

NOVEMBER 2017

SECTION	DESCRIPTION	PAGE NO.
1	Executive summary	03
	•	
2	Hazard identification	12
3	Consequence analysis	20
4	Impact assessment.	23
5	Failure frequency analysis.	26
6	Risk estimation	28
7	Risk mitigation measures.	30

CONTENTS

LIST OF ANNEXURE

Sr.no.	DESCRIPTION	PAGE NO.
Annexure 1	DOW F & E index worksheets	31
Annexure 2	MOND index assessment worksheets	33
Annexure 3	Glossary.	36
Annexure 4	Abbrivations.	38
Annexure 5	References.	39
Annexure 6	HAZOP Study report	40
	1. Methodology	
	2. Process , flow chart , Material balance &	
	reactions	
	3. Preliminary hazard analysis	
	4. Compatibility and reactivity hazards	
	5. HAZOP work sheets	
Annexure 7	DMP	86

SECTION 1: EXECUTIVE SUMMARY

1.1 THE ASSIGNMENT

- 1.1.1 M/s. FI DYE CHEM located at Plot no 3 & 11, Sikandar Market Chandola Dhal , Opp . Chandola petrol pump , Danilimda , Ahemadabad, Gujarat 380 022. The plot size is m2
- 1.1.2 The company now proposes a Dyes manufacturing Plant at this plot. The proposed product mix will be as follows;

Sr.	Product name	Capacity TPM
no.		
1	Reactive Blue P3R	20
2	Reactive Blue MX7R	5
3	Reactive Black B	10
4	Reactive Blue 49	10
5	Reactive Green HE4BD	10
	Total	55

TABLE NO. 1.1: Proposed Product capacity in TPM

1.1.3 Mr. Subhash Bonde of M/s. Bonde Technical Services, Thane is "EIA Functional Expert – Risk Assessment and Hazard Management (RH)", Accredited by NABET undertook this study in compliance with requirements of EIA report preparation which is prepared by M/s. Ultra –Tech Environmental Consultancy & Laboratory, Accredited by NABET. undertook this QRA study towards compliance of TOR requirements of EIA report.

1.2 SCOPE OF WORK

The scope of the report covers the proposed site activities of manufacturing. The battery limits of this study are restricted to the installations indicated over the proposed site plan.

1.3 METHODOLOGY

Methodology followed in preparation of this report is as per Technical EIA Guidance Manual for Synthetic Organic Chemicals, prepared for the Ministry of Environment and Forests Government of India.

The major steps are as outlined below;

- > Hazard Identification.
- Failure Frequency Analysis.
- Consequence Analysis.
- Impact Assessment.
- Protective System & Hazard Analysis.
- Risk Mitigation Measures.
- ➤ DMP.

1.4 IDENTIFICATION OF HAZARDS

1.4.1 Hazardous chemicals

MSDS for all the materials are studied. Identification of hazards of the using NFPA 704 M is considered . (in absence of relevant safety data the materials are considered and need to be handled as if hazardous material)

Storage and handling of following chemicals carry There is significant Flammability and Toxicity hazard due to Formaldehyde and Reactivity Hazard due to Cyanuric Chloride .

1.4.2 Hazardous processes /operations

The unit processes such as Dizotisation –coupling , condensation and reduction are identified as hazardous processes

1.4.3 Hazardous operations

The unit operation such as filtration, washing, size reduction, drying are identified as hazardous operations.

1.5 Inventory Analysis

Inventory analysis revels that the inventory of Hazardous chemicals such as Toxic chemicals and flammable chemicals of various groups does not exceeds the threshold specified quantity specified in Schedule II Column 3 of "The the MSIHC Rules, 1989". Thus the site is not classified as a Major Accident Hazards (MAH) Installation

1.6 Relative ranking

1.6.1 MOND Index Assessment

The MOND Index assessment is carried out as per MOND INDEX Manual 1993. As per Mond index assessment for the formaldehyde storage is having "Low "as over all hazard rating. It is reasonable to assume that a unit assessed at this level can be operated in a satisfactory manner by providing adequate off setting measures, giving full regard to the hazards indicated by the assessment It should be noted that the assessment depends heavily upon the maintenance of the hardware and of the management procedures; neglect of either will lead to loss of protection and the rating will rise.

1.6.2 DOW F&E Index

Identification of hazardous units and segments of plants and storage units based on "relative ranking technique," such as DOW Fire and Explosion Index is used. As per

5

DOW Toxicity hazard index assessment Hydrochloric acid as well as Formaldehyde storage installation category as II.

1.7 HAZOP STUDY

1.7.1 Methodology

The methodology used as per Hazard Identification and Hazard Analysis Techniques of Hazard Identification And Risk Analysis – Code Of Practice IS 15656: 2006.

1.7.2 NODES

NODE 1	Product Reactive Blue P3R
NODE 2	Product Reactive Blue MX7R
NODE 3	Product Reactive Black B
NODE 4	Product Reactive Blue 49
NODE 5	Product Reactive Green HE4BD

1.7.3 Identification of Hazards is carried out by HAZOP Study . Each Hazard is evaluated on 1 to 5 scale of severity and Probability leading to risk level of the scale 1 to 25 . Events / accident scenarios identified in HAZOP Study having risk rating in 16 to 25 range are listed in following table .

TOP TEN identified hazards in HAZOP study

- 1 Cyanuric chloride toxic gas release during charging of the batch .
- 2 Scrubber failure releasing toxic gases at vent of the scrubber
- 3 Reactivity and compatibility hazards at storage of raw materials
- 4 Hazardous Solid waste especially Iron sludge storage and transport containing residual material .
- 5 Health hazard due to emissions in Formaldehyde handling at work place.
- 6 Environmental risk POCP of formaldehyde handling .

- 7 Fire tender and Emergency vehicles movement at back side gate may be affected due to reduced width .
- 8 Organic contaminated water generated during fire fighting operations may enter the storm drain .
- 9 Presence of heavy metals like chromium in effluent .
- 10 Hydrochloric acid spill and emission of hydrogen chloride gas at work place .

1.8 CONSEQUENCE ANALYSIS

- 1.8.1 Consequences zones have been calculated using software ALOHA , PHAST and also software based on the "TNO Yellow Book". Method for calculation of the Physical Effects of the escape of Dangerous Material (Liquid & Gases) Published by the Directorate General of Labour, Ministry of Social Affair, Netherlands(1979).
- 1.8.2 The worst possible accident scenerios considered are as follows
 - a) Large Spill of Hydrochloric acid and dispersion of hydrogen chloride gas down wind.
 - b) Release of Formaldehyde .
- 1.8.3 Vulnerable Zone

ALOHA modelling of the vulnerable zones are superimposed on satellite site maps called **MARPLOT** are enclosed in section 3 for estimation of impact.

Large Spill of Hydrochloric acid and dispersion of hydrogen chloride gas down wind.

1.9 FREQUENCY ANALYSIS

1.9.1 Event Tree

Event trees begin with an initiating event and work toward a final result. This approach is inductive. The method provides information on how a failure can occur and the probability of occurrence. Frequency of the incident is estimated by Event Tree.

1.9.2 Initiating event frequency

Initiating event frequency/yr for the study are considered from Ref: Table 11.3, Chemical process safety fundametals with apptications ; Dainel A Crowl / Joseph L.Second edition,

1.9.3 The estimated event frequency of Large Spill of Hydrochloric acid and dispersion of hydrogen chloride gas down wind. Hydrochloric acid followed by Hydrogen chloride gas dispersion downwind is 1.0×10^{-4} per year.

1.10 IMPACT ASSESSMENT

- 1.10.1 Large Spill of Hydrochloric acid 30% and dispersion of hydrogen chloride gas down wind is low frequency event . Evacuation up to 10 m down wind will be affected and need immediate evacuation .
- 1.10.2 The population in the vulnerable zone being trained industrial workers are likely to take safe shelter with in 5 minutes avoiding any fatality.
- 1.10.3 It is pertinent to note that Hydrogen Chloride gas can react with water and/or water vapor/moisture. This can affect the release rate and downwind dispersion. The resultant air born Hydrochloric acid mist is likely ..

1.11 RISK ASSESSMENT

1.11.1 Individual risk

Individual risk is defined by AIChE/ CCPS as risk to a person in the vicinity of a hazard. This includes the nature of the injury to the individual, the likelihood of the injury occurring and the time period over which the injury might occur.

It is estimated that at assembly point individual risk of fatality is insignificant however the location may require evacuation depending upon meteorological conditions prevailing at that time .

1.11.2 Societal risk

Societal risk is a measure of risk to a group of people . It is most often expressed in terms of the frequency distribution of the multiple casualty events (F-N curve) In the present case any fatality unlikely for the population in surroundings the site and there is no situation point above the criterion line in F-N curve indicating insignificant societal risk.

1.12 RISK MITIGATION MEASURES

To address the residual risk issues risk mitigation measures are suggested which includes preventive as well as protective measures to achieve reasonable acceptable risk level .

- 1. Provide Closed arrangement for charging of Cyanuric Chloride to reactor .
- 2. Hydrogen chloride leak detector at plant and Cyanuric chloride store .
- 3. Storage of raw materials at store considering the compatibility and reactivity hazards at store.
- Hydrogen Chloride gas liberated in cyanuration reactor can be scrubbed by water in multiple scrubbers to get 30 % hydrochloric acid from the first scrubber.
- 5. Portable Fire Extinguishers.
- 6. Formaldehyde handling
 - a) Provide SOP for Formaldehyde storage and handling operations with thrust on medical surveillance, hazard communication to employees, PPE, Spill procedures confirming to OSHA Formaldehyde standard 29 CFR 1910.1048.
 - b) Provide scrubber and connect all vents releasing formaldehyde to scrubber.
- 7. Safety Shower & Eye Wash Fountains and Personnel Protective Equipment (PPE)
- 8. Suitable arrangement at storm drain to avoid any organic contaminated water/ spill/ fire water going out of the site.

- 9 Effective washing of the sludge to make it free of retained product .
- 10. "DMP" based on MCLS Analysis for the site with dove tailing data for "Offsite Disaster Control Plan".

A practical working document DMP for site as per the format specified under "The the MSIHC Rules, 1989" is prepared .Emergency organization, roles and responsibilities are detailed in the plan.

1.13 We thank the staff and the management for positive approach shown and excellent co-operation extended throughout the studies to complete the studies in scheduled time frame.

SECTION 2: HAZARD IDENTIFICATION

Preliminary hazard analysis Table no. 2.1: Layout Hazards

Layout Hazard	hase	0		e commissioning /demolish
	Pre Construction p	Construction phase	Operation phase	Post Operation /De
Organic contaminated water generated during fire fighting operations, sprinkler operation, spill / floor washing may enter				
storm water drain.				
Reactivity and compatability of hazards at storage installations, ETP in case of accidental mix up of materials.	-			
Fire tender and Emergency vehicles movement at back side gate may be affected due to reduced width .				

In addition to above Annexure no. 4 lists additional detailed Hazards covering following aspects for life time of the project considering following aspects

- ➢ Natural calamities
- Physical hazards
- ➢ Biohazards
- ➢ Electrical hazard
- Hazardous substances and wastes
- Mechanical hazards
- Frequent causes of accidents during construction Activity
- Ergonomics & psychosocial hazards
- ➢ General Hazards

FLAMMABILITY HAZARD

Sr. No.	Name	CAS	LEL	UEL	Flash Point	Boiling Point	NFPA Hazard Index		rd
			%	%	0c	0c	N _h	N_{f}	Nr
1	Formaldehyde 37%	50-00-0	7	73	83	98	3	4	0
2	Formaldehyde 37% methanol free	50-00-0	NA	NA	83	98	3	2	0
3	Resorcinol	108-46-3	1.4	-	127	280	3	1	0
4	Hydrochloric Acid	7647-01-0	NA	NA	NA	101-103	3	0	0
	Bichromate	10588-81- 9	NA	NA	NA	NA	NA	NA	NA
6	Cyanuric Chloride	108-77-0	NA	NA	NA	NA	NA	NA	NA
7	Vinyl Sulfone	77-77-0	NA	NA	102	234	NA	NA	NA
8	*Metanilic acid	121-47-1	NA	NA	NA	NA	NA	NA	NA
9	Sodium Nitrite	7632-00-0	NA	NA	NA	Decompose	NA	NA	NA
10	*Sulfanilic Acid	121-57-3	NA	NA	-	-			

Table no. 2.2: Flammability hazards

*Sulfonic acids: BDSA – Benzidine 2,2'di sulfonic acid CAS 117-61-3, PA2SA - Para Anisidine -2 sulfonic acid etc .

NFPA 704 M Hazard Index, Scale 1 to 4.

The Highest NFPA flammability Hazard (Nf) Rating is 3 for 3 chemicals

TOXICITY HAZARD

Sr. No.	Name	NFPA Hazard Index	TLV	STEL	IDLH	Oral LD50	Dermal LD50	Inhal. LC50
		Nh	Ppm	Ppm	Ppm	mg/kg.	mg/kg.	mg/m3
1	Resorcinol	3	10	20	NA	301	3360	NA
2	Formaldehyde	3	0.3	NA	20	100	270 ul/kg	203
3	Hydrochloric Acid	3	5	NA	NA	900	-	3124
4	Bichromate	NA	NA	NA	15 mg/m3 As Cr (VI)	NA	NA	NA
5	Sodium Nitrite	NA	NA	NA		175	NA	NA
6	Vinyl Sulfone	NA	NA	NA		32	NA	NA

Table no. 2.3: Toxicity Hazards

NFPA 704 M Hazard Index, Scale 1 to 4. The Highest NFPA Health Hazard Rating is 3 Source: MSDS

2.5 INVENTORY ANALYSIS

2.5.1 INVENTORY

TABLE NO. 1.2: Product wise	e Raw materia	l consumption	in Kg/T of p	roduct	

Sr.	Product \rightarrow	Reactive	Reactive	Reactive	Reactive	Reactive
no.		Blue P3R	Blue	Black B	Blue 49	Green
	Raw material \downarrow		MX7R			HE4BD
1	BDSA	51.0			76.0	
2	Bichromate	219	219		219	
3	Cyanuric Chloride	73.0			123.0	
4	Formaldehyde					183.0
5	H acid			51.4		
6	Hydrochloric Acid			38.00		472.0
7	IBAMSA	219	219		219	
8	Iron powder	256	256		256	
9	Metanilic acid	121.9	121.9		121.9	
10	Nadapsa	135	135		135	
11	NaHCO ₃			42.0		
12	PA2SA	134	134		134	
13	Resorcinol					139.0
14	Salt	97.56	97.56		97.56	
15	Soda Ash					236.0
16	Sodium Nitrite			23.4		136.0
17	Sulfanilic Acid					333.0
18	VS			95.2		
19	Water	731.0	731.0		731.0	

Table no. 2.5: Inventory

Sr. No.	Name	Maximum Quantity Stored T	Mode of Storage	Consumption TPM	Inventory level for number of days
1	Iron powder	8.960	Bags	8.960	30 days
2	Bichromate	7.665	Bags	7.665	30 days
3	IBAMSA	7.665	Bags	7.665	30 days
4	Hydrochloric Acid	5.100	Carboys	5.100	30 days
5	NADAPSA	4.725	Bags	4.725	30 days
6	PA2SA	4.690	Bags	4.690	30 days
7	Metanilic acid	4.267	Bags	4.267	30 days
8	Salt	3.415	Bags	3.415	30 days
9	Sulfanilic Acid	3.330	Bags	3.330	30 days
10	Cyanuric Chloride	2.690	Drums	2.690	30 days
11	Soda Ash	2.360	Bags	2.360	30 days

Sr.	Name	Maximum	Mode of	Consumption	Inventory
No.		Quantity	Storage	TPM	level for
		Stored			number
		Т			of days
12	Formaldehyde	1.830	Drums	1.830	30 days
13	BDSA	1.780	Bags	1.780	30 days
14	Sodium Nitrite	1.594	Bags	1.594	30 days
15	Resorcinol	1.390	Bags	1.390	30 days
16	Vinyl Sulfone	0.952	carboys	0.952	30 days
17	H acid	0.514	Bags	0.514	30 days
18	Sodium bi carbonate	0.420	Bags	0.420	30 days

TABLE NO. 2.6: HAZARDOUS CHEMICALS CLASSIFICATION

Grou	ıp	Material	Max. Storage Capacity	Threshold Qty. Mt. **
2	Toxic chemicals	Formaldehyde Conc. > 90 %.	Nil *	5
5.3	Very Highly Flammable Liquids.	Chemicals having flash point 230 C & boiling point < 350 C	Nil	1500
5.5	Highly Flammable Liquids.	Chemicals having 230 C < flash point 600C	LDO /HSD	2500
5.6	Flammable Liquids.	Chemicals having 600C < flash point < 900 C	NIL	5000

*Not applicable as 37 % solution is used

The site is not Major Accident Hazards Installation (MAH)

**Criteria used: "Manufacture Storage and Import of Hazardous Chemicals Rules, 1989".

2.6 Relative ranking

2.6.1 DOW F&E Index

Identification of hazardous units and segments of plants and storage units based on "Relative Ranking Technique," such as Fire and Explosion Index. F & EI, is a method universally adopted for classifying/ categorizing/ indexing of chemicals based on their reactivity and instability. The assessment is carried out as per the Dow's Fire and Explosion Index hazard Classification Guide 7 th edition , 1994 . Work sheet enclosed in annexure 2.

Table No. 2.7: DOW F & E INDEX	

Sr. No.	Installation	DOW F&E Index	The Degree Of Hazard	Toxicity Index	Toxicity Category
2	Hydrochloric acid	2	Light	7.3	II
3	Formaldehyde 37%	2	Light	7.3	II

2.6.2 MOND index assessment

The MOND Index is a rapid hazard assessment method for use on chemical plant or in plant design. The use of this technique puts the hazard of a plant on a numerical scale, where the comparative pictures of all subdivisions of the plant form emerge. The assessment is carried out as per MOND INDEX Manual 1993. Work sheet enclosed in annexure 3.

Sr. No.	Installation	Equivalent DOW Index	Fire Index	Internal Explosion Index	Aerial Explosion Index	Over All Hazard Rating
1	Formaldehyde 37%	25	Light 0.45	Moderate 3.0	Light 0.23	Low 30

TABLE NO. 2.8: MOND INDEX ASSESSMENT

Formaldehyde storage area Hazard index is Low due to less inventory. It is reasonable to assume that a unit assessed at this level after off setting measures can be operated in a satisfactory manner by providing adequate off setting measures, giving full regard to the hazards indicated by the assessment however it depends heavily upon the maintenance of the hardware and of the management procedures; neglect of either will lead to loss of protection and the rating will rise to the above estimated value .

2.7 COMPATIBILITY/ REACTIVITY HAZARD

2.7.1 Hazardous RM Storage Area

	Chemicals Mixing With	1	2	3	4	5	6	7	8
1	4-Aminobenzene Sulfonic Acid								
2	Cyanuric Chloride	Ν							
3	Divinyl Sulfone	Ν	Ν	SR					
4	Formaldehyde, Solutions (Flammable)	Ν	Ν	Ν					
5	Formaldehyde, Solutions (Formalin)	N	N	N	N	SD			
	(Corrosive)	IN	IN	IN	IN	SK			
6	Hydrochloric Acid, Solution	Ν	Ν	Ν	Ν	Ν			
7	Sodium Nitrite	Ν	Ν	Ν	Ν	Ν	Ν		
8	Water	С	Ν	С	Y	С	С	Y	

TABLE NO. 2.9: COMPATABILITY /REACTIVITY HAZARD MATRIX

CHART LEGEND

Y	Compatible	-	No hazardous reactivity issues expected
Ν	Incompatible	-	Hazardous reactivity issues expected
C	Caution	-	May be hazardous under certain conditions
SR	Self reactive	-	Potentially self reactive e.g. polymerizable

Reactivity and compatability hazard work sheet enclosed under HAZOP Study annexure no 6.

Risk mitigation

Store chemicals considering the compatibility and reactivity hazards for separation at store

2.7.2 Transformation products

Table No. 2.10:Transformation If Any Which Could Occur

SR. NO.	NAME	Hazards due to gases released decpmposition, transformation during fire condition
1	Cyanuric chloride	Rapid hydrolysis in presence of water containing solvent, acid catalysed reactions release of hydrogen chloride gas
2	Hydrochloric acid	When heated to decomposition, emits toxic hydrogen chloride fumes and will react with water or steam to produce heat and toxic and corrosive fumes. Thermal oxidative decomposition produces toxic chlorine fumes and explosive hydrogen gas.
3	Formaldehyde	May form carbon dioxide, carbon monoxide, and formaldehyde when heated to decomposition.
4	Sodium nitrite	Contact with oxidizable substances may cause extremely violent combustion
5	Resorcinol	Reacts with strong oxidants ammonia and amino compounds causing fire and explosion hazard.
6	Vinyl sulfone	Polymerizable
7	Bi chromate	Toxic Chromium oxide fumes may be formed in fire

Risk mitigation

- a) Store chemicals considering the compatibility and reactivity hazards for segregations at store.
- b) Smoke detector at store

2.8 HAZOP STUDY

- 2.8.1 The methodology used as per Hazard Identification and Hazard Analysis Techniques of Hazard Identification And Risk Analysis Code Of Practice IS 15656: 2006.
- 2.8.2 Manufacturing Process description, flow chart and material balance are available enclosed In EIA report
- 2.8.3 product wise unit processes & operations

Sr.	Product name	Reactive	Reactive	Reactive	Reactive	Reactive
no.		Blue P3R	Blue	Black B	Blue 49	Green
			MX7R			HE4BD
1	Condensation					
2	Coupling					
3	Diazotization					
4	Filtration					
5	Iron acid reduction					
6	Packing					
7	Spray Drying					
8	Spray drying /					
9	Washing					

TABLE NO. 2.11.:PRODUCT WISE UNIT PROCESSES & OPERATIONS

2.8.4 Identification of hazards by HAZOP study is carried out for following nodes, the thrust area being the environmental issues in the proposed activities. The HAZOP Study carried out under batch wise modes following NODES

Table No. 2.12: NODES FOR HAZOP STUDY

- NODE 1 Product Reactive Blue P3R
- NODE 2 Product Reactive Blue MX7R
- NODE 3 Product Reactive Black B
- NODE 4 Product Reactive Blue 49
- NODE 5 Product Reactive Green HE4BD

2.8.5 HAZOP worksheets are enclosed as annexure 6.

2.8.6 Hazard are identified and risk evaluated for each identified hazard on the scale 1 to 25 using the hazard rating matrix given in table 2.12

Table No. 2.13: HAZARD RATING MATRIX.

	SEVERITY					
×		Very High (5)	High. (4)	Moderate (3)	Slight (2)	Nil. (1)
É	Very Likely. (5)	25	20	15	10	05
ABILJ	Likely. (4)	20	16	12	08	04
	Quite Possible (3)	15	12	09	06	03
OB	Possible. (2)	10	08	06	04	02
PR	Not Likely. (1)	05	04	03	02	01

2.8.6 HAZARDS

Identified hazards/ events having risk rating in 16 to 25 range are highlighted in the table no . 2. 13

Table No. 2.14: IDENTIFIED HAZARDs

Sr.No	Hazard
1	Cyanuric chloride toxic gas release during charging of the batch .
2	Scrubber failure releasing toxic gases at vent of the scrubber
3	Reactivity and compatibility hazards at storage of raw materials
4	Hazardous Solid waste especially Iron sludge storage and transport containing residual material .
5	Health hazard due to emissions in Formaldehyde handling at work place.
6	Environmental risk - POCP of formaldehyde handling.
7	Fire tender and Emergency vehicles movement at back side gate may be affected due to reduced width .
8	Organic contaminated water generated during fire fighting operations may enter the storm drain .
9	Presence of heavy metals like chromium in effluent .
10	Hydrochloric acid spill and emission of hydrogen chloride gas at work place .

SECTION 3 CONSEQUENCE ANALYSIS

3.1 INTRODUCTION

1	Large Spill of Hydrochloric acid	and dispersion of hydrogen chloride gas
	down wind.	
2	Release of Formaldehyde .	

These accident scenarios are divided in two categories considering the consequence seriousness and occurrence frequency.

MAXIMUM CREDIBLE LOSS SCENARIO (MCLS).

➢ WORST POSSIBLE SCENARIO.

MAXIMUM CREDIBLE LOSS SCENARIO (MCLS)

Maximum Credible Loss Scenario (MCLS) is one of the methodologies evolved to access the events in realistic and practical way. An MCLS can be described as the worst "credible" accident or as an accident with a maximum damage distance, which is still believed to be probable. The analysis, however, does not include a quantification of the probability of occurrence of an accident. The MCLS aims at identifying undesirable and hazardous events causing the Maximum damage to human beings environment around the industry under the consideration.

Leak from hose/ piping failure are quite probable events. Such accidental release is considered as MCLS.

WORST POSSIBLE SCENARIO

Worst Case Scenario/ MCA (Maximum Credible Accident) Accident Scenario accidental release of Hydrochloric acid and dispersion downwind is considered as Worst Case Scenario/ MCA (Maximum Credible Accident).

Sr.			Downwind Affect Distance (m)					
	Accident Scenario		Toxic vapor cloud				Flammable	
No.							vapor	cloud
							LEL	
			PAC 3	PAC 2	PAC 1	IDLH	60 %	10 %
1	Hydrogen dispersion	chloride	38	84	308	55	NA	NA

Table No. 3.1 A: A	fect distance (dispersion)
--------------------	------------------------------

Table No. 3.1 B : Affect distance (VCE & Pool Fire scenarios)

Sr.		Downy	Downwind Affect Distance (m)				
	Accident Scenario	Blast Over Pressure psiThermal radiation (KW/m2)			V/m2)		
No.				-			
		8	3.5	1.0	10	5	2
2	Formaldehyde pool fire.	NA	NA	NA	<10	<10	<10

NOTE:

1. **ATMOSPHERIC DATA**

Wind from West at 1.5 m/s		Stability Class	F	Cloud cover	5 tenth
No Inversion		Relative Humidity	50 %	Air temperature	30 ∘C

- Consequences zones have been calculated using software ALOHA and also software based on the "TNO Yellow Book". Method for calculation of the Physical Effects of the escape of Dangerous Material (Liquid & Gases) Published by the Directorate General of Labour, Ministry of Social Affair, Netherlands(1979).
- 3. Apart from the maximum credible releases, the conservative approach appears in adoption of atmospheric conditions, used in the dispersion calculation. In general, the assumptions/ conditions will result in the largest damage distances. Hence, it must be remembered that this analysis will be pessimistic & conservative in approach & is only a planning tool. Its use should not be extended without understanding its limitations.

4. **DISCLAIMER:**

Information contained in this report is believed to be reliable but no representation, guarantee or warranties of any kind are made as to its accuracy, suitability for a particular application or results to be obtained from them. It is up to the manufacturer to ensure that the information contained in the report is relevant to the product manufactured/ handled or sold by him as the case may be. We make no warranties expressed or implied in respect of the adequacy of this document for any particular purpose

SECTION 4: IMPACT ASSESSMENT.

4.1 TOXIC GAS RELEASE

4.1.1 Hydrogen chloride gas release from Hydrochloric acid spill

Hydrogen Chloride (HCl) is a colorless, corrosive, toxic gas with a pungent, irritating odor. HCl is miscible in water. HCl is an irritant to eyes, skin, and mucous membranes. HCl has a low threshold limit value (TLV) and is detectable by odor at concentrations lower than those necessary to cause physical harm or impairment. The most serious hazard presented by Hydrogen chloride is exposure to a large release from which escape is impossible. Following Table describes various health effects of Hydrogen Chloride exposure.

MARPLOT : Hydrogen chloride gas release

EVENT FREQUENCY: 9.2 10⁻⁴ per Year

HEALTH EFFECTS OF HYDROGEN CHLORIDE EXPOSURE.

CONCENTRATION	CONCENTRATION SYMPTOMS OF EXPOSURE
< 1 ppm	Odor Threshold.
10 - 50 ppm	Irritation of the eyes and mucous membranes, which can be tolerated or several hours.
50 - 100 ppm	Immediate irritation of the throat, which may be tolerated for an hour.
1000 - 1300 ppm	A dangerous health hazard, even for short periods of time.

NOTE: Exposure to concentrations in excess of 1300 ppm may cause laryngeal spasms, resulting in death.

PROBABILITY	OF FATALITY	OF HYDROGEN	CHLORIDE EXPOSURE.

EXPOSURE TIME [minutes]	PROBIT	MORTALITY RATE* [percent]	HCl Concentration [ppm]
5	2.67	1	3,465
	5.00	50	11,110
	7.33	99	35,616

Percent of exposed population fatally affected.

It is estimated that Hydrogen chloride gas dispersion up to 30 m downwind persons need to be evacuated as ERPG 3 concentration is likely.

It is pertinent to note that Hydrogen chloride can react with water and/or water vapor/moisture. This can affect the evaporation rate and downwind dispersion. The resultant gas as air born Hydrochloric acid mist is likely.

Following figure shows the water bodies locations from site

4.1.2 Formaldehyde (containing methanol) spill

|--|

Concentration	range or	Time range or average Health effects in
	average(mg/m3)	general population
0.03	Repeated exposure	Odour detection threshold (10th percentile) a
0.18	Repeated exposure	Odour detection threshold (50th percentile) a
0.6	Repeated exposure	Odour detection threshold (90th percentile) a
0.1 – 3.1	Single and repeated exposure	Throat and nose irritation threshold
0.6–1.2	Single and repeated exposure	Eye irritation threshold
0.5 – 2	3–5 hours	Decreased nasal mucus flow rate
2.4	40 minutes on 2 successive days with 10 minutes of moderate exercise on second day	Post-exposure (up to 24 hours) headache
2.5 – 3.7	- b	Biting sensation in eyes and nose
3.7	Single and repeated exposure	Decreased pulmonary function only at heavy exercise
5 – 6.2	30 minutes	Tolerable for 30 minutes with lachrymation
12 – 25	- b	Strong lachrymation, lasting for 1 hour
37 – 60	- b	Pulmonary oedema, pneumonia, danger to life
60 - 125	- b	Death

4.2 THERMAL RADIATION

RADIATION LEVEL	SECONDS EXPOSURE FOR A % FATALITY LEVELS			
KW/m²	1 %	50 %	99 %	
1.6	500	1300	3200	
4.0	150	370	930	
12.5	30	80	200	
37.5	8	20	50	

FATAL THERMAL RADIATION EXPOSURE LEVELS

EFFECTS OF THERMAL RADIATION ON UNPROTECTED SKIN

RADIATION LEVEL	DURATION PERIOD SECONDS BEFORE		
(KW/m²)	Pain is Felt	Blistering Starts	
22	02.0	03.0	
18	02.5	04.3	
11	05.0	08.5	
08	08.0	13.5	
05	16.0	25.0	
2.5	40.0	65.0	
Below 2.5	Prolonged exposure can.	be tolerated.	

It is estimated that thermal radiation of 10 kw/m2 are likely < 10 m from pool fire and person failed to take shelter within 90 second is 1% probability of fetality .

4.3 OVER PRESSURE IMPACT

EFFECT OF BLAST PRESSURE WAVE

OVER PRESSURE (bar)	EFFECTS
0.01	Shattering of glass windows. Failure of panels.
0.03	Shattering of asbestos siding.
0.1	Collapse of steel framing panels.
0.3	Shearing of brick walls (8-12 inches)

No significant explosion anticipated .

SECTION 5 FAILURE FREQUENCY ANALYSIS.

- 5.1 Flange gasket failure/ gland failure. An accident/ event for gasket leakage/ failure can be termed as "quite probable". The hole size in a gasket failure may be that due to complete section between bolt holes or something much smaller. The hole size for a complete section failure of a gasket is usually calculated.
- 5.2 Failure of transfer line. The possible route of hazardous material going out of containment in open atmosphere is the rupture of a transfer line. The case of guillotine type failure of tanker unloading hose / transfer line or bottom nozzle undergoing guillotine type of failure also are rather low. Failure frequency as per published literature for such lines is low and such events can be considered, "foreseeable".
- 5.3 Accidental spill of flammable solvent and uncontrolled spreading pool followed by fire is considered as Worst Possible Scenario. It is to be noted that loss caused due to this event is very high but the probability is low; however, in case of neglect of maintenance or natural calamities such as earthquake the possibility exists. Such events are unlikely to happen and are not credible. Failure frequency of catastrophic rupture of such pressure vessel is very low i.e. 3 per million per year.
- 5.4 EVENT TREE

Event trees begin with an initiating event and work toward a final result. This approach is inductive. The method provides information on how a failure can occur and the probability of occurrence. Frequency of the incident is estimated by Event Tree.

Event Tree-Formaldehyde (Containing Methanol) spill

Pool fire frequency = 0.0001;

*0.1 if distance to 50 % LFL falls inside electrically classified area.other wise 0.5

Event Tree – Non Flammable Toxiv Gas – Hydrogen Chloride

Release

1.11.2 Frequency of the incident estimated by Event Tree.

S.N.	EVENT	EVENT FREQUENCY/ YR
1	Hydrogen chloride dispersion	9.2×10^{-4}
2	Formaldehyde pool fire.	$1.0 imes 10^{-4}$

SECTION 6 :RISK ESTIMATION.

6.1 INDIVIDUAL RISK

Individual Risk (IR) = (1 / N) Ii x fi

where

N = number of persons (75 nos.)

i Incident identification number

I, = impact of Incident i

fi = frequency of the i incident

S.N.	Incident	Level of concern	Status at Assembly Point	Fatality %
1	Hydrogen chloride release	32 65 ppm for 5 minutes	At worker room Outside 3540 ppm Inside 1240 ppm At Assembly Outside 176 ppm Inside 61.8 ppm	0
2	Formaldehyde (containing Methanol) pool fire	10 kw m2 therma; radiations	Not reached at assembly poing	1*

*Unless take shelter within 90 seconds from pool fire edge .

It is estimated that Individual risk to worker (5 nos, assumed) at worker room and assembly point (20 nos. max.) is 1.84×10^{-6} /yr and $< 1 \times 10^{-6}$ /yr respectively.

A broadly acceptable level of individual risk as per the ALARP (As low as reasonably practicable) concept of HSE, UK is 10^{-6} / year.

Individual Fatality	Individual Fatality Criteria
1×10^{-4} per yr	This contour remains on-site.
1×10^{-5} per yr	This contour extends into industrial developments only.
1×10^{-6} per yr	This contour extends into commercial and industrial developments only.

INDIVIDUAL FATALITY CRITERIA

Table 6.3 : SOCIETAL RISK

Sr.	Event	Event Frequency	No. Of	Cumulative Frequency
No.		Per Year	Fatality	
1	Formaldehyde (containing	1.0×10^{-4}	1	1.00×10^{-4}
	Methanol) pool fire			
2	Hydrogen chloride	9.2×10^{-4}	0	1.02×10^{-3}
	dispersion			

SITE SURROUNDINGS

The population in surrounding is significant.

SECTION 7 : RISK MITIGATION MEASURES.

Following risk mitigation measures are suggested

- 7. Provide Closed arrangement for charging of Cyanuric Chloride to reactor .
- 8. Hydrogen chloride leak detector at plant and Cyanuric chloride store .
- 9. Storage of raw materials at store considering the compatibility and reactivity hazards at store.
- Hydrogen Chloride gas liberated in cyanuration reactor can be scrubbed by water in multiple scrubbers to get 30 % hydrochloric acid from the first scrubber.
- 11. Fire protection system .
- 12. Formaldehyde handling
 - c) Provide SOP for Formaldehyde storage and handling operations with thrust on medical surveillance, hazard communication to employees, PPE, Spill procedures confirming to OSHA Formaldehyde standard 29 CFR 1910.1048.
 - d) Provide scrubber and connect all vents releasing formaldehyde to scrubber.
- 7. Safety Shower & Eye Wash Fountains and Personnel Protective Equipment (PPE)
- 8. Suitable arrangement at storm drain to avoid any organic contaminated water/ spill/ fire water going out of the site.
- 9 Effective washing of the sludge to make it free of retained product .
- 10. "DMP" based on MCLS Analysis for the site with dove tailing data for "Offsite Disaster Control Plan".
- 1.15 We thank the staff and the management for positive approach shown and excellent cooperation extended throughout the studies to complete the studies in scheduled time frame.

PLAN	T:	TANK FARM.			
MATE	RIALS AND PROCESS:	HYDROCHL	ORIC ACID.		
MATE	RIAL FACTOR:		1		
		PENALTY FACTOR	PENALTY FACTOR		
		RANGE	USED		
1.	GENERAL PROCESS HAZARDS				
	Base Factor.	1.0	1.0		
A.	Exothermic Chemical Reactions.	0.30 to 1.25	00		
Β.	Endothermic Process.	0.20 to 0.40	00		
C.	Material Handling & Transfer.	0.25 to 1.05	0.0		
D.	Enclosed or Indoor Process Unit.	0.25 to 0.90	00		
E.	Access.	0.20 to 0.35	00		
F.	Drainage and spill control.	0.25 to 0.50	0.0		
	General Process Hazards Factor (F ₁).		1.0		
		•			
Ζ.	SPECIAL PROCESS MALARDS	1.0	1.0		
٨	Dase Facilor.	1.0 0.20 to 0.90	1.0		
A. D	Tuxic Materials.	0.20 10 0.60	0.0		
D.	Operation in or Near Elemmable Pange Inerted	0.00	00		
0.	1 Tank Farm Storage Flammable Liquids		—		
	Process Upset or Purge Failure	0.0	—		
	2. Always in Elammable Pange	0.5	—		
D	Just Explosion				
F.	Pressure Operating atmospheric: Relief Setting	0.20 10 2.0	00		
<u>г</u>	Low Temperature	0.20 to 0.50	00		
Г. С	Quantity of Flammable / Unstable Material Quantity:	0.20 10 0.30			
u.	5.1 MT				
	1. Liquid or Gases in Process.	_	—		
	2. Liquid or gases in Storage.	-	—		
	3. Combustible Solids in Storage.	_			
H.	Corrosion and Erosion.	0.10 to 0.75	0.1		
١.	Leakage – Joint and packing.	0.10 to 1.50	0.1		
J.	Use of fired heaters.	_	00		
Κ.	Hot Oil Heat Exchange system	0.15 to 1.15	00		
L.	Rotating Equipment.	0.5	00		
	Special Process Hazards Factor (F ₂)		1.8		
Unit H	lazards Eactor ($F_1 \times F_2 = F_2$)		1.8		
Fire a	nd Explosion Index ($F_1 \times F_2 = F_3$).		2		
	DEGREE OF HAZARD				
RADI	IS OF FXPOSURE.		_		
DAMA	GE FACTOR.		_		
ARFA	OF EXPOSURE.		_		
$T = \Gamma$	250 + 125(1 + 1 + 1.8) = 725.	T	7.3 Cat II.		

ANNEXURE 1 DOW F & E INDEX WORKSHEETS

PLAN [®]	T:	TANK FARM.			
MATE	RIALS AND PROCESS:	FORMALDE	EHYDE 37%.		
MATERIAL FACTOR: 10					
		PENALTY FACTOR	ΡΕΝΔΙ ΤΥ ΕΔΩΤΩΡ		
		RANGE	USED		
1.	GENERAL PROCESS HAZARDS.				
	Base Factor.	1.0	1.0		
Α.	Exothermic Chemical Reactions.	0.30 to 1.25	00		
B.	Endothermic Process.	0.20 to 0.40	00		
C.	Material Handling & Transfer.	0.25 to 1.05	0.25		
D.	Enclosed or Indoor Process Unit.	0.25 to 0.90	00		
E.	Access.	0.20 to 0.35	00		
F.	Drainage and Spill Control.	0.25 to 0.50	0.0		
	General Process Hazards Factor (F ₁).		1.25		
2.	SPECIAL PROCESS HAZARDS.				
	Base Factor.	1.0	1.0		
A.	Toxic Materials.	0.20 to 0.80	0.4		
B.	Sub – Atmospheric Pressure.	0.50	00		
C.	Operation in or Near Flammable Range Inerted.	_	_		
	1. Tank Farm Storage Flammable Liquids.	0.0	_		
	2. Process Upset or Purge Failure.	0.3	_		
	3. Always in Flammable Range.	_	_		
D.	Dust Explosion.	0.25 to 2.0	00		
E.	Pressure Operating atmospheric; Relief Setting.		00		
F.	Low Temperature.	0.20 to 0.50	00		
G.	Quantity of Flammable/ Unstable Material Quantity	_	_		
	1.8 Kl. MT., Hc × 10 ³ BTU/Lb.				
	1. Liquid or Gases in Process.	—	—		
	2. Liquid or gases in Storage.	_	00		
	3. Combustible Solids in Storage.	_	_		
H.	Corrosion and Erosion.	0.10 to 0.75	0.1		
١.	Leakage – Joint and packing.	0.10 to 1.50	0.1		
J.	Use of fired heaters.	_	00		
Κ.	Hot Oil Heat Exchange system > 210 ft.	0.15 to 1.15	00		
L.	Rotating Equipment.	0.5	00		
	Special Process Hazards Factor (F ₂)		1.6		
Unit H	lazards Factor ($F_1 \times F_2 = F_3$).		2.0		
Fire a	nd Explosion Index ($F_3 \times MF$) (F & IE).		20		
THE D	DEGREE OF HAZARD.		LIGHT		
RADIL	IS OF EXPOSURE.		5.1 meter		
DAMA	GE FACTOR.		0.13		
T = {	$250 + 125 \times (1 + 1.25 + 1.6))/100 = 7.31$	Т	Category II		

Annexure 2 MOND index assessment worksheets

MOND INDEX

LOCATION	:	FIDYE CHEM.
	:	PLOT NO. 3 & 11, SIKANDAR MARKET, AHMEDABAD.
PLANT	:	STORE.
MATERIAL	:	FORMALDEHYDE 37 %.

Components	1	11	III	IV	V	Total
Composition (wt.%) X 100	0.37	0.63	0	0	0	1

		No.	Name	Material Factor
	:	1	FORMALDEHYDE.	10
	:	П	WATER.	0
Material Factor	:	III		0
	:	IV		0
	:	٧		0
Key Material / Mixture	:		FORMALDEHYDE.	
Factor Determined By	:		DOW INDEX.	

SPECIAL MATERIAL HAZARDS

SN.	HAZARD	INITIAL	REMARKS
1	Oxidizing materials.	0	No release of Oxygen.
2	Gives combustible gas with water.	0	Not applicable.
3	Mixing & dispersion characteristics (m).	20	Vapour denser than air.
4	Subject to spontaneous heating.	0	Not applicable
5	May rapidly spontaneously polymerize.	0	Not applicable.
6	Ignition Sensitivity.	0	Not applicable.
7	Subject to explosive decomposition.	0	Not applicable.
8	Subject to gaseous detonation.	0	Not applicable.
9	Condensed phase.	0	Not applicable.
10	Other unusual behaviour.	0	Not applicable.
	TOTAL	20	M

GENERAL PROCESS HAZARDS:

SN.	HAZARD	INITIAL	REMARKS
1	Handling and physical changes only.	10	Storage only.
2	Reaction characteristics.	0	Not applicable.
3	Batch reactions.	0	Vapour denser than air.
4	Multiplicity of reaction.	0	Not applicable.
5	Material transfer.	25	Flexible hose used.
6	Transportable containers.	40	Full drum/ carbouy transported.
	TOTAL	75	Р

SPECIAL PROCESS HAZARDS:

SN.		HAZARD	INITIAL	REMARKS
1	Low pressure (below 15 psia).	0	Vacuum not likely.
2	High pressure	(p).	0	Atmospheric press./(50mm WC). (MOND INDEX MANUAL 1993).
3	Low temp. Car	bon Steel (10°C to -25°C).	0	Temp. > 10 °C.
4	High temp. 1. Flammable material. 2. Material strength.		25	Storage temperature 30°C. Stored above flash point.
5	Corrosion and erosion.		10	Less than 0.5 mm / year.
6 Joints and packing leakage.		20	Flange joints known to give regular leakges of minor nature.	
7	7 Vibration, load cycling etc.		0	Not applicable.
8	8 Processes/reaction difficult to control.			No reaction.
9	Operation in or	near flammable range.	0	Not applicable.
10	Greater than a	verage explosion hazard.	0	Not applicable.
11	Dust or mist ex	plosion hazard.	0	Not applicable.
12	12 High strength oxidants.		0	Only storage i.e./ no process operation.
13	13 Process ignition sensitivity.		0	Not applicable at storage.
14 Electrostatics hazards.		50	Sensitive to static discharge. Methanol may be present.	
	T	OTAL	105	S

QUANTITY HAZARDS:

SN.	HAZARD	0	INITIAL	REMARKS
1	Material total in Tonnes.	K	1.83	

QUANTITY FACTOR:

SN.	HAZARD		INITIAL	REMARKS
1	Material.	Q	14	

LAYOUT HAZARDS:

SN.	HAZARD		INITIAL	REMARKS
1	Height in meters. H		1.2	
2	Working area (m ²). N		15	
3	Structure Design.		0	Base height less than 2 m from ground level.
4	Domino Effect.		0	Unit height 20 m from ground level.
5	Below Ground.		50	bruuied tank

6	Surface Drainage.	0	Curb wall provided, spillage inside working area, routed through catch pit.
7	Other.	0	Control room, canteen, work boundary more than 10 m away. Open plant.
TOTAL		50	L

ACUTE HEALTH HAZARDS:

SN.	HAZARD	INITIAL	REMARKS
1	Skin Effects	10	Causes irritation to skin.
2	Inhalation Effects	50	VP/ STEL > 10.
TOTAL		60	Т

INDICES COMPUTATION:(INITIAL)

SN.	HAZARD		INITIAL	REMARKS
1	D	EQUIVALENT DOW INDEX	25.56	
2	F	FIRE INDEX	0.45	Light
3	Е	INTERNAL EXPLOSION INDEX	3.00	Modrate
4	А	AERIAL EXPLOSION INDEX	0.23	Light
5	R	OVERALL HAZARD RATING	30.46	Low

ANNEXURE 3: GLOSSARY

Acceptance Criteria (Risk).	:	Defines the level of risk to which an individual is exposed, as either tolerable (negligible risk), intolerable or within the ALARP region.
Consequence	:	This is the severity associated with an event in terms of toxic doses, fire or explosion etc., i.e. the potential effects of a hazardous event.
ERPG	:	The Emergency Response Planning Guidelines. ERPG 1: The maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to 1 hour without experiencing other than mild transient adverse health effects or perceiving a clearly defined, objectionable odor. ERPG 2: The maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to 1 hour without experiencing or developing irreversible or other serious health effects or symptoms which could impair an individual's ability to take protective action. ERPG 3: The maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to 1 hour without experiencing or developing irreversible or other serious health effects or symptoms which could impair an individual's ability to take protective action.
Frequency	:	This is the number of occurrences of an event expressed per unit time. It is usually expressed as the likelihood of an event occurring within one year.
Hazard	:	A physical situation with the potential for human injury, damage to property, damage to the environment or some combination of these.
Hazardous Scenario	:	The identified isolatable sections and/or those which have been broken down into scenarios for specific items of equipment.
IDLH	:	Immediately Dangerous To Life And Health. The maximum concentration would not cause any escape imparting symptoms or irreversible health effects to a person exposed for 30 minutes.
Individual Risk	:	The frequency at which an individual may be expected to sustain a given level of harm from the realization of specified hazards.
Individual Risk Contours.	:	As IR (Individual Risk) is calculated at a point, calculating the IR at many points allows the plotting of IR contours, these being lines that indicate constant levels of risk. Most commonly used are the 1 chance per million-year contour and the 10 chances per million-year contour.
Individual Risk Of Fatality.	:	Individual risk with "harm" measured in terms of fatality. It is calculated at a particular point for a stationary, unprotected person for 24 hours per day, 365 days per year. Normally measured in chances of fatality per million years.
Individual Risk Of Injury.	:	Similar to individual risk of fatality, however with "harm" measured in terms of injury.
Isolatable Section.	:	A system of pipes or vessels containing the hazardous materials that are bounded by specific isolation points.
Isolation Point.	:	A point in the process, which can be used to isolate one part of the process from the rest of the system.
----------------------------------	---	--
LEL.	:	Lower Flammability Limit. Expressed as % by volume of flammable gas in air. This is the minimum concentration of gas in air mixture which can ignite. Gas air mixtures below this concentration do not ignite.
Probability.	:	The expression for the likelihood of an occurrence of an event or an event sequence or the likelihood of the success or failure of an event on test or demand. By definition, probability must be expressed as a number between 0 and 1.
Quantitative Risk Assessment.	:	A risk assessment undertaken by combining quantitative evaluations of event frequency and consequence.
Risk.	:	The combination of frequency and consequences, the chance of an event happening that can cause specific consequences.
Reactive dyes		These are defined as coloured compounds possessing a suitable group capable of forming a covalent bond between a carbon atom of the dye ion or molecule and an oxygen, nitrogen or sulphur atom of a hydroxyl, an amino or a mercaptan group respectively of the substrate. It is suitable for dyeing wool and cotton.
TEEL	:	Temporary Emergency Exposure Limits. TEEL-1: Maximum concentration in air below which it is believed nearly all individuals could be exposed without experiencing other than mild transient health effects or perceiving a clearly defined objectionable odor.
		TEEL-2: Maximum concentration in air below which it is believed nearly all individuals could be exposed without experiencing or developing irreversible or other serious health effects or symptoms that could impair their abilities to take protective action.
		TEEL-3: Maximum concentration in air below which it is believed nearly all individuals could be exposed without experiencing or developing life-threatening health effects.
UFL	:	Upper Flammability Limit. Expressed as % by volume of flammable gas in air. This is the maximum concentration of gas in air mixture which can ignite. Gas air mixtures above this concentration do not ignite.
Vapor Cloud Explosion	:	An accidental release of flammable liquid or gas, there is possibility that it may form a cloud which can spread along the wind direction. Delayed ignition of the cloud away from the source of release results in Vapor cloud explosion (flash back) and associated blast / over pressure effects.

ANNEXURE 4: ABBREVIATIONS

AlChE.	American Institute Of Chemical Engineers.
ALARP.	As Low As Reasonably Practicable.
BTU.	British Thermal Unit.
CCPS.	Centre For Chemical Process Safety.
DMP.	Disaster Management Plan
ECC.	Emergency Control Centre.
EIA.	Environmental Impact Assessment.
EMP.	Environment Management Plan.
F & E I.	Fire And Explosion Index.
FIG.	Figure.
HAZOP.	Hazard Operability.
HSD.	High Speed Diesel.
IDLH.	Immediately Dangerous To Life And Health.
IPL.	Independent Protection Layer.
KCal.	Kilocalories.
lb.	Pound.
LOC.	Level Of Concentration.
LOPA.	Layers Of Protection Analysis.
MCA.	Maximum Credible Accident.
MF.	Material Factor.
MIDC.	Maharashtra Industrial Development Corporation.
MoEF.	Ministry Of Environment And Forests.
MSDS.	Material Safety Data Sheet.
MT.	Metric Ton.
NFPA.	National Fire Protection Association.
PFD.	Probability Of Failure On Demand.
PHA.	Preliminary Hazard Analysis.
QRA.	Quantative Risk Assessment.
RH.	Risk Assessment And Hazard Management.
SIF.	Safety Integrated Function.
TEEL.	Temporary Emergency Exposure Limits.
UK.	United Kingdom.

ANNEXURE 5: REFERENCES

- 1. Technical EIA Guidance Manual for Synthetic Organic Chemicals, prepared for the Ministry of Environment and Forests Government of India.
- 2. MOND INDEX Manual 1993.
- 3. "TNO Yellow Book". Method for calculation of the Physical Effects of the escape of Dangerous Material (Liquid & Gases) Published by the Directorate General of Labour, Ministry of Social affair, Netherlands (1979).
- 4. Frank P. Lees Loss Prevention in the Process Industries Volume I.
- 5. Risk Assessment for Process Industries, Loss Prevention News April -June 2001.
- 6. Techniques for assessing Industrial Hazards (World Bank Technical Paper, ISSN 0253; No. 55).
- Ref. Table 3.8 Vapor Pressure of Organic Compounds, R. H. Perry,
 C.C., Chemical Engineers Handbook, 5th Edition (1969) McGrow Hill
 Book co. (New York, London).
- 8. Guideline for Quantitative Risk Assessment "Furple Book".
- 9. Fire Protection Manual of TAC: 1982; 9th Edition.
- 10. OSID –SID -116 amended edition October, 2002.
- 11. The Maharashtra Fire Prevention and Life Safety Measures Act, 2006.

6.1 Methodology

The methodology used as per Hazard Identification and Hazard Analysis Techniques of

Hazard Identification And Risk Analysis - Code Of Practice IS 15656: 2006.

6.2 Process description, flow chart, material balance and reactions

Process description, flow chart and material balance and reactions are available in the EIA report hence not reproduced here to avoid repetition .

6.3 Compatibility/ reactivity hazard worksheet

Chemicals and Reactive Groups in this Mixture:

- 1. 4-Aminobenzene Sulfonic Acid
- 2. Cyanuric Chloride
- 3. Divinyl Sulfone
- 4. Formaldehyde, Solution, Flammable
- 5. Formaldehyde, Solutions (Formalin) (Corrosive)
- 6. Hydrochloric Acid, Solution
- 7. Sodium Nitrite
- 8. Water

4-AMINOBENZENE SULFONIC ACID mixed with itself -

INTRINSIC REACTIVE HAZARDS:

No reaction expected.

--- END OF HAZARDS FOR THIS ITEM ---

CYANURIC CHLORIDE mixed with 4-AMINOBENZENE SULFONIC ACID -

PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat)

Reaction liberates gaseous products and may cause pressurization

Reaction products may be corrosive

Reaction products may be toxic

POTENTIAL GASES:

Hydrogen Halide

Nitrogen

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

CYANURIC CHLORIDE mixed with itself -INTRINSIC REACTIVE HAZARDS: No reaction expected. --- END OF HAZARDS FOR THIS ITEM ---

DIVINYL SULFONE mixed with 4-AMINOBENZENE SULFONIC ACID -PREDICTED HAZARDS: Exothermic reaction at ambient temperatures (releases heat) May be hazardous but unknown Polymerization reaction may become intense and may cause pressurization Reaction may be particularly intense, violent, or explosive POTENTIAL GASES: No gases predicted.

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

DIVINYL SULFONE mixed with CYANURIC CHLORIDE -

PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat) Polymerization reaction may become intense and may cause pressurization Reaction may be particularly intense, violent, or explosive POTENTIAL GASES: No gases predicted.

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

DIVINYL SULFONE mixed with itself -

INTRINSIC REACTIVE HAZARDS:

Potentially self-reactive. See referenced documentation provided in the Chemical Reactivity Worksheet.

--- END OF HAZARDS FOR THIS ITEM ---

FORMALDEHYDE, SOLUTION, FLAMMABLE mixed with 4-AMINOBENZENE SULFONIC ACID -

PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat)

Reaction may be particularly intense, violent, or explosive

Reaction products may be corrosive

POTENTIAL GASES:

No gases predicted.

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

FORMALDEHYDE, SOLUTION, FLAMMABLE mixed with CYANURIC CHLORIDE -

PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat) Reaction liberates gaseous products and may cause pressurization Reaction may be particularly intense, violent, or explosive Reaction products may be corrosive Reaction products may be toxic POTENTIAL GASES: Acid Fumes Carbon Dioxide Hydrogen Chloride Hydrogen Halide

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

FORMALDEHYDE, SOLUTION, FLAMMABLE mixed with DIVINYL SULFONE - PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat) Polymerization reaction may become intense and may cause pressurization Reaction liberates gaseous products and may cause pressurization Reaction products may be flammable Reaction products may be toxic POTENTIAL GASES: Carbon Monoxide Hydrogen --- END OF HAZARDS FOR THIS MIXTURE PAIR ---

FORMALDEHYDE, SOLUTION, FLAMMABLE mixed with itself -INTRINSIC REACTIVE HAZARDS: No reaction expected. --- END OF HAZARDS FOR THIS ITEM ---

FORMALDEHYDE, SOLUTIONS (FORMALIN) (CORROSIVE) mixed with 4-AMINOBENZENE SULFONIC ACID -PREDICTED HAZARDS: Exothermic reaction at ambient temperatures (releases heat) May be hazardous but unknown Polymerization reaction may become intense and may cause pressurization Reaction may be particularly intense, violent, or explosive POTENTIAL GASES:

No gases predicted.

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

FORMALDEHYDE, SOLUTIONS (FORMALIN) (CORROSIVE) mixed with CYANURIC CHLORIDE -

PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat) Polymerization reaction may become intense and may cause pressurization Reaction may be particularly intense, violent, or explosive POTENTIAL GASES: No gases predicted. --- END OF HAZARDS FOR THIS MIXTURE PAIR ---

FORMALDEHYDE, SOLUTIONS (FORMALIN) (CORROSIVE) mixed with DIVINYL SULFONE

PREDICTED HAZARDS:
Exothermic reaction at ambient temperatures (releases heat)
May be hazardous but unknown
Polymerization reaction may become intense and may cause pressurization
Reaction liberates gaseous products and may cause pressurization
Reaction products may be flammable
Reaction products may be toxic
POTENTIAL GASES:
Carbon Monoxide
Hydrogen

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

FORMALDEHYDE, SOLUTIONS (FORMALIN) (CORROSIVE) mixed with FORMALDEHYDE, SOLUTION, FLAMMABLE -

PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat)

Polymerization reaction may become intense and may cause pressurization

POTENTIAL GASES:

No gases predicted.

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

FORMALDEHYDE, SOLUTIONS (FORMALIN) (CORROSIVE) mixed with itself - INTRINSIC REACTIVE HAZARDS:

Potentially self-reactive. See referenced documentation provided in the Chemical Reactivity Worksheet.

--- END OF HAZARDS FOR THIS ITEM ---

HYDROCHLORIC ACID, SOLUTION mixed with 4-AMINOBENZENE SULFONIC ACID - PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat) Reaction may be particularly intense, violent, or explosive Reaction products may be corrosive Reaction products may be toxic POTENTIAL GASES: No gases predicted. --- END OF HAZARDS FOR THIS MIXTURE PAIR ---

HYDROCHLORIC ACID, SOLUTION mixed with CYANURIC CHLORIDE PREDICTED HAZARDS:
Exothermic reaction at ambient temperatures (releases heat)
Reaction liberates gaseous products and may cause pressurization
Reaction may be particularly intense, violent, or explosive
Reaction products may be corrosive
Reaction products may be toxic
Reaction products may be unstable above ambient temperatures
POTENTIAL GASES:
Acid Fumes
Carbon Dioxide
Hydrogen Chloride
--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

HYDROCHLORIC ACID, SOLUTION mixed with DIVINYL SULFONE - PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat) Polymerization reaction may become intense and may cause pressurization Reaction liberates gaseous products and may cause pressurization Reaction may be particularly intense, violent, or explosive Reaction products may be flammable Reaction products may be toxic POTENTIAL GASES: Hydrocarbons --- END OF HAZARDS FOR THIS MIXTURE PAIR ---

HYDROCHLORIC ACID, SOLUTION mixed with FORMALDEHYDE, SOLUTION, FLAMMABLE -

PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat) Polymerization reaction may become intense and may cause pressurization Reaction liberates gaseous products and may cause pressurization Reaction products may be corrosive POTENTIAL GASES: Acid Fumes --- END OF HAZARDS FOR THIS MIXTURE PAIR ---

HYDROCHLORIC ACID, SOLUTION mixed with FORMALDEHYDE, SOLUTIONS
(FORMALIN) (CORROSIVE) PREDICTED HAZARDS:
Exothermic reaction at ambient temperatures (releases heat)
Polymerization reaction may become intense and may cause pressurization
Reaction may be particularly intense, violent, or explosive
POTENTIAL GASES:
No gases predicted.
--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

HYDROCHLORIC ACID, SOLUTION mixed with itself -

INTRINSIC REACTIVE HAZARDS:

No reaction expected.

--- END OF HAZARDS FOR THIS ITEM ---

SODIUM NITRITE mixed with 4-AMINOBENZENE SULFONIC ACID - PREDICTED HAZARDS:

Reaction liberates gaseous products and may cause pressurization Reaction products may be corrosive Reaction products may be explosive or sensitive to shock or friction Reaction products may be toxic Reaction products may be unstable above ambient temperatures POTENTIAL GASES: Nitrogen Oxides

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

SODIUM NITRITE mixed with CYANURIC CHLORIDE - PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat) Reaction may be particularly intense, violent, or explosive Reaction products may be explosive or sensitive to shock or friction POTENTIAL GASES:

No gases predicted.

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

SODIUM NITRITE mixed with DIVINYL SULFONE -PREDICTED HAZARDS: Exothermic reaction at ambient temperatures (releases heat) Polymerization reaction may become intense and may cause pressurization Reaction products may be explosive or sensitive to shock or friction POTENTIAL GASES: No gases predicted. --- END OF HAZARDS FOR THIS MIXTURE PAIR ---

SODIUM NITRITE mixed with FORMALDEHYDE, SOLUTION, FLAMMABLE - PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat) Reaction products may be explosive or sensitive to shock or friction POTENTIAL GASES: No gases predicted.

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

SODIUM NITRITE mixed with FORMALDEHYDE, SOLUTIONS (FORMALIN) (CORROSIVE) - PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat) Polymerization reaction may become intense and may cause pressurization Reaction products may be explosive or sensitive to shock or friction POTENTIAL GASES: No gases predicted.

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

SODIUM NITRITE mixed with HYDROCHLORIC ACID, SOLUTION -PREDICTED HAZARDS: Reaction liberates gaseous products and may cause pressurization Reaction products may be corrosive Reaction products may be toxic Reaction products may be unstable above ambient temperatures POTENTIAL GASES: Nitrogen Oxides --- END OF HAZARDS FOR THIS MIXTURE PAIR --- SODIUM NITRITE mixed with itself -INTRINSIC REACTIVE HAZARDS: No reaction expected. --- END OF HAZARDS FOR THIS ITEM ---

WATER mixed with 4-AMINOBENZENE SULFONIC ACID -PREDICTED HAZARDS: Exothermic reaction at ambient temperatures (releases heat) Reaction products may be corrosive POTENTIAL GASES: No gases predicted. --- END OF HAZARDS FOR THIS MIXTURE PAIR ---

WATER mixed with CYANURIC CHLORIDE -

PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat) Reaction liberates gaseous products and may cause pressurization Reaction may be particularly intense, violent, or explosive Reaction products may be corrosive Reaction products may be toxic POTENTIAL GASES: Acid Fumes Carbon Dioxide Hydrogen Chloride

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

WATER mixed with DIVINYL SULFONE -

PREDICTED HAZARDS:

Polymerization reaction may become intense and may cause pressurization POTENTIAL GASES:

No gases predicted.

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

WATER mixed with FORMALDEHYDE, SOLUTION, FLAMMABLE - PREDICTED HAZARDS:

No known hazardous reaction

POTENTIAL GASES:

No gases predicted.

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

WATER mixed with FORMALDEHYDE, SOLUTIONS (FORMALIN) (CORROSIVE) - PREDICTED HAZARDS:

Polymerization reaction may become intense and may cause pressurization

POTENTIAL GASES:

No gases predicted.

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

WATER mixed with HYDROCHLORIC ACID, SOLUTION -

PREDICTED HAZARDS:

Exothermic reaction at ambient temperatures (releases heat)

Reaction liberates gaseous products and may cause pressurization

Reaction products may be corrosive

POTENTIAL GASES:

Acid Fumes

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

WATER mixed with SODIUM NITRITE -

PREDICTED HAZARDS:

No known hazardous reaction

POTENTIAL GASES:

No gases predicted.

--- END OF HAZARDS FOR THIS MIXTURE PAIR ---

WATER mixed with itself -INTRINSIC REACTIVE HAZARDS: No reaction expected.

--- END OF HAZARDS FOR THIS ITEM ---

6.4 Preliminary hazard analysis

		Ph	ase of t	the pro	ject
Sr.	Hazard				/
no.					
Ca	Cyclone Earth quake	Pre Construction	Construction	Operation	Post Operation Decommissioning
ura	Land slide				
Nat	Flooding - heavy rain,				
	Noise				
rds	Radiation (UV, radioactive materials)	Х	Х	Х	Х
IZa	Extreme temperatures in summer season / winter				
l ha	Vibration	Х	Х	Х	Х
ical	Material handling operations.				
Iysi	Steam pressure piping failure/ boiler drum failure.				
PI	Boiler explosion.				
ohazard	Epidemics /Communicable diseases by pests ,insects ,rodents Animal / snake bites				
Bic	Occupational health hazards at industry				
	Transformer oil fire /explosion				
rica d	Lightening strike				
ecti izar	fires due to Short circuit				
El	Power outage to emergency equipments / cable failure				
ses	AC, Refrigerators, Air conditioners Units fire/ explosion				
tanc	Pool fire solvent release				
ubst	Release of toxic gas – hydrochloric acid, formaldehyde				
S	Hazardous waste uncontrolled disposal of iron sludge				
lous	Welding cutting flammable gas cylinders fire /explosion				
ard	Site decontamination				
Haz	Vahielas fuel fire				
	Failure of machinery and equipment				
	Lack of safety guards in machines				
cal	Poor maintenance of machinery and equipment				
anic	power driven tools, saws, grinders d abrasive cutting				
ech	wheels				
M	scaffolding –fixed and portable failure				
	structural failure				
	Truck and transport vehicles				

	IDENTIFICATION OF HAZARD. CHECK LIST	Ph	ase of	the pro	ject
Sr.	Hazard				~
no.		tion			ion ning
		truc	tion	-	erat ssio
		onst	ruct	ation	Opo
		ie C	onst	pera	ost econ
		Ч	Ŭ	Õ	Ă Ŏ
ess	Uncontrolled Reaction exotherm leading to explosion				
roc	Static charge as source of ignition leading to fire				
d	Smoldering or fire at pitcoal				
ઝ	Release of toxic gases at scrubber vent				
es	Dust explosion hazard at powder handling				
rag	Compatability and reactivity hazard at chemical storage				
Sto ope	Color on objects in surrounding				
50	Being struck by falling object				
lrin	Caught in or compressed between objects				
qı	Cranes, winches, hoisting and hauling equipments failure				
Its	Dusting packing operations, land development				
iden	Electricity (electrocution)				
acci	Fall from height,				
	uncontrolled explosion during demolition /				
of	Hit by sharp objects				
es	Injuries during Handling heavy objects				
aus	Lack of PPE, housekeeping practices, safety signs				
ity c	Paint/ thinner cleaners pesticides waste oil fire				
ent ctiv	Poor illumination				
equ	Slipping on wet surfaces				
Fr	Snapping cables, ropes, chains, slings, hooks, chains				
stru	Struck by moving objects				
con	Welding fumes and Radiations				
æ	Repetitive ,monotonous ,excessive workload , strain injuries				
	Mental stress , human relations (aggressive behavior ,				
nics ocia	alcohol and drug abuse, violance)				
lone	Poverty, low wages, lack of education				
Erg(Long working hours, shift work, temporary employment				
	Security threats				
	Escalating the designed event during MOCK drill				
	Obstruction in fire tender path				
	Organic contaminated water generated during fire fighting				
	entering in to storm water drain / water body				
	Shortage of fire water supply				
	Stampede during evacuation /at assembly point				
ner	Spreading Rumors				
Otł	Inadequate separation in neighboring installations				

6.5: HAZOP WORK SHEETS

NODE 10	F 5 :	Reactive Blue P3	R Sub no	de 1.1 : Storage of mater	ials				
DESIGN IN	TENT :	Storage of materia	ıls						
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
None.	Flow.	More flow of material	dispensing from container human error	Delayed operation	Supervision	3	3	9	Training
More.	Flow.	More flow of material	dispensing from container	Spill hazard	Supervision	3	3	9	Training
Less.	Flow.	Less flow of	dispensing from container human error	Delayed operation	Supervision	3	3	9	Training
Reverse.	Flow.	Reverse flow.	Vapours coming from container while dispensing to container	Emission at work place	Ventilation at work place				
As Well As.	Flow.	As well as flow	VOC , odour from stored materials	Health hazard	Ventilation at the store room	4	4	16	
Other.	Flow.	Static discharge.	Transfer operations	Not significant	Equipments are earthed	2	2	4	
Other than	Flow	Undesired flow	Recycled containers , old labels retained Human error	Depends up on mix up components	Supervision	3	3	9	Training
More.	Temperature.	More temperature at	Summer season	Not significant	Storage under shed	3	3	9	
Less.	Temperature.	Less Temperature.	Winter season	Not significant	Storage under shed				
More.	Pressure.	More Pressure.	Not anticipated	Not significant	Systems Open to atmosphere	2	2	4	
Less.	Pressure.	Less Pressure.	Not anticipated	Not significant	Systems Open to atmosphere	2	2	4	
More	Phase.	More phases.	Gas, liquid phases.	Not significant.		-	-	-	

NODE 1 OF	5 :	Reactive Blue P3R		Sub node 1.1 : Stor	age of materials				
DESIGN INT	ENT :	Storage of materials							
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
As Well As.	Composition	Impurities.	Purity of the materials	In absence of chemical identifiers such as CAS number , DOT hazard label , MSDS , NFPA704 the materials are to be considered as if hazardous chemicals .	Quality checks and Process control	3	3	9	Q 1 What is the Finished products MSDS and colour index
More.	Level.	More Level.	Excessive filling of the container. Abuse in unloading and handling, Despencesing operations	Spill hazard	Supervision	3	3	9	
Less.	Level.	Less Level in container	Left over material in container unused for long time	Unsafe condition	Supervision	3	3	9	Periodic checking of the stock for identification of unused material in stock for long time and safe disposal of the same.

NODE 1 OF	5 :	Reactive Blue P3R		Sub node 1.1 : Stora	age of materials				
DESIGN INT	ENT :	Storage of materials							
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
Other.	Hazardous chemicals Handling.	Accidental mix up	Storage of large number of chemicals at store	Reactivity and compatibility hazards at storage of raw materials	Supervision	4	3	12	Storage of raw materials at store considering the compatibility and reactivity hazards at store.
Other.	Hazardous chemicals Handling.	Sulfonic acids	Storage and handling of sulfonic acids.	Emits SOx fumes upon heating to decomposition Have essentially the same corrosive characteristics as dose concentrated sulphuric acid.	Supervision PPE In general un neutralised sulphonic acids are regarded as moderate to highly toxic substances	3	3	9	Sop for storage and safe handling of sulfonic acids
Other.	Hazardous chemicals Handling.	Cyanuric chloride	Storage of Cyanuric chloride Opening of the drum	Toxic gas emission at work place	Ventilation	4	4	16	Hydrogen chloride leak detector at plant and Cyanuric chloride store .
Other.	Hazardous chemicals Handling.	BDSA Benzidine 2,2 di sulfonic acid	BDSA is raw material stored and used at site	Health hazard	Supervision PPE SOP	5	4	20	See note below

Note: Benzidine and its salts are hazardous chemicals and listed in the second schedule of the MSIHC rules 1989, with threshold quantity as 1 kg. Benzidine is known Carcinogen. Any benzene as impurity in raw materials or Weather any Benzidine salts are formed and purge point need attention Any contamination need strict isolation and quality control while processing as well as throughout the life span of the project. It is in the interest of PP as well as the community in surrounding .Similarly Anisidines are also controlled substances. (PA2 SA i.e. para Anisidine -2-Sulfonic Acid)

NODE 1 OF	5 :	Reactive Blue P3R	Sub node 1.2	2 : Iron Acid Reductior	n (Be'champ and Brin	mey	r re	ductio	on method)
DESIGN INTE	ENT :	Iron Acid Reduction							
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
None.	Flow.	No flow of at filter	Blockage at filter	Spill hazard during blockage removal	Supervision PPE	3	3	9	
More.	Flow.	More flow of material	Not anticipated	No safety issues anticipated		-	-	-	
Less.	Flow.	Less flow of during filteration	Partial Blockage at filter	Spill hazard during blockage removal	Supervision PPE	3	3	9	
Reverse.	Flow.	Reverse flow.	Vapors and fumes from reactor opening	Emission at work place	Ventilation	3	3	9	
As Well As.	Flow.	As well as flow	Bichromate is one of the raw material	Presence of heavy metals like chromium in effluent is likely	Process control ETP	4	4	16	
Other.	Flow.	Static discharge.	Transfer operations	Not significant	Equipments are earthed	2	2	4	
Other.	Flow.	Spill /emission	Accidental spill of acid	Emission at work place Corrosion	Ventilation	3	3	9	SOP for Acid handling
Other than	Flow	Undesired flow	Accidental mix up Human error	Unsafe condition	SOP. Supervision.	3	3	9	Proper labelling of the containers
More.	Temperature.	More temperature at reactor	Human error	Emission at work place	Ventilation	3	3	9	
Less.	Temperature.	Less Temperature.	Human error	Not significant.	SOP. Supervision.	2	2	4	
More.	Pressure.	More Pressure.	Not anticipated	Not significant	System vented to atmosphere	2	2	4	
Less.	Pressure.	Less Pressure.	Not anticipated	Not significant	System vented to atmosphere				

NODE 1 OF	5 :	Reactive Blue P3R	Sub node 1.2	: Iron Acid Reduction (Be'champ and Brinn	neyı	rec	luction	n method)
DESIGN INTE	ENT :	Iron Acid Reduction							
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
More	Phase.	Increase in phases.	Agitation loss (loss of power, mechanical problem etc.). Layer separation.	Unsafe condition.	SOP. Supervision.	3	3	9	
As Well As.	Composition	Impurity profile of raw materials By products Side reaction products Contaminations	Not fully known	potential for Unsafe condition	SOP. Supervision. Final reaction mixture tested for complete reduction	4	4	16	Avoid the build up of excess nitro compound in the reaction mass
As Well As.	Composition	Hydrogen released from Iron- acid	The acid is used for activation of the iron ,Normally only 2-3 % hydrogen is derived from acid but 97to 98 % comes from water	Not significant	Hydrogen consumed in situ formation	3	3	9	
More.	Level.	More Level.	More charging in error	Over flow hazard	Supervision	3	3	9	
Less.	Level.	Less Level.	Less batch charging. Human error.	Thermowell may not dip. Unsafe condition.	SOP. Supervision.	3	3	9	
Other.	Hazardous chemicals Handling.	Hazardous Solid waste	Hazardous Solid waste especially Iron sludge storage and transport containing residual material.	Organic contaminated water generated during fire fighting operations may enter the storm drain.	SOP. Supervision.	4	4	16	Effective washing of the sludge to make it free of retained product.

NODE 1 O	F5:	Reactive Blue P3	R	Sub node 1.3 : I	Diazotisation and co	upli	ng		
DESIGN IN	FENT :	Diazotisation and	l coupling and all other u	init operations					
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
None / more/less	Flow.	No flow at spray drying	See note below						
Reverse.	Flow.	Reverse flow at reactor	charging Cyanuric chloride through open manhole	Toxic gas emission at work place	Leak detectors at work place	4	4	16	Closed charging of cyanuric chloride to reactor. Hydrogen chloride leak detector at plant and Cyanuric chloride at plant.
Other.	Flow.	Spill /emission	Accidental spill	Toxic gas emission at work place	Supervision	4	4	16	Work area monitoring of the air born concentration of chemicals in the work area.
As Well As.	Flow.	As well as flow	Salts in spray drying mass	Not significant	Filtration & washing steps	4	4	16	
Other.	Flow.	Static discharge.	Transfer operations	Not significant	Equipments are earthed	2	2	4	
Other.	Flow.	Spill /emission	Accidental spill of acid	Emission at work place Corrosion	Ventilation	3	3	9	SOP for Acid handling
Other than	Flow	Undesired flow	Accidental mix up Human error	Unsafe condition	SOP. Supervision.	3	3	9	Proper labelling of the containers
More.	Temperature.	More temperature at reactor	Human error	Quality issues	SOP. Supervision.	2	2	4	

. Note : spray drying outsourced

Figure 18: Typical sequence of operations for diazotisation and azo coupling

(Source : Technical EIA Guidance Manual for Synthetic Organic Chemicals, prepared for the Ministry of Environment and Forests Government of India.)

NODE 1 OF	5 :	Reactive Blue P3R		Sub node 1.3 : Dia	zotisation and couplin	g			
DESIGN INT	ENT :	Diazotisation and cor	upling and all other un	it operations	-				
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
Less.	Temperature.	Less temperature about 0 0 c	Low temperature process requirement.	Freezing not anticipated	SOP. Supervision.	2	2	4	
More.	Pressure.	More Pressure.	Not anticipated	Not significant	System vented to atmosphere	2	2	4	
Less.	Pressure.	Less Pressure.	Not anticipated	Not significant	System vented to atmosphere				
More	Phase.	Increase in phases.	Agitation loss (loss of power, mechanical problem etc.). Layer separation.	Unsafe condition.	SOP. Supervision.	3	3	9	
As Well As.	Composition	Impurity profile of raw materials By products Side reaction products Contaminations	Not fully known	potential for Unsafe condition	SOP. Supervision.	4	4	16	
More.	Level.	More Level.	More charging in error	Over flow hazard	Supervision	3	3	9	
Less.	Level.	Less Level.	Less batch charging. Human error.	Thermowell may not dip. Unsafe condition.	SOP. Supervision.	3	3	9	
Other.	Hazardous chemicals Handling.	Cyanuric Chloride	Cyanuric Chloride It is highly reactive material	potential hazard of Toxic emissions at work place	SOP. Supervision.	3	3	9	Leak detectors at storage place?
Other.	Hazardous chemicals Handling.	Hydrochloric acid	Hydrochloric acid spill	Hydrogen chloride gas release	Safety shower and eye wash fountain PPE	5	4	20	DMP

NODE 2 C	DF 5 :	Reactive Blue M2	X7R Sub	node 2.1 : Storage of ma	terials				
DESIGN IN	NTENT :	Storage of materia	als						
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
None.	Flow.	More flow of material	dispensing from container human error	Delayed operation	Supervision	3	3	9	Training
More.	Flow.	More flow of material	dispensing from container	Spill hazard	Supervision	3	3	9	Training
Less.	Flow.	Less flow of	dispensing from container human error	Delayed operation	Supervision	3	3	9	Training
Reverse.	Flow.	Reverse flow.	Vapours coming from container while dispensing to container	Emission at work place	Ventilation at work place				
As Well As.	Flow.	As well as flow	VOC , odour from stored materials	Health hazard	Ventilation at the store room	4	4	16	
Other.	Flow.	Static discharge.	Transfer operations	Not significant	Equipments are earthed	2	2	4	
Other than	Flow	Undesired flow	Recycled containers , old labels retained Human error	Depends up on mix up components	Supervision	3	3	9	Training
More.	Temperature.	More temperature at	Summer season	Not significant	Storage under shed	3	3	9	
Less.	Temperature.	Less Temperature.	Winter season	Not significant	Storage under shed				
More.	Pressure.	More Pressure.	Not anticipated	Not significant	Systems Open to atmosphere	2	2	4	
Less.	Pressure.	Less Pressure.	Not anticipated	Not significant	Systems Open to atmosphere	2	2	4	

NODE 2 O	NODE 2 OF 5 : Reactive Blue MX7R Sub node 2.1 : Storage of materials												
DESIGN IN	TENT :	Storage of materials	<u>.</u>										
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested				
More	Phase.	More phases.	Gas, liquid phases.	Not significant.		_	<u> </u>						
As Well As.	Composition	Impurities.	Purity of the materials	In absence of chemical identifiers such as CAS number , DOT hazard label , MSDS , NFPA704 the materials are to be considered as if hazardous chemicals .	Quality checks and Process control	3	3	9	 Q 1 What is the Finished products MSDS and colour index Q 2 What is the full name of the material , MSDS and CAS number of 1. NADAPSA 2. IBAMSA 				
More.	Level.	More Level.	Excessive filling of the container. Abuse in unloading and handling , Despencesing operations	Spill hazard	Supervision	3	3	9					
Less.	Level.	Less Level in container	Left over material in container unused for long time	Unsafe condition	Supervision	3	3	9	Periodic checking of the stock for identification of unused material in stock for long time and safe disposal of the same.				

NODE 2 OI	NODE 2 OF 5 : Reactive Blue MX7R Sub node 2.1 : Storage of materials									
DESIGN IN	FENT :	Storage of materials				Ú.				
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	s	Р	R	Action Suggested	
Other.	Hazardous chemicals Handling.	Accidental mix up	Storage of large number of chemicals at store	Reactivity and compatibility hazards at storage of raw materials	Supervision	4	3	12	Storage of raw materials at store considering the compatibility and reactivity hazards at store.	
Other.	Hazardous chemicals Handling.	Sulfonic acids	Storage and handling of sulfonic acids.	In general un neutralised sulphonic acids are regarded as moderate to highly toxic substances. Emits SOx fumes upon heating to decomposition Have essentially the same corrosive characteristics as dose concentrated sulphuric acid.	Supervision PPE	3	3	9	Sop for storage and safe handling of sulfonic acids	

NODE 2 OF	5 :	Reactive Blue MX7F	R Sub 1	node 2.2 : Iron Acid Re	eduction (Be'champ an	nd E	Brinr	neyr r	reduction method)
DESIGN INTE	ENT :	Iron Acid Reduction	and all other unit operation	ations					
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
None.	Flow.	No flow of at filter	Blockage at filter	Spill hazard during blockage removal	Supervision PPE	3	3	9	
More.	Flow.	More flow of material	Not anticipated	No safety issues anticipated		-	-	-	
Less.	Flow.	Less flow of during filteration	Partial Blockage at filter	Spill hazard during blockage removal	Supervision PPE	3	3	9	
Reverse.	Flow.	Reverse flow.	Vapors and fumes from reactor opening	Emission at work place	Ventilation	3	3	9	
As Well As.	Flow.	As well as flow	Bichromate is one of the raw material	Presence of heavy metals like chromium in effluent is likely	Process control ETP	4	4	16	
Other.	Flow.	Static discharge.	Transfer operations	Not significant	Equipments are earthed	2	2	4	
Other.	Flow.	Spill /emission	Accidental spill of acid	Emission at work place Corrosion	Ventilation	3	3	9	SOP for Acid handling
Other than	Flow	Undesired flow	Accidental mix up Human error	Unsafe condition	SOP. Supervision.	3	3	9	Proper labelling of the containers
More.	Temperature.	More temperature at reactor	Human error	Emission at work place	Ventilation	3	3	9	
Less.	Temperature.	Less Temperature.	Human error	Delayed operation	Not significant.	2	2	4	
More.	Pressure.	More Pressure.	Not anticipated	Not significant	System vented to atmosphere	2	2	4	
Less.	Pressure.	Less Pressure.	Not anticipated	Not significant	System vented to atmosphere	2	2	4	

NODE 20	OF 5 :	Reactive Blue M	X7R Sub no	ode 2.2 : Iron Acid Reduc	tion (Be'champ a	nd E	Brin	meyr	reduction method)
DESIGN IN	NTENT :	Iron Acid Reduc	tion and all other unit opera	tions					
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
More	Phase.	Increase in phases.	Agitation loss (loss of power, mechanical problem etc.). Layer separation.	Unsafe condition.	SOP. Supervision.	3	3	9	
As Well As.	Composition	Impurity profile of raw materials By products Side reaction products Contaminations	Not fully known	potential for Unsafe condition	SOP. Supervision.	4	4	16	The build up of excess nitro compound must be avoided and the final reaction mixture should be tested for complete reduction.
As Well As.	Composition	Hydrogen released from Iron- acid	The acid is used for activation of the iron ,Normally only 2-3 % hydrogen is derived from acid but 97to 98 % comes from water	Not significant	Hydrogen consumed in situ formation	3	3	9	
More.	Level.	More Level.	More charging in error	Over flow hazard	Supervision	3	3	9	
Less.	Level.	Less Level.	Less batch charging. Human error.	Thermowell may not dip. Unsafe condition.	SOP. Supervision.	3	3	9	
Other.	Hazardous chemicals Handling. Flow.	Hazardous Solid waste No flow at spray	Hazardous Solid waste especially Iron sludge storage and transport containing residual material. See note below	Organic contaminated water generated during fire fighting operations may enter the storm drain.	SOP. Supervision.	4	4	16	Effective washing of the sludge to make it free of retained product.
more/less		drying							

Note : spray drying outsourced .

NODE 3 OF 5 : Reactive Black B Sub node 3.1 : Storage of materials												
DESIGN IN	TENT :	Storage of materia	ls									
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested			
None.	Flow.	More flow of material	dispensing from container human error	Delayed operation	Supervision	3	3	9	Training			
More.	Flow.	More flow of material	dispensing from container	Spill hazard	Supervision	3	3	9	Training			
Less.	Flow.	Less flow of	dispensing from container human error	Delayed operation	Supervision	3	3	9	Training			
Reverse.	Flow.	Reverse flow.	Vapours coming from container while dispensing to container	Emission at work place	Ventilation at work place							
As Well As.	Flow.	As well as flow	VOC, odour from stored materials	Health hazard	Ventilation at the store room	4	4	16				
Other.	Flow.	Static discharge.	Transfer operations	Not significant	Equipments are earthed	2	2	4				
Other than	Flow	Undesired flow	Recycled containers , old labels retained Human error	Depends up on mix up components	Supervision	3	3	9	Training			
More.	Temperature.	More temperature at	Summer season	Not significant	Storage under shed	3	3	9				
Less.	Temperature.	Less Temperature.	Winter season	Not significant	Storage under shed							
More.	Pressure.	More Pressure.	Not anticipated	Not significant	Systems Open to atmosphere	2	2	4				
Less.	Pressure.	Less Pressure.	Not anticipated	Not significant	Systems Open to atmosphere	2	2	4				
More	Phase.	More phases.	Gas, liquid phases.	Not significant.			_	_				

NODE 3 OF	ODE 3 OF 5 : Reactive Black B Sub node 3.1 : Storage of materials										
DESIGN INT	ENT :	Storage of materials									
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested		
As Well As.	Composition	Impurities.	Purity of the materials	In absence of chemical identifiers such as CAS number , DOT hazard label , MSDS , NFPA704 the materials are to be considered as if hazardous chemicals .					Q 2 What is the MSDS and CAS number of Vinyl Sulfone? Is it (CAS 77-77-0) ?		
More.	Level.	More Level.	Excessive filling of the container. Abuse in unloading and handling , Despencesing operations	Spill hazard	Supervision	3	3	9			
Less.	Level.	Less Level in container	Left over material in container unused for long time	Unsafe condition	Supervision	3	3	9	Periodic checking of the stock for identification of unused material in stock for long time and safe disposal of the same.		
Other.	Hazardous chemicals Handling.	Accidental mix up	Storage of large number of chemicals at store	Reactivity and compatibility hazards at storage of raw materials	Supervision	4	3	12	Storage of materials considering the compatibility and reactivity hazards at store.		

NODE 3 OF	5 :	Reactive Black B	Sub node 3.1 : Storage of materials						
DESIGN INT	ENT :	Storage of materials							
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
Other.	Hazardous chemicals Handling.	Sulfonic acids	Storage and handling of Sulfonic acids.	In general un neutralised sulphonic acids are regarded as moderate to highly toxic substances. Emits SOx fumes upon heating to decomposition Have essentially the same corrosive characteristics as dose concentrated sulphuric acid.	Supervision PPE	3	3	9	Sop for storage and safe handling of sulfonic acids
Other.	Hazardous chemicals Handling.	Vinyl sulfone	Storage of Vinyl sulfone Opening of the container /drum	Toxic gas emission at work place	Ventilation	4	4	16	
Other.	Hazardous chemicals Handling.	H acid 1 –amino , 8 Naphthol ,3,6 di sulfonic acid	It is raw material stored and used at site	Health hazard Dusting	Supervision PPE SOP	5	4	20	

NODE 3 OF 5 : Reactive Black B Sub node 3.2 : Diazotisation and coupling											
DESIGN INT	ENT :	Diazotisation and cou	upling and all other uni	t operations							
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested		
None / more/less	Flow.	No flow at spray drying	See note below								
Reverse.	Flow.	Reverse flow at reactor	Batch charging through open manhole	Toxic gas emission at work place	Leak detectors at work place	4	4	16			
Other.	Flow.	Spill /emission	Accidental spill	Toxic gas emission at work place	Supervision	4	4	16	Work area monitoring of the air born concentration of chemicals in the work area.		
As Well As.	Flow.	As well as flow	Salts in spray drying mass	Not significant	Filtration & washing steps	4	4	16			
Other.	Flow.	Static discharge.	Transfer operations	Not significant	Equipments are earthed	2	2	4			
Other.	Flow.	Spill /emission	Accidental spill of acid	Emission at work place Corrosion	Ventilation	3	3	9	SOP for Acid handling		
Other than	Flow	Undesired flow	Accidental mix up Human error	Unsafe condition	SOP. Supervision.	3	3	9	Proper labelling of the containers		
More.	Temperature.	More temperature at reactor	Human error	Quality issues	SOP. Supervision.	2	2	4			
Less.	Temperature.	Less temperature about 0 [°] c	Low temperature process requirement.	Freezing not anticipated	SOP. Supervision.	2	2	4			

Note : spray drying outsourced .

NODE 3 OF	NODE 3 OF 5 : Reactive Black B Sub node 3.2 : Diazotisation and coupling										
DESIGN INT	ENT :	Diazotisation and con	upling and all other uni	t operations							
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested		
More.	Pressure.	More Pressure.	Not anticipated	Not significant	System vented to atmosphere	2	2	4			
Less.	Pressure.	Less Pressure.	Not anticipated	Not significant	System vented to atmosphere						
More	Phase.	Increase in phases.	Agitation loss (loss of power, mechanical problem etc.). Layer separation.	Unsafe condition.	SOP. Supervision.	3	3	9			
As Well As.	Composition	Impuritiy profile of raw materials By products Side reaction products Contaminations	Not fully known	potential for Unsafe condition		4	4	16	Q 3 Are the Reactive Black B reactions balanced ?		
More.	Level.	More Level.	More charging in error	Over flow hazard	Supervision	3	3	9			
Less.	Level.	Less Level.	Less batch charging. Human error.	Thermowell may not dip. Unsafe condition.	SOP. Supervision.	3	3	9			
Other.	Hazardous chemicals Handling.	Hydrochloric acid	Hydrochloric acid spill	Emission of hydrogen chloride gas at work place. Health hazard due to hydrogen chloride gas release	Safety shower and eye wash fountain PPE	5	4	20	Disaster Control Plan for the site with dove tailing data for Offsite Disaster Control Plan.		
Other.	Hazardous chemicals Handling.	H acid 1 –amino , 8 Naphthol ,3,6 di sulfonic acid	It is raw material stored and used at site	Health hazard Dusting	Supervision PPE SOP	5	4	20			

NODE 4 O	F5 :	Reactive Blue 49	Sub node	4.1 : Storage of material	s				
DESIGN IN	TENT :	Storage of materia	ds						
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
None.	Flow.	More flow of material	dispensing from container human error	Delayed operation	Supervision	3	3	9	Training
More.	Flow.	More flow of material	dispensing from container	Spill hazard	Supervision	3	3	9	Training
Less.	Flow.	Less flow of	dispensing from container human error	Delayed operation	Supervision	3	3	9	Training
Reverse.	Flow.	Reverse flow.	Vapours coming from container while dispensing to container	Emission at work place	Ventilation at work place				
As Well As.	Flow.	As well as flow	VOC , odour from stored materials	Health hazard	Ventilation at the store room	4	4	16	
Other.	Flow.	Static discharge.	Transfer operations	Not significant	Equipments are earthed	2	2	4	
Other than	Flow	Undesired flow	Recycled containers , old labels retained Human error	Depends up on mix up components	Supervision	3	3	9	Training
More.	Temperature.	More temperature	Summer season	Not significant	Storage under shed	3	3	9	
Less.	Temperature.	Less Temperature.	Winter season	Not significant	Storage under shed				
More.	Pressure.	More Pressure.	Not anticipated	Not significant	Systems Open to atmosphere	2	2	4	
Less.	Pressure.	Less Pressure.	Not anticipated	Not significant	Systems Open to atmosphere	2	2	4	
More	Phase.	More phases.	Gas, liquid phases.	Not significant.		_	_7	-	

NODE	4 OF 5	: Reactive B	lue 49	Sub node 4.1 : S	torage of materials	5			
DESIGN	I INTENT	: Storage of	materials						
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
As Well As.	Composition	Impurities.	Purity of the materials	In absence of chemical identifiers such as CAS number, DOT hazard label, MSDS, NFPA704 the materials are to be considered as if hazardous chemicals.	Quality checks and Process control	3	3	9	Q 1 What is the Finished products MSDS and colour index
More.	Level.	More Level.	Excessive filling of the container. Abuse in unloading and handling, Despencesing operations	Spill hazard	Supervision	3	3	9	
Less.	Level.	Less Level in container	Left over material in container unused for long time	Unsafe condition	Supervision	3	3	9	Periodic checking of the stock for identification of unused material in stock for long time and safe disposal of the same.
Other.	Hazardous chemicals Handling.	Accidental mix up	Storage of large number of chemicals at store	Reactivity and compatibility hazards at storage of raw materials	Supervision	4	3	12	Storage of raw materials at store considering the compatibility and reactivity hazards at store.

NODE 4 OF	NODE 4 OF 5 : Reactive Blue 49 Sub node 4.1 : Storage of materials										
DESIGN INT	ENT :	Storage of materials									
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested		
Other.	Hazardous chemicals Handling.	Sulfonic acids	Storage and handling of sulfonic acids.	In general un neutralised sulphonic acids are regarded as moderate to highly toxic substances. Emits SOx fumes upon heating to decomposition Have essentially the same corrosive characteristics as dose concentrated sulphuric acid.	Supervision PPE	3	3	9	Sop for storage and safe handling of sulfonic acids		
Other.	Hazardous chemicals Handling.	Cyanuric chloride	Storage of Cyanuric chloride Opening of the drum	Toxic gas emission at work place	Ventilation	4	4	16	Hydrogen chloride leak detector at plant and Cyanuric chloride store .		
Other.	Hazardous chemicals Handling.	BDSA Benzidine 2,2 di sulfonic acid	BDSA is raw material stored and used at site	Health hazard	Supervision PPE SOP	5	4	20	See note below		

Note: Benzidine and its salts are hazardous chemicals and listed in the second schedule of the MSIHC rules 1989, with threshold quantity as 1 kg. Benzidine is known Carcinogen. Any benzene as impurity in raw materials or Weather any Benzidine salts are formed and purge point need attention Any contamination need strict isolation and quality control while processing as well as throughout the life span of the project. It is in the interest of PP as well as the community in surrounding .Similarly Anisidines are also controlled substances. (PA2 SA i.e. para Anisidine -2-Sulfonic Acid)
NODE 4 OF 5 : Reactive Blue 49 Sub node 4.2 : Iron Acid Reduction (Be'champ and Brinmeyr reduction method)									
DESIGN INTE	ENT :	Iron Acid Reduction							
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
None.	Flow.	No flow of at filter	Blockage at filter	Spill hazard during blockage removal	Supervision PPE	3	3	9	
More.	Flow.	More flow of material	Not anticipated	No safety issues anticipated		-	-	-	
Less.	Flow.	Less flow of during filteration	Partial Blockage at filter	Spill hazard during blockage removal	Supervision PPE	3	3	9	
Reverse.	Flow.	Reverse flow.	Vapors and fumes from reactor opening	Emission at work place	Ventilation	3	3	9	
As Well As.	Flow.	As well as flow	Bichromate is one of the raw material	Presence of heavy metals like chromium in effluent is likely	Process control ETP	4	4	16	
Other.	Flow.	Static discharge.	Transfer operations	Not significant	Equipments are earthed	2	2	4	
Other.	Flow.	Spill /emission	Accidental spill of acid	Emission at work place Corrosion	Ventilation	3	3	9	SOP for Acid handling
Other than	Flow	Undesired flow	Accidental mix up Human error	Unsafe condition	SOP. Supervision.	3	3	9	Proper labelling of the containers
More.	Temperature.	More temperature at reactor	Human error	Emission at work place	Ventilation	3	3	9	
Less.	Temperature.	Less Temperature.	Human error	Delayed operation	Not significant.	2	2	4	
More.	Pressure.	More Pressure.	Not anticipated	Not significant	System vented to atmosphere	2	2	4	
Less.	Pressure.	Less Pressure.	Not anticipated	Not significant	System vented to atmosphere				

NODE 4 OF :	NODE 4 OF 5 : Reactive Blue 49 Sub node 4.2 : Iron Acid Reduction (Be'champ and Brinmeyr reduction method)								
DESIGN INTE	ENT :	Iron Acid Reducti	ion						
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
More	Phase.	Increase in phases.	Agitation loss (loss of power, mechanical problem etc.).	Layer separation Unsafe condition.	SOP. Supervision.	3	3	9	
As Well As.	Composition	Impurity profile of raw materials By products Side reaction products Contaminations	Not fully known	potential for Unsafe condition	SOP. Supervision. final reaction mixture tested for complete reduction	4	4	16	Avoid the build up of excess nitro compound in reactor
As Well As.	Composition	Hydrogen released from Iron- acid	The acid is used for activation of the iron ,Normally only 2-3 % hydrogen is derived from acid but 97to 98 % comes from water	Not significant	Hydrogen consumed in situ formation	3	3	9	
More.	Level.	More Level.	More charging in error	Over flow hazard	Supervision	3	3	9	
Less.	Level.	Less Level.	Less batch charging. Human error.	Thermowell may not dip. Unsafe condition.	SOP. Supervision.	3	3	9	
Other.	Hazardous chemicals Handling.	Hazardous Solid waste	Hazardous Solid waste especially Iron sludge storage and transport containing residual material.	Organic contaminated water generated during fire fighting operations may enter the storm drain.	SOP. Supervision.	4	4	16	Effective washing of the sludge to make it free of retained product.

NODE 4 OF	5 :	Reactive Blue 49		Sub node 4.3 : Diazo	tisation and coupling				
DESIGN INT	ENT :	Diazotisation and con	upling and all other uni	it operations					
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
None / more/less	Flow.	No flow at spray drying	See note below						
Reverse.	Flow.	Reverse flow at reactor	charging Cyanuric chloride through open manhole	Toxic gas emission at work place	Leak detectors at work place	4	4	16	Closed charging of cyanuric chloride to reactor.
									Hydrogen chloride leak detector at plant
Other.	Flow.	Spill /emission	Accidental spill	Toxic gas emission at work place	Supervision	4	4	16	Work area monitoring of the air born concentration of chemicals in the work area.
As Well As.	Flow.	As well as flow	Salts in spray drying mass	Not significant	Filtration & washing steps	4	4	16	
Other.	Flow.	Static discharge.	Transfer operations	Not significant	Equipments are earthed	2	2	4	
Other.	Flow.	Spill /emission	Accidental spill of acid	Emission at work place Corrosion	Ventilation	3	3	9	SOP for Acid handling
Other than	Flow	Undesired flow	Accidental mix up Human error	Unsafe condition	SOP. Supervision.	3	3	9	Proper labelling of the containers
More.	Temperature.	More temperature at reactor	Human error	Quality issues	SOP. Supervision.	2	2	4	
Less.	Temperature.	Less temperature about 0 [°] c	Process requirement.	Freezing not anticipated	SOP. Supervision.	2	2	4	

Note : spray drying outsourced .

NODE 4 OF	ODE 4 OF 5 : Reactive Blue 49 Sub node 4.3 : Diazotisation and coupling									
DESIGN INT	ENT :	Diazotisation and con	upling and all other uni	it operations						
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested	
More.	Pressure.	More Pressure.	Not anticipated	Not significant	System vented to atmosphere	2	2	4		
Less.	Pressure.	Less Pressure.	Not anticipated	Not significant	System vented to atmosphere					
More	Phase.	Increase in phases.	Agitation loss (loss of power, mechanical problem etc.). Layer separation.	Unsafe condition.	SOP. Supervision.	3	3	9		
As Well As.	Composition	Impurity profile of raw materials By products Side reaction products Contaminations	Not fully known	potential for Unsafe condition	SOP. Supervision.	4	4	16		
More.	Level.	More Level.	More charging in error	Over flow hazard	Supervision	3	3	9		
Less.	Level.	Less Level.	Less batch charging. Human error.	Thermowell may not dip. Unsafe condition.	SOP. Supervision.	3	3	9		
Other.	Hazardous chemicals Handling.	Cyanuric Chloride	Cyanuric Chloride It is highly reactive material	potential hazard of Toxic emissions at work place	SOP. Supervision.	3	3	9	Leak detectors at storage place?	
Other.	Hazardous chemicals Handling.	Hydrochloric acid	Hydrochloric acid spill	Emission of hydrogen chloride gas at work place. Health hazard	Safety shower and eye wash fountain PPE	5	4	20	Disaster Control Plan for the site with dove tailing data for Offsite Disaster Control Plan.	

NODE 5 O	F5 :	Reactive Green H	HE4BD S	ub node 5.1 : Storage of 1	naterials				
DESIGN IN	TENT :	Storage of materia	ls						
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
None.	Flow.	More flow of material	dispensing from container human error	Delayed operation	Supervision	3	3	9	Training
More.	Flow.	More flow of material	dispensing from container	Spill hazard	Supervision	3	3	9	Training
Less.	Flow.	Less flow of	dispensing from container human error	Delayed operation	Supervision	3	3	9	Training
Reverse.	Flow.	Reverse flow.	Vapours coming from container while dispensing to container	Emission at work place	Ventilation at work place				
As Well As.	Flow.	As well as flow	VOC , odour from stored materials	Health hazard	Ventilation at the store room	4	4	16	
Other.	Flow.	Static discharge.	Transfer operations	Not significant	Equipments are earthed	2	2	4	
Other than	Flow	Undesired flow	Recycled containers , old labels retained	Depends up on mix up components	Supervision	3	3	9	Training
More.	Temperature.	More temperature at	Summer season	Not significant	Storage under shed	3	3	9	
Less.	Temperature.	Less Temperature.	Winter season	Not significant	Storage under shed				
More.	Pressure.	More Pressure.	Not anticipated	Not significant	Systems Open to atmosphere	2	2	4	
Less.	Pressure.	Less Pressure.	Not anticipated	Not significant	Systems Open to atmosphere	2	2	4	
More	Phase.	More phases.	Gas, liquid phases.	Not significant.		-	_	_	

NODE 5 OF	ODE 5 OF 5 : Reactive Green HE4BD Sub node 5.1 : Storage of materials									
DESIGN INT	ENT :	Storage of materials								
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested	
As Well As.	Composition	Impurities.	Purity of the materials	In absence of chemical identifiers such as CAS number , DOT hazard label , MSDS , NFPA704 the materials are to be considered as if hazardous chemicals .	Quality checks and Process control	3	3	9	Q 1 What is the Finished products MSDS and colour index	
More.	Level.	More Level.	Excessive filling of the container. Abuse in unloading and handling , Despencesing operations	Spill hazard	Supervision	3	3	9		
Less.	Level.	Less Level in container	Left over material in container unused for long time	Unsafe condition	Supervision	3	3	9	Periodicstockcheckingandcorrectiveactiondamagedorunwantedmaterial .	
Other.	Hazardous chemicals Handling.	Accidental mix up	Storage of large number of chemicals at store	Reactivity and compatibility hazards at storage of raw materials	Supervision	4	3	12	Storage of raw materials considering the compatibility and reactivity hazards at store.	

NODE 5 OF	ODE 5 OF 5 : Reactive Green HE4BD Sub node 5.1 : Storage of materials										
DESIGN INT	ENT :	Storage of materials									
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested		
Other.	Hazardous chemicals Handling.	Sulfonic acids	Storage and handling of sulfonic acids.	In general un neutralised sufonic acids are regarded as moderate to highly toxic substances. Emits SOx fumes upon heating to decomposition Have essentially the same corrosive characteristics as dose concentrated sulphuric acid.	Supervision PPE	3	3	9	Sop for storage and safe handling of sulfonic acids		
Other.	Hazardous chemicals Handling.	Formaldehyde	Formaldehyde spill	Health hazard due to emissions in Formaldehyde handling at work place. Environmental risk due to POCP of formaldehyde handling.	Safety Shower & Eye Wash Fountains and Personnel Protective Equipment (PPE) Supervision Connection of all vents releasing formaldehyde to scrubber.	5	4	20	Provide SOP for Formaldehyde storage and handling operations with thrust on medical surveillance, hazard communication to employees, PPE, Spill procedures confirming to OSHA Formaldehyde standard 29 CFR 1910.1048.		

NODE 5 OF	5 OF 5 : Reactive Green HE4BD Sub node 5.1 : Storage of materials								
DESIGN INT	ENT :	Storage of materials							
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
As well as	Composition	Purity of formaldehyde Water and methanol content	Normally commercial formaldehyde containts Methanol	Fire hazard	Portable Fire Extinguishers.	4	4	16	Q 4 Is Formaldehyde used free from methanol ?
Other	Emergency	Large spill of Formaldehyde	Accidental spill	Health hazard Fire hazard	Portable Fire Extinguishers.	4	4	16	Disaster Control Plan Provide adequate access for fire fighting to plant and gates suitable for fire tender movements . Suitable arrangement at storm drain to avoid any organic contaminated water/ spill/ fire water going out of the site. Wind direction sock

NODE 5 OF	NODE 5 OF 5 : Reactive Green HE4BD Sub node 5.2 : Diazotisation and coupling											
DESIGN INT	ENT :	Diazotisation and cor	upling									
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested			
Reverse.	Flow.	Reverse flow at reactor	charging through open manhole	Toxic gas emission at work place	Leak detectors at work place	4	4	16	Closed system for charging of batch Avoid opening of manhole for batch charging			
									use charge hole			
Other.	Flow.	Spill /emission	Accidental spill	Toxic gas emission at work place	Supervision	4	4	16	Work area monitoring of the air born concentration of chemicals in the work area.			
As Well As.	Flow.	As well as flow	Salts in spray drying mass	Not significant	Filtration & washing steps	4	4	16				
Other.	Flow.	Static discharge.	Transfer operations Resorcinol handling	Not significant	Equipments are earthed	2	2	4	Use non-sparking tools and equipment			
Other.	Flow.	Spill /emission	Accidental spill of acid	Emission at work place Corrosion	Ventilation	3	3	9	SOP for Acid handling			
Other than	Flow	Undesired flow	Accidental mix up Human error	Unsafe condition	SOP. Supervision.	3	3	9	Proper labelling of the containers			
More.	Temperature.	More temperature at reactor	Human error	Quality issues	SOP. Supervision.	2	2	4				
Less.	Temperature.	Less temperature about 0 [°] c	Low temperature process requirement.	Freezing not anticipated	SOP. Supervision.	2	2	4				

NODE 5 OF	IODE 5 OF 5 : Reactive Green HE4BD Sub node 5.2 : Diazotisation and coupling										
DESIGN INT	ENT :	Diazotisation and con	upling								
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested		
More.	Pressure.	More Pressure.	Not anticipated	Not significant	System vented to atmosphere	2	2	4			
Less.	Pressure.	Less Pressure.	Not anticipated	Not significant	System vented to atmosphere						
More	Phase.	Increase in phases.	Agitation loss (loss of power, mechanical problem etc.). Layer separation.	Unsafe condition.	SOP. Supervision.	3	3	9			
As Well As.	Composition	Impurity profile of raw materials By products Side reaction products Contaminations	Not fully known	potential for Unsafe condition	SOP. Supervision.	4	4	16			
More.	Level.	More Level.	More charging in error	Over flow hazard	Supervision	3	3	9			
Less.	Level.	Less Level.	Less batch charging. Human error.	Thermowell may not dip. Unsafe condition.	SOP. Supervision.	3	3	9			
Other.	Hazardous chemicals Handling.	Resorcinol	Reacts with amino compounds	potential hazard of Toxic emissions at work place Fire hazard	SOP. Supervision.	3	3	9			
Other.	Hazardous chemicals Handling.	Hydrochloric acid	Hydrochloric acid spill	Emission of hydrogen chloride gas at work place. Health hazard	Safety shower and eye wash fountain PPE	5	4	20	Disaster Control Plan for the site with dove tailing data for Offsite Disaster Control Plan.		

NODE 5 (OF 5 :	Reactive Green	HE4BD	Sub node 5.3 : Conde	nsation				
DESIGN I	NTENT :	Condensation a	nd all other unit operations						
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
None / more/less	Flow.	No flow at spray drying	See note below						
Reverse.	Flow.	Reverse flow at reactor	charging through open manhole	Toxic gas emission at work place	Leak detectors at work place	4	4	16	Closed system for charging of batch Avoid opening of manhole for batch charging use charge hole
As Well As.	Flow.	Generation of effluent.	Waste water streams from process.	The effluent is normally composed of high-boiling components (condensation products / by - products) that often show moderate or poor biodegradability, and low - boiling components (educts) with better biodegradability.	Specific waste water volumes are generally low, ETP provided.	4	3	12	
Other.	Flow.	Static discharge.	As a result of flow, agitation, etc., electrostatic charges can be generated.	Fire hazard	SOP. Supervision.	3	3	9	
Other than	Flow	Undesired flow	Accidental mix up Human error	Unsafe condition	SOP. Supervision.	3	3	9	Proper labelling of the containers

Note : spray drying outsourced .

NODE 50	OF 5 :	Reactive Green	HE4BD	4BD Sub node 5.3 : condensation					
DESIGN I	NTENT :	Condensation a	nd all other unit operations						
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
Other.	Flow.	Spill /emission	Accidental spill	Toxic gas emission at work place	Supervision	4	4	16	Work area monitoring of the air born concentration of chemicals in the work area.
More.	Temperature.	More temperature at reactor	Reaction exotherm – moderate.	Emission at vent.	Reflux condenser provided.	3	3	9	
Less.	Temperature.	Less Temperature.	Not anticipated	Not significant	Supervision.	3	3	9	
More.	Pressure.	More Pressure.	In case formaldehyde contain Methanol	Pressurization	Condenser System vented to atmosphere	3	3	9	
Less.	Pressure.	Less Pressure.	Not anticipated	Not significant	System vented to atmosphere	2	2	4	
More	Phase.	Increase in phases.	Agitation loss (loss of power, mechanical problem etc.).	Not significant	Supervision.	3	3	9	
As Well As.	Composition	Impurities.	Not fully known	potential for Unsafe condition	SOP. Supervision.	4	4	16	
More.	Level.	More Level.	More charging in error	Over flow hazard	Supervision	3	3	9	

NODE 5 OF 5 :		Reactive Green HE4BD Sub node 5.3 : condensation							
DESIGN INTENT : Condensation and all other unit operations									
Guide Word	Parameter	Deviation	Cause	Consequence	Protection Measures	S	Р	R	Action Suggested
Less.	Level.	Less Level.	Less batch charging. Human error.	Thermowell may not dip. Unsafe condition.	SOP. Supervision.	3	3	9	
Other.	Hazardous chemicals Handling.	Resorcinol	Containers of this material may be hazardous when empty since they retain product residues (dust, solids)	Health Hazard Inhalation of dust causes irritation to respiratory tract. Toxic effects may follow and include methemoglobinemia, convulsions, and death.	SOP. Supervision.	4	4	16	Maintain Antidotes

Annexure 6: DMP (enclosed separately)