Annexure-I

List of Products

Sr. No	Name of Products	Total MTPM
(A)	Dyes Intermediates	
1.	CHLORANIL	150
2.	OAP	
3.	PAP	
4.	МАР	
5.	OAPSA	
6.	Metanilic Acid	
7.	6 Chloro Metanilic Acid	
8.	4 CAP	
9.	4 CAPSA	
10.	4 NAP	
11.	5 NAP (5 NITRO 2 AMINO PHENOL)	
12.	6 NAPSA	
13.	4 NAPSA	
14.	6 CAPSA	
15.	2 PYRIDONE	
16.	1:3 Phenyl Methyl 5 Pyrazolone (PMP)	
17.	1 : 4 Sulpho Phenyl 3 Methyl 5 Pyrazolone (1:4 SPMP)	
18.	2:5 Dichloro 4 Sulpho Phenyl 3 Methyl 5 Pyrazolone (2:5 DCSPMP)	
19.	2 Chloro 5 Sulphophenyl 3 Methyl 5 Pyrazolone (2, 5 C	
20.	1,3 Sulpho Phenyl 3 Methyl 5 Pyrazolone (1:3 SPMP)	
21.	2 Chloro Phenyl Methyl 5 Pyrazolone	
22.	P.T. Phenyl Methyl 5 Pyrazolone	
(B)	Dyes	
*	Acid Dyes	100
1.	Acid Yellow 79	
2.	Acid Yellow 151	
3.	Acid Yellow 49	
4.	Acid Yellow 99	
5.	Acid Yellow 194	
6.	Acid Yellow 220	
7.	Acid Yellow 232	
8.	Acid Brown 75	
9.	Acid Brown 165	
10.	Acid Brown 161	
11.	Acid Brown 282	
12.	Acid Brown 432	
13.	Acid Brown 425	
14.	Acid Brown 432	

Sr.	Name of Products	Total
No		МТРМ
15.	Acid Green 16	
16.	Acid Blue 9	
17.	Acid Blue 15	
18.	Acid Blue 7	
19.	Acid Blue 113	
20.	Acid Blue 193	
21.	Acid Red 315	
22.	Acid Black 107	
*	Direct Dyes	
23.	Direct Black 80	
24.	Direct Yellow 11	
25.	Direct Brown 44	
26.	Direct Blue 71	
27.	Direct Orange 118	
28.	Direct Red 239	
29.	Direct Red 254	
30.	Direct Violet 35	
31.	Direct Red 81	
32.	Direct Violet 9	
33.	Direct Yellow 99	
34.	Direct Black 19	
*	Reactive Dyes	
35.	Reactive Blue 198	
36.	Reactive Blue 187	
37.	Reactive Blue 220	
38.	Reactive Blue 221	
*	Basic Dyes	50
39.	Basic Brown 1	
40.	Basic Yellow 2	
41.	Basic Violet 1 Crystal	
42.	Basic Green 4 Crystal	
43.	Basic Green 1 Crystal	
44.	Basic Blue 26 Crystal	
*	Basic Dyes Liquid	100
45.	Basic Yellow 2	
46.	Basic Violet 1	
47.	Basic Green 4	
48.	Basic Green 1	
49.	Basic Blue 26	
	Total	400

	List of Raw Material		
Sr. no	Product name	Raw Material Name	Quantity MT/MT
Dve	s Intermediates]	
1	Chloranil	HCI 30% (SPENT)	1.000
		Hydro quinone	0.450
		Chlorine Gas	1.136
2	OAP (Ortho Amino	ONCB	1.480
	Phenol)	Caustic Lye	0.850
		H2 Gas	0.060
		Catalyst	0.004
		HCI	0.040
3	PAP (Para Amino	PNCB	1.480
	Phenol)	Caustic Lye	0.850
		H2 Gas	0.060
		Catalyst	0.004
		HCI	0.040
4	MAP (Meta Amino	Metanilic Acid	1.590
	Phenol)	NaOH	0.750
	Outha Amina Dhanal	Catalyst	0.004
5	Ortho Amino Phenol	OAP	0.580
	Sulphonic Acid (OAPSA)	H2SO4	0.520
6	Metanilic Acid	Oleum 23% Nitro benzene	0.425
0	Metalline Aciu	Oleum (25%)	0.425
		H_2SO_4	0.520
		HCI (30%)	0.100
		Iron Powder	0.100
7	6 Chloro Metanilic Acid	ONCB	0.920
,		H ₂ SO ₄	0.520
		Oleum	0.425
		Iron Powder	0.125
		HCI	0.100
8	4-Chloro 2-Amino	2:5 DCNB	1.350
-	Phenol (4 CAP)	Caustic	0.300
		Iron powder	0.125
		HCI	0.100
9	4 Chloro-2-Amino	4 CAP	0.650
	Phenol 5-Sulphonic	Sulphuric Acid	0.520
	Acid (4 CAPSA)	Oleum	0.425
10	4 NAP	NaSH	0.515
		Lime	0.220
		2:4 DNCB	1.400
		NaOH	0.300
11	5 NAP	OAP	0.725
		Acetic Anhydride	0.675

	1		0.450
		HNO ₃	0.450
		H ₂ SO4	0.850
		H2 Gas	0.080
12	6 NAPSA	OAP	0.470
		Oleum (23%)	0.800
		HNO ₃	0.270
		H ₂ SO4	0.550
13	4 NAPSA	Lime	0.220
		NaSH	0.515
		4 Nitro Chloro Benzene	0.700
		Oleum	0.800
		HNO3	0.270
		H2SO4	0.550
14	6 CAPSA	2 Chloro Phenol	0.580
		Oleum	0.800
		HNO ₃	0.270
		H2SO4	0.550
		Iron Powder	0.125
		HCI	0.100
15	2 Pyridone	Mono Ethyl Amine	0.400
		Methyl Cyno Acetate	0.525
		Methyl Aceto Acetate Ester	0.660
		H ₂ SO ₄	3.600
16	1:3 Phenyl Methyl 5	Aniline	0.435
	Pyrazolone (PMP)	HCI	4.700
		NaNO2	0.330
		Sodium Bi Sulphite	1.160
		Soda Ash	1.550
		Methyl Aceto acetate ester	0.525
17	1,4 Sulpho Phenyl-3-	Sulfanlic Acid	0.536
	Methyl-5-Pyrazolone	HCI	3.142
	(1:4 SPMP)	NaNO2	0.218
		SBS	0.804
		Soda Ash	1.035
		Methyl Aceto Acetate Ester	0.347
18	2,5 Dichloro 4 Sulfo	2,5 Dichlror Aniline	0.500
	Phenyl 3 Methyl 5	HCI	1.607
	Pyrazolone (DCSPMP)	NaNO2	0.221
		SBS	0.696
		Soda Ash	0.500
		Caustic Soda Lye	0.714
		Methyl Aceto Acetate Ester	0.339
19	2 Chloro 5	6 Chloro Metanilic Acid	0.750
	Sulphophenyl 3 Methyl	HCI	2.400
	5 Pyrazolone	NaNO2	0.265
		SBS	1.150

	1	Codo Ash	0.050
		Soda Ash	0.850
		Caustic Soda Lye	0.450
		Methyl Aceto Acetate Ester	0.420
20	1, 3 Sulpho Phenyl 3	Metanilic Acid	0.536
	Methyl 5 Pyrazolone	HCI	2.140
	(1:3 SPMP)	NaNO2	0.217
		SBS	0.800
		Soda Ash	1.035
		Methyl Aceto Acetate Ester	0.346
21	2 Chloro Phenyl 3	Ortho Chloro Aniline	0.500
	Methyl 5 Pyrazolone	HCI	2.980
		Sodium nitrite	0.275
		Sodium Bi Sulphite	0.972
		Soda Ash	1.311
		Methyl Acetoacetic Ester	0.410
22	Para Toluene Phenyl	Para Toludine	0.415
	Methyl 5 Pyrazolone	HCI	2.950
		NaNO2	0.270
		Sodium Bi Sulphite	0.965
		Soda Ash	1.300
		Methyl Acetoacetic Ester	0.435
Acid	d Dyes	<u> </u>	
1	Acid Yellow 79	DAP ESTER	0.400
		H ₂ SO4	0.540
		Soda ash	0.250
		5-Amino-3- methyl-1-(3-	0.390
		sulfophenyl) pyrazole	01050
		Caustic flakes	0.060
		Common Salt	0.650
2	Acid Yellow 151	OPSAmide	0.500
		Hydrochloric Acid	0.112
		Sodium Nitrite	0.184
		Aceto Acetanilide	0.483
		Caustic Lye	0.210
		Soda Ash	0.250
		Cobalt Sulphate	0.415
		Common Salt	0.650
3	Acid Yellow 49	2, 5 Dichloro Sulfanilic Acid	0.500
		HCI	0.800
		Sodium Nitrite	0.155
		5-Amino PMP	0.400
		Common Salt	0.775
4	Acid Yellow 99	4 NAPSA	0.285
1		HCI	0.110
		Nitrite	0.085
		Acetoacetinilide	0.222
	<u> </u>	Caustic Flakes	0.052

		Cada Aab	0.125
		Soda Ash	0.135
		Salicylic Acid	0.185
		BCS	0.380
		Caustic Flakes	0.145
		Common Salt	0.550
5	Acid Yellow 194	4-NAPSA diazo	0.550
		HCI	0.430
		sodium nitrite	0.165
		Acetoacetanilide	0.435
		Caustic Lye	0.100
		Cobalt Sulphate, 20%	0.325
6	Acid Yellow 220	Anthranilic OAPSA	0.500
		HCI	0.087
		Nitrite	0.112
		O Cl Acetoacetinilide	0.350
		Caustic Flakes	0.070
		Soda Ash	0.240
		Cobalt Sulfate	0.230
		BCS	0.050
7	Acid Yellow 232	5 Sulfo Anthranilic Acid	0.233
		Hydrochloric Acid	0.125
		Sodium Nitrite	0.160
		1-Phenyl 3 Methyl 5	0.410
		Pyrozolone	
		Soda Ash	0.250
		Salicylic Acid	0.040
		Basic Chromium Sulfate	0.400
		Sulphuric Acid	0.136
8	Acid Brown 75	Picramic acid	0.192
		Hydrochloric acid	0.675
		Sodium Nitrite	0.095
		Caustic lye	0.090
		Resorcinol	0.096
		H-Acid	0.278
		Soda ash	0.346
		Sodium nitrite	0.170
		PNA	0.113
		Common Salt	0.550
9	Acid Brown 165	Picramic acid	0.192
		Hydrochloric acid	0.675
		Sodium Nitrite	0.265
1		Caustic lye	0.090
		Resorcinol	0.096
		H-Acid	0.278
		Soda ash	0.346
		PNA	0.113
		Ferrous Sulphate	0.260

			
		Common Salt	0.550
10	Acid Brown 161	Anthranilic acid	0.190
		Sulphuric acid	0.190
		Formaldehyde	0.080
		Nitrite	0.100
		Resorcinol	0.170
		Caustic Flakes	0.200
		Aniline 2,4 SO3H	0.190
		HCI	0.180
		Sodium Nitrite	0.090
		Soda Ash	0.350
		Salicylic Acid	0.050
		B.C.S	0.200
11	Acid Brown 282	6-Nitro	0.200
		Beta Napthol	0.100
		Caustik Flakes	0.100
		Salicylic Acid	0.065
		B.C.S.	0.180
		4NAP	0.175
		HCI	0.033
		Nitrite	0.095
		PMP	0.200
12	Acid Brown - 432	Anthranilic Acid	0.180
12	Acid Diowii - 452	HCI	0.130
		Nitrite	0.210
		Resorcinol	0.180
		Soda Ash	0.330
		Laurent Acid	0.300
		Salicylic Acid	0.160
		Chromium Fluoride	0.160
		Liquid Ammonia	0.300
10		Caustic Flakes	0.030
13	Acid Brown 425	Anthranilic acid	0.149
		HCI	0.115
		Nitrite	0.150
		Resorcinol	0.117
		Soda Ash	0.330
		0.T. 5 SA.	0.220
		Salicylic Acid	0.105
		B.C.S.	0.320
		Caustic Flakes	0.035
14	Acid Brown - 434	Sodium Picramate	0.267
		HCI	0.645
		Nitrite	0.070
		Resorcinol	0.096
		1,6 cleave acid	0.205
		Sodium Nitrite	0.060

			
		Caustic Lye	0.135
		Ferrous Sulphate	0.260
		Common Salt	0.550
15	Acid Green 16	Di Methyl Aniline	0.600
		Formaldehyde	0.220
		Sulphanilic Acid	0.010
		Soda Ash	1.030
		MnO2	0.400
		Napthaline	0.400
		Sulphuric Acid	1.050
		Oleum	0.450
		NapthaleneDisulphonic Acid	0.750
		Sodium dichromate	0.110
		Oxalic Acid	0.160
		Common Salt	0.650
16	Acid Blue 9	Ethyl Benzyl Aniline Sulphonic Acid	0.750
		Ortho Benzaldehyde sulphonic Acid	0.275
		H2SO4	0.600
		Soda Ash	0.400
		HCI	0.750
		MNO2	0.150
		Acetic Acid	0.300
		Common Salt	0.800
17	Acid Blue 15	Ethyl Benzyl Aniline Sulphonic Acid	1.090
		Di Ethyl meta Toludine	0.210
		H2SO4	0.600
		SODA ASH	0.400
		HCI	0.750
		MNO2	0.150
		Acetic Acid	0.300
		Common Salt	0.800
18	Acid Blue 7	Benzaldehyde Disulfonic Acid	0.330
		Ethyl benzyl aniline	0.380
		H ₂ SO ₄	0.600
		Soda Ash	0.150
		HCI	0.350
		MNO ₂	0.150
		Soda Ash	0.250
		HCI	0.400
		Acetic Acid	0.300
		Common Salt	0.800
19	Acid Blue 113	Metanillic Acid	0.300
		HCI	0.120
		Sodium Nitrite	0.070
<u> </u>			0.070

		Alpha Napthyl Amine	0.240
		Nitrite	0.050
		H2SO4	0.250
		Caustic Flakes	0.200
		Phenyl peri Acid	0.490
		Soda Ash	0.200
		Sodium Acetate	0.300
		Common Salt	0.800
20	Acid Blue 193	B Napthol	0.350
20		Caustic Lye	0.245
		1,2,4 Diazo	0.690
		Salicylic Acid	0.050
		BCS	0.240
21	Acid Red 315	4 NAPSA	0.225
~ 1		HCI	0.250
		Nitrite	0.136
		PMP	0.320
		Caustic Flakes	0.200
		Salacylic Acid	0.040
		BCS	0.350
		5 NAP	0.138
22	Acid Black 107	6 Nitro	0.480
		Beta Napthol	0.120
		Caustic Flakes	0.300
		Salacylic Acid	0.045
		ChromuimFormate	0.400
		Sodium Picramate	0.200
		HCI	0.250
		Nitrite	0.080
		Beta Napthol	0.245
Dire	ect Dyes	nn	
23	Direct Black 80	P- amino acetanilide	0.145
		Sodium Nitrite	0.315
		HCI	0.750
		Gamma Acid	0.430
		Soda Ash	0.790
		Caustic soda	0.215
		Mixed cleves acid	0.195
		Common Salt	0.550
24	Direct Yellow 11	PNTOSA	0.600
		Caustic lye	0.215
		Spent H2SO4 (70%)	0.500
		Common Salt	0.650
25	Direct Brown 44	MPD	0.405
		Sodium Nitrite	0.258
		HCI	0.400
		Sulphanilic Acid	0.300

			0.220
26	Direct Blue 71	CS Lye	0.220
26	Direct Blue 71	C-Acid	0.165
		HCI	0.700
		Sodium Nitrite	0.445
		Alpha Napthyl Amine	0.170
		Caustic Flake	0.080
		Mix Cleave Acid	0.330
		J acid	0.250
		Caustic Lye	0.060
27	Direct Orange 118	O - Toludine 5 Sulphonic Acid	0.250
		HCI	0.375
		Sodium Nitrite	0.095
		Sodium bi-carbonate	0.050
		J-Acid Urea	0.350
		Common Salt	0.650
28	Direct Red 239	Browner's acid	0.250
		caustic lye	0.100
		Sodium Nitrite	0.095
		HCI	0.550
		J-Acid Urea	0.292
		Sodium Bi Carbonate	0.250
29	Direct Red 254	PAABSA	0.400
		Sodium Nitrite	0.100
		Soda ash	0.300
		HCI	0.550
		J-Acid	0.350
		caustic soda lye	0.150
30	Direct Violet 35	C-Acid	0.330
		HCI	0.700
		Sodium Nitrite	0.294
		p-Cresidine	0.150
		Soda Ash	0.100
		n-Phenyl J-Acid	0.327
		Caustic lye, 48%	0.300
31	Direct Red 81	PAABSA	0.350
		HCI	0.300
		Caustic lye 48%	0.260
		Na2CO3	0.200
		Benzyl Chloride	0.100
			0.150
		Sodium Acetate J acid	0.180
		Common Salt	0.280
22	Direct Vielet 0		
32	Direct Violet 9	Sulphanilic acid	0.180
		HCI	1.000
		Sodium Nitrite	0.294
		p-Cresidine	0.150
		SodaAsh	0.075

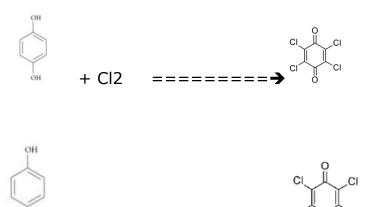
		n Dhanyd 1 Asid	0.227
		n-Phenyl J-Acid	0.327
		Caustic lye, 48%	0.148
33	Direct Yellow 99	DNSDA	0.550
		Para anisidine	0.245
		Caustic lye	0.157
		HCI	0.260
		Salt	0.500
34	Direct Black 19	PNA	0.210
		HCI	1.080
		Sodium Nitrite	0.180
		H acid	0.245
		Soda Ash	0.185
		Sodium Nitrite	0.180
		MPD	0.155
		SD-40	0.020
	ctive Dyes	- H	
35	Reactive Blue 198	Cyanuric Chloride	0.220
		Soda ash	0.150
		Tamol	0.010
		Aniline 2:4 DSA	0.320
		Soda Bi Carb	0.120
		Blue HEGN-Base	0.400
		HCI	0.120
		Dicamol	0.045
36	REACTIVE BLUE 187	EtheyleneDiamine	0.250
		PNCBOSA	0.230
		HCI	0.800
		HCI	0.315
		Sodium sulphite	0.085
		Chloronail	0.175
		Sodium bicarbonate	0.160
		Sulphuric Acid	0.650
		Oleum	0.300
		Ammonium persulphate	0.150
		Cyanuric Chloride	0.200
		Aniline 2,5 disulphuric acid	0.260
		Nicotinic acid	0.250
		Dicamol	0.055
		Dedusting Oil	0.025
37	Reactive blue 220	Sulpho OAVS	0.650
		HCI	0.325
			0 1 2 0
1		Sodium Nitrite	0.130
		Sodium Nitrite CS Lye	0.130
		CS Lye	0.125 0.004
		CS Lye Sulphamic acid	0.125

		Soda Bi Carbonate	0.195
		Dicamol	0.070
		SD-40	0.030
38	REACTIVE BLUE 221	6-Acetyl OAPSA	0.250
50		CS Lye	0.055
		HCI	0.800
		Sodium nitrite	0.070
		Sulphamic acid	0.002
		Sodium acetate	0.120
		soda ash	0.335
		4-Sulpho Hydrazone	0.350
		Copper sulphate	0.250
		CS Flakes	0.350
		Salt	0.120
		Cyanuric Chloride	0.150
		Tamol	0.020
		N-Ethyl MBE	0.220
		Soda Bi Carb	0.130
		Dicamol	0.055
Bas	sic Dyes	Dicamor	01000
39	Basic Brown 1	MPD	0.215
		HCI	0.750
		Nitrite	0.300
		MPD	0.430
		Caustic Flakes	0.050
		Common Salt	0.450
40	Basic Yellow 2	Di Methyl Aniline	0.833
		Formaline	0.313
		H ₂ SO ₄	0.100
		T G UREA	1.030
		SULPHUR	0.110
		Common Salt	0.450
41	Basic Violet 1 Crystal	Di Methyl Aniline	0.670
		Para Formaldehyde	0.110
		Mono Ethyl Aniline	0.330
		Catalyst	0.050
		Acetic Acid	0.800
		Caustic Soda	1.000
		HCI	0.330
42	Basic Green 4 Crystal	Di Methyl Aniline	0.800
	- ,	Benzaldehyde	0.360
		HCI	0.360
		Acetic Acid	0.600
		Catalyst	0.040
		Ethyl Cellulose	0.080
		Caustic Soda	0.750
		Oxalic Acid	0.600

43	Basic Green 1 Crystal	Di Ethylaniline	1.000
-5		Benzaldehyde	0.330
		Acetic Acid	1.460
		Catalyst	0.050
		Caustic Soda	0.800
		H2SO4	0.600
44	Racic Rlug 26 Crystal	Di Methyl Aniline	0.450
44	Basic Blue 26 Crystal	Para Formaldehyde	0.075
		Phenyl Alpha naphthalamine	0.415
		Acetic Acid	0.413
			0.020
		Catalyst	
		Caustic Soda H2SO4	1.000
45	Pagia Vallow 2 Liquid		
45	Basic Yellow 2 Liquid	Di Methyl Aniline	0.270
		Formaline	0.100
		H ₂ SO ₄	0.050
		Acetic Acid	0.225
		Glycerine	0.033
		T G Urea	0.335
		Sulphur	0.035
			0.000
46	Basic Violet 1 Liquid	Di Methyl Aniline	0.330
		Para Formaldehyde	0.050
		Mono Ethyl Aniline	0.170
		Catalyst	0.020
		Acetic Acid	0.450
47	Basic Green 4 Liquid	Di Methyl Aniline	0.330
		Benzaldehyde	0.150
		HCI	0.150
		Acetic Acid	0.300
		Catalyst	0.020
		Ethyl Cellulose	0.030
48	Basic Green 1 Liquid	Di Ethylaniline	0.330
		Benzaldehyde	0.110
		Urea	0.040
		Acetic Acid	0.500
		Catalyst	0.020
49	Basic Blue 26 Liquid	Di Methyl Aniline	0.240
		Para Formaldehyde	0.040
		Phenyl Alpha naphthalamine	0.220
		Acetic Acid	0.500
		Catalyst	0.020

Annexure-II

Manufacturing Process


(A) Dye Intermediates

1. Chloranil

Manufacturing Process:

Hydroquinone and HCL (30%) are charged in the reactor, Mixture is heated up to 70° C. Reaction mixture is cooled down to the 30° C, and sent to Agitated Notch filter, filtered mass is washed by water, mother liquor sent ETP. Wet Cake is dried to obtain finished product.

Chemical Reaction:

Mass Balance:

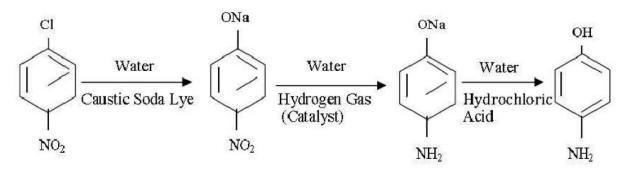
+ Cl2

	Mass Balance of Chloranil							
INPUT	KG			OUTPUT	KG			
HCI 30% (SPENT) Hydro quinone Chlorin Gas	1000 · 450 · 1136 ·	*	Chlorination	→ HCI Gas	370			
Water	250		Nutch Filter	→ Effluent	616			
			Drying	→ Drying loss → Chloranil	850 1000			
Total	2836				2836			

2. ORTHO AMINO PHENOL (OAP)

Manufacturing Process:

Take Ortho Nitro Chloro Benzene (ONCB), water, caustic flakes and heat the mass to bring the pressure up to 3 atmospheres.ONCB gets converted into Ortho Nitro Phenol (ONP). Remove the product by layer separation.Take ONP in hydrogenator, remove oxygen through flushing of N_2 gas and after that pass H_2 gas at temperature 80°C and 8 to 10 kg pressure in presence of Catalyst.ONP gets converted into Para Amino Phenol (PAP). Distill out the product and wash and centrifuge for final packing and dispatch.

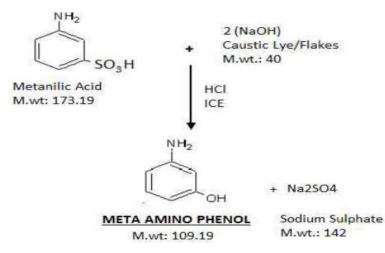

	Mass Balan	ce of	f OAP (Ortho Am	ino Phenol)	
INPUT	KG			OUTPUT	KG
ONCB Caustic Lye Water	1480		Hydrolysis		
H2 Gas Catalyst	60	→	↓ Hydrogenation		
			Clarification	← Catalyst for reuse	4
HCI Water	40		Precipitaion & Filteration	→ Waste Water	5070
			Drying & packing	→ Drying loss → Ortho Amino Phenol	890 1000
Total	6964				6964

3. PARA AMINO PHENOL (PAP)

Manufacturing Process:

Take Para Nitro Chloro Benzene (PNCB), water, caustic flakes and heat the mass to bring thepressure upto 3 atmospheres.PNCB gets converted into Para Nitro Phenol (PNP). Remove the product by layer separation.Take PNP in hydrogenator, remove oxygen through flushing of N_2 gas and after that pass H_2 gas at temperature 80°C and 8 to 10 kg pressure in presence of Catalyst.PNP gets converted into Para Amino Phenol (PAP). Distill out the product and wash and centrifuge for final packing and dispatch.

Chemical Reaction:


	Mass Balar	nce of PAP (Para Amir	no Phenol)	
INPUT	KG		OUTPUT	KG
PNCB	1480	→		
Caustic Lye Water	850 — 2500 —	→ Hydrolysis		
H2 Gas Catalyst	60 <u> </u>	→ Hydrogenation		
		Clarification	> Catalyst	4
HCl Water	40	 Precicpitation & Filteration 	──► Waste Water	5020
		Drying & packing	→ Drying loss → Para Amino Phenol	940 1000
Total	6964	pucking		6964

4. META AMINO PHENOL (MAP)

Manufacturing Process:

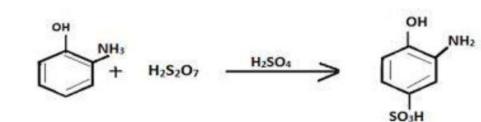
Charge in vessel caustic lye/flakes, Metanilic acid Powder/Liquid and heat up to 250 c to 260[°] c under string and after complete reaction, charge water and make slurry of reaction mass and transfer to isolation vessel. Take slurry in isolation vessel and isolate material with Ice and slowly add Hydrochloric acid in it to isolate material, after complete isolation do centrifuge and then transfer for Drying. Take Centrifuge wet cake for Drying and pack Meta Amino Phenol. Generated waste water from centrifuge will transfer to ETP for treatment.

Chemical Reaction:

	Mas	s Balano	e of MAP (Met	a Amino	o Phenol)	
INPUT	KG				Ουτρυτ	KG
Metanilic Acid NaOH Catalyst Water	1590 750 4 3000		Fusion Reaction			
			Clarification		Catalyst	4
			Precicpitation & Filteration		Waste water	3390
			Drying &		Drying loss	950
Total	5344		Packing		Meta amino phenol	1000 5344

5. ORTHO AMINO PHENOL SULPHONIC ACID

Manufacturing Process:


Sulphonation:-

Take H2SO4 - 98% then charge Oleum 23% and start chilling get temperature 40 to 45°C then charge OAP between 40 to 45°C with 6 hrs. After charging start heating and maintain 4 hrs. with temperature 90 to 95°C.Then check TLC with OAP and OAPSA and check Acidity (Range 79 to82%). If TLC is not OK then 2 hrs. maintain temperature 90 to 95°C.Transfer in dumping vessel

Dumping:-

Take Water and charge ICE in 2 hrs. Then charge Sulpho mass slurry slowly addition with temperature 40 to 45°C Maintain with free string 2 hrs. Check filter loss (0.8% to 1%). After testing start nutch filter.Suck the M/L start centrifuge. Start crushing and packing.

Chemical Reaction:

2 Aminophenol Oleum

Mass Balance:

Mas	s Balance	of Orth	o Amino Pheno	I Sulphonic Acid (OAPSA)	
INPUT	KG			OUTPUT	KG
OAP	580 -		Culaba astisa		
H2SO4 Oleum 23%	520 - 425 -	•	Sulphonation		
Water	4200 -		Filteration	→ Spent Acid(35-40%)	2125
				→ Waste water	1750
			+		
			Drying &	→ Drying loss	850
			Packing	→ OAPSA	1000
Total	5725				5725

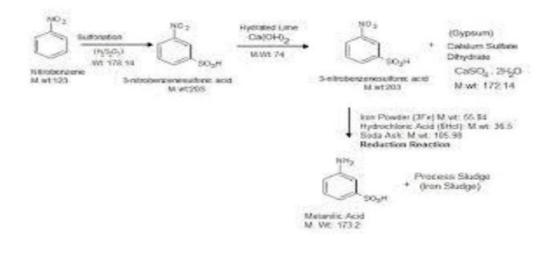
2 Aminophenol

4 Sulphonic Acid

6. Metanalic Acid

Manufacturing Process:

Sulfonation: Nitrobenzene is sulfonated with 65% oleum at various temperatures to yield Nitrobenzene 2 Sulphonic Acid.


Drowning: SulphonicAcid mass is drowned in water and excess acid is neutralized using lime stone and soda Ash to pH- 7.5-8.0.

Filtration: The nitro mass is filtered and washed to get gypsum as byproduct and nitro solution.

Reduction: The nitrobenzene sulfonic acid is reduced using iron and hydrochloric Acid to yield metanilic Acid.

Filtration: The reduction mass is filtered to remove the iron sludge. **Isolation**: The reduction mass is isolated using diluting sulfuric acid to yield Metanilic acid. This is then filtered, washed and dried.

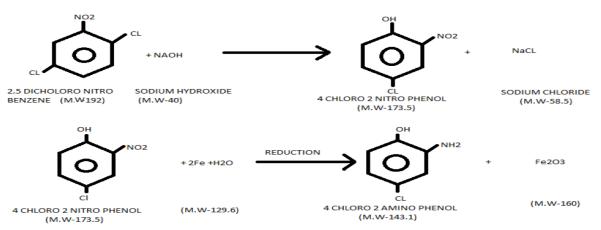
Chemical Reaction:

	Mas	s Balance of Metani	ilic Acid	
Input	KG		Output	KG
Nitro benzene Oleum (25%) H ₂ SO ₄	720 — 425 — 520 —	Sulfonation		
Water	1500	Filtration	→ Spent Acid(40-42%)	1850
HCI (30%) Iron Powder Water	100 — 125 — 2000 —	Reduction & Clarification	→ Iron Sludge	350
		Filtration	→ Waste water	1320
		•		870
		Drying	→ Drying loss → Metanilic Acid	870 1000
Total	5390			5390

7. 6 CHLORO METANILIC ACID

Manufacturing Process:

Charge ONCB, Sulphuric acid and oleum are added into reactor then it is filtered. Then iron powder is added into vessel along with hydrochloric acid and mass is clarified then it is filtered and waste water is sent into ETP. And product is sent into dryer for drying.

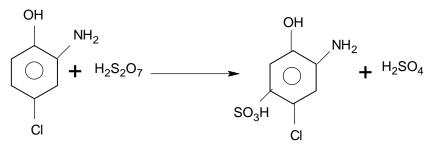

	Mass B	alance	of 6 Chloro Met	anilic Acid	
Input	KG			Output	KG
ONCB H ₂ SO ₄ Oleum	920 — 520 — 425 —		Sulfonation		
Water	1500 —	•	Filtration	Spent Acid(45-46%)	1790
Iron Powder HCl Water	125 — 100 — 2000 —		Reduction & Clarification	→ Iron Sludge	350
			Filtration	→ Waste water	1525
			Drying	 Drying Loss 6 Chloro Metanilic Acid 	925 1000

8. 4-CHLORO 2-AMINO PHENOL

Manufacturing Process:

2.5 Dichloro Nitro Benzene, Caustic soda flakes & Water is charged in the reactor.Reaction mass is charged along with Soda ash, Iron powder, HCl, Sodium Bicarbonate & Water in vessel after filtrate the reaction mass. HCl isadded to reduce the pH of mass upto 2.5.Lime and caustic soda is added for the neutralization the mass. Iron sludge is separated from slurry during filtration. Isolation, Centrifuging and Drying steps are carried out to get the product.

Chemical Reaction:



Mass balance of 4-Chloro 2-Amino Phenol (4 CAP)						
INPUT	KG		OUTPUT	KG		
2:5 DCNB	1350 —					
Caustic Water	300 <u> </u>	Hydrolysis				
Iron powder HCl	125 — 100 —	Reduction & Clarification	→ Iron Sludge	350		
		Nutch Filter	→ Waste Water	1775		
		Drying & Packing	──► Drying Loss ──►4 CAP	750 1000		
Total	3875			3875		

9. 4-CHLORO-2-AMINO PHENOL-5-SULPHONIC ACID Manufacturing Process:

For manufacturing of 4-Chloro-2-Amino Phenol-5-Sulphonic Acid, the raw material, 4-Chloro-2-Amino Phenol is subjected to Sulphonation reaction by Sulphuric Acid and Oleum atdesired reaction temperature. Sulphonated mass is then drowned in salt solution. Then themass is filtered in nutch filter followed by centrifuge filter. Mother Liquor is collected inMother Liquor Storage Tank and the product in the form of filtrate is packed for dispatch.

Chemical Reaction:

Mass bala	ance of 4 Chlor	ro-2-Amino Phenol 5	-Sulphonic Acid (4 CAPSA	4)
INPUT	KG		OUTPUT	KG
4 CAP	650 —			
Sulphuric Acid Oleum	520 — 425 —	Sulphonation		
Water	2500 —		→ Spent Acid(48-50%)	1420
		Nutch Filter	→ Waste Water	825
		•		
		Drying &	Drying Loss	850
		Packing	→4 CAPSA	1000
Total	4095			4095

10. 4 NITRO 2 AMINO PHENOL

Manufacturing Process:

Step-I: Preparation of Calcium Polysulfide

Calcium oxide along with water is charged into M.S. jacketed reactor-I and heated up to 80° C. Sodium Hydro sulfides & Sulphur powder are added & entire mass is known as Calcium Polysulfide.

Step-II: Preparation of Phenolate

Caustic soda lye and 2:4 Di Nitro Chloro Benzene is taken in the M.S. jacked reactor-II & temperature is increase up to 70[°] C. As entire process is being exothermic, temperature of the reaction mass is automatically up to 85-90°C. Sulphuric Acid is added for the neutralization of excess alkali. The neutralized mass is known as phenolate.

Step-III: Hydrolysis of 2:4 DNCB

Reduction of sodium Di Nitro Phenolate is carried out by Calcium Poly sulfide solution in brick lined reactor at 80° C & this temperature is maintained for 10 hrs.

Step-IV: Isolation & Filtration

After completion of the reaction, common salt is added for the isolation & mixture is cooled up to 30° C. Entire mass is Filtered into Nutch and centrifuged.

		Mass balance of 4	NAP	
INPUT	KG		OUTPUT	KG
NaSH	515 —			
Lime	220 —	Calcium		
Water	500	Polysulphide		
2:4 DNCB	1400 —	→ · · · · · · · · · · · · · · · · · · ·		
NaOH	300 —	→ Hydrolysis		
Water	1000 —			
		↓		
		Reduction &	← Calcium Thio Sulphite	635
		Clarification		
		Nutch Filter	→ Waste Water	1500
		Drying &	→ Drying Loss	800
		Packing	→4 NAP	1000
Total	3935			3935

11. 5 NITRO 2 AMINO PHENOL(5 NAP)

Manufacturing Process:

OAP along with water is charged into M.S. jacketed reactor-I and Heated up To 80⁰ C. And Acetic Anhydride is added into vessel. The nitric acid is added. And further hydrolyzed by hydrogen gas. Then the wet product is goes into nutch filter and waste water is sent into ETP. And product is sent into spray dryer.

Mass balance of 5 NAP						
INPUT	KG				OUTPUT	KG
OAP Acetic Anhydride Water	725 675 1500		Acetylation			
HNO ₃ H2SO4	450 850		Nitration			
H2 Gas	80	>	Hydrolysis	 →	Acetic Acid	800
			Nutch Filter		Waste Water	1690
			▼ Drying & Packing		Drying Loss 5 NAP	790 1000
Total	4280					4280

12. 6 NAPSA

Manufacturing Process:

Sulphonation :-

Take H_2SO_4 98% then charge Oleum 23% and start chilling get temperature 20 to 30 °C check TLC with OAP and OAPSA and check Acidity (Range 79 to82). If TLC is not OK then 2 hrs maintain temperature 100 to 105 °C.Transfer in nitration vessel.

Nitration:-

Collect Sulpho mass and start chilling get temperature 15 to 20 °C and 6 hrs.Then start WNA 68 % with addition between temperatures 15 to 20 °C 650 kg in 36 hrs.Maintain with free string 2 hrs then check AR/BR (0.3% to 0.55% different).If AR/BR different more than 0.55 % charge WNA and again check AR/BR different.Transfer in dumping vessel.

Dumping:-

Charge ICE approximately 4500 kg in 2 hrs. then charge Nitro mass slurry. Slowly addition with temperature 5 to 10°C.Maintain with free string 2 hrs. Check filter loss (1.5% to 2.5%).After testing start press filter / nutch filter.Suck the M/L start centrifuge.Start crushing and packing.

	Mass balance of 6 NAPSA							
INPUT	KG			OUTPUT	KG			
OAP Oleum (23%) Water	470 - 800 - 1750 -		Sulphonation					
HNO3 H2SO4	270 - 550 -		Nitration					
			Filteration	→ Waste Water	2030			
			Drying & Packing	→ Drying Loss → 6 NAPSA	810 1000			
Total	3840				3840			

13. 4 NAPSA

Manufacturing Process:

p-nitroChlorobenzene is Sulphonated with oleum (23%) & Sulphuric acid followed by nitration with Nitric acid to get 2-chloro-3,5-dinitro benzene sulphonic acid. The above product is hydrolyzed in alkaline medium & partially reduced by adding NaHS to get 4-NAPSA (Na salt). Filter it and C/F. Dissolve the 4-NAPSA (Na salt) in sulphuric acid and clarify through filter press & isolated by Sulphuric acid, filter and centrifuge to get pure 4-NAPSA.

Mass balance of 4 NAPSA					
Input	KG			Output	KG
Lime NaSH Water	220 515 800		Calcium Polysulfide		
4 Nitro Chloro Benzene Oleum	700 800		Sulphonation		
HNO3 H2SO4	270 550	>	Nitration		
			Reduction & Clarification	← Calcium Thio Sulphide	635
			Nutch Filter		1350
			Drying & Packing	──→ Drying Loss ──→ 4 NAPSA	870 1000
Total	3855				3855

14. 6 CAPSA

Manufacturing Process:

2 Chloro phenol along with oleum is charged into reactor and Heated up To 80° C. The nitric acid is added during nitration process. And then it goes into reduction where iron powder is added along with HCl. Then the wet product is goes for filtration and waste water is sent into ETP. And product is sent into for drying.

Mass balance of 6 CAPSA							
INPUT	KG			OUTPUT	KG		
2 Chloro Phenol Oleum	580 — 800 —	•	Sulphonation				
HNO ₃ H2SO4	270 — 550 —	→	Nitration				
Iron Powder HCl Water	125 — 100 — 1000 —	*	Reduction & Clarification	→ Iron Sludge	350		
			Filteration	→ Waste Water	1175		
			Drying & Packing	→ Drying Loss → 6 CAPSA	900 1000		
Total	3425				3425		

15. 2 PYRIDONE

Manufacturing Process:

In the reactor mono ethyl amine and methyl cyno acetate is added for condensation. Then mass is further condensate by Methyl Aceto Acetate Ester. Mass is sent for hydrolysis where it is hydrolyzed by Sulphuric acid. Then filter is sent into washing and filtration. Waste water is sent into ETP. And then product is charged into dryer.

	Ма	iss ba	lance of 2 Pyric	done	
INPUT	KG			OUTPUT	KG
Mono Ethyl Amine Methyl Cyno Acetate	400	→	Condensation		
Methyl Aceto Acetate Ester	660 -		Condensation		
H ₂ SO ₄	3600 -	•	Hydrolysis		
Water	3450 -	•	Filteration & washing	→ Spent Acid(48-50%) → Waste Water	5000 1725
			Drying & Packing	→ Drying Loss → 2 pyridone	910 1000
Total	8635				8635

16. 1:3 PHENYL METHYL 5 PYRAZOLONE (PMP)

Manufacturing Process:

Take water and oleum in the vessel and then add slowly Aniline. Then diazotize it with sodium nitrite at 0°C.Pour diazo for neutral reduction into solution of SBS and soda ash.Heat at 80°C and carry out hydrolysis by HCl. Then do formation of hydrazine with M.A.A Ester. Then isolation with HCL. Then cool it down and filter out the material.

		3 Phenyl Methyl 5 Py		
INPUT	KG		OUTPUT	KG
Aniline	435	→		
HCI	700 —	→		
NaNO2	330 —	→ Diazotization		
Ice	500	→		
Water	500	→		
Sodium Bi Sulphite	1160	Reduction	→ SO2 Gas to Scrubber	700
Soda Ash	1550			
HCI	4000			
		Hydrolysis		
Methyl Aceto acetate		→ I		
ester	525	Condensation		
Water	1800	Washing		
				0050
		Filtation &	→ Waste water	9050
		Centrifuge		
		Drying &	→ Drying loss	750
		Packing	→ PMP	1000
Total	11500			11500

17. 1,4 Sulpho Phenyl 3 Methyl 5 Pyrazolone (1:4 SPMP) Manufacturing Process:

Take water and oleum in the vessel and then add slowly S. Acid.Then diazotize it with sodium nitrite at 0° C.Pour Diazo for neutral reduction into solution of SBS and soda ash. Heat at 80° C and carry out hydrolysis by HCl. Then do formation of hydrazine with M.A.A Ester. Then isolation with HCL.Thencool it down and filter out the material.

Mass Balance of	yrazolone (1:4 SPMP)			
INPUT	KG		OUTPUT	KG
Sulfanlic Acid	536	▶		
HCI	500 —			
NaNO2	218 —	→ Diazotization		
Ice	500 —	→		
Water	500	→		
SBS	804 —		→ SO2 Gas to scrubbe	485
Soda Ash	1035 —	Reduction		
HCI	2642	Hydrolysis		
Methyl Aceto Acetate Este	347 —	Condensation		
Water	860	Washing		
		Filtation	→ Waste Water	5507
		Drying &	→ Drying Loss	950
		Packing	→ 1:4 SPMP	1000
Total	7942			7942

18. 2:5 Dichloro 4 Sulpho Phenyl 3 Methyl 5 Pyrazolone (2:5 DCSPMP) Manufacturing Process:

Take water and oleum in the vessel and then add slowly 2.5 DichloroAniline.Then diazotize it with sodium nitrite at 0°C. Pour diazo for neutral reduction into solution of SBS and soda ash. Heat at 80°C and carry out hydrolysis by HCI.Then do formation of hydrazine with M.A.A Ester. Then cool it down and filter out the material.

Mass Balance of 2,5	Dichloro 4	Sulfo	o Phenyl 3 Methyl	5 Pyrazolone(DCSI	PMP)
INPUT	KG			OUTPUT	KG
INFUT	NG			COTFOT	KG
2,5 Dichlror Aniline	500 —				
HCI	500 —		Diazotization		
NaNO2	221 —				
Ice	500				
Water	500 —	•			
SBS	696 —		•		
Soda Ash	500 -		Reduction	→ SO2 Gas	416
Caustic Soda Lye	714 —	•			110
HCI	1107 —		Hydrolysis		
Methyl Aceto Acetate Este	339 —	•	Condensation		
Water	5739 —	•	Washing		
			Filtration	→ Waste water	8950
			Drying &	→ Drying loss	950
			Packing	→ 2,5 DCSPMP	1000
Total	11316				1131

19. 2 Chloro 5 Sulphophenyl 3 Methyl 5 Pyrazolone (2:5 CSMP) Manufacturing Process:

Take water and oleum in the vessel and then add slowly 6 Chloro Metanilic Acid.Then diazotize it with sodium nitrite at 0°C. Pour diazo for neutral reduction into solution of SBS and soda ash. Heat at 80°C and carry out hydrolysis by HCl. Then do formation of hydrazine with M.A.A Ester.Then isolation with HCL. Then cool it down and filter out the material.

Mass Balance	of 2 Chloro	5 Sulphophenyl 3 Met	hyl 5 Pyrazolone	
INPUT	KG		OUTPUT	KG
6 Chloro Metanilic Acid	750 —	→		
HCI	600 —	→		
NaNO2	265 —	Diazotization		
Ice	500 —	→		
Water	500	→		
SBS	1150 —			
Soda Ash	850		→ SO2 Gas	690
Caustic Soda Lye	450			
HCI	1800			
	1000	Hydrolysis		
		+		
Methyl Aceto Acetate Ester	420 —	Condensation		
Water	1600 —	Washing		
		Filtration	→ Waste water	6315
		Drying &	→ Drying loss	880
		Packing	→ 2,5 CSMP	1000
Total	8885			8885

20. 1,3 Sulpho Phenyl 3 Methyl 5 Pyrazolone (1:3 SPMP) Manufacturing Process:

Take water and oleum in the vessel and then add slowly Metanilic Acid. Then diazotize it with sodium nitrite at 0° C.Pour diazo for neutral reduction into solution of SBS and soda ash. Heat at 80° C and carry out hydrolysis by HCl. Then do formation of hydrazine with M.A.A Ester. Then isolation with HCl.Then cool it down and filter out the material.

Mass Balance of	1, 3 Sulph	o Phe	enyl 3 Methyl 5 P	yrazolone (1:3 SPM	P)
INPUT	KG			OUTPUT	KG
Metanilic Acid	536 —				
HCI	600 —				
NaNO2	217 —		Diazotization		
Ice	500 —				
Water	500 —	•			
SBS	800 —		Deduction -	→SO2 Gas	480
Soda Ash	1035 —		Reduction		
HCI	1540 —	>	•		
		Hydrolysis	Hydrolysis		
Mathul Acata Acatata Fat	246		• •		
Methyl Aceto Acetate Este	346		Condensation		
Water	850 —		•		
water	830		Washing		
			•	→ Waste water	4534
			Filtration	• Waste Water	4334
					010
			Drying &	Drying loss	910
			Packing	→ 1,3 SPMP	1000
Total	6924				6924

21. 2 Chloro Phenyl 3 Methyl 5 Pyrazolone (2 CPMP) Manufacturing Process:

Take water and oleum in the vessel and then add slowly Ortho Chloro Aniline. Then diazotize it with sodium nitrite at 0°C.Pour diazo for neutral reduction into solution of SBS and soda ash. Heat at 80°C and carry out hydrolysis by HCl. Then do formation of hydrazine with M.A.A Ester. Then isolation with HCL Then cool it down and filter out the material.

Mass Ba	ance of 2 (Chlor	o Phenyl 3 Methy	l 5 Pyrazolone	
INPUT	KG			OUTPUT	KG
Ortho Chloro Aniline	500 —				
HCI	600				
Sodium nitrite	275 —		Diazotization		
Ice	500		Diazotization		
Water	500				
Sodium Bi Sulphite	972 —			→SO2 Gas	560
Soda Ash	1311		Reduction		500
	2200				
HCI	2380 —		Hydrolysis		
			•		
Methyl Acetoacetic Ester	410		Condensation		
Water	1352 —		Washing		
			•••••	N/acto wator	6400
			Filtation	→ Waste water	6400
				Device la co	0.4.0
			Drying & Packing	Drying loss	840 1000
Total	8800				8800

22. Para Toluene Phenyl Methyl 5 Pyrazolone (PTPMP) Manufacturing Process:

Take water and oleum in the vessel and then add slowly Para Toludine. Then diazotize it with sodium nitrite at 0° C.Pour diazo for neutral reduction into solution of SBS and soda ash. Heat at 80° C and carry out hydrolysis by HCl. Then do formation of hydrazine with M.A.A Ester. Then isolation with HCL.Then cool it down and filter out the material.

Mass Balance of Para Toluene Phenyl Methyl 5 Pyrazolone INPUT KG OUTPUT KG Para Toludine 415 HCL 600 NaNO2 270 Diazotization 500 Ice Water 500 Sodium Bi Sulphite 965 SO2 Gas to scrubber 570 Reduction Soda Ash 1300 HCI 2350 Hydrolysis Condensation Methyl Acetoacetic Ester 435 Water 1335 Washing ► Waste water 6195 Filtation

Drying &

Packing

Mass Balance:

Urmit Chemicals Pvt. Ltd.

Total

8670

905

1000

8670

Drying loss

► PTPMP

(B)Dyes

1. Acid Yellow 79

Manufacturing Process:

Diazotization of DAP Ester in by Nitrosyl Sulphuric Acid, coupling with 5-Amino-3-methyl-1-(3-sulfophenyl) pyrazole, Filter the solution, collect wet cake and dry in oven.

Mass Balance of Acid Yellow 79								
INPUT	KG				OUTPUT	KG		
DAP ESTER	400 -							
H_2SO4	540							
Soda ash	250 -		Diazotization					
Ice	1000 -							
Water	1500 -							
			↓					
5-Amino-3- methyl-1- (3-sulfophenyl)	390 -		Coupling					
Caustic flakes	60 -		Coupling					
Ice	1000 -							
Common Salt	650 -		Isolation &		Wastewater	3900		
			Filteration					
			•					
			Drying &		Drying Loss	890		
			packing		Acid Yellow 79	1000		
Total	5790					5790		

Manufacturing Process:

Prepare Diazo of OAPSAAMIDE in vessel with sodium nitrite & HCl (Hydrochloric acid)After that charge Acetoacitanilide in the vessel for coupling.Metallize the mass by adding cobalt sulphate & sodium hydroxide. Now reaction mass transferred for spray drying to got finished product.

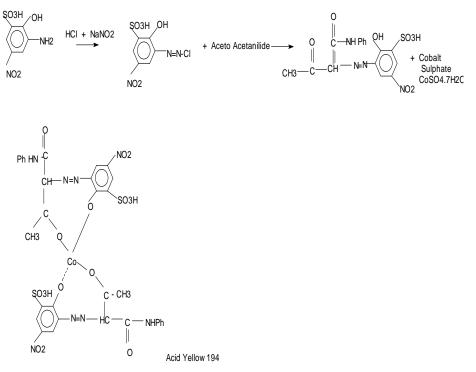
	Μ	ass Balance Acid Yellow 1	51	
Input	Kgs	Reaction	OutPut	Kgs
OPSAmide	500 -			
Hydrochloric Acid	112 -			
Sodium Nitrite	184 -	Diazotization		
Ice	1400	→		
Water	1000 —			
		↓ I		
Aceto Acetanilide	483 —			
Caustic Lye	125	→		
Soda Ash	250 -	Coupling		
Ice	500	→		
Water	1000 -	→		
		↓		
Cobalt Sulphate	415 —			
Caustic Lye	85 —	Cobaltination		
Steam	800 —			
		L		
Common Salt	650 —	Isolation	→ Wastewater	5594
		&Filteration		
		↓		
			→ Drying Loss	910
		Drying & packing	→ Acid Yellow 151	1000
Total	7504			7504

Manufacturing Process:

- Prepare diazo of 2, 5 Dichlorosulphanilic acid in vessel with sodium nitrite & HCl (Hydrochloric acid) & apply heating.
- After cooling, charge 5, amino-3-methyl-1-phenyl Pyrozolone in the vessel for coupling.
- Now reaction mass transferred for filtration & after that wet cake is dried to got Finished product.

Mass Balance of Acid Yellow 49						
INPUT	KG				OUTPUT	KG
2, 5 Dichloro Sulfanilic Acid HCl Sodium Nitrite Water Ice	500 - 325 - 155 - 1200 - 900 -		Diazotization			
5-Amino PMP HCl Ice Salt Water	400 475 600 125 800		Coupling			
Common Salt	650 -		Isolation & Filtration		Waste Water	4180
			Drying & – Packing –	→	Drying Loss Acid Yellow 49	950 1000
Total	6130					6130

Manufacturing Process:


Diazotisation of 4-NAPSA, coupling with Acetoacetanilide, metallisation with Basic Chromium Sulphate. Filter it and collect wet cake and dry it.

Mass Balance of Acid Yellow 99						
INPUT	KG		OUTPUT	KG		
4 NAPSA	285 —	→				
HCI	110	→				
Nitrite	85 —	Diazotization				
Ice	1400 —	→ ∟				
Water	1400 —					
Acetoacetinilide	222 —	→ →				
Caustic Flakes	52	→				
Soda Ash	135	→ Coupling				
Ice	500					
Water	1000					
		•				
Salicylic Acid	185 —					
BCS	380	Chromination				
Caustic Flakes	145					
Steam	800					
Common Salt	550	→ Isolation &	→ Waste Water	5189		
		Filtration				
		Drying & —	→ Drying Loss	1060		
		Packing	Acid Yellow 99	1000		
Total	7249			7249		

Manufacturing Process:

Prepare 4-NAPSA diazo with help of Hydrochloric acid and sodium nitrite in presence of iceto maintain temp. Make clear solution of AAA with help of caustic lye.4-NAPSA diazo coupled with AAA in alkaline medium and then metallization with cobalt sulphate at 80-90 C for 3-4 hr.When test is OK.Spray dry the above reaction mass.

Chemical Reaction:

Mass Balance of Acid Yellow 194						
INPUT	KG				OUTPUT	KG
4-NAPSA diazo	550					
HCI	430		Preparation of	1_		
sodium nitrite	165		NAPSA diazo	т		
Ice	1000					
water	1500	>				
Acetoacetanilide	435		• • •			
Water	700		Coupling in			
Ice	1000		alkaline mediun	n		
Caustik Lye	100	•				
Cobalt Sulphate, 20%	325		Metallization			
			Reverse Osmos	<u>is</u> →	Water reuse	2605
			Spray Drying	→	Drying Loss	2600
			Standardization			
			Packing	→	Acid Yellow 194	1000
Total	6205					6205

Manufacturing Process:

Diazotization of Anthranilic OPSAMIDE and Sodium Nitrite, coupling with O-Cl-Acetoacetanilide with Cobalt Sulphate. Clarify solution; FILTER and dry it.

Mass Balance Acid Yellow 220						
Input	Kgs	Reaction	OutPut	Kgs		
Anthranilic OAPSA HCI Nitrite Ice Water	500	Diazotization				
		+				
O CI Acetoacetinilide Caustic Flakes Soda Ash Ice Water	350 70 240 500 1000	Coupler Solution				
		•				
Cobalt Sulfate BCS Steam	230	Cobaltination				
		Reverse Osmosis	→ Water reuse	2339		
		Spray Drying & - Packing -	→ Drying Loss → Acid Yellow 220	3200 1000		
Total	6539			6539		

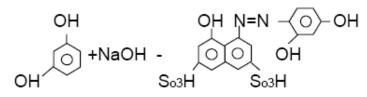
Manufacturing Process:

Diazotisation of 5-sulfo anthranilic acid, coupling with 1-phenyl-3-methyl-5 pyrazolone, metallisation with Basic Chromium Sulphate. Chelating with another monoazo dye produced from (Diazotisation of Anthranilic acid and coupling with 1-phenyl-3-methyl-5-pyrazolone) Clarify solution, filter and dry it.

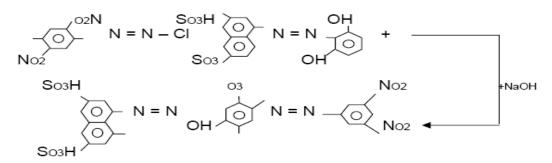
	Mass Ba	ance of Acid Yellow 23	2	
INPUT	KG		OUTPUT	KG
5 Sulfo Anthranilic Acid	233 —	→		
Hydrochloric Acid	125 —	→		
Sodium Nitrite	160	Diazotization		
Ice	1000	→		
Water	900 —	→		
1-Phenyl 3 Methyl 5 Pyrozol	lon 410			
Soda Ash	250			
Ice	1000			
Water	1000	Coupling		
Salicylic Acid Basic Chromium Sulfate Steam Sulphuric Acid	40	Chromination		
		Reverse Osmosis –	→ Water reuse	2554
			→ Drying Loss	2900
		Spray Drying	Acid Yellow 232	1000
Total	6454			6454

8. Acid Brown 75

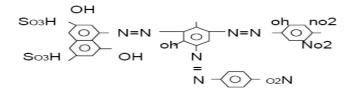
Manufacturing Process:


H - Acid Diazotized with HCl & Nitrite at 0°C temp. Stir 1-1/2" hours. Coupling with resorcinol in alkaline medium and stir. After 2 hours Na picramatediazo coupling with first coupling in alkaline medium stir 2 hours After 2 hours PNA Diazo coupled with second coupling at 6.5 pH, stir 6 hours then filter and dry it.

Chemical Reaction:


H-ACID DIAZO

DIAZO COUPLING WITH RESOURCINOL

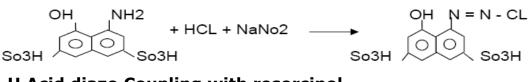


II COUPLING WITH NA PICRAMATE DIAZO

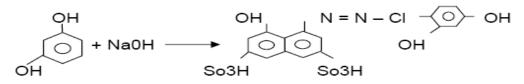
PNA DIAZO

III COUPLING

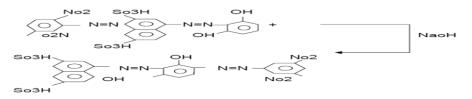
Mass Balance of Acid Brown 75						
INPUT	KG			OUTPUT	KG	
Picramic acid	192 —					
			Preparation of			
Hydrochloric acid	250 —		Sodium			
Ice	500		Picramate			
water	1000	•	diazo			
Sodium Nitrite	95 —	•				
Caustic lye	50 —		↓			
Resorcinol	96 —		1 st Coupling			
Ice	500					
H-Acid	278 —					
Soda ash	346 —					
Hydrochloric acid	300 -	•	Preparation of			
Ice	500 —		H Acid diazo			
Water	800 -					
Sodium nitrite	85					
Ice	500		2 nd Coupling			
caustic lye	40					
PNA	113 —					
Ice	500 —	•	Duranation of			
Water	750 —		Preparation of			
Sodium nitrite	85		PNA diazo			
Hydrochloric acid	125 —					
			Final Coupling			
Common Salt	550	•	Isolation &	→ Effluent	5305	
			Filtration			
			Drying &	→ Drying Loss	1350	
			Packing	Acid Brown 75	1000	
	al 7655				7655	


9. Acid Brown 165

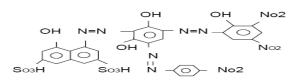
Manufacturing Process:

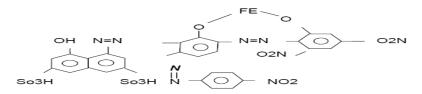

H. Acid Diazotized with HCl, Nitrite & Ice at 5°C temp. Stir for 1-1/2 hours. After 1-1/2 hour coupling with Resorcinol in alkaline Medium stirrer 2 hours Na picramate Diazo coupling with first coupling in alkaline medium stirrer. 2 hours After 2 hours PNA Diazo coupled with second coupling at 6.5 pH stirrer 6 hours. After 6 hours heat at 80°C. Above couple mass metalized with Ferrous Sulphate's solution at 5.5 pH. Stir for 3 hour after 3 hour, filter and collect W/C & dry it.

Chemical Reaction:


H ACID Diazo

H Acid diazo Coupling with resorcinol

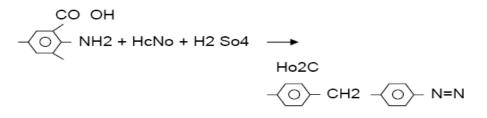

II Coupling with Na picramatediazo


PNA DIAZO

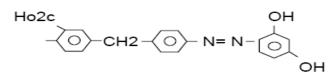
III COUPLING

ABOVE DYE.METALISED WITH FRRROUS SULPHATE

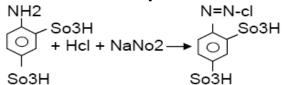
Mass Balance of Acid Brown 165						
INPUT	KG			OUTPUT	KG	
Picramic acid	192					
Hydrochloric acid	250 —		Preparation of			
Ice	500 —		Sodium			
water	800 —		Picramate diazo			
Sodium Nitrite	95 —	<u> </u>				
Caustic lye	50 —		<u> </u>			
Resorcinol	96 —	•	1 st Coupling			
Ice	500					
H-Acid	278 —					
Soda ash	346 —					
Hydrochloric acid	300 -		Preparation of H			
Ice	500 —		Acid diazo			
Water	800	•				
Sodium nitrite	85					
			•			
Ice	500 —		2 nd Coupling			
caustic lye	40	•				
PNA	113 —					
Ice	500		Preparation of			
Water	750 —		PNA diazo			
Sodium nitrite	85					
Hydrochloric acid	125 —	•				
			Final Coupling			
Water	450 —		•			
Steam	600 -		Metalization			
Ferrous Sulphate	260 —	•				
Common Colt					6405	
Common Salt	550		Isolation & Filtration	→ Effluent	6405	
					1000	
			Drying & Packing	 Drying Loss Acid Brown 165 	1360 1000	
Total	8765				8765	

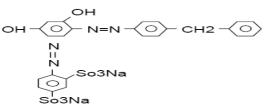

10. Acid Brown 161

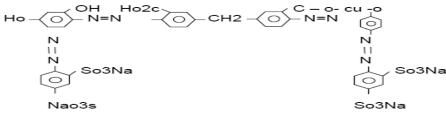
Manufacturing Process:


Anthranilic Acid diazotized with HCl, Nitrite at 0°C temp. Stir for 1 hour, and then couple with Resorcinol in alkaline medium at 50°C temp. Stir for 2 hours, then make diazo of Aniline 2:4 SO2H with HCl, Nitrite & Ice at 50C temp. Stir for 1 hour then coupled with first coupling in alkaline medium. Stir for 4 hours, Heat at 80°C then metalized with copper sulphate solution at 80°C in alkaline medium stir for 4 hours, filter and Dry it.

Chemical Reaction:

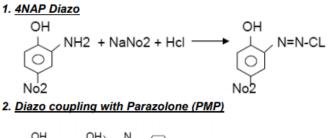

Anthranilic condensation with Formaldehyde & make Diazo

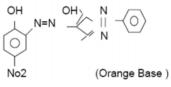

Anthranilic Acid Dizo Coupling with Resorcinol


Aniline 2:4 Disulphonic Acid Diazo

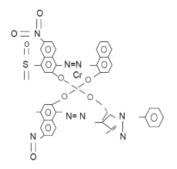
II Coupling

Above Mono azo Metallized with copper Sulphate at 85°C temp at alkaline medium


		Balance of Acid Brown		
INPUT	KG		OUTPUT	KG
Anthranilic acid	190 —	→		
Sulphuric acid	190 —	→		
Formaldehyde	80	Condensation		
Nitrite	100	➡ & Diazotization		
Ice	1000	→		
Water	800 —	→		
Resorcinol	170 —			
Caustic Flakes	200	Ist coupling		
Ice	1000			
Water	600			
Aniline 2,4 SO3H	190 —	→		
HCI	180			
Sodium Nitrite	90	Diazotization of		
Ice	800	Aniline 2,4		
Soda Ash	350	SO3H		
Water	800			
		↓		
		Coupling -		
Salicylic Acid	50	→		
B.C.S	200	Chromination		
Steam	800			
		RO/UF	→ Water reuse	3890
				5050
			→ Drying loss	2900
		Spray Drying	Acid Brown 161	1000
TOTAL	7790			7790


11. Acid Brown 282

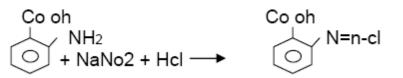
Manufacturing Process:


6 nitro solution with ice coupled with beta naphthol solution in alkaline medium stirrer for 2 hours, after 2 hours chromination with salicylic acid & BCS at 95°-100°C. Stir for 16 hours. Filter collect w/c. 4 Nitro Amino phenol diazotized with HCl, nitrite at 0°C temp and coupled with PMP clear solution at 5.5 pH and stir for 8 hours. In orange base solution charge black base w/c. Heat 90°C and take pH 5.5. Maintain for 4 hour at 90°C & pH +5.5. If test ok then isolated with salt, collect w/c. make slurry & spray dryer it.

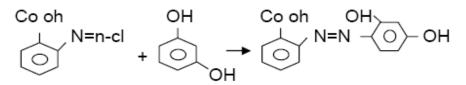
Chemical Reaction:

- 3. 6 Nitro Coupling with Beta Naphthol and this couple mass chromination with B.C.S (1:1 Base).
- 4. Above product chelating with orange Base at 95°-100°C in Neutral Medium.

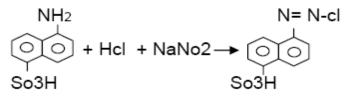
INPUT	KG		OUTPUT	KG
Stage I				
6-Nitro	200			
Ice	500 —	→ 6 Nitro Slurry		
Water	750 —	→		
Beta Napthol	100			
Water	750			
Ice	500	1st Coupling		
Caustik Flakes	50			
Salicylic Acid	65	_		
B.C.S.	180	Chromination		
Steam	600	→		
		Filteration	→ Watse water	2575
		W/C	1120	
Stage II				
4NAP	175			
Water	1200	→		
HCI	33	→ Diazotization		
Nitrite	95			
Ice	750			
Water	950 —			
PMP	200	→ Ist Coupling		
Caustik Flakes	50			
		Addition of W/C	←	
		•	→ Drying Loss	3573
		Spray Drying	Acid Brown 282	1000
	7148			7148

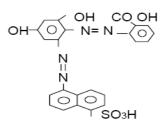

12. Acid Brown 432

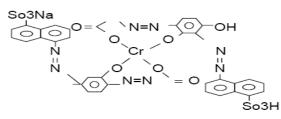
Manufacturing Process:


Anthranilic Diazotized with HCl, Nitrite & Ice at 0° C temp. Stir for 1-1/2 hours, Resorcinol Coupling with this Diazo in alkaline medium at 5° C temp. Laurent Acid Diazotized with HCl, Nitrite & Ice, at 5° C temp. stir for 2 hour, After 2 hour, this Diazole coupling with first coupling at Neutral pH at 7° C temp stirrer - 6 hour, After 6 hours, heat at 90° C temp metalized with salicylic acid chromium fluoride. If crimination tests ok, then clarify /R/o/ Spray Dryer it.

Chemical Reaction:


1. Anthranilic Acid Diazo

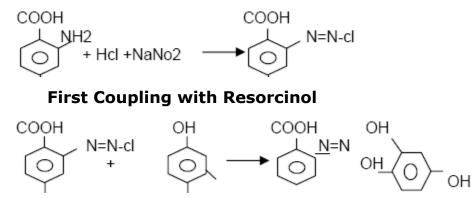

2. Ist Coupling with Resorcinol


3. Laurent Acid Diazo

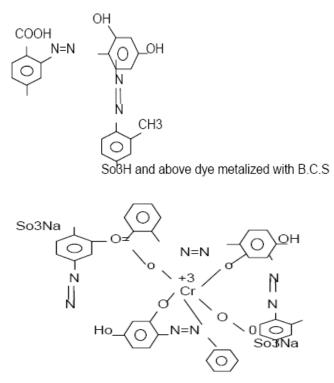
4. IInd Coupling

5. Above metalized with salicylic acid & chromium fluoride

	Mass	Balance of Acid Brow	n - 432	
Input	Kg		Output	Kg
Anthranilic Acid HCl	180 — 85 —	→ Anthranilic Acid		
Nitrite	85	→ Diazo		
Ice	1200 —	→		
Water	2200 —			
Resorcinol	150	↓ Ist coupling		
Soda Ash Ice	330 — 1100 —			
Laurent Acid	300	→ ·		
HCI Nitrite	125 — 95 —	→ IInd Coupling		
Ice	700			
Salicylic Acid Chromium Fluoride Liquid Ammonia Steam Caustic Flakes	160 160 300 800 30	Chromination		
				4020
		RO/UF	→ Water reuse	4020
			→ Drying loss	2980
		Spray Drying	Acid Brown - 432	1000
Tota	I 8000			8000


13. Acid Brown 425

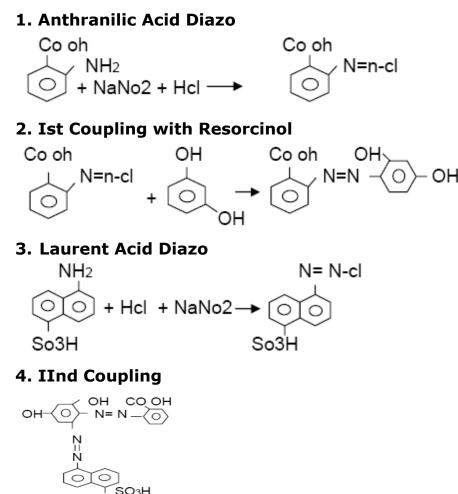
Manufacturing Process:


Anthranilic acid Diazotized with HCl Nitrite at 0°C temp with Ice Stirrer 1 hour, Resorcinol coupled with this Diazo in alkaline medium at 50°C Stirrer 2 hour, O.T. 5 SA Diazo with HCl Nitrite and Ice at 0°C temp. stirrer 1-1/2 hour this Diazo coupled with first coupling in alkaline pH at 50°C temp stirrer 6 hour. After 6 hour heat 90°C-95°C and metalized with salicylic acid and B.C.S at 5.5 pH maintain for 4 hour, After 4 hour test. If test is ok, then clarify, filter and Dry it.

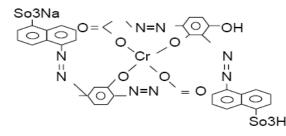
Chemical Reaction:

1. Anthranilic Acid Diazo

2. II Coupling with Ortho Toludine 5. Sulphonic Acid


		Mass balance of Aci	d Brown 425	
INPUT	KG		OUTPUT	KG
Anthranilic acid	149 —			
	60 -			
HCI		Anthranilic Acio	I	
Nitrite	80 -	Diazo		
Ice	800 -			
Water	1250 —			
Resorcinol	117 —	→ *		
Soda Ash	330 —			
Ice	900 —	1st COUPLING		
Water	500 -			
O.T. 5 SA.	220 —	→		
HCI	55 —	→		
Nitrite	70 —	2nd COUPLING	i i i i i i i i i i i i i i i i i i i	
Ice	750 —			
Water	1000 —			
		•		
Salicylic Acid	105 —	→		
B.C.S.	320 —	Chromination		
Steam	800 —			
Caustic Flakes	35 —	→		
		v		
		Clarification		
		v		
		RO/UF	→ Water reuse	3421
		Spray Drying	→ Drying loss	3120
		Spiay Diying	Acid Brown 425	1000
TOTAL	7541			7541

14. Acid Brown 434


Manufacturing Process:

Sodium picramate Diazotized with HCl, Nitrite at 0°c temp stirrer – 1.5 hour then couple with picramatediazo in alkaline medium 1.6 cleave acid diazotized of, Nitrite & Ice at 0°c temp this diazo coupled with first coupling at 3 C temp. stir. 6 hrs.heat 80 temp. Metalized with ferrous sulphate solution in natural medium stir.4 hrs.If test ok then isolated with common salt. Filter collect w/c, dry it.

Chemical Reaction:

5. Above metalized with salicylic acid & chromium fluoride

Mass Balance of Acid Brown - 434								
INPUT	KG				OUTPUT	KG		
Sodium Picramate	267 —							
HCI	300 —							
Nitrite	70 -		Sodium –					
Ice	600 —		picramate diazo					
Water	1000 —	-						
Resorcinol	96 —	>						
Ice	500 —		Coupler Vessel					
Water	400 -	•						
1,6 cleave acid	205 —							
HCI	345 —		Diazo of Mix					
Ice	500 —		Cleave					
Sodium Nitrite	60 -							
			•					
Ice	400 —		Coupling					
Caustic Lye	135 —		Coupling					
Steam	600 —							
Ferrous Sulphate	260 —		Metallisation					
Common Salt	550 —		Isolation &					
			Filtration		Waste Water	4298		
			•	>	Drying loss	990		
			Spray Drying		Acid Brown 434	1000		
Total	6288					6288		

15. Acid Green 16

Manufacturing Process:

- In M.S. Reactor Naphthalene and Sulphuric Acid is mixed for reaction. Then add soda ash and filter it. Wet cake formed is Naphthalene Disulfonic Acid will be used for further procedure and effluent goes to ETP.
- Now in another M.S lead bonded jacketed Vessel take Dimethyl aniline, formaldehyde and Sulphanilic acid. Add soda ash to this mass and filter it. Effluent goes to ETP. Now mix this wet cake with previously prepared wet cake of Naphthalene Disulfonic Acid, also add water and sulphuric acid. Once this mass is oxidized using water, sodium dichromate, oxalic acid, sulphuric acid and soda ash; it is salted with common salt and filtered. Wet cake obtained now is dried in dryer, pulverized in ball mill as per required standard and packed for sale.

		Mass Ba	lance of Acid	Green 16	
INPUT	KG			OUTPUT	KG
Di Methyl Aniline	600				
Formaldehyde	220	Con	densation		
Sulphanilic Acid	10				
	250		•	Nucata Watan	1250
Soda Ash MnO2	250 — 400 —	Ox	idation &	Waste Water	1350 1630
Water	1500	Fi	lteration	→ DMA W/C	1030
Napthaline	400			→ Waste Water	1230
Sulphuric Acid	500 —		honation &	→ Napthaline di sulphonic Acid w/c	750
Oleum	450 —		Iteration		
Soda	630	•			
			.		
Napthalene Disulphonic Aci					
DMA W/C	1630 —				
Sodium dichromate	110	Conc	antation &		
Sulphuric Acid	550		xidation		
Oxalic Acid	160				
Soda	150				
Water	1000	→			
Common Salt	650	➡ Iso	plation &	→ Waste Water	2750
		Fil	Iteration		
		Dente		→ Drying Loss	1250
		Dryir	ng & packig	→ Acid Green 16	1000
Total	9960				9960

Manufacturing Process:

Ortho-Benzaldehyde sulfonic acid and Ethyl benzyl aniline sulfonic acid (EBASA) condensation, oxidation with Manganese Oxide in presence of Acetic acid, and then the product into the Sodium salt, filter and dry it.

	Mass	Balance of Acid Blue 9		
INPUT	KG		OUTPUT	KG
Ethyl Benzyl Aniline Sulphonic Acid	750			
Ortho Benzaldehyde sulphonic Acid	275	Condensation		
H2SO4	300			
Soda Ash HCI	150 — 350 —	→		
Water	1000 —			
MNO2	150			
H2SO4 Soda Ash	300 - 250			
HCI	400	Oxidation		
Acetic Acid Water	300 — 1000 —			
Common Salt	800	Isolation & Filteration	→ Waste Water	3900
		• • • • • • • • • • • • • • • • • • •		1125
		Drying & packig	→ Drying Loss → Acid Blue 9	1125
Total	6025			6025

Manufacturing Process:

Ethyl benzyl aniline sulfonic acid (EBASA) condensation, and then (a) oxidation as dimer water molecules (hydrol), again with N,N-diethyl meta toluidine condensation, oxidation with Manganese Oxide in presence of H_2SO_4 and translated into sodium salt, filter and dry it.

	Ма	iss Bala	nce of Acid Blue 15	5	
INPUT	KG			OUTPUT	KG
Ethyl Benzyl Aniline Sulphonic Acid	1090				
Di Ethyl meta toludine	210				
H2SO4	300		Condensation		
SODA ASH	150				
HCI	350				
WATER	1000				
MNO2	150		• • • • • • • • • • • • • • • • • • •		
H2SO4	300				
Soda Ash	250				
HCI	400	>	Oxidation		
Acetic Acid	300				
Water	1000				
Common Salt	800		Isolation &	→ Waste Water	4120
			Filteration		
			• • • • • • • • • • • • • • • • • • •		1180
			Drying & packig	→ Drying Loss → Acid Blue 15	1000
					1000
Total	6300				6300

Manufacturing Process:

Benzaldehyde -1,3-disulfonic acid and N-benzyl-N-ethyl Aniline (2 More) condensation and oxidation with Manganese Dioxide in presence of acetic acid, convert into sodium salt, Filter and dry it.

	Mass	s Balanc	e of Acid	Blue 7		
INPUT	KG				OUTPUT	KG
Benzaldehyde Disulfonic Acid Ethyl benzyl aniline H ₂ SO ₄ Soda Ash HCl Water	330 380 300 150 350 1100		Conder	isation		
MNO ₂ H ₂ SO ₄ Soda Ash HCI Acetic Acid Water	150 300 250 400 300 1000		Oxida	ation		
Common Salt	800		Isolat Filtera		─── > Waste Water	3730
Total	5810		Drying 8	a packig	→ Drying Loss → Acid Blue 7	1080 1000 5810

Manufacturing Process:

Metanilic acid is diazotized with HCl, Nitrite and Ice at 0°C temp. Stir for 1 hour. Alpha Naphthyl amine coupled with Metanilic acid in acidic medium. Stir for 8 hours. After 8 hours ANA diazo with HCl & Nitrite at 18°C temp. Stirrer for 3 hours and then coupled with phenyl peril acid. At neutral pH, stir for 3 hours, then isolated & spray dryer it.

Mass	Bal	lance:
------	-----	--------

	ue 113			
INPUT	KG		OUTPUT	KG
Metanillic Acid	300			
HCI	65	-		
Sodium Nitrite	70	Diazotization		
Ice	1000			
Water	900	-		
Water	900			
HCI	55	 •		
Alpha Napthyl Amine	240			
Ice	500	 1st Coupling		
Water	600	 		
Nitrite	50			
H2SO4	250	 IInd		
Caustic Flakes	200	 Diazotization		
Ice	1000			
Phenyl peri Acid	490	 • • •		
Soda Ash	200			
Sodium Acetate	300	 IInd Coupling		
Ice	500			
Water	500			
		V		
		Isolation &		
Common Salt	800	 Filtration	→ Waste water	5640
		•	Drying Loop	1200
		Spray Drying	→ Drying Loss → Acid Blue 113	1380 1000
Total	8020			8020

Manufacturing Process:

Solution of 2-Naphthol

Take water and 2-NaphtholCharge along with Caustic flacksStir 3 hr, check clear solution.

Preparation of 1,2,4-diazo solution

Add 1,2,4-diazo, ice and water, to make a slurry. Temp should be less than 100c .Stir for 1 hr at 100 C

Diazo coupling

Charge coupler solution to diazo slurry at 25-350 CStir 2 hr at 25-35 $^{\circ}$ C, then Heat to 70 $^{\circ}$ C.

Metal Complexation (Commination)

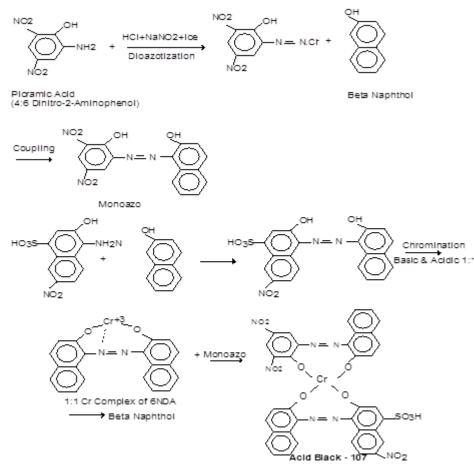
Add salicylic acid at 70° CCharge basic chromium Sulphate.Adjust pH 4.0-4.5 by adding HCl.Heat to $95-100^{\circ}$ C and maintain temperature for 5 hrClarify in filter pressAdjust pH 7 by adding caustic flacks just before spray drying.

Mass Balance of Acid Blue 193							
INPUT	KG					OUTPUT	KG
B Napthol Caustic Lye ICE Water	350 - 125 - 800 - 1200 -	•	Preparati Napt Solut	hol –			
1,2,4 Diazo Ice Water Caustic Lye	690 - 500 - 1000 - 120 -	+ 	Diazoti	zation			
Salicylic Acid BCS Steam	50 - 240 - 700		Coupl Chromi				
			RC)	•	Water reuse	2075
			Spray [Drying		Drying loss Acid Blue 193	2700 1000
TOTAL	5775						5775

21. Acid Red 315

Manufacturing Process:

Diazotisation of 4-NAPSA, coupling with 1-phenyl-3-methyl-5-pyrazolone, metallisation with Basic Chromium Sulphate. Chelating with another monoazo dye produced from (Diazotisation of 5-Nitro-2-aminophenol and coupling with 1-phenyl-3-methyl-5- pyrazolone) Clarify solution, filter and dry it.


		Mass Balance Acid Red		
INPUT	KG		Ουτρυτ	KG
4 NAPSA	225			
HCL	125			
NITRITE	68	Diazotiazation		
ICE	750			
	750			
WATER	/50			
PMP	160 —	↓]		
Ice	500 —			
CAUSTIC FLAX	50 —	COUPLING		
WATER	500			
SALASYLIC ACID	40	•		
BCS	350	CHROMINATION		
CAUSTIC FLEX STEAM	50 —— 800 ——			
			← EFFLUENT	2588
		FILTER	WATE CAKE ORANGE	1780
5 NAP	138 —			
HCL	125 —	→		
NITRITE	68 —	Diazotiazation		
ICE	750 —			
WATER	750			
	1.5.0	•		
PMP	160			
Ice	500			
CAUSTIC FLAX WATER	50 — 700 —			
WATER	/00			
		FILTER	EFFLUENT	1851
		FILIEK	WATE CAKE RED	1390
	1780			
WATE CAKE ORANGE WATE CAKE RED	1780 — 1390 —			
CAUSTIC FLAX		Condensation		
	50	-]		
WATER	1000			
		SPRAY DRYING	→ Drying loss	3220
		JERAT DRTING	ACID RED 315	1000

22. Acid Black 107

Manufacturing Process:

6-nitro-1-diazo-2-naphthol-4-sulphonic acid coupling with Beta naphthol, metallisation with Basic Chromium Sulphate. Chelating with another monoazo dye produced from (Diazotisation of Sodium Picramateand coupling with Beta Naphthol) Spray dry the resulting dyestuff solution.

Chemical Reaction:

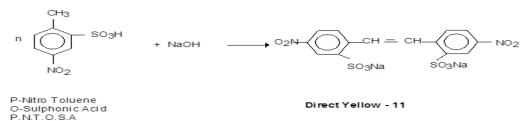
		Mass Balance Acid Black 1		
INPUT	KG		OUTPUT	KG
6 Nitro	480 —			
Ice	500 —	Diazotiazation		
Water	750 —			
water	750			
Beta Napthol	120 —	↓		
Ice	500 —			
Caustic Flakes	50 —	COUPLING		
Water	500 —			
Salacylic Acid	45 -			
Chromuim Formate	400 -	CHROMINATION		
Caustic Flakes	50 -			
Steam	800 -			
		↓ 	EFFLUENT	2415
		FILTER	WATE CAKE Black	1780
Sodium Picramate	200 —	→		
HCI	250 —	→		
Nitrite	80 —	Diazotiazation		
Ice	500 —	→		
Water	750 —			
Data Nanthal	245 —			
Beta Napthol Ice	500 —			
Caustic Flakes	150 —	COUPLING		
Water	700 —			
		FILTER	EFFLUENT	1985
			→ WATE CAKE Blue	1390
Wata Calke Plack	1700			
Wate Cake Black	1780 -			
Wate Cake Blue Caustic Flekes	1390 — 50 —	Condensation		
Water	1000 -			
Water	1000			
		SPRAY DRYING	──→ Dryign loss	3220
		SPKAT DKTING	ACID Black 107	1000
Total	11790			11790
iotai	11/20			11/90

*** DIRECT DYES** :

23. Direct Black 80

Manufacturing Process:

Para amino acetamide diazotized and couple with Gamma acid in alkaline medium and deacylation with caustic soda at 95°C.Deacylation mass is again tetrazotized and couple first with Mixed Cleves acid and then with Gamma acid in an alkaline condition, Isolate with salt and pass though RO and finally spry dry it.


Mass Balance of Direct Black 80							
INPUT	KG			OUTPUT	KG		
P- amino acetanilide	145	_					
Sodium Nitrite	105						
HCI	250		Diazotization				
Ice	500		Diazotization				
Water	750						
water	/30	-					
Gamma Acid	430		+				
Soda Ash	790	•					
Water	750	•	1st Coupling				
Ice	500						
Caustik soda	215 —		··· · · · · ·				
Steam	500	-	Hydrolysis				
Steam		-					
HCI	500						
Sodium Nitrite	210 —	•	Diazotization of				
Ice	500		1st Copling Mass				
			•				
Mixed cleves acid	195	•					
Water	400	•	2nd Coupling				
Ice	500	•					
Common Salt	550		Isolation				
			Filtration	→ Waste Water	5330		
			*	→ Drying Loss	1460		
			Drying & Packing	→ Direct Black 80	1000		
Total	7790				7790		

24. Direct Yellow 11

Manufacturing Process:

Take water in vessel and add caustic lye, then add PNTOSA slowly And after complete charging check pH. Adjust pH 8.00 and temp to 55°C and maintain for 1 hr. Then charge caustic for condensation. After complete charging bring the temp to 66°C and maintain for 3 hr. Then add 50% Sulphuric acid for reduction, at pH 2.00, maintain for 2 hr. Take Nitrobenzene and Amine in vessel, then add above condensed mass slowly and after complete charging, complete the reduction by adding extra amine and check for separation. Then stop the stirrer and give 3.00 hr of settling time. Take DEA + water in vessel and add above mass (Dye+ NB + Amine) slowly in vessel and stop when water level is reached. Complete the reduction by adding extra DEA and adjust pH at 8.50. Stop the stirrer for 7.00 hr. Recover dye from bottom and send for packing. The balanced Nitrobenzene + Amine use in next batch.

Chemical Reaction:

Alkaline Condensation of 4-Nitro Toluene-2-Sulphonic Acid

	Ma	ass Bala	nce of Direct Ye	llow 11	1	
INPUT	KG				OUTPUT	KG
PNTOSA caustic lye Water Steam	600 215 2500 1000		Condensation			
Spent H2SO4 (70%)	500		Nutralization			
Common Salt	650		Isolation & Filtration	├ →	Wastewater	3005
			Drying & Packing		Drying loss Direct Yellow 11	1460 1000
Total	5465					5465

25. Direct Brown 44

Manufacturing Process:

Preparation of MPD Solution: Charge MPD in the MSRL vessel withsodium nitrite. Add water and ice in it. It is coupled with hydrochloric acid and ice to keep the temperature 0 to 5°C.

Preparation of Sulphanilic Diazo: Charge Sulphanilic acid and Hydrochloric acid along with ice in the MSRL vessel with caustic lye. And mass is coupled **Coupling:** Add Caustic lye in the in the mass and coupled.

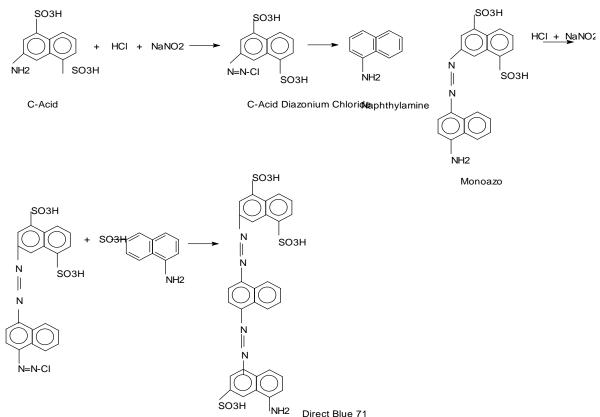
Spray Drying: Send the total mass for the drying purpose.

Mass Balance of Direct Brown 44								
INPUT	KG				OUTPUT	KG		
MPD	135 —							
Water	1000 —	Prer	paration of					
Sodium Nitrite	158 —		D solution					
Ice	500		Bolacion					
HCI	180	→						
Ice	500		•					
MPD	270 —	1st	1st Coupling					
	220							
HCI Gulabarilia Asid	220 —							
Sulphanilic Acid	300		paration of					
Sodium Nitrite	100	SI	ulphanilic					
Water	1250 —		Diazo					
Ice	750 —	<u>→</u>						
Ice	800	→ Tipe	l Coupling					
CS Lye	220 —	→ ^{1111C}						
			•					
			Mixing					
			•		Water Reuse	2403		
			RO/UF		Water Reuse	2403		
				b	Drying loss	2980		
		Spr	Spray Drying			2960		
			dardization Packing	→	Direct Brown 44	1000		
Total	6383					6383		

26. Direct Blue 71

Manufacturing Process:

C-Acid diazo solution: Prepare diazo of C-Acid with help of hydrochloric acid (30%) and Sodium Nitrite solution in presence of ice.


 α -Napthylamine solution: Prepare α -Napthyl amine clear solution by heating with Hydrochloric acid (30%) and water. Clear pinkish solution is obtained.

First coupling: Transfer \Box -Napthyl amine solution to C-Acid Diazo keeping temp to 10°C under continuous stirring.

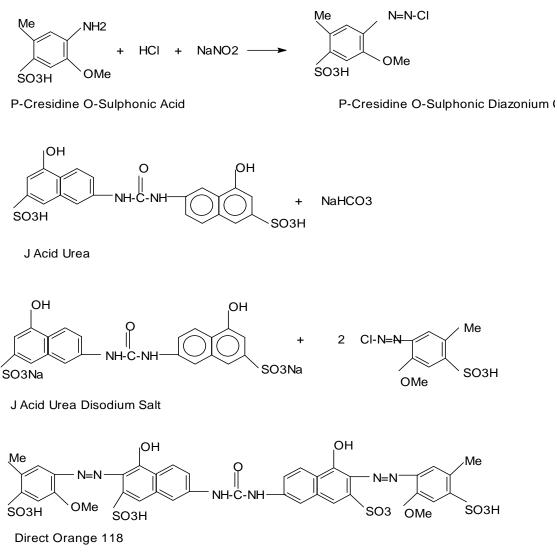
Mono azodiazo: Prepare diazo of first coupled mass with help of Sodiumnitrite and ice. When diazo is ready add to Mix cleave acid clear solution. When coupling is over, make diazo of aforesaid coupling mass with help of Hydrochloric acid, ice and Sodium Nitrite.

J-Acid solution: Prepare J-Acid solution in water, ice and caustic lye. Transfer diazo to J-Acid solution in alkali condition. Check the completion of reaction.

Drying: Spray dry the reaction mass.

Chemical Reaction:

		Mass	Balance of	Direct E	Blue 7	1	
INPUT	KG					OUTPUT	KG
	165						
C-Acid	165			_			
HCI	300		Preparat				
Sodium Nitrite	155		C-Acid c				
Ice	500		soluti	on			
Water	1000		•				
Alpha Napthyl Amine	170						
Caustik Flake	40		1st Cou	pling			
	500						
Ice	500		1				
Sodium Nitrite	145			· c			
Ice	900		Diazotiza				
HCI	200		1st Cou				
	200		Mas	s			
			•				
Mix Cleave Acid	330		1				
Caustik Flake	40						
Ice	500		2nd Cou	pling			
Water	750						
Sodium Nitrite	145		Diazotiza	ion of			
Ice	900		2nd Cou				
HCI	200		Mas				
J acid	250						
Caustic Lye	60						
Water	800		3rd Cou	nlina			
Ice	600			pm 19			
			RO/L	IF		Water Reuse	4270
			Spray D	rying		Drying Loss	3380
			Standardi	zation			
			& Pack			Direct Blue 71	1000
Total	8650						8650


27. Direct Orange 118

Manufacturing Process:

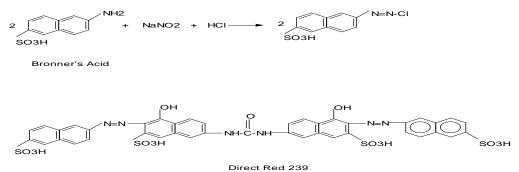
Diazotization of p-Cresidine-o-Sulphonic acid: p-Cresidine-o-Sulphonic acid is diazotized in presence of Hydrochloric acid and SodiumNitrite. Just before coupling make CR and SI –ve with sodium bicarbonate.

Coupler solution: Take water and add J-Acid Urea and make uniform solution. Add Sodium bi-carbonate. Receive above diazo mass in course of 45 min. Stir overnight. Heat up to 80°C & stir for 2hr. Spray dry the above reaction mass

Chemical Reaction:

	Mass	Balance	e of Dire	t Orange	118	
INPUT	KG				OUTPUT	KG
0 - Toludine 5 Sulphonic Aci						
HCI Sodium Nitrite	375 95	→ →	Diazot	ization		
Ice	800		•			
Sodium bi-carbonate	50					
Water	1200		Col	unling		
Ice	700			ıpling		
J-Acid Urea	350					
Common Salt	650		Isolat Filter		Waste Water	2490
			Standar	, dization —	→Dryng Loss	980
			& Pa	cking —	Direct Orange 118	1000
Total	4470					4470

28. Direct Red 239


Manufacturing Process:

Bronner's Acid: Make clear solution of bronner's Acid with caustic lye. Add Sodium Nitrite in the solution and make reverse diazo in Hydrochlori acid and ice to maintain diazo at temp 5-7°C.

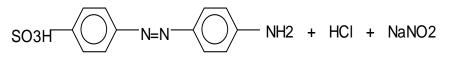
Coupler solution: Prepare J-Acid Urea solution in water, stir to form good slurry. Transfer diazo to coupler solution in alkali medium. When coupler is over, stir over night.

Drying: Spray dry the above reaction mass.

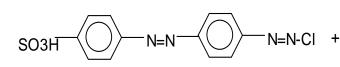
Chemical Reaction:

	Ма	ss Balar	nce of Dir	ect Rec	239		
INPUT	KG					OUTPUT	KG
Browner's acid Water Ice caustic lye Sodium Nitrite HCI	250 1500 750 100 95 550		Diazot	ization			
J-Acid Urea Water Ice Sodium Bi Carbonate	292 1250 750 250			pling		Water Reuse	1927
			R/ Spray I	,	>	Drying loss	2860
	5787		Standaro & Pac			Direct Red 239	1000 5787

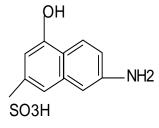
29. Direct Red 254

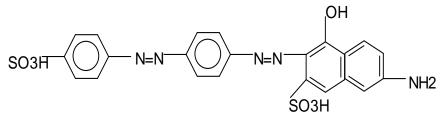

Manufacturing Process:

PAABSA solution: Prepare solution of PAABSA by caustic lye. Stir and add Sodium Nitrite in the solution and make reverse diazo in Hydrochloric acid and ice. Just before coupling destroy excess nitrite by sulfamic acid.


Coupler solution: Prepare J-Acid solution with help of caustic soda lye. Transfer the diazo to coupler solution in alkali medium. When coupling is over, heat the coupling mass.

Drying: Spray dry the above reaction mass.


Chemical Reaction:


P-Aminoazo Benzene 4-Sulphonic Acid

P-Aminoazo Benzene 4-Sulphonic Acid

J Acid

Direct Red 254

		Mass	Balance of Direc	t Red 2!	54	
INPUT	KG				OUTPUT	KG
PAABSA Sodium Nitrite WATER Soda ash Ice HCI	400 - 100 - 1250 - 300 - 1000 - 550 -	* * * * *	Preparation of PAABSA Solution			
J-Acid caustic soda lye Water Ice	350 - 150 - 1200 - 700 -	* * *	Coupling			
			R/O	`	Water reuse	2020
			Spray Drying		Drying Loss	2980
			Standardization - & Packing	>	Direct Red 254	1000
Total	6000					6000

30. Direct Violet 35

Manufacturing Process:

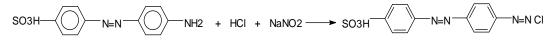
C-Acid diazo: Prepare diazo of C-Acid in presence of Hydrochloric acid (30%) Sodium Nitrite and ice.

P-Cresidine: Make solution of p-Cresidine in water. Then couple with C-Acid diazo. Stir continuously. When coupling is over, make mono azodiazo by adding Hydrochloric acid and Sodium nitrite solution in presence of ice.Stir mono azodiazo for 4-5 hr. Then destroy excess sodium nitrite adding sulfamilic acid. Final coupling will take place with n-Phenyl J-Acid solution in alkaline condition. After completion of final coupling, heat to 70°C. Spray Dry the above reaction mass.

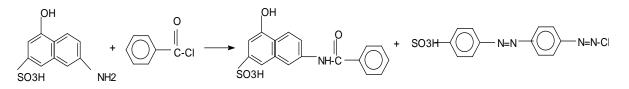
		Mass	Balance of Direct \	/iolet	35	
INPUT	KG				OUTPUT	KG
C-Acid	330 —					
HCI	350 —					
Sodium Nitrite	147 —		Preparation of C			
Water	800 -		Acid diazo			
Ice	500 -					
p-Cresidine	150 -	•	Preparation of p-			
Water	1000 -	•	Cresidine			
Soda Ash	100 —	•	<u> </u>			
Ice	500 -	•	I st Coupling 🗧		ł	
			↓			
HCI	350 —					
Sodium Nitrite	147 —		Diazotization of 1st Coupling			
Ice	1100 -		Mass			
n-Phenyl J-Acid	327 —		+			
Water	750 —					
Ice	500 —		Final Coupling			
Caustic lye, 48%	300	•				
			RO		Water reuse	3251
			Spray Drying		Drying Loss	3100
			Standardization		Direct Violet 35	1000
			& Packing			1000
Total	7351					7351

31. Direct Red 81

Manufacturing Process:

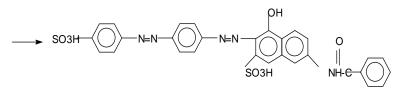

Diazotization: - PAABSA is charged to a M.S.R.L reaction vessel along with water and ice to maintain temperature between 0 to 5oC. Then Hydrochloric Acid will be added followed by Sodium Nitrite powder gradually till diazotization completed, which can be confirmed by starch iodide paper. Any excess nitrite will be removed by adding Sulfamic Acid just before coupling. Keep temperature between 0 to 5oC throughout the diazotization reaction.

Preparation of coupling component: - Charge J acid in the MSRL vessel and make clear solution with caustic lye. Add ice with water the coupler solution. Take water in which add sodium Acetate and benzyl chloride.


Coupling: - Charge coupler solution to the diazotized PAABSA keeping the temperature between 0 to 5oC by adding of ice.

Isolation: - Add salt for the Isolation of the product and then send the product for further filtration following by tray drying.

Chemical Reaction:


4 4' p-Amino Azo Benzene Sulphonic Acid

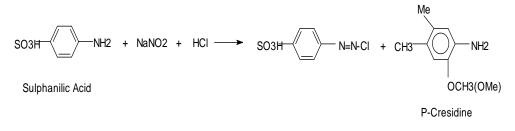
J Acid

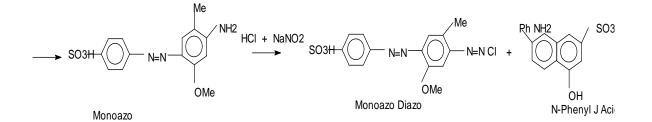
Benzoyl Chloride Be

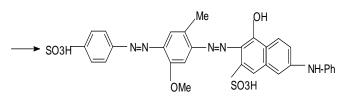
Benzoylated J Acid

Direct Red 81

		Mass B	alance o	f Direct	Red 81		
INPUT	KG					OUTPUT	KG
PAABSA	350						
HCI	300						
Water	1000						
Ice	1000		Diazoti	ization			
Caustic lye 48%	260						
Na2CO3	100						
Benzyl Chloride	150						
Sodium Acetate	160		Benzoyl	ation of			
J acid	280		JA				
Water	750						
Ice	500		6.				
			Cou	oling			
				,			
Common Salt	650		Isolat	ion &		Wastewater	3120
			Filtra	tion			
						Drying loss	1380
			Dry	ing		, ,	
			Standar	dized &		Direct Red 81	1000
			Pacl				
Total	5500						5500


32. Direct Violet 9


Manufacturing Process:


Sulfanilic acid diazo: Prepare diazo of sulfanilic acid in presence of Hydrochloric acid, Sodium Nitrite and ice.

p-Cresidine solution: Prepare solution of p-Cresidine in water. Couple with Sulfanilic acid diazo. Stir continuously. When coupling is over make monoazodiazo by adding Hydrochloric acid and Sodium Nitrite solution in presence of ice. Stir monoazodiazo for 4-5 hr to consume sodium nitrite. After that destroy excess nitrite by adding sulfamic acid. Final coupling will take place with n-Phenyl J-Acid in alkaline medium. After completion of coupling, heat to 70°C. Spray dry the above reaction mass.

Chemical Reaction:

Direct Violet 9

Mass Balance of Direct Violet 9									
INPUT	KG			OU.	TPUT KG				
Sulphanilic acid	180 —								
HCI	500 —	•							
Sodium Nitrite	147 —		Prepare diazo of sulfanilic acid						
Ice	1300 —		of sulfanilic acid						
Water	1000 —	•							
p-Cresidine	150								
Ice	500 —		Preparation of						
Water	750 —		p-Cresidine						
SodaAsh	75	•	solution						
			1st Coupling						
			•						
HCI	500 —	•	Prepare diazo						
Sodium Nitrite	147 —	•	of 1st Coupling						
Ice	500 —	•	Mass						
n Dhamul 1 Aaid	227								
n-Phenyl J-Acid	327 —								
Caustic lye, 48% Ice	148 — 1000 —		Final Coupling						
			•	► Water	reuse 3244				
			R/O						
				► Drying	Loss 2980				
			Spray drying						
			Standardization	Direct	Violet 9 1000				
			& Packing						
Total	7224				7224				

33. Direct Yellow 99

Manufacturing Process:

Condensation:DNSDA, Para anisidine and water is charged into vessel. And caustic flakes are added to the vessel to maintain the pH 5.5-6.3.

Isolation:The mass is isolated by HCl and steam is injected into vessel.

Filtration: The mass is filtered and then sent to the drying.

Standardization: The spray dried powder is then charged to the Ball – Mill and standardize be adding Gabber salt and anti – dusted by anti-dusting oil.

Packing: The final product is then packed in HDPE bags / M.S. Drums / Plastic Carboys / Paper cartoon boxes.

		Mass	Balance of Direct	Yellow 99	
INPUT	KG			OUTPUT	KG
DNSDA	550				
Para anisidine	245		Condensation		
Caustic lye	157 ·		Condensation		
Water	2200				
HCI	260	+	¥		
steam	750 ·		Textetlar		
Salt	500		Isolation		
Water	1000				
			•		
			R/O	Water reuse	1822
			Spray Drying	Drying Loss	2840
			↓		
			Standardization		
			& Packing	→ Direct Yellow 99	1000
Total	5662				5662

34. Direct Black 19

Manufacturing Process:

Diazotization: Charge PNA along with HCl in the MSRL vessel. Add water and ice in it.

Preparation of Gamma Acid Solution: Charge H Acid in the MSRL vessel with HCl, water and soda ash.

Coupling: Above mass is coupled with MPD and ice. Keeping the temperature 0 to 5° C by adding of ice and by adding water wet cake slurry is generated at the end.

Spray Drying: Wet cake slurry is spray dried and product is generated.

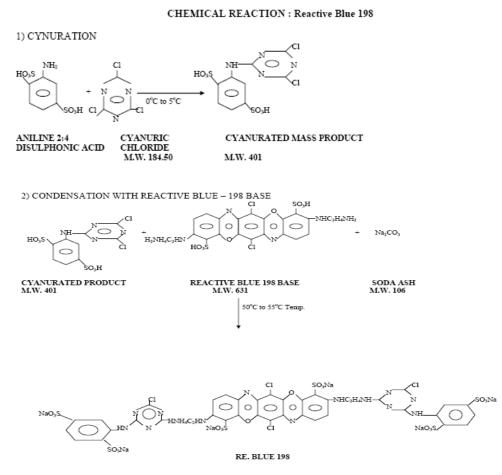
Mass Balance of Direct Black 19								
INPUT	KG					OUTPUT	KG	
PNA	210							
Water	750							
HCI	540		Diazot	ization				
Sodium Nitrite	180							
Ice	1000							
				7				
H acid	245				1			
Water	700							
Ice	500		1st Co	uplina				
Soda Ash	75			5				
				-				
HCI	540				a			
Sodium Nitrite	180		Diazotiz	ation of				
Ice	1000			upling				
100	1000	-	Ma					
MPD	155							
Water	750							
Ice	500	-	Cou	pling				
Soda Ash	110							
Soda Asir	110							
						Water reuse	3065	
			R/	0		water reuse	3003	
					·	Drying Loss	3390	
SD-40	20		Spray	Drying		Drying Loss	2220	
50-40	20				ļ			
				*	ı — — — — — — — — — — — — — — — — — — —			
			Standar		<u>-</u>		1000	
			& Pac	cking	P	Direct Black 19	1000	
Total	7455						7455	

* Reactive Dyes

35. Reactive Blue 198:

Manufacturing process:

Cynuration: Cynuric Chloride is charge into a clear solution of Aniline 2:4 Disulphonic Acid in Cold. Stir well to complete the cynuration.


Condensation: Cynurated mass is added in the slurry of Blue 198 base and slowly heated to 50° C – 55° C maintaining pH: 7.0 and stir well to get complete reaction.

Clarification: Final product dye solution is clarified to remove any insoluble foreign particles in clarifier.

Spray Drying: Final product clarified dye solution is spray dried **Standardization:** The spray dried powder is then charged to the Ball – Mill and standardize be adding Glauber salt and anti – dusted by anti-dusting oil.

Packing: The final product is then packed in HDPE bags / M.S. Drums / Plastic Carboys / Paper cartoon boxes.

Chemical Reaction:

	Mas	ss Bala	nce of Reactive Blue 1	98	
INPUT	KG			OUTPUT	KG
Cuenumie Chlenide	220				
Cyanuric Chloride	220 -				
Soda ash	150 -				
Tamol	10 -		Cyanuration of Aniline		
Aniline 2:4 DSA	320 -		, 2:4 DSA		
Soda Bi Carb	120 -		-		
Water	800 -				
Ice	1000 -	•			
Blue HEGN-Base	400 -		•		
HCI	120 -		Condensation		
Water	800 -		Condensation		
Dicamol	45 -		¥ Clarification	→ Solid waste	50
					1735
			RO/UF	wastewater	1755
			Spray Drying	→ Drying loss	1200
			Standardization &		
			Packing	→ Reactive Blue 198	1000
Total	3985				3985

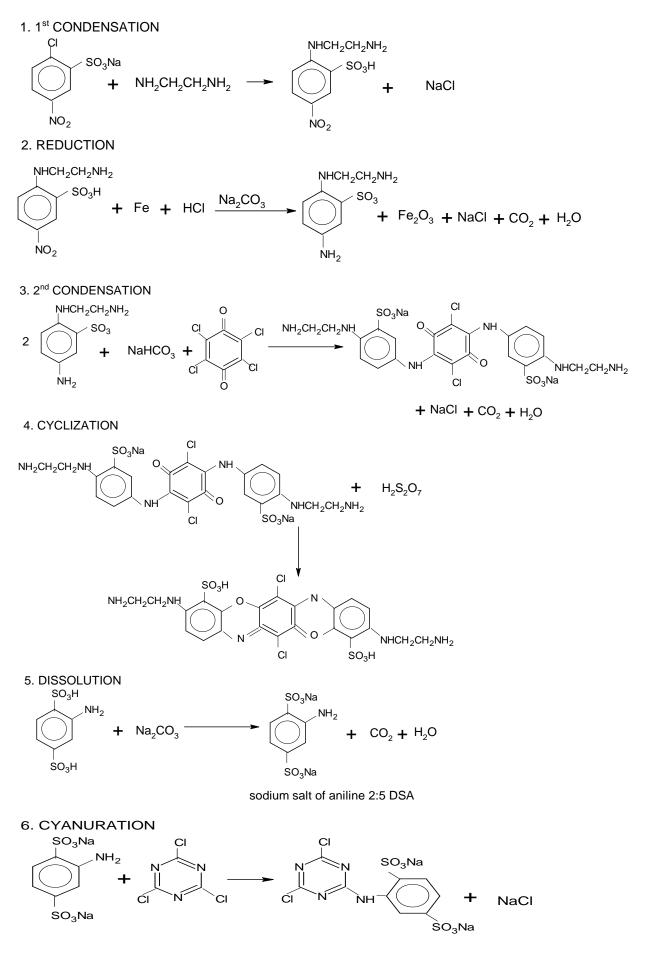
36. Reactive Blue 187:

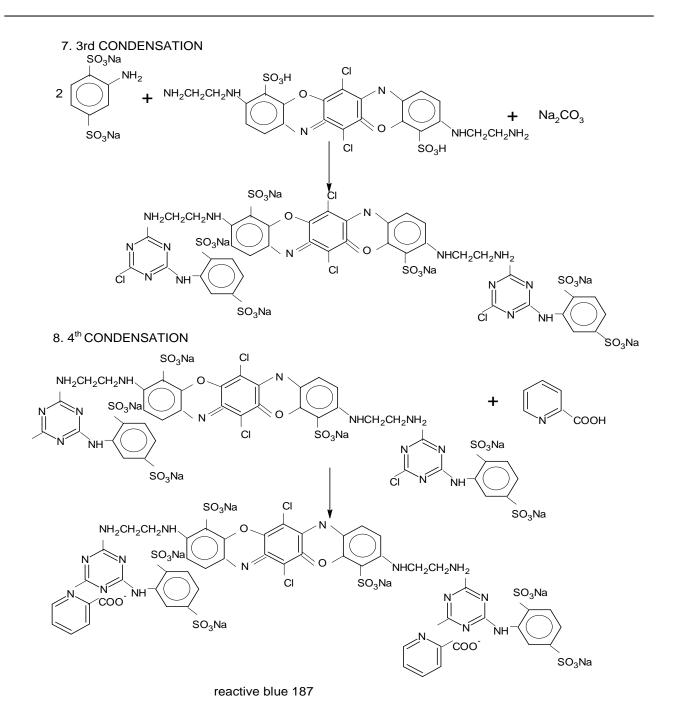
Manufacturing Process:

First condensation: In the first stage of process P-nitro chloro Benzene ortho sulfonic acid is added with ethylene diamine to give condensed product and salt.

Second condensation:Reduced product is charged with sodium carbonate and chloronil to form brown base condensed product along with salt, liberating water.

Cyclization:In this stage brown base condensed product is reacted with oleum to produce cyclized product liberating sulphuric acid.


Cyanuration: Sodium salt of aniline 2,5 DSA is charged with cyanuric chloride for cyanuration process to get cyanurated aniline 2,5 DSA.


Isolation: Mass is isolated by nicotinic acid. And then further clarified.

Spray Drying: The liquid will be transferred to the spray drying holding tank and spray dry.

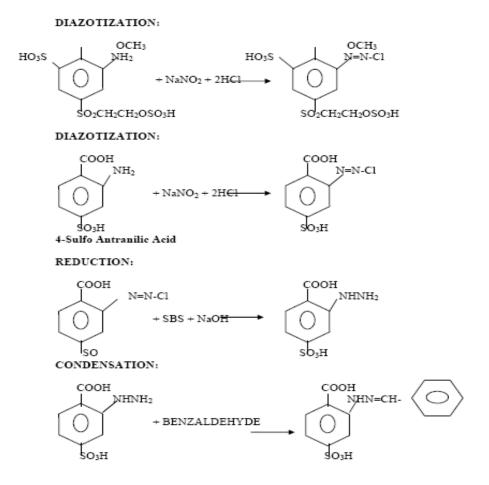
Packing: The final product is then packed in HDPE bags/M.S. Drums/Plastic Carboys/Paper cartoon boxes.

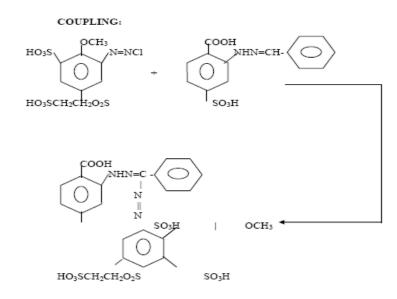
Chemical Reaction:

INPUT	KG	OUTPUT	
			KG
Etheylene Diamine	250		
PNCBOSA	230		
Water	1500	Condensation	
HCI	800		
Ice	2100	→ Isolation and filtration → Waste Water	2440
HCI	315 —		
Sodium sulphite	85	Deduction and	
Chloronail	175 —	Reduction and	
Sodium bicarbonate	160	condensation	
Water	800		
Sulphuric Acid	650		
Oleum	300	Cyclization	
Ammonium persulphate	150		
wash water	800	Filtration Waste Water	2100
Cyanuric Chloride	200 —	Cyanuration	
Aniline 2,5 disulphuric acic	260		
Nicotinic acid	250	Isolation	
Dicamol	55		
		Clarification	
Dedusting Oil	25	Spray Drying Drying loss	3565
		Standardization & REACTIVE BLUE 18 Packing	7 1000

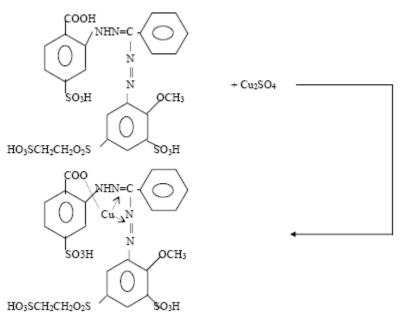
37. Reactive Blue 220:

Manufacturing Process:


Diazotisation: Sulfo OAVS is diazotised with HCl and sodium Nitrite at 0°C temperature and stirred well to complete diazo.


Coupling: Sulfo OAVS diazo is coupled with 4-Sulfo Hydrazone in alkaline condition in presence of Copper sulfate to form the final dye is called Reactive Blue BB.

Clarification: The final dye is clarified to remove un-reacted reactants or foreign particles.


Spray Drying: Final product clarified dye solution is spray dried. **Standardization&Packing:** The spray dried powder is then charged to the Ball – Mill and standardize be adding Glauber salt and anti – dusted by anti-dusting oil. The final product is then packed in HDPE bags / M.S. Drums / Plastic Carboys / Paper cartoon boxes.

Chemical Reaction:

COPPERING:

	Mass	balanc	e of Reac	tive blue	220		
INPUT	KG					OUTPUT	KG
Sulpho OAVS	650	>					
HCI	175						
Sodium Nitrite	65						
CS Lye	80		Diazotiza	ation of			
Sulphamic acid	2		Supho	OAVS			
Soda Ash	125 ·						
Water	600 ·		•				
Ice	800 ·						
4-Sulpho Hydrazone	450 ·		•				
HCI	150		1				
Sodium Nitrite	65						
CS Lye	45	•	Coupling	g of 4 -			
Sulphamic acid	2		Sulpho Hy				
Soda Ash	150		· · · · ·				
Water	800 ·						
Ice	600 ·		•				
Copper sulphate	350 ·		*				
Soda Bi Carbonate	195 ·		Сорр	ering			
Water	600 ·		-				
Dicamol	70		Clarific	ation		solid Waste	100
						wastewater for reuse	4154
			RO/	UF			
SD-40	30		• •		\	Drying loss	750
50-40	50		Spray I	Drying			750
			Standardi		\	Reactive blue 220	1000
			Standardi Pack			Reduive Dide 220	1000
TOTAL	6004						6004
IUIAL	0004						0004

38. Reactive Blue 221:

Manufacturing Process:

Diazotization: 6-Acetyl OAPSA charged to a MSRL reaction vessel along with water and ice to maintain temperature between 0 to 5°C. Then Hydrochloric Acid will be added followed by Sodium Nitrite powder gradually till diazotization completed, which can be confirmed by starch iodide paper. Any excess nitrite will be removed by adding Sulfamic Acid just before coupling. Keep temperature between 0 to 5 °C throughout the diazotization reaction.

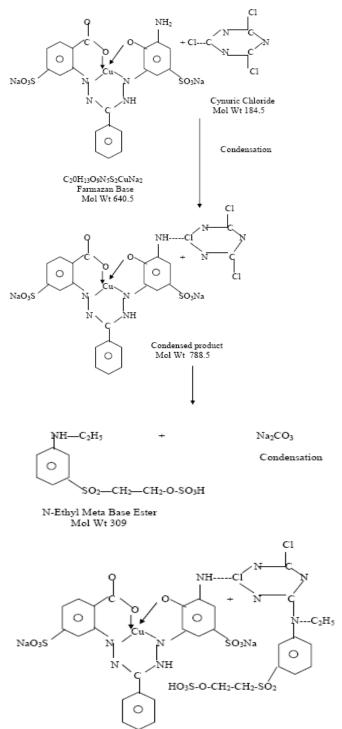
Coupling: Coupling of above mass with 4-Sulpho hydrazone Acid the diazotized 6-Acetyl OAPSA stir it keeping the temperature 0-5°C by adding of ice.

Coppering: The above mass coppering with Copper Sulphate is done at 95°C temperature.

Isolation: Blue BRF base to be isolated with HCl to remove extra impurity by isolation.

Cyanuration: Blue BRF Base is condensed with of Cyanuric Chloride in neutral condition at 0°C temp.

Condensation: The Cyanurated product is further condensed with N-Ethyl Meta Base Ester Eater at 50°C temperature in presence of slightly access of Sodium Carbonate to get the final dye.


Clarification: Final product dye solution is clarified to remove any insoluble foreign particles in clarifier. The standardized dye liquid will be transferred to the spray drying holding tank and spray dry.

Spray Drying: Final product clarified dye solution is spray dried.

Standardization: The spray dried powder is then charged to the Ball – Mill and standardize be adding Glauber salt and anti–dusted by anti-dusting oil.

Packing: The final product is then packed in HDPE bags / M.S. Drums / Plastic Carboys / Paper cartoon boxes.

Chemical Reaction:

	Mass Ba	alance of REACTIVE BLUE 2	221	
INPUT	KG		OUTPUT	KG
	250			
6-Acetyl OAPSA	250			
CS Lye	55			
HCI	550			
Sodium nitrite	70	Diazotization of		
Sulphamic acid	2	6-Acetyl OAPSA		
Sodium acetate	120	→		
soda ash	65 —	→		
Water	600	→		
Ice	400			
4-Sulpho Hydrazone	350	↓		
Soda ash	120			
Ice	400	Coupling of		
HCI	250	4-Sulpho Hydrazone		
Water	600			
Water	000			
Copper sulphate	250 —			
CS Flakes	350	Coppering		
Hot water	400	Coppering		
	400			
С- ь	120			2420
Salt	120	→ Isolation &	→ wastewater	2430
Soda ash	150	→ Filteration		
Cyanuric Chloride	150 —			
Tamol	20	Base Cyanuration		
N-Ethyl MBE	220			
Soda Bi Carb	130	Condensation		
Dicamol	55 —	Clarification	→ Solid waste	95
		Spray Drying	→ Drying loss	2152
		Standardization & Packing	→ Reactive Blue 221	1000
~ •				F237
lota	l 5677			5677

*** BASIC DYES**

39. Basic Brown 1

Manufacturing Process:

Diazotisation of MPD in presence of HCl and nitrite, and further coupling of MPD with caustic Flakes, then Filter it and collect wet cake, and Dry it.

	Mass B	alance of Basic Bro	own 1	
INPUT	KG		OUTPUT	KG
MPD	215	→		
HCI Nitrite	750 <u> </u>	→ Diazotization		
Ice	1000			
Water	1250	→ 		
MPD	430	↓		
Caustic Flakes	50	Coupling		
Ice	500			
Water	1000			
Common Salt	450	→ Isolation &	► Effluent	3755
		Filteration		
			Drying Loss	1190
		Drying & packig	Basic Brown 1	1000
Total	5945			5945

40. Basic Yellow 2

Manufacturing Process:

Dimethyl Aniline and formaline are reacted in presence of H_2SO_4 , to prepare methane base. Methane base is reacted with T G Urea in presence of Sulphur, filter the reaction mass and dry it.

Chemical Reaction:

Mass Balance of Basic Yellow 2									
INPUT	KG		OUTPUT	KG					
Di Methyl Aniline Formaline Water H₂SO₄	833 — 313 — 2500 — 100 —	Condensation							
T G UREA SULPHUR	1030 — 110 —	Condensation							
		Clarification							
Common Salt	450 —	Filteration	──→ Effluent	3056					
		Drying & packig	→ Drying Loss → Basic Yellow 2	1280 1000					
Total	5336			5336					

41. Basic Violet 1 Crystal

Manufacturing Process:

Para Formaldehyde, Mono Methyl Aniline, N,N-dimethylaniline and Acetic Acid are reacted at reflux temp in presence of Catalyst for 12 hrs. Product is isolated with cooling and filter at room temp. Wash with dilute HCl. Dry and pulverized.

Mass Balance of Basic Violet 1 Crystal								
INPUT	KG		OUTPUT	KG				
Di Methyl Aniline	670 —	►						
Para Formaldehyde	110 —	→						
Mono Ethyl Aniline	330 —	→						
Catalyst	50 —	Condensation						
Oxygen	50 —	→						
Acetic Acid	800 —	→						
Water	1000 —	▶						
		Clarification						
Caustic Soda	1000	Nutralization & Filter	→ Effluent	2640				
HCI Water	330 — 1000 —	► Paste Forming						
		Drying & packig	> Drying Loss	1700				
			→ Basic Violet 1 Crysta	1000				
Total	5340			5340				

42. Basic Green 4 Crystal

Manufacturing Process:

Benzaldehyde, N,N-dimethylaniline and Acetic Acid are reacted at reflux temp in presence of Ethyl Cellulose and Catalystfor 12 hrs. Product is isolated with cooling and filter at room temp. Wash with dilute HCl. Dry and pulverized.

	Mass Ba	lance	of Basic Green 4 C	Crystal	
INPUT	KG			OUTPUT	KG
Di Methyl Aniline	800 —				
Benzaldehyde	360 —				
HCI	360 —				
Acetic Acid	600 —		Condensation		
Catalyst	40 —				
Ethyl Cellulose	80 —				
Oxygen	160 —				
			Clarification		
Caustic Soda	750		Nutralization &	→ Effluent	1690
			Filter		
Oxalic Acid	600	•	*		
Water	1000 —		Crystalization		
			<u> </u>	→ Drying Loss	2060
			Drying & packig	→ Basic Green 4 Crysta	1000
Total	4750				4750

43. Basic Green 1 Crystal

Manufacturing Process:

Benzaldehyde, N,N-diethylaniline and Acetic Acid are reacted at reflux temp in presence of Catalyst for 12 hrs. Product is isolated with cooling and filter at room temp. Wash with dilute HCI. Dry and pulverized.

	Mas	s Balance of Basic Gree	en 1 Crystal	
INPUT	KG		OUTPUT	KG
Di Ethylaniline	1000			
Benzaldehyde	330 —			
Acetic Acid	1460 —	Condensation		
Catalyst	50	→		
Oxygen	160	→		
		Clarification		
		Clarification		
Caustic Soda	800	Nutralization & Filter	Effluent	2410
H2SO4	600	→		
Water	1000	Crystalization		
		Druing 9 poolsis	→ Drying Loss	1990
		Drying & packig	Basic Green 1 Crystal	1000
Total	5400			5400

44. Basic Blue 26 Crystal

Manufacturing Process:

Para Formaldehyde, Phenyl alpha Napthyl amine, N,N-dimethylaniline and Acetic Acid are reacted at reflux temp in presence of Catalyst for 12 hrs. Product is isolated with cooling and filter at room temp. Wash with dilute H_2SO_4 . Dry and pulverized.

	Mass B	Balance	of Basic Blue 26 Cr	rystal	
INPUT	KG			OUTPUT	KG
Di Methyl Aniline	450 -				
Para Formaldehyde	75 -				
Phenyl Alpha naphthalamin	415 -		Condensation		
Acetic Acid	750 -		Condensation		
Catalyst	20 –				
Oxygen	20 -	•			
			—		
			Clarification		
Caustic Soda	1000 -	•	Nutralization & Filter	→ Effluent	1320
H2SO4	600 -	•	•		
Water	1000 -		Crystalization		
				→ Drying Loss	2010
			Drying & packig	Basic Blue 26 Crystal	1000
Total	4330				4330

*** BASIC DYES LIQUID:-**

45. Basic Yellow 2

Manufacturing Process:

Dimethyl Aniline and formaline are reacted in presence of H2SO4, to prepare methane base. Methane base is reacted with T G Urea in presence of Sulphur, Clarify the reaction mass and send for packing.

	Mass Bal	ance of Basic Yellow 2 Liquid	
INPUT	KG	OUTPUT	KG
Di Methyl Aniline Formaline H_2SO_4	270 — 100 — 50 —	Condensation	
Acetic Acid Glycerine T G Urea Sulphur	225 — 33 — 335 — 35 —	Condensation	
		Clarification Sludge Basic Yellow 2 L	48 .iquid 1000
Total	1048		1048

46. Basic Violet 1

Manufacturing Process:

Para Formaldehyde, Mono Ethyl Aniline, N, N-dimethyl aniline and Acetic Acid are reacted at reflux temp in presence of Catalyst for 12 hrs. Product is clarified, and send for packing.

	Mass Bal	ance o	of Basic Violet 1	Liquid	
INPUT	KG			OUTPUT	KG
Di Methyl Aniline	330 —				
Para Formaldehyde	50 —				
Mono Ethyl Aniline	170 —		Condensation		
Catalyst	20 —		Condensation		
Oxygen	20				
Acetic Acid	450				
			Clarification	→ Sludge	40
			Clarification	→ Basic Violet 1 Liquid	1000
Total	1040				1040

47. Basic Green 4

Manufacturing Process:

Benzaldehyde, N,N-dimethylaniline and Acetic Acid are reacted at reflux temp in presence of Ethyl Cellulose and Catalyst for 12 hrs. Product is clarified and send for packing.

		Mass Bal	ance of	Basic G	reen 4 L	iquid	
INPUT	KG					OUTPUT	KG
Di Methyl Aniline Benzaldehyde HCl Acetic Acid Catalyst Ethyl Cellulose Oxygen	330 150 150 300 20 30 70		Condensation	nsation			
				cation		Sludge Basic Green 4 Liquid	50 1000
Total	1050						1050

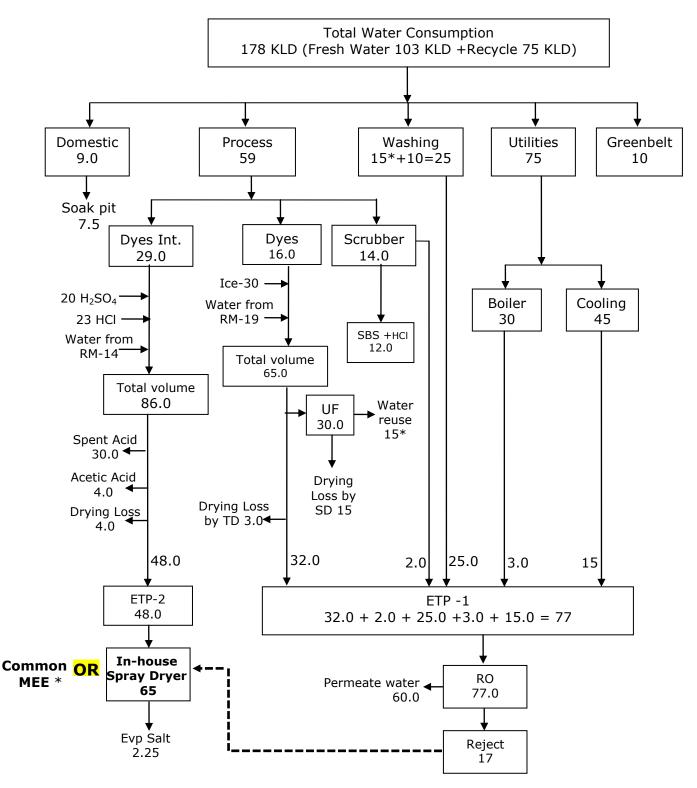
48. Basic Green 1

Manufacturing Process:

Benzaldehyde, N,N-diethylaniline and Acetic Acid are reacted at reflux temp in presence of Catalyst for 12 hrs. Product is clarified and send for packing.

		Mass Ba	lance of	f Basic (Green 1	Liquid	
INPUT	KG					OUTPUT	KG
Di Ethylaniline Benzaldehyde Urea Acetic Acid Catalyst Oxygen	330 110 40 500 20 50		Condensation				
			Clarific	cation		Sludge Basic Green 1 Liquid	50 1000
Total	1050						1050

49. Basic Blue 26


Manufacturing Process:

Para Formaldehyde, Phenyl alpha Napthyl amine, N,N-dimethylaniline and Acetic Acid are reacted at reflux temp in presence of Catalyst for 12 hrs. Product is clarified and send for packing.

	Mas	s Balanco	e of Basi	c Blue 2	26 Liquic		
INPUT	KG					OUTPUT	KG
Di Methyl Aniline	280						
Para Formaldehyde	40						
Phenyl Alpha naphthalamine	265		Condon	estion			
Acetic Acid	550		Condensation				
Catalyst	20						
Oxygen	20						
			Clavifi]►	Drying Loss	175
			Clarific	Lation		Basic Blue 26 Liquid	1000
Total	1175						1175

Annexure-III

Water Balance Diagram

* Common MEE facility operated by Chhatral Environment Management system Pvt. Ltd.

Water Consumption and waste water generation

Sr. No.	Source	Water Consumption Existing (KL/day)	Waste Water generation (KL/day)
1.	Domestic	9.0	7.5
2.	Green Belt	10.0	
3.	Industrial		
Α	Process	45	80
В	Scrubber	14	2.0
С	Washing	25	25
D	Boiler	30	3.0
E	Cooling	45	15
Total Industrial		159	125
Total (1 +2 + 3)		178	132.5
Less recycle		75	
Actual fresh water consumption		103	

Annexure IV

Details of Hazardous/Solid waste

Sr.	Type of	Schedule	Quantity	Disposal method
No.	Solid Waste			
1	ETP Waste Salt from Spray Dryer	35.3	150.0 65.0 215.0	Collection, storage & disposal at TSDF site approved by GPCB.
2	HCI (20-22%)	26.3	52 MT/month	Collection, Storage and captive consumption and/or sell to actual user.
3	Spent Sulphuric acid (H ₂ SO ₄)	26.3	780 MT/month	Collection, Storage, Reuse with in the process or sold to actual users.
4	Iron sludge	26.1	52 MT/month	Collection, Storage, Transportation, sell to cement manufacturer or disposed at TSDF site.
5	Calcium Thio Sulphite		78 MT/month	Collection, Storage, Transportation, sell to actual users under Haz. Waste rule.
6	Acetic Acid	26.3	104 MT/month	Collection, Storage, Reuse with in the process or sold to actual users under Haz. Waste rule.
7	Sodium Bisulphite	26.3	260 MT/month	Collection, Storage, Reuse with in the process or sold to actual users under Haz. Waste rule.
8	Used Lubricating Oil	5.1	0.5 Kl/year	Collection, storage & use within premises as lubricant/sell to registered recycler.
9	Discarded containers/ barrels/ liners	33.1	Barrels- 10000 nos./month Liner-1.0 Mt/month	Collection, storage and reuse for packing of products or disposal by selling to approved recycler.
10	Spent catalyst	28.2	0.5 MT/month	Collection, storage &return back to supplier for regeneration.

Annexure-V

Source of Air Emissions

Flue	gas Stack-Propos	sed				
Sr. No.	Stack attached to	Stack Height in m	Fuel Used	Fuel consumption rate	APC measure	Pollutant
1	Steam Boiler (1TPH)	21	Coal	4 TPD	Cyclone followed by bag filter	$PM < 150 mg/NM^{3}$ $SO_{2} < 100 ppm$ $NO_{x} < 50 ppm$
2	Steam Boiler (2 TPH)	21	Coal	8 TPD	Cyclone followed by bagfilter	
3	Hot air generator (5.0 lac Kcal/hr)	21	Coal	3 TPD	Cyclone followed by bagfilter	
4	Hot air generator (10.0 lac Kcal/hr)	30	Coal	6 TPD	Cyclone followed by bagfilter	
5	Hot air generator (25.0 lac Kcal/hr)	30	Coal	15 TPD	Cyclone followed by bagfilter	
6	Thermic fluid heater (25 lac Kcal/hr.)	30	Coal	15 TPD	Cyclone followed by bag filter	
7	DG Set (Stand By) (500 kVA)	11	HSD	100 Liter/Hr		
Proc	ess gas Stack-Pro	oposed				
8	spray dryer-1 (For Product Recovery) (20 KL/Day)	15			Cyclone + Scrubber + Sub	PM<150 mg/NM ³
9	Spray Dryer-2 (For Effluent) (40 KL/Day)	21			merged type gas bubbling tank	PM<150 mg/NM ³
10	Spray Dryer-3 (For Effluent) (40 KL/Day)					PM<150 mg/NM ³
11	Reaction Vessels of Multipurpose Plant – 2 sets	21			Alkaline Scubber	SO ₂ <40 mg/NM ³
12	Reaction Vessel of Chloranil	11			Water Scubber	HCI<20 mg/NM ³

<u>અનુક્રમણિકા નંબર - ૨</u> સબ-૨જીસ્ટ્રા૨ કચેરી

એસ.આર.ઓ - કડી

х , , , (Ш

•

Annexure VI Land Possession Document

ગામનુનામ: Rajpur..

1.3

.

દસ્તાવેજનો પ્રકાર અને અવેજ (ભાડા પટાના કિસ્સામાં આકાર પટે આપનાર અથવા પટે	સર્વે નંબર પેટા વિભગ આકાર અથવા જુ નંબર અને ધર નંબર ક્ષેત્રફળ આપવામાં આવે (જો કંઈ પણ હોય તો)	ડી દસ્તાવેજ કરી આપનાર પક્ષકારનું નામ અથવા દિવાની કોર્ટના હુકમનામા અથવા આદેશના સંબંધમાં પ્રતિવાદીનું નામ	દસ્તાવેજ કરી લેનાર પક્ષકારનું નામ અથવા દિવાની કોર્ટના ઠુકમનામા અથવા આદેશના	સઠીની તારીખ નોંધણીની	અનુક્રમ, વોલ્યુમ અને પૂષ્ઠ નંબર	શેરો
રાખનાર આપે છે તે જણાવવું)	(જો કેઈ પેલું હોય તો) ત્યારે તે.	ગાળવાના વાલવના વ્રાપ્યાદાળું ગામ	સંબંધમાં વાદીનું નામ	તારીખ	~	
માલિકી ફેરખત/વેચાણ	ખાતા નંબર - ૫૩૯ પૈકી નવા સર્વે નંબર - ૧૩૮૪ (જુનો સર્વે નંબર - ૭૫૮) કુલ ચોમી ૨૪૪૨૬૭ જમીન પૈકી ઔધોગીક પ્લોટ નંગ - ૨	વાઘેલા જશુજી નારણજી વાઘેલા ઝીલુજી નારણજી વાઘેલા માનબા રણછોડજી વાઘેલા મુકુંદજી રણછોડજી	અમીત રમેશભાઇ પટેલ કૃણાલ અંબાલાલ પટેલ	05/11/2018	7366	
gl. 7000000=00	સબ પ્લોટ નંબર - ૫ ચો.મી ર૫૧૭-૦૦ રોડ રસ્તા વ.વ.વરાડે ચો.મી ૩૪૫ કુલ ચો.મી ૨૮૬૨-૦૦ તથા સબ પ્લોટ નંબર - ૬	વાધેલા વિક્રમજી રણછોડજી	THESUS	05/11/2018		
	ચો.મી ૨૪૫૫-૦૦ રોડ રસ્તા વ.વ.વરાડે ચો.મી ૩૪૫ કુલ ચો.મી ૨૮૦૦-૦૦ ઔધોગીક હેતુની બીનખેતીની ખુલ્લી જમીન વાસ રુ	our chi (Rs.20) OURT Court INDIA मर्थे TWENTY RUPEES	RS-20 INDIA WENTY RUPEES	s.20		
કાબલ કરનાર	UTE SUB RECEIPTION	DURT FEE RS.20 203 A LIDEURT INDIA TWENTY RUPEES दीरिस रुपये जा	RS-20 INDIA WENTY RUPEES PATEL NIRAV V of cittle	. 06/11/2018		
ખરી નકલ	EAL		અરજી નંબર : 7674	: 00/11/2018	ના રાજના	
	1/2/ 9/		પહોંચ નંબર : 2018103015677			
સબ-રજીસ્ટ્રાર	* KADI *	•	તારીખ : 06/11/2018	્રુ સબ-૨જી	tice sugar	
એસ.આર.ઓ - કડી	ماند و دورد و بال	પણ રીતે કરેલ સુધારો માન્ય ગણાશે નહી.		એસ.આર.ઓ -	કડી	