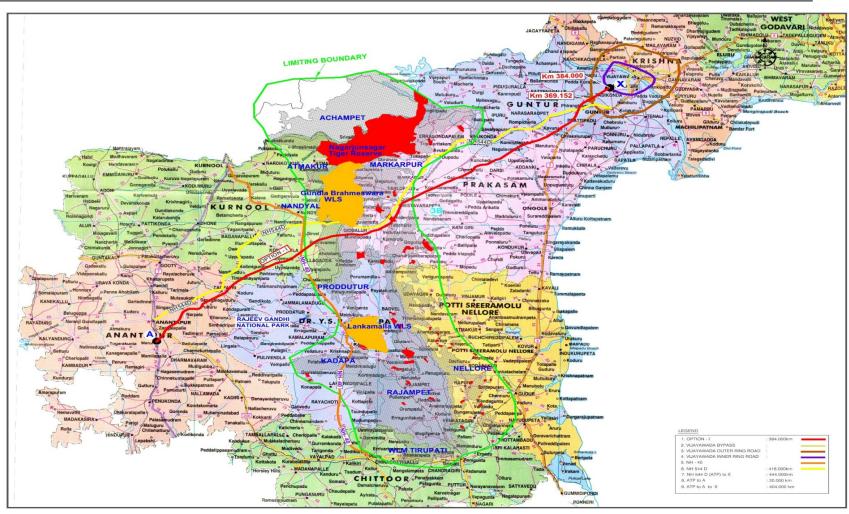


Figure E-1: Index Map of the Project Stretch

E.4 SALIENT FEATURES

The proposed Right of Way (RoW) for the project corridor is as shown in Table-E.2.

Table-E.2: Right of Way

S.No.	Alignment	Section	RoW
1	Maruru (Km 0.000) to Yadavalli (Km 184.270) (4 lane)	Ananthapuramu – Amaravathi Spinal	100 m
2	Yadavalli (Km 184.270) to Pedaparimi (Km 395.290) (6 lane)	Corridor	100 m

Terrain: The project corridor predominantly passes through plain terrain followed by hilly terrain and rolling terrain.

Landuse: The predominant land-use along the project corridor is agricultural followed by barren lands, forest area, Built-up area and others.

Settlements: 140 villages/ towns are found along the Ananthapuramu - Amaravati corridor

Forest/ Wild Life Sanctuaries: As already stated, section of the proposed expressway traverses for 33.10 km (Ananthapuramu – Amaravati section) in the forest area. Total length of road passing through forest land is approximately 33.10 km.

E.5 SURVEYS AND INVESTIGATIONS

The studies and investigations carried out during the feasibility study comprised mainly of the following:

- Topographic surveys using photogrammetry by Unmanned Aerial Vehicle (UAV)
- Traffic surveys *viz.*, Classified Traffic Volume Count, Axle Load, Origin Destination and Commodity Movement including collection of secondary data for traffic projections
- Collection and laboratory testing of soil samples from pits adjacent to the existing road
- Identification of borrow areas for different types of pavement and bridge construction material, collection of samples and their analysis
- Environmental baseline studies and Public Consultations

E.6 TRAFFIC STUDIES

Based on reconnaissance studies, the locations for conducting various traffic surveys were finalised. The traffic surveys *viz.*, Classified Traffic Volume Count, Axle Load, Origin Destination and Commodity Movement etc. including collection of secondary data for traffic projections were carried out in the month of May-2018. Secondary data was collected for the purpose of determining the Seasonal Variation Factors and Growth Rates at various count

stations for different vehicle categories. The identified locations for traffic surveys are given below:

- Location 1: NH-44 near Maruru between Anantapur & Bengaluru
- Location 2: NH-544D near Rotary Puram between Anantapur & Tadipatri
- Location 3: NH-67 near Ankireddy palli between Proddatur & Gooty
- Location 4: SH-57 near Atmakur between Kurnool & Doranala
- Location 5: NH-40 near Dupadu between Markapur & Macherla
- Location 6: NH-544D near Chilakaluripet between Guntur & Ongole
- Location 7: NH-544D near Phirangipuram between Narasaraopet & Guntur
- Location 8: NH-565 near Sattenapalle between Guntur & Piduguralla
- Location 9: NH-16 near Motu Junction between Porumamilla & Cumbum
- Location 10: NH-544D near Onipenta between Mydukur & Porumamilla
- Location 11: NH-40 near Ayalurmitta between Kadapa & Kurnool
- Location 12: NH-340C near Kanigiri between Markapur & Pamuru
- Location 13: NH-544D near Allur between Koilkuntla & Pulivendula
- Location 14: NH-40 near Vontimitta between Kadapa & Rajampet
- Location 15: SH-34 near Kaza between Vijayawada & Guntur

E.6.1 Annual Average Daily Traffic (AADT)

The Average Daily Traffic volumes of different types of vehicles were assessed from Origin - Destination survey and the AADT figures were calculated after applying seasonal correction factors for different types of vehicles (diesel / petrol) for the month of May. AADT values for different sections are given in *Table E.3*.

E.6.2 Vehicle Damage Factor

The VDF values observed for the diverted traffic for different types of vehicles are given in **Table E.4**.

E.6.3 Traffic Growth Rates

Traffic growth rates are an important parameter for projecting the traffic for the design life of pavement. The projected traffic, in turn, will form the basis for capacity assessment, pavement design, and economic and financial viability analysis. Growth rates adopted for different types of vehicles are given in *Table E.5*.

Table E.3: Average Annual Daily Traffic

Sur	vey Location	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Stretch	Anantapur - Bengaluru	Anantapur – Tadipatri	Proddatur – Gooty	Kurnool – Doranala	Markapur – Macherla	Guntur – Ongole	Narasaraopet - Guntur	Guntur – Piduguralla	Porumamilla – Cumbum	Mydukur – Porumamilla	Kadapa – Kurnool	Markapur – Pamuru	Koilkuntla – Pulivendula	Kadapa – Rajampet	Vijayawada - Guntur
	Total Traffic	12530	9012	6899	4895	8928	23756	18314	18396	4249	6830	12842	7376	2860	10290	55077
Volume	Tollable Traffic	8251	3056	2821	1583	3989	13476	6055	6552	1445	1977	6713	1896	941	6649	25932
	Total Traffic	17982	10165	12038	5272	11721	34051	17972	19281	4979	7731	18679	8060	3522	17676	63477
PCU	Tollable Traffic	15242	5819	7200	2766	8497	27670	10537	11938	3266	3993	14429	3345	2005	14027	46593

Table E.4: Vehicle Damage Factors

Survey Location	1	1 2		2	3 4		4	7		9		10		11		
Vehicle Type	Towards Anantapur	Towards Bengaluru	Towards Anantapur	Towards Tadipatri	Towards Proddatur	Towards Gooty	Towards Kurnool	Towards Doranala	Towards Narasaraopet	Towards Guntur	Towards Porumamilla	Towards	Towards Mydukur	Towards Porumamilla	Towards Kadapa	Towards Kurnool
LCV	1.141	0.810	0.29	0.48	0.33	0.28	1.419	0.194	0.122	0.793	0.229	0.682	1.076	0.366	1.221	1.587
2 Axle	2.030	1.875	2.59	1.14	3.02	2.42	2.008	2.755	1.853	2.383	4.214	1.860	3.280	2.891	1.746	2.158
3 Axle	3.795	3.326	5.79	2.18	5.67	6.20	3.779	6.920	4.643	5.778	5.852	3.904	4.597	3.048	4.053	3.519
MAV	7.184	6.349	6.99	2.73	7.53	7.35	7.297	7.384	5.621	4.233	7.280	6.513	6.680	4.407	7.145	7.228

Table E.5: Recommended Traffic Growth Rates

S.No.	Period	Car (W)	Car (Y)	Truck (2A)	Truck (3A, MAV)	Bus	Mini Bus
1	2018-2020	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%
2	2021-2025	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%
3	2026-2030	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%
4	2031-2035	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%
5	2036-2040	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%
6	2040-2045	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%
7	2045-2050	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%
8	2050-2052	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%

E.6.4 Traffic Assignment on Project Corridor

The proposed expressway is assumed to come into operation in the year 2022. It is expected that due to construction of access controlled expressway, traffic on existing roads will completely utilize the facility. The entire project stretch has been divided into 21 homogenous traffic sections based on entry and exit points in the form of interchanges proposed. The entry/ exit points along the project stretch have been chosen at such locations where possible diversion of existing traffic is expected on to the proposed expressway from National/ State Highways/ MDRs.

- Leg 1: Stretch from Maruru to Kandakur (Anantapur Dist.)
- Leg 2: Stretch from Kandakur to Chamaluru (Anantapur Dist.)
- Leg 3: Stretch from Chamaluru to Hussainpuram (Anantapur Dist.)
- Leg 4: Stretch from Hussainpuram to Boyala Tadipatri (Anantapur & Kurnool Dist.)
- Leg 5: Stretch from Boyala Tadipatri to Allur (Kurnool Dist.)
- Leg 6: Stretch from Allur to Nallagatla (Kurnool Dist.)
- Leg 7: Stretch from Nallagatla to Chinna Kambaloor (Kurnool & Prakasam Dist.)
- Leg 8: Stretch from Chinna Kambaloor to Yadavalli (Prakasam Dist.)
- Leg 9: Stretch from Yadavalli to Nekunambadu (Prakasam Dist.)
- Leg 10: Stretch from Nekunambadu to Kethagudipi (Prakasam Dist.)
- Leg 11: Stretch from Kethagudipi to Gudipadu (Prakasam Dist.)
- Leg 12: Stretch from Gudipadu to Kunduru (West) (Prakasam Dist.)
- Leg 13: Stretch from Kunduru (West) to Komalapadu (Prakasam Dist.)
- Leg 14: Stretch from Komalapadu to Kavuru (Prakasam & Guntur Dist.)
- Leg 15: Stretch from Kavuru to Medikonduru (Guntur Dist.)
- Leg 16: Stretch from Medikonduru to Velavarthipadu (Guntur Dist.)

- Leg 17: Stretch from Velavarthipadu to Tadikonda (Guntur Dist.)
- Leg 18: Stretch from Tadikonda to Pedaparimi (Guntur Dist.)

Figure E-2: Section (leg) wise break up of Project Stretch

Table-E.6: Potential Divertible Traffic on Proposed Expressway in the year 2018 (Legs 1 to 11)

Vehicle Mode	Leg 1	Leg 2	Leg 3	Leg 4	Leg 5	Leg 6	Leg 7	Leg 8	Leg 9	Leg 10	Leg 11
Car	2463	2469	2576	1515	1513	1513	1317	1512	2605	2579	3230
Bus	278	278	278	512	512	512	377	447	753	767	785
Mini Bus	13	13	16	27	27	27	11	5	15	16	19
Tata Magic	0	0	0	0	0	0	0	1	1	1	2
LCV	451	485	492	425	428	427	415	408	669	677	702
2 Axle	420	420	427	378	377	374	343	382	549	549	562
3 Axle	716	717	743	944	1000	1002	876	686	961	955	1028
Multi Axle	1491	1503	1490	1455	1513	1492	1325	1380	1900	1845	1944

Vehicle Mode	Leg 1	Leg 2	Leg 3	Leg 4	Leg 5	Leg 6	Leg 7	Leg 8	Leg 9	Leg 10	Leg 11
Mini LCV	302	286	300	390	415	415	381	381	608	605	663
Total (Vehicles)	6134	6171	6322	5646	5785	5762	5045	5202	8061	7994	8935
Total (PCU)	14414	14512	14688	14634	15088	14989	13089	13270	19581	19341	20852

Table-E.7: Potential Divertible Traffic on Proposed Expressway in the year 2018 (Legs 12 to 21)

Vehicle Mode	Leg 12	Leg 13	Leg 14	Leg 15	Leg 16	Leg 17	Leg 18
Car	3238	3171	3246	3205	3055	1868	1736
Bus	949	978	974	958	862	569	524
Mini Bus	20	20	20	20	19	12	8
Tata Magic	2	2	2	2	2	2	2
LCV	733	749	775	959	796	689	604
2 Axle	615	647	656	755	599	270	240
3 Axle	1041	1039	1054	1094	933	445	313
Multi Axle	1972	1902	1907	1908	1700	730	592
Mini LCV	719	693	684	685	621	305	254
Total (Vehicles)	9289	9201	9318	9586	8587	4890	4273
Total (PCU)	21779	21572	21759	22368	19734	10366	8807

E.6.5 Projected Traffic Volumes

The anticipated and projected traffic volumes on the project road (including developmental traffic) are given in *Tables E.8* and *E.9* considering the growth rates shown in *Table E.5*.

Table-E.8: Projected Traffic on Project Corridor (Legs 1 to 10)

	- m													
					raffic Volume	e (No.)								
Year	Leg 1	Leg 2	Leg 3	Leg 4	Leg 5	Leg 6	Leg 7	Leg 8	Leg 9	Leg 10				
2018	6134	6171	6322	5646	5785	5762	5045	5202	8061	7994				
2020	6763	6804	6970	6225	6378	6353	5562	5735	8887	8813				
2025	11854	11907	12120	10987	11363	11330	10323	10545	15334	15239				
2030	17460	17527	17799	16221	16834	16791	15505	15789	22456	22334				
2035	24804	24888	25237	23323	24003	23949	22307	22670	31775	31620				
2040	28688	28797	29241	26899	27668	27598	25503	25966	36881	36685				
2045	33648	33786	34352	31465	32345	32256	29582	30173	43399	43147				
2050	39977	40154	40876	37289	38315	38201	34788	35543	51717	51395				
2052	42973	43169	43965	40048	41141	41016	37253	38085	55655	55301				
					PCUs									
Year	Leg 1	Leg 2	Leg 3	Leg 4	Leg 5	Leg 6	Leg 7	Leg 8	Leg 9	Leg 10				
2018	14413	14511	14687	14633	15086	14987	13088	13269	19579	19340				
2020	15890	15998	16192	16132	16632	16523	14429	14629	21586	21322				
2025	34776	34915	35166	34274	35725	35586	32915	33170	45498	45162				
2030	54873	55049	55367	53637	56086	55904	52493	52822	71051	70618				
2035	81372	81593	82005	80245	82916	82685	78332	78751	104700	104151				
2040	90500	90786	91306	89516	92471	92178	86622	87157	117102	116403				
2045	102152	102517	103179	101346	104669	104294	97203	97888	132932	132037				
2050	117023	117487	118334	116439	120237	119757	110708	111578	153134	151991				
2052	124062	124576	125511	123590	127608	127075	117101	118062	162700	161439				

Table-E.9: Projected Traffic on Project Corridor (Legs 11 to 21)

	Traffic Volume (No.)												
Year	Leg 11	Leg 12	Leg 13	Leg 14	Leg 15	Leg 16	Leg 17	Leg 18					
2018	8935	9289	9201	9318	9586	8587	4890	2537					
2020	9851	10241	10144	10273	10569	9467	5391	2797					
2025	16561	17061	16937	17103	17479	16072	6885	3574					
2030	24022	24659	24501	24712	25193	23396	8786	4561					

CONSULTANCY SERVICES FOR PREPARATION OF DETAILED PROJECT REPORT OF 4/6 LANE ACCESS CONTROLLED GREEN FIELD EXPRESSWAY CONNECTING NEW CAPITAL CITY AMARAVATHI TO ANANTHAPURAMU WITH CONNECTIVITY TO KURNOOL AND KADAPA IN THE STATE OF ANDHRA PRADESH THROUGH BOT/ EPC BASIS

DRAFT FEASIBILITY REPORT EXECUTIVE SUMMARY

2035	33774	34548	34346	34615	35230	32937	11214	5820
2040	39433	40431	40175	40519	41302	38375	14312	7428
2045	46656	47941	47613	48052	49051	45316	18266	9481
2050	55873	57525	57105	57667	58942	54175	23311	12100
2052	60238	62063	61601	62220	63625	58369	25701	13340
				PCUs				
Year	Leg 11	Leg 12	Leg 13	Leg 14	Leg 15	Leg 16	Leg 17	Leg 18
2018	20850	21778	21571	21758	22368	19733	10364	7069
2020	22987	24010	23781	23988	24660	21755	11426	7794
2025	47282	48589	48299	48566	49421	45711	14593	9958
2030	73327	74995	74622	74963	76057	71316	18619	12707
2035	107606	109557	109083	109516	110915	104866	23767	16214
2040	120811	123351	122745	123301	125083	117360	30331	20694
2045	137664	140957	140185	140890	143165	133310	38711	26413
2050	159176	163425	162436	163340	166243	153668	49404	33707
2052	169359	174064	172974	173973	177171	163305	54466	37161

E.6.6 Capacity Standards

The leg-wise projected traffic volume on the project stretch is compared against respective capacities and the year during which the projected volume reaches its capacity is given in *Table E.10*. The Project Highway needs to be designed for a level of service 'B' as per the capacity manual IRC:64.

Table-E.10: Capacity Calculations (including developmental traffic)

S.No.	Section/	Traffic in Year 2018	Year attain capa			aining 6 apacity		ning 8 lane acity
3.140.	Leg	(PCU)	Year	PCU	Year	PCU	Year	PCU
1	Leg 1	14413	2034	60452	2043	97150	2053	127851
2	Leg 2	14511	2034	60664	2043	97477	2053	128389
3	Leg 3	14687	2034	61054	2043	98080	-	-
4	Leg 4	14633	2034	59306	2044	98742	-	-
5	Leg 5	15086	2034	61924	2042	96998	2052	127608
6	Leg 6	14987	2034	61703	2042	96671	2052	127075
7	Leg 7	13088	2034	57560	2045	97203	-	-
8	Leg 8	13269	2034	57959	2045	97888	-	-
9	Leg 9	19579	2029	51436	2034	78629	2044	129449
10	Leg 10	19350	2029	51025	2034	78105	2044	128598
11	Leg 11	20850	2029	53603	2034	81395	2043	130428
12	Leg 12	21778	2029	55195	2034	83425	2042	129881
13	Leg 13	21571	2029	54843	2034	82971	2042	129216
14	Leg 14	21758	2029	55164	2034	83386	2042	129827
15	Leg 15	22368	2029	56208	2034	84715	2041	128355
16	Leg 16	19733	2029	51693	2034	78954	2044	129802
17	Leg 17	10364	-	-	-	-	-	-
18	Leg 18	7069	-	-	ı	-	-	-

It can be observed from the above table that most sections attain 4 lane and 6 lane capacities in longer runs once the expressway comes into operation.

E.7 TYPICAL CROSS SECTION

Based on traffic considerations, geometric standards and existing site condition, the following parameters for cross sections have been proposed for different sections of the project road.

- TCS 01: Undivided 4 Lane with paved shoulder in Plain and Rolling Terrain
 - Main Carriageway = 2x7.50 m
 - Depressed Median including edge strip = 22.50 m
 - Paved Shoulder = 2x3.0 m
 - Earthen Shoulder on outer edges = 2x2.0 m
 - Drain = 2x2.50 m
 - Utility Corridor = 2x2.0 m
- ii. TCS 02: Undivided 4 Lane with paved shoulder in Cut Section
 - Main Carriageway = 2x7.50 m
 - Depressed Median including edge strip = 22.50 m
 - Paved Shoulder = 2x3.0 m
 - Earthen Shoulder on outer edges = 2x2.0 m
 - Drain = 2x2.50 m
 - Utility Corridor = 2x2.0 m
- iii. TCS 03: Undivided 6 Lane with paved shoulder in Plain and Rolling Terrain
 - Main Carriageway = 2x11.25 m
 - Depressed Median including edge strip = 15.00 m
 - Paved Shoulder = 2x3.0 m
 - Earthen Shoulder on outer edges = 2x2.0 m
 - Drain = 2x2.50 m
 - Utility Corridor = 2x2.0 m
- iv. TCS 04: Undivided Tunnel Cross Section (Twin Tube)
 - Main Carriageway = 2x11.25 m
 - Shyness = 2x0.75 m
 - Spacing between Tunnel Tubes = 35.00 m
 - Paved Shoulder = 2x3.0 m
 - Delineator Railing = 2x0.5 m
 - Footway cum Drain = 2x1.20 m
 - Walkway cum Utility Duct including railing = 2x1.00 m
- v. TCS 05: Undivided 6 Lane with paved shoulder in Forest Cut Section
 - Main Carriageway = 2x11.25 m
 - Depressed Median including edge strip = 38.50 m
 - Paved Shoulder = 2x3.0 m

- Earthen Shoulder on outer edges = 2x2.0 m
- Drain = 2x2.50 m
- Prefabricated Sheets = 2 No. of 3.0m Height
- vi. TCS 06: Undivided 6 Lane with paved shoulder in Forest Section
 - Main Carriageway = 2x11.25 m
 - Depressed Median including edge strip = 38.50 m
 - Paved Shoulder = 2x3.0 m
 - Earthen Shoulder on outer edges = 2x2.0 m
 - Drain = 2x2.50 m
- vii. TCS 07: Divided 4 Lane with paved shoulder
 - Main Carriageway = 2x7.0 m
 - Raised Median including Shyness = 5.0 m
 - Paved Shoulder = 2x1.50 m
 - Earthen Shoulder = 2x2.0 m
 - Utility Corridor = 2x3.0 m
- viii. **TCS 08**: 2 Lane with paved shoulder for Ramps
 - Main Carriageway = 7.50 m
 - Paved Shoulder = 2x1.00 m
 - Earthen Shoulder = 2x1.0 m

E.8 DESIGN OF STRUCTURES

The summary of proposed structures is given in *Table E.11*.

Table-E.11: Proposed Structures

S.No.	Туре	Ananthapuramu - Amaravati Spinal Corridor
1	Box Culverts (No.)	623
2	Major Bridges (No.)	35
3	Minor Bridges (No.)	220
4	VOPs / VUPs/ LVUPs (No.)	111
5	ROBs (No.)	5
6	Tunnels Length (km)	8.38
7	Viaduct Length (km)	7.33
8	Interchange (No.)	18

At all major NH/SH crossings along the project stretch, Interchanges are proposed to permit traffic from crossing roads to pass through the junction without directly interfering with the traffic stream of Expressway.

Table-E.12: Proposed Interchanges

S.No.	Design Chainage (Km)	Type of Structure	Type of crossing road	Corridor
1	0.505	Trumpet	NH-44	Main Line
2	8.340	Partial Cloverleaf	NH-42	Main Line
3	32.327	Partial Cloverleaf	SH-128	Main Line
4	63.615	Partial Cloverleaf	NH-67	Main Line
5	84.637	Partial Cloverleaf	SH-57	Main Line
6	106.231	Partial Cloverleaf	SH-28	Main Line
7	125.024	Partial Cloverleaf	NH-18	Main Line
8	184.250	Partial Cloverleaf	NH-544D	Main Line
9	207.800	Partial Cloverleaf	SH-53	Main Line
10	234.850	Partial Cloverleaf	NH-565	Main Line
11	257.500	Partial Cloverleaf	SH-54	Main Line
12	286.500	Partial Cloverleaf	SH-51	Main Line
13	312.840	Partial Cloverleaf	SH-2	Main Line
14	336.000	Partial Cloverleaf	SH-45	Main Line
15	355.560	Partial Cloverleaf	SH-50	Main Line
16	365.300	Partial Cloverleaf	SH-2	Main Line
17	369.150	Partial Cloverleaf	ORR	Main Line
18	389.100	Partial Cloverleaf	IRR	Main Line

E.9 PAVEMENT DESIGN

The Preliminary Pavement design is done for both flexible and rigid options. The flexible pavement is designed as per IRC: 37-2012. The rigid pavement is designed using IRC:58-2015 and CMA methods. The Sub grade CBR for the new carriage way is considered 10%. Sub grade thickness of 500 mm is considered for both flexible and rigid pavement options.

E.9.1 Flexible Pavement Design

Table-E.13: Flexible Pavement Design (20 years design period)

Stretch	MSA	BC (mm)	DBM (mm)	Granular Base (mm)	Granular Subbase (mm)	Sub Grade (mm)	Total (mm)
Main Line (Leg 1 to Leg 7)	111	50	115	250	200	500	1115
Main Line (Leg 8 to Leg 18)	138	50	125	250	200	500	1125

E.9.2 Rigid Pavement Design

Table-E.14: Rigid Pavement Design

S. No.	Item	Rigid Pavement design with Tied Concrete shoulders
1	PQC of M40 grade, mm	320
2	DLC of M15 grade, mm	150
3	GSB, mm	200
4	Dia. of Dowel bar, mm	38
5	Length of Dowel bar, mm	500
6	Spacing of Dowel bar, mm	300
7	Dia. of Tie bar, mm (Plain bars)	12
8	Length of tie bar, mm	640
9	Spacing of tie bar, mm	560

E.10 TOLL BOOTHS

As closed tolling is proposed to be adopted, toll booths are proposed at all entry/ exit points of loops and ramps of interchanges. The proposed locations of toll booths are given below.

Table-E.15: List of Toll Booths

S.No.	Design Chainage (Km)	Location	Corridor	Remarks	
1	0.505	Maruru	Main Line		
2	8.340	Kandukuru	Main Line	Toll Booths on Loop and Ramps	
3	32.327	Chamalaru	Main Line		
4	63.615	Hussenapuram	Main Line		
5	84.637	Nandipadu	Main Line	Toll Booths on Loop	

S.No.	Design Chainage (Km)	Location	Corridor	Remarks	
6	106.231	Allur	Main Line	and Ramps	
7	125.024	Nallagatla	Main Line		
8	184.250	Daddavada	Main Line		
9	207.800	Nekunambad	Main Line		
10	234.850	Kethagudipi	Main Line	Toll Booths on Loop	
11	257.500	Gudipadu	Main Line	and Ramps '	
12	286.500	Nuzendla	Main Line		
13	312.840	Komalapadu	Main Line		
14	336.000	Kavuru	Main Line		
15	355.560	Vemavaram	Main Line	Toll Booths on Loop and Ramps	
16	365.300	Medikonduru	Main Line	and Hamps	
17	369.150	Velavarthipadu	Main Line		
18	389.100	Tadikonda	Main Line	Toll Booths on Loop and Ramps	

E.11 Road Cum Air Strip

In accordance with the recent guidelines proposed by the Ministry, Road-cum-Air strip is proposed which would be used both as a runway as well as a highway. The road would be closed for traffic at the time of landing and take-off of aero planes.

Table-E.16: Airstrip Details

S.No	Description Details		
1	Location of Runway	Km 127.000 to Km 130.000	
2	Location	Chilakaloor (Rudravaram Mandal)	
3	Basic Runway Length	3000m	
4	Runway Width	60m	
5	Stabilised Shoulder	7.5m on either side of runway	
6	Clear Zone length	150m	
7	Effective Runway Gradient	0.3%	

DRAFT FEASIBILITY REPORT

EXECUTIVE SUMMARY

E.12 INITIAL ENVIRONMENTAL IMPACT ASSESSMENT

The Environmental Impact Assessment (EIA) is aimed at determining the environmental impacts due to the construction and operation of the project road. The major environmental disciplines in the EIA study include topography and land use, soil and agriculture, geology and seismicity, water quality, climate and meteorology, air quality, noise level, terrestrial and aquatic ecology. The initial environmental impact assessment is presented in detail in Chapter 10 of Main Report.

E.13 INITIAL SOCIAL IMPACT ASSESSMENT

The main objective of conducting social screening is to provide inputs of social concerns to be detailed in project design and to avoid or minimize the adverse social impacts with the best possible engineering solutions at minimum cost in close coordination between engineering, environmental and social experts during the entire design process. The social screening exercise is intended to assess the negative impacts (direct, indirect or cumulative) and to suggest mitigating measures to avoid or at least minimize the adverse impacts on nearby communities and natural environment, peoples and properties falling on the direct path of road development, people indirectly affected by the way of disruption of livelihood, breakage in community linkages, impacts arising from land acquisition and resettlement etc. The initial social impact assessment is presented in detail in Chapter 11 of Main Report.

E.14 COST ESTIMATE

The cost estimation for the project is extremely important as the viability and implementation of a project depends on the project cost. Therefore, cost estimates have been carried out with due care. Estimation of preliminary cost, a primary pre-requisite for economic and financial evaluation, has been carried out for construction of new bridges, cross drainage structures, road furniture, bus bays, rest areas, toll plazas etc.

Based on the improvement options considered, the quantities are worked out for the adopted Flexible pavement design based on the traffic data and other design criteria. The analysis of rates was carried out as per the Standard Data Book of MORT&H. The rates of materials were obtained from the SSR of Andhra Pradesh (2018-19). Market rates were adopted for items for which the rates were not available in SSR.

The quantities of earthwork in cut and fill are calculated based on the highway design. The pavement quantities like sub-grade, GSB, WMM, DBM and BC are computed using the pavement design and the typical cross sections adopted. Adequate provision is made for road side furniture including safety devices and miscellaneous items. Estimated cost for construction of proposed expressway for the roadway network configuration of four/ six lane is **Rs. 21888.36 Cr.**

Table E-17: Abstract of Cost Estimate

Total Cost (Rs.)						
Item Description	Main Line	Kadapa Spur	Kurnool Spur			
BILL NO: 1 - SITE CLEARANCE	129,251,226	25,782,656	7,204,066			
BILL NO: 2 - EARTHWORKS	61,799,123,259	6,632,378,563	1,255,525,415			
BILL NO: 3 - SUB-BASE AND BASE COURSES	15,513,271,787	2,028,806,547	799,087,685			
BILL NO: 4 - BITUMINOUS WORKS	18,047,005,901	2,236,347,026	666,091,036			
BILL NO: 5 - CULVERTS	5,172,183,877	739,986,621	193,372,841			
BILL NO: 6 - BRIDGES	19,925,817,494	3,188,882,030	1,211,897,334			
BILL NO: 6A - TUNNEL	20,250,000,000	14,875,000,000	-			
BILL NO: 6B - VIADUCTS	15,551,250,000	10,333,125,000	-			
BILL NO: 7 - DRAINAGE AND PROTECTION WORKS	12,133,359,169	1,989,485,785	1,071,887,657			
BILL NO: 8 - ROAD JUNCTIONS	-	-	-			
BILL NO: 9 - TRAFFIC SIGNS, MARKINGS AND APPURTENANCES	267,850,780	61,808,547	17,055,720			
BILL NO: 10 - MISCELLANEOUS	2,237,487,175	413,725,760	109,562,026			
Total Construction Cost	171,026,600,668	42,525,328,535	5,331,683,780			
Length of the proposed road (Kms)	395.29	88.62	21.15			
Construction Cost in Crores per Km	43.27	47.99	25.21			

