PREFEASIBILITY REPORT

FOR

M/S. MAZDA COLOURS LIMITED

Area:

Shed No. C 1 B 61 to 63
Plot No. 615 to 618
District Valsad
Latitude & Longitude 20.3635° N, 72.9402° E
State Gujarat
Category B. (Located in GIDC) Schedule 5 (f)

APPLICANT

Mr. Dhiren P. Mehta – Whole Time Director
N. K. Mehta International House,
178, Backbay Reclamation Babubhai Chinai Marg,
Mumbai – 400020. Ph. 022-61457000
E-mail: dhirenm@mazdacolours.com
1. EXECUTIVE SUMMARY

M/s. Mazda Colours Limited is an existing Small Scale unit located at Shed No. C1B 61 to 63, Plot No. 615 to 618, 100 Shed Area, GIDC Estate, Vapi, Dist: Valsad – 396195. At present unit is manufacturing CPC Green (Pigment Green 7 – Low Grade/ High Conductance) @ 60 MT/month. Now, the unit is proposed to manufacture new product viz. CPC Green (Pigment Green 7 – High Grade/ Low Conductance) @ 90 MT/Month.

The proposed project is covered under 5(f) as per new EIA Notification of Ministry of Environment & Forest (MoEF), dated 14th September 2006. Therefore the unit required to obtain Environment Clearance (EC) from SAC.
2. INTRODUCTION OF THE PROJECT /BACKGROUND INFORMATION

2.1 Identification of the project and project proponent.

Name of Project:
M/s. Mazda Colours Ltd.

Location:
It is situated at Shed No. C1B 61 to 63, Plot No. 615 to 618, 100 Shed Area, GIDC Estate, Vapi, Dist: Valsad – 396 195.
Dist: Surat, State: Gujarat.
Latitude & Longitude : 20.3635° N, 72.9402° E

Category of Project: category B. (Located in GIDC) Schedule 5 (f)

2.2 Brief Description of Nature of Project.
It is an existing unit of manufacturing of CPC Green (Pigment Green 7) which is low grade product. The unit is SSI unit and going to manufacture new product CPC Green (Pigment Green 7) @ 90 MT/Month, which high grade product. After expansion unit shall be converted into Medium Scale Unit.

2.3 Need for the Project & Importance to the Country
Pigment Green has high tectorial strength and excellent fastness to solvents, heat, light, & weathering. It has excellent dispersion properties. Due to these characteristics of this pigment, it is widely used in the following Industries: Paint Industries; Rubber Industries; Plastic Industries; Paper Industries; Leather Industries; Textile Industries; Soaps & Detergent Industries; Ink Industries, etc.
It is most important product which helps our country for manufacturing other items.

2.4 Demand and supply gap
There is high demand of this product in our country. The high demand with high quality is now a days increased. It has excellent dispersion properties. There is high demand of these product in Rubber, paint and Textile units looking to better Health & Environment aspects. These pigments are not associated with toxic hazards or with fire and explosion risk.

2.5 Import vs. indigenous production
There will be no import for the project. There will be indigenous inputs in the entire production activity.
2.6 Export Possibility
High demand of these product in international market also. So. There is a possibility of exports. First the demands of domestic market shall be fulfilled.

2.7 Domestic/Export Markets
This new line product is proposed to meet the domestic markets demand. At present export market not estimated.

2.8 Employment Generation (Direct & Indirect) due to the project
Additional 15 to 20 workers required for the project.

3. PROJECT DESCRIPTION

3.1 Type of Project including Interlinked and Interdependent Projects
The unit is proposed to manufacturing CPC Green (Pigment Green 7 – Low Grade) covered under the category ‘B’, 5(f) of EIA notification “Synthetic organic chemical industry” of EIA Notification – 2006.
This project is totally depends on demand of Pigment Green 7 and the demand of same never been decreased.

3.2 Location (map showing general location, specific location and project boundary & project site layout) with coordinates.
The unit is located at Shed No. C1B 61 to 63, Plot No. 615 to 618, 100 Shed Area, GIDC Estate, Vapi, Dist: Valsad – 396 195. The total plot area is 5985 Sq. Mtr.
Latitude & Longitude 20.3635° N, 72.9402° EGoogle Map attached.
3.3 Details of alternate sites considered and the basis of selecting the proposed site, particularly the environmental considerations gone into should be highlighted.

As the expansion is proposed in the existing premises, no alternate site considered or proposed for the proposed product.

Moreover, the existing location is within the GIDC. So, that is a most suitable location.

3.4 Size or magnitude of operation

This is a Medium Scale project. The operation of the plant is partly manual and partly automatic system shall be installed in this proposal. Additional 15 to 20 workers shall be required for entire operation of the plant. Washing part shall be upgraded.

3.5 Project description with process details (a schematic diagram/flow chart showing the project layout, components of the project etc. should be given)

Manufacturing Process of Proposed Product:

NAME OF PRODUCT: CPC GREEN (PIGMENT GREEN 7 – HIGH GRADE)

1. MELTING & CHLORINATION

 Initially CPC blue is charged in glass lined reactor. Calculated quantity like CuCl₂, Vacuum salt, Anhydrous AlCl₃ is also charged. This mass is heated up to 170 °C by thermic fluid oil heating system. Entire mass is melted at 170 °C which takes around 10 hrs for complete melting. Here, a fume of HCL & Cl₂ is being scrubbed with Water Scrubber & Caustic Scrubber.

 AlCl₃ is used for catalytic purpose and to activate the chlorination at 14 position positions of CPC module. AlCl₃ does not take part in reaction. CuCl₂ also acts as a catalyst for better Chlorination. For complete chlorination, it requires around 50 hrs.

2. DROWNING :

 Then entire reacted mass is then transferred to Drowning Tank. Here, water is added to cool down entire reacted mass to room temperature.

3. FILTERATION :

 Then, the mass is filtered & washed in filter press. Here filtrate is received in the form of Aluminium Chloride Solution (By-product) & cake received from press is further processed in distillation vessel.

4. PURIFICATION & DISTILLATION :

 In Distillation vessel, Monochloro Benzene, Caustic, Oleic Acid & Emulsifier are charged with solid cake. Here, a fume of MCB & water is condensed and 92 % of water based MCB is separated in MCB receiver. Recovered MCB is reused further for next batch.
5. **FILTERATION:**
The pigment green obtained from distillation vessel is filtered & washed in filter press. Here, filtrate is sent to ETP.

6. **DRYING:**
Cake obtained from above filtration process is dried in spin flash dryer & tray dryer at about 170 °C for 8 hours.

7. **PULVERIZE:**
Finally dried mass is pulverized, classified & packed for dispatch.

CHEMICAL REACTION:

\[
\text{C}_3\text{CuN}_8\text{H}_{16} + 14\text{Cl}_2 \rightarrow \text{C}_3\text{CuN}_8\text{Cl}_{15}\text{H} + 14\text{HCL}
\]

\[
\text{CPC} \quad \text{CuCl}_2 \quad \text{[Cat.]} \quad \text{CPC Green}
\]

NOTE: The reaction is exothermic & to be carried out at 160 °C to 180 °C. Occasional cooling is also necessary.

B) ALUMINIUM CHLORIDE SOLUTION:

After completion of drowning process, the reacted mass is being fed to Filter Press. Here, filtrate is collected in form of Aluminium Chloride Solution (AlCl3 – 20 % & Water – 80 %) as a by-product.

B) HCL:

In Chlorination Reactor, during reaction, Cl₂ & HCL gases are generated. These gases are diverted to water Scrubber & HCL Scrubber. Here, HCL (25 %) is recovered as by-product.
a. **FLOW DIAGRAM OF MANUFACTURING PROCESS**

- **Melting & Chlorination**
 - CPC Blue
 - Water

- **Drowning**

- **Filtration**
 - Filtrate
 - Oleic acid
 - Cake

- **Purification & Distillation**
 - Residual

- **Filtration**
 - Filtrate

- **Drying**

- **Pulverization**

- **Blending**

- **CPC green**

- **FCl₃**

- **Caustic Flakes**

- **MCB Recovery**

- **To ETP**
b. MATERIAL BALANCE FOR PIGMENT GREEN-7

All figures are in MT.
The Raw material consumption for Existing Product (Low grade) shall be as under:

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Name of Raw Material</th>
<th>Existing</th>
<th>Additional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>Aluminium Chloride</td>
<td>110 MT/Month</td>
<td>-110 MT/Month</td>
<td>Nil</td>
</tr>
<tr>
<td>2)</td>
<td>CPC Blue</td>
<td>32 MT/Month</td>
<td>-32 MT/Month</td>
<td>Nil</td>
</tr>
<tr>
<td>3)</td>
<td>NaCl – Common Salt</td>
<td>23 MT/Month</td>
<td>-23 MT/Month</td>
<td>Nil</td>
</tr>
<tr>
<td>4)</td>
<td>Chlorine Gas</td>
<td>70 MT/Month</td>
<td>-70 MT/Month</td>
<td>Nil</td>
</tr>
<tr>
<td>5)</td>
<td>Sodium Hydroxide</td>
<td>37.5 MT/Month</td>
<td>-37.5 MT/Month</td>
<td>Nil</td>
</tr>
<tr>
<td>6)</td>
<td>E. O. Based Emulsifier</td>
<td>3 MT/Month</td>
<td>-3 MT/Month</td>
<td>Nil</td>
</tr>
<tr>
<td>7)</td>
<td>Cupric Chloride</td>
<td>1.92 MT/Month</td>
<td>-1.92 MT/Month</td>
<td>Nil</td>
</tr>
<tr>
<td>8)</td>
<td>Mono Chloro Benzene</td>
<td>4.7 MT/Month</td>
<td>-4.7 MT/Month</td>
<td>Nil</td>
</tr>
</tbody>
</table>

The Raw material consumption for Proposed Product (High Grade) shall be as under:

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Name of Raw Material</th>
<th>Existing</th>
<th>Additional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>Aluminium Chloride</td>
<td>Nil</td>
<td>168 MT/Month</td>
<td>168 MT/Month</td>
</tr>
<tr>
<td>2)</td>
<td>CPC Blue</td>
<td>Nil</td>
<td>48 MT/Month</td>
<td>48 MT/Month</td>
</tr>
<tr>
<td>3)</td>
<td>Chlorine Gas</td>
<td>Nil</td>
<td>101 MT/Month</td>
<td>101 MT/Month</td>
</tr>
<tr>
<td>4)</td>
<td>Sodium Hydroxide</td>
<td>Nil</td>
<td>57 MT/Month</td>
<td>57 MT/Month</td>
</tr>
<tr>
<td>5)</td>
<td>HCl (25%)</td>
<td>Nil</td>
<td>202 MT/Month</td>
<td>201 MT/Month</td>
</tr>
<tr>
<td>6)</td>
<td>Cupric Chloride</td>
<td>Nil</td>
<td>3.75 MT/Month</td>
<td>3.75 MT/Month</td>
</tr>
<tr>
<td>7)</td>
<td>NaCl – common salt</td>
<td>Nil</td>
<td>33 MT/Month</td>
<td>33 MT/Month</td>
</tr>
<tr>
<td>8)</td>
<td>Mono Chloro Benzene</td>
<td>Nil</td>
<td>7.5 MT/Month</td>
<td>7.5 MT/Month</td>
</tr>
<tr>
<td>9)</td>
<td>Emulsifier</td>
<td>Nil</td>
<td>1.2 MT/Month</td>
<td>1.2 MT/Month</td>
</tr>
<tr>
<td>10)</td>
<td>Oleic Acid</td>
<td>Nil</td>
<td>2.7 MT/Month</td>
<td>2.7 MT/Month</td>
</tr>
</tbody>
</table>
M/S. MAZDA COLOURS LIMITED

SPECIFIC RAW MATERIAL CONSUMPTION IN MT PER MT OF PRODUCT

<table>
<thead>
<tr>
<th>Code</th>
<th>Code Name</th>
<th>Unit</th>
<th>Specific Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Aluminium Chloride</td>
<td>MT/MT</td>
<td>1.867</td>
</tr>
<tr>
<td>B</td>
<td>CPC Blue</td>
<td>MT/MT</td>
<td>0.533</td>
</tr>
<tr>
<td>C</td>
<td>Chlorine Gas</td>
<td>MT/MT</td>
<td>1.122</td>
</tr>
<tr>
<td>D</td>
<td>Sodium Hydroxide</td>
<td>MT/MT</td>
<td>0.633</td>
</tr>
<tr>
<td>E</td>
<td>HCl (25%)</td>
<td>MT/MT</td>
<td>2.233</td>
</tr>
<tr>
<td>F</td>
<td>Cupric Chloride</td>
<td>MT/MT</td>
<td>0.042</td>
</tr>
<tr>
<td>G</td>
<td>NaCl – common salt</td>
<td>MT/MT</td>
<td>0.367</td>
</tr>
<tr>
<td>H</td>
<td>Mono Chloro Benzene</td>
<td>MT/MT</td>
<td>0.083</td>
</tr>
<tr>
<td>I</td>
<td>Emulsifier</td>
<td>MT/MT</td>
<td>0.013</td>
</tr>
<tr>
<td>J</td>
<td>Oleic Acid</td>
<td>MT/MT</td>
<td>0.030</td>
</tr>
</tbody>
</table>

2.2 Resource optimization/recycling and reuse envisaged in the project, if any, should be briefly outlined.

We shall distillate Monochloro Benzene and it shall be reuse back. The entire MCB remains after reaction shall be recovered and reused. Moreover, HCL shall also be reused entirely.

3.8 Availability of water its source, Energy/Power requirement and source should be given.

The break - up of water use is as under. The source of water is GIDC water supply line only.

<table>
<thead>
<tr>
<th>Section</th>
<th>Existing</th>
<th>Additional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Domestic</td>
<td>15.0 M3/day</td>
<td>Nil</td>
<td>15.0 M3/day</td>
</tr>
<tr>
<td>b) Gardening</td>
<td>10.0 M3/day</td>
<td>Nil</td>
<td>10.0 M3/day</td>
</tr>
<tr>
<td>c) Industrial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Cooling</td>
<td>20.0 M3/day</td>
<td>60.0 M3/day</td>
<td>80.0 M3/day</td>
</tr>
<tr>
<td>2. Boiler</td>
<td>30.0 M3/day</td>
<td>20.0 M3/day</td>
<td>50.0 M3/day</td>
</tr>
<tr>
<td>3. Process</td>
<td>38.0 M3/day</td>
<td>43.0 M3/day</td>
<td>81.0 M3/day</td>
</tr>
<tr>
<td>4. Washing</td>
<td>41.0 M3/day</td>
<td>270.0 M3/day</td>
<td>311.0 M3/day</td>
</tr>
<tr>
<td>5. Floor Washing</td>
<td>Nil</td>
<td>6.0 M3/day</td>
<td>6.0 M3/day</td>
</tr>
<tr>
<td>Total Industrial</td>
<td>129.0 M3/day</td>
<td>399.0 M3/day</td>
<td>528.0 M3/day</td>
</tr>
<tr>
<td>TOTAL (Industrial + Domestic)</td>
<td>154.0 M3/day</td>
<td>399.0 M3/day</td>
<td>553.0 M3/day</td>
</tr>
</tbody>
</table>

11
3.9 Quantity of waste to be generated (liquid and solid) and scheme for their management/disposal.

<table>
<thead>
<tr>
<th>Section</th>
<th>Consumption of Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Existing</td>
</tr>
<tr>
<td>a) Domestic</td>
<td>13.5 M³/day</td>
</tr>
<tr>
<td>b) Gardening</td>
<td>Nil</td>
</tr>
<tr>
<td>c) Industrial</td>
<td></td>
</tr>
<tr>
<td>1. Cooling</td>
<td>1.1 M³/day</td>
</tr>
<tr>
<td>2. Boiler</td>
<td>1.5 M³/day</td>
</tr>
<tr>
<td>3. Process</td>
<td>35.8 M³/day</td>
</tr>
<tr>
<td>4. Washing</td>
<td>39.0 M³/day</td>
</tr>
<tr>
<td>5. Floor Washing</td>
<td>Nil</td>
</tr>
<tr>
<td>Total Industrial</td>
<td>77.4 M³/day</td>
</tr>
<tr>
<td>TOTAL (Industrial + Domestic)</td>
<td>90.9 M³/day</td>
</tr>
</tbody>
</table>

Note: The effluent generated from process in new product in the form of aqueous layer from the batch mix.

A) The existing effluent generation is @ 77.4 KL/day (Industrial)
B) Total effluent @ 400.0 KL /Day is being disposed off to CETP after product recovery and treatment.

3.10 Schematic representation of the feasibility drawing which give information of EIA purpose:

![Diagram](image)

4.0 SITE ANALYSIS

4.1 Connectivity

The existing plant is located at Shed No. C1B 61 to 63, Plot No. 615 to 618, 100 Shed Area, GIDC Estate, Vapi, Dist: Valsad.
4.2 Land Form, Land use and Land Ownership.

No additional land will be required for the proposed product. Existing unit in GIDC. No additional Construction is required. Only Modernization of machines and Plant and washing activities shall be done.

4.3 Topography (along with map)
4.4 **Existing land use pattern** {agriculture, non-agriculture, forest, water bodies, (including area under CRZ)}, shortest distance from the periphery of the project to periphery of the forests, national park, wild life sanctuary, eco sensitive areas, water bodies (distance from the HFL of the river), CRZ. In case of notified industrial area, a copy of the Gazette notification should be given.

It is GIDC notified area land.

4.5 **Existing Infrastructure**

For transporting final product from the plant to the market and obtaining raw material well connected road is available.
4.6 Soil Classification
The proposed plant will be located in existing plant area. No additional land will be required for the proposed plant.

4.8 Climatic data from secondary sources
The climatic conditions in this region are humid and hot with extremes of temperature and average rainfall. The temperature in summer touches up to 41°C while in winter it comes low as to 15°C. The Average Annual Temperature is 26.8°C. The average annual rainfall is 2039 mm.

4.9 Social Infrastructure:
- Safe hygienic drinking water is provided at the plant.
- A full fledge training hall is available in the existing plant complex. The training of workman is provided on basic as well as for refreshers.
- Rehabilitation and medical facility provided.
- The rest room is provided within plant area.

5. PLANNING BRIEF

5.1 Planning concept (type of industries, facilities, transportation etc.) town and country planning/Development authority Classification.
The proposed expansion shall be within existing complex hence no change in land use. Existing unit is in GIDC. So, there is no additional construction is required.

5.2 Population Projection
About 15 to 20 extra manpower required and it is well developed GIDC area. There is no any effect on population. There are no of skilled and unskilled employees are available. There are no of skill workers jobless in the area.

Apart from the jobs, the company provided medical and educational facilities to the employees which were availed by the people around the plant. Adequate recreational facilities for the staff of the company were created.
5.3 Land use planning (breakup along with green belt etc.)

Total Plot Area = 6005.9 Sq. Meter
Production Plant Area = 2000.0 Sq. Meter
Green Belt = 1500.0 Sq. Meter
ETP Area = 450 Sq Mts
Utility Area = 150 Sq Mts
Internal Road Area = 750 Sq Mts.
Solid Waste/ Haz. Waste Storage Area = 225 Sq Mts
Storage for Finished Products = 105 Sq Mts
Open Area = 825.95 Sq Mts

Moreover, no of plants around periphery provided and no of small plants with earthen pots are provided at all open area.

Detailed Site Plant attached as separate enclose.

5.4 Assessment of Infrastructure Demand (Physical & Social) Physical Infrastructure

No housing facility will be created.

5.5 Amenities/Facilities

All infrastructure facility such as education, health facilities and other social facilities are adequate at existing unit. No additional facility required.

6. PROPOSED INFRASTRUCTURE

6.1 Industrial Area (Processing Area)

Office-cum-store is constructed at site. Only up-gradation in machine and plant area without additional construction activity. No additional built-up area shall be provide. Only washing area and washing activity shall be upgraded and machines shall be upgraded.
6.2 Resident Area (Non Processing Area)
No residential area is present in the applied area.

6.3 Green Belt
We have provided 1500.0 Sq Mts of green belt and shall be kept as it is. Moreover, additional earthen pots of small plant shall be provided at all possible location.

6.4 Social Infrastructure
It is important product which connects so many other products w.r.t its non toxic nature and good strength against fire. Due to these characteristics of this pigment, it is widely used in the following Industries: Paint Industries; Rubber Industries; Plastic Industries; Paper Industries; Leather Industries; Textile Industries; Soaps & Detergent Industries; Ink Industries, etc.

6.5 Connectivity (Traffic and transportation Road/Rail/Metro/Water ways etc.)
For transporting final product to the market and obtaining raw material, well connected roads are available.

6.6 Drinking Water Management (Source & supply of water)
The existing plant is having safe drinking water facility. RO water is supply to all the employee and contract workman.

6.7 Sewerage System
Resent domestic effluent in the area is also connected to CETP. We are having existing Septic Tank system and then it shall be discharged along with industrial effluent joining CETP.
6.8 Industrial Waste Management

We have already provided adequate area for storage of ETP Sludge and other wastes as mentioned below. We have obtained the TSDF membership of three different sites at Vapi, Vadodara and Saurastra. It is obtained looking to regular disposal of landfill waste. All records of generation, disposal and stock of all waste has been maintained.

<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>NAME OF WASTE</th>
<th>EXISTING QTY PER ANNUM</th>
<th>ADDITIONAL QTY PER ANNUM</th>
<th>TOTAL QTY PER ANNUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AlCl3 Soln.</td>
<td>7200 MT</td>
<td>3600 MT</td>
<td>10800 MT</td>
</tr>
<tr>
<td>2</td>
<td>Spent HCL</td>
<td>105 MT</td>
<td>52 MT</td>
<td>157 MT</td>
</tr>
<tr>
<td>3</td>
<td>ETP Sludge</td>
<td>462 MT</td>
<td>230 MT</td>
<td>692 MT</td>
</tr>
<tr>
<td>4</td>
<td>Used Oil</td>
<td>20 Lit</td>
<td>300 Lit</td>
<td>320 Lit</td>
</tr>
<tr>
<td>5</td>
<td>Discarded Containers</td>
<td>1.5 MT</td>
<td>2.5 MT</td>
<td>4 MT</td>
</tr>
<tr>
<td>6</td>
<td>Discarded bags</td>
<td>4 MT</td>
<td>2 MT</td>
<td>6 MT</td>
</tr>
</tbody>
</table>

6.9 Solid waste Management

We have provided enough storage area for different waste. Additionally, we have installed dryers for reducing the moisture contents from the ETP Sludge. Our dryers are operated by flue gas exhaust of Boiler & Thermopack. No additional fuel is used.

6.10 Power Requirement

No additional power shall be required. We shall upgrade the washing area and mirandize the plant with energy efficient equipment and machines. So, there shall not be any additional power requirement.

7. REHABILITATION AND RESETTLEMENT(R&R PLAN)

(Policy to adopted (Central State) in respect of the project affected person including home oustees, land oustee and landless labour (A brief outline to be given)

The new unit is coming up in the existing complex and the R & R does not arise.
8. PROJECT SCHEDULE AND COST ESTIMATES

8.1 Proposed schedule and approval for implementation

We are already existing plant & additional product shall be manufactured after obtaining EC of the Board.

8.2 Project Cost Estimation

Additional estimated cost of project shall be 4.7 crores which includes upgradation and modernization of entire existing machines and equipment.

9. ANALYSIS OF PROPOSAL (FINAL RECOMMENDATION)

- Unit will use good faith efforts to employ local people from near by villages depending upon the availability of skilled and unskilled man-power surrounding the project site.
- Proposed product required highly educated person in some area. Migration of highly education and skilled experience will result in increase of literacy in the surrounding villages.
- In addition, the proposed expansion of project shall enhance the prospects of employment.
- Additional government revenue expected from taxes, duties and other fees.
- An added benefit to the proposed project will result in considerable growth of stimulating the industrial and commercial activities in the state & Country.
- Small and medium scale industries may be further developed as a consequence.

Mr. Dhiren P Mehta – Whole Time Director

Mazda Colours Limited,