The 136th Meeting of State Level Expert Appraisal Committee - 1 held on 5th, 6th & 7th October, 2016 at Parishad Sabhagraha, Hall no. 3 & 4, 7th Floor, Main Building, Mantralaya, Mumbai- 400 032.

The following members were present for the Committee meeting:

Shri. T. C. Benjamin	Chairman	5th, 6th & 7th October, 2016
Prof. (Dr.) Bhaskar N. Thorat	Member	6th & 7th October, 2016
Shri. Chandrakant I. Sambutwad	Member	5th, 6th & 7th October, 2016
Prof. (Dr.) Ramesh Dod	Member	5th, 6th & 7th October, 2016
Shri. D A Hiremath	Member	absent
Shri. Madan M. Kulkarni	Member	7th October, 2016
Shri. Balbir H. Sehgal	Member	5th, 6th & 7th October, 2016
Shri, M. B. Hajari	Member Secretary	5th, 6th & 7th October, 2016

At the outset, the Chairman welcomed all Members present to the meeting. Thereafter the items were taken up for discussion.

1	*	Confirmation of minutes of 135th meeting
	l "	Continuation of influence of 125 meeting
- 1	\	

The minutes of the 135th SEAC-I meeting were **confirmed** unanimously.

Discussion	Discussion on visit reports
item 1	

I. M/s. Shri Dnyaneshwar Sahakari Sakhar Karkhana Ltd.

The Committee went through the visit report and decided to take it up when the project is considered for approval.

II. M/s. Harmony Organics Pvt. Ltd.

The Committee went through the visit report (attached as *Annexure C*) and decided to take it up when the project is considered for approval.

(morning

Chairman

Page 1 of 76

"Annexure C"

Visit report-M/s. Harmony Organics Pvt. Ltd.

Date- 1/10/2016

Pursuant to the decision taken in the 135th meeting a sub-committee comprising of following members visited the plant on 1.10.2016-

- 1. Shri. T. C. Penjamin, Chairman
- 2. Prof. (Dr.) Ramesh Dod, Member

A sub-committee made the following observations.

- The PP i.e. M/s. Harmony Organics Pvt. Ltd. at plot no. D-5, MIDC Kurkumbh, Taluka- Daund, District- Pune is engaged in manufacturing of synthetic organic chemicals at same location.
- II. The sub-committee has noted that the same activity attracts EC as per the EIA Notification 2006. However, it was observed by the sub-committee that PP has not obtained the EC for the existing production. It is surprising that expansion in production capacity of Methyl Pentenone (MPO) 150 MT/M i.e. 1800 MT/A [5 times of earlier production] and Phenyl Ethyl Alcohol (PEA) 200 MT/M [6.67 times of earlier production i.e. 2400 MT/A] were granted by MPCB vide their Consent to Operate No. MPCB/14/02/02153 dated 6.3.2014 indicating violations of the EIA Notification 2006.

It was noted by the sub-committee that existing production of PEA (Phenyl Ethyl Alcohol) is 2160 MT/A [180 MT/M which is equal to 72 MT/day]. Each day there are batches to produce 72 MT/day; each batch generates 4500 lit to 5000 lit of high COD effluent.

Thus from one product daily trade effluent generation is 13.5 CMD. Il is suggested by the sub-committee to correctly worked the quantum of trade effluent generated from other products like Methyl Pentenone and other as mentioned in FORM 1 for the rated capacity of the reactors.

III. Blow down quantities of cooling tower and boilers needs to be correctly workout (For the existing boilers 3 CMD boiler blow down + 20 CMD cooling tower blow down).

(Christian

- PP has agreed to scrap 1.5 TPH existing boiler and continue to use 1 boiler of 4 TPH which will require 16 TPD of coal. Considering the proposed expansion there will IV. be 2 boilers of 10 TPH each which will require 40 TPD of coal. Sub-committee has suggested that sprinkling arrangement for coal storage yard may be provided and its consumption may be added in the revised water budget.
 - ESP or bag filter of suitable size is suggested to achieve the outlet TPM \leq 50 mg/Nm³.
- Stage wise material balance for every product/ 1kg of product may be detailed in V. VI. EIA report.
- NaCl should be given to tannery industry. VII.
- Steel siles of sufficient capacity should be provided for minimum of 7 days storage VIII. of fly ash.

Chairman

Member

M/s Hindustan Electricity Generation Co. Pvt. Ltd. III.

The Committee went through the visit report (attached as Annexure D) and decided to take it up when the project is considered for approval.

Member Secretary

Page 3 of 76

"Annexure D"

Visit Report. M/s Hindustan Electricity Generation Co. Pvt. Ltd., Navlakh Umbre,

Taluka Maval, Dist. Punc

Date- 24.9.2016

Pursuant to the decision taken in the 135th SEAC-I meeting, a sub-committee comprising of following members-

- 1. Shri. T. C. Benjamin, Chairman
- 2. Prof. (Dr.) Ramesh Dod, Member
- 3. Shri C. L Sambutwad, Member
- 4. Shri Balbir Schegal, Member
- 5. Shri. M. M. Kulkarni, Member

Visited the M/s. Hindustan Electricity Generation Co. Pvt. Ltd., Navlakh Umbre, Taluka Maval, Dist. Pune alongwith Mr. Jadhav. Field Officer. MPCB and representatives of PP between 3 - 5 pm on 24 Sept 2016.

Following observations were made by the sub-committee-

- The PP has proposed an Integrated Industrial Area comprising of Industrial —
 Manufacturing, Warehouse along with Residential, Commercial retail and educational
 project at Navlakh, Umbre and Badhalwadi Village, Taluka Maval, District-Pune.
 - Plot Area, 10,07,060.22 m² (248 acres)
 - FSI area, 5,75,352.06 m²
 - Total Construction area, 6.04.1 19.66 m²
- II. The access to the plot is from Talegaon MIDC road to Chakan and is about 5 km from MDR-15 road junction. MDR-15 road is proposed to be 24 m wide, however presently it is only about 7 m wide. About 1.5 km road from MDR-15 to the entrance gate of the plot is proposed to be 18 m wide however presently it is only 5 m wide.
- III. The plot has an elevation difference of about 45m from 670 to 625m distributed over Plot length of about 2.5 km and average plot width varying from 400 to 500 m.

(m) of the form

- IV. The PP has indicated water requirement at about 4 MLD (5.694 MLD). There are following sources of water near to the plot-
 - 1. Andhra Dam (about 5 km away)
 - 2. Bhama Askhed dam (about 7 km away and separated by a ridge in between).
 - 3. Jadhavwadi dam (about 5 km away)
 - 4. Indrayani river (about 7 km away)

James James

The PP has to identify the source and make their own arrangement for water supply. Con game from which the course Depth Rhould be from the The project should be self sufficient in terms of waste management, wastewater treatment & disposal. The PP should include a separate chapter in EIA report indicating methods of solid waste/hazardous waste handling, treatment and disposal. The wastewater generated should be treated and reused within the facility so as not to contaminate natural water resources.

- VI. The project is located in a biologically rich and diverse environment. It was discussed and agreed by PP to conduct a separate, independent study on biodiversity of the area by an expert and submit along with the EIA report.
- VII. The proposed project plot area is rich in natural resources and consists of number of water streams flowing from the nearby hillocks into the plot area. The plot also has a lush green tree cover and is untouched by any development activity. The plot may be one of very few remaining spots in the Western Ghats and will be lost forever after proposed project comes up. Also, presently a full-fledged Talegaon MIDC is functioning in the vicinity where proposed project activity can be shifted. The proposed project is at least 5 km away from nearest developed area and will require creation of separate infrastructure to support the project activities. It will also increase traffic and congest roads in the area.

T.C.Benjamin Chairman C.f.Sambutwad

Member

Ramesh Dod Momber M.M.Kulkarni Member

B.H.Sekgill Member

Item no. 1	Minor Minerals (stone) Sangli (1)

The proposal was considered under 1(a)-B2 category of the schedule of EIA Notification 2006. The brief information submitted by the PP and decision of the Committee are depicted below:

S. No.	Name of the Proponent, Mouz, Taluka, Land type	Gat No./ Survey No.	Area (ha)	Observation of the Committee	Recommendations
1.	Shri. Jamir Abdul Hajarat	196/2	6.14 ha	Approved Mining Plan has been submitted and found to	1
	Sidhewadi, Miraj			be in order. No hill cutting	!
				was involved. The proposed	

quarry is beyond 200m from	stipulated in the Annexure
habitations, water bodies,	A.
roads and public structures.	
AAQS shows that GLCs	
were within prescribed	i
limits. All aspects of	
environmental impact were	
considered and found to be	
acceptable.	

Item no. 2	Minor Minerals (stone) Ratnagiri (01)	

The proposal was considered under 1(a)-B2 category of the schedule of EIA Notification 2006. The brief information submitted by the PP and decision of the Committee are depicted below:

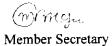
S. No.	Name of the Proponent, Mouz, Taluka, Land type	Gat No./ Survey No.	Area (ha)	Observation of the Committee	Recommendations
1.	M/S RENUKA CONSTRUCTION Visapur, Dapoli (Pvt.)	43/1, 43/2, 43/3, 43/4, 44/6, 44/7, 44/12 and 44/13	5.1	Approved Mining Plan has been submitted and found to be in order. The proposed quarry is beyond 200m from habitations, water bodies, roads and public structures. AAQS shows that GLCs were within prescribed limits. There is no crusher in the vicinity of the quarry. However the PP could not state whether the quarry belongs to a particular geohydrological regime.	Senior Geologist, GSDA regarding geo-hydrological zone in which the stone quarry is

Item no. 3	M/s. Khursipar Iron Ore Mine [area- 4.37 ha]
	At survey no. 165 & 132, Village- Khursipar, Taluka- Amgaon, District- Gondia.

The brief information of the project as submitted by the PP is as follows:

		Will in London Mine
I	Name of the project	Khursipar Iron Ore Mine

Member Secretary


Page 6 of 76

2	Name, address, e-mail & contact number of proponent		Lessee: Maharashtra Stale Mining Corporation Ltd. "Khanikarm Bhawan", Plot No- 7, Ajani Chowk, Wardha Road, Nagpur-440015 (Maharashtra) Email: info@msmc.gov.in Contact no: 0712-2253204 to 2253207			
3	Name, address, e-mail & contact number of Consultant		Vivek P. Navare Hubert Enviro care systems Pvt. Ltd. # 18, 92 nd Street, 18 th Avenue, Ashok Nagar, Chennai – 600083 Telephone no.: 044 – 42985511/55, 09884390811 Email: consultancy@hecs.in/ marketing@hecs.in/ moses.hecs@gmail.com Website: www.hecs.in			
4	Accreditation of Consultant (NABET acc	ereditation)		Accreditation litation for se		
5	New Project/Expansion in existing project/ /Diversification in existing project	CI .	Working N	1ine, Renewal		
6	If expansion/ Diversification, whether en clearance has been obtained for existing yes, enclose a copy with compliance table	project (1f	Not Applic	cable		
7	Activity schedule in the EIA notification		Category	В		
8	Area Details		Govt. revenue land: 4.37 Ha			
9	Name of Notified Industrial area/ MIDC		Not Applicable			
10	TOR given by SEAC?		NOT SO FAR. WILL BE GIVEN AFTER SEAC MEETING.			
11	Estimated cost of the project: (Including cost for land, building, plant a machinery separately)	and	10,01,64,196 Crore			
12	Location details of the project	Latitude			21°22'4	5.682"N
	-	Longilude	·		80°17'3	
		Location Elevation ab (melers)	ove Mean	Sea Level	Khursij 361m	oar
13	Distance from protected area critically	Nagzira Wil	dlife Sanctu	ary	13.86K	m (W, SW)
	polluted area	Navegaon N			39.68K	m (S)
	Eco sensitive area Interstate boundary	Malewada F	Forest Range 47.70Km (S)			m (S)
		No critically	polluted are	ea .	Noi Ap	plicable
		Madhya Pra	desh state bo	oundary	11.48K	m (E)
	Chhattisgar		rh state boundary 28.00 Km (SE)		ım (SE)	
14	Raw materials (including process chemicals, catalysts & additives).	List of raw materials to be used	Physical and chemical nature of raw material	Quantity (tones / month) full production capacity	Source of materials	Means of transportation (Source to storage site) with justification

(mid streets.

		No raw material is required. Iron ore will be extracted from the strata There will be network of road in the quarry. Quarry will be connected to the public road by existing unasphalted road (Village Road is passing in buffer zone near lease area 100m away).			
15	Production profile (tones / year):	Name of Products, By products and Intermediate Products Products By products Intermediate Products Name of Products, By proposed activity (new)			
		Main Products Iron ore (35, 000 tons/annum) tons/annum) -			
		By- Products Intermediate Products The ore is taken to the stack yards manually for for screening and sizing. The ore is taken to the stack yards manually for a for screening and sizing.			
16	Process Details/Manufacturing Details	Process details are given in Pre-feasibility report.			
17	Rain Water Harvesting (RWH)	In monsoon the rain water will get collected in quarry pit. Level of the Ground water table (it is at least 10m below the lowest level of the pit) Size and no of RWH tank(s) & Quantity-5mx 5mx 3m. There will be at least two such tanks. Location of the RWH tank(s) Size, nos of recharge pits and Quantity. There will be drains on the higher side of the pit to increase the carchment area.			
18	Total Water Requirement	Total water requirement: Fresh water (CMD):2.5 & Source:Borewell Recycled water (CMD):0 CMD Use of the water: Process (CMD): Cooling water (CMD):0 CMD DM Water (CMD):0 CMD Dust Suppression (CMD): 1.5 Drinking (CMD):0.5 Green belt (CMD):0.5 Fire service (CMD):0 CMD Others (CMD):0 CMD			
20	Sewage generation and Treatment	Amount of Sewage generation: 0.300 CMD Proposed treatment for sewage: Septic tank provided.			
21	Energy	Power supply: Existing power requirement: 107 H.P Number and capacity DG sets to be used (existing and proposed) - One DG sets: 125 KVA will be installed at the site which will serve the purpose.			

		Details of t	he non-conve	ntional rene	wable energ	y proposed to	be used : NA
		Sr. No		Existing	Propos	ed	
			Air		Water Spri Dust Colle Bag, Cover Product Ste	ection red orage.	
22	Details of Pollution Control System:		Water Noise		Enclosure generating equipment Vibration j the specific	s, pads for	
			Solid Waste		Disposed to authorized by MPCB		
23	Environmental Management plan Budgetary Allocation		st (With break st (With break				
		Sr. No.				Recurring Cost per annum (Rs.)	Capital Cost (Rs.)
<u> </u>		1	Air Pollu	ion Control	<u> </u>	5,000	2,25,000
		2		llution Cont		5,000	1,75,000
		4	_	lution Cont ent Monito ent		15,000	50,000
		5	Reclamat area	ion borrow	/ mined		
		6	Occupation	onal Health		5,000	25.000
		7	Green Be	lt		5,000	75,000
		8	Solid Wa	ste Manage	ment	5.000/-	50,000/-
		9	Others (P	l. Specify)			
24	EIA Submitted (if yes then submit the salient Features)	Total				40,000/-	6,00,000/-
	Sancit Features)	Details of number of Details of Potential h	visit, etc) the secondary nazard and mi n of the Cum t is submitted	ata collection data collectigation meal	ction (i.e. Sou asures act study	irce and year o	ole collection, of data) (Refer Cumulative

Member Secretary

Page 9 of 76

The PP gave a detailed presentation of the project of mining of Titaneferrous Iron ore at survey no. 165 (2.60 ha) and 132 (1.77 ha) of Village- Khursipar, Taluka- Amgaon, District- Gondia. The proposal was considered under 1(a)-B2 category of the schedule of EIA Notification 2006.

After detailed discussion the Committee made the following observations:

- 1. The quarry should be strictly restricted to non-forest areas only [forest includes zudpi jungle area].
- 2. The quarrying will be carried out manually and no blasting will be resorted to.
- 3. There is a village road adjacent to the quarry. The PP shall ensure that the quarry does not affect health and safety of road users.
- 4. There is a water body situated in the near vicinity, the overburden and other rejects should not be allowed to enter the water body. For this purpose a stone hedge of 1m x 1m should be constructed along the lease boundary.
- 5. Plantation in two rows shall be taken up along the lease boundary.
- 6. Benches of $3m \times 3m$ with 45° slope shall be maintained in the mine.

The Committee went through the Mining Plan and found to be in order. Other aspects of environmental impact were considered and found to be acceptable. The Committee decided to **recommend** the project **for EC** subject to the observations (1-6) above.

Item no. 4	Minor Minerals (sand) Chandrapur (3) [new]		1
nem no. 4	Millor Millordia (sand) Changiapar (b) Inc.,1	5.5	1
	i		1

PP remained absent hence deferred.

Item no. 5	M/s. Nipur Chemicals Ltd. (ToR)
. i	Expansion of existing unit consists of expansion in production capacity of synthetic organic chemicals & byproducts Existing Production - 250 MT/M, Proposed expansion - 4621 MT/M at Plot No. 17, Tarapur MIDC, Taluka -
į ř	Palghar, District - Palghar

The PP gave a detailed presentation for ToR for proposed expansion of its manufacturing facility from 250 MT/M to 4621 MT/M. The present expansion envisages augmentation of the present production of dye intermediates and pharma intermediates and introduction of few items of synthetic pharma. The project was considered under category 5(f) - B1 of the schedule of the E1A Notification 2006.

After detailed discussion the Committee made the following observations:

- 1. There will not be any additional effluent generation and it will remain as 50 KLD. However, EIA report should contain details of ETP with proper treatability studies as the basis.
- 2. PP intends to deploy boiler, thermopac and DG set of varying capacity. A thorough study of emission management shall be carried out to ensure an outlet TPM of less than 100 mg/Nm³. Detailed stack height calculations may be given in the EIA report.

Member Secretary

Page 10 of 76

- 3. The water balance may take into account the effluent coming out of the 2 process scrubbers and also the boiler and cooling tower blow down. PP may examine whether water can be conserved using drip irrigation. Rain water harvesting may be factored in.
- 4. Details of material balance for each product shall be given.
- 5. PP may explain possibility of using solar energy for illumination of the premises.
- 6. Mechanical sludge dewatering shall be deployed as there is generation of huge quantity of sludge.
- 7. Details of ash management: whether there is necessity for a silo for storing ash before it is dispatched from the premises.
- 8. A separate chapter on Risk Assessment and Risk Management shall be included in the EIA report.
- 9. The ToR shall be in accordance with the provisions contained in the Model ToR prescribed by MOEF&CC in April, 2015.

After detailed deliberations the Committee decided to **approve ToR** for preparation of the ElA report subject to the inclusion of above (1-9) points.

Item no. 6	M/s. Wonder Cement Ltd. (ToR)
- 3	Proposed Clinker grinding unit (2x2 MTPA) and DG set (6.5 MW) at plot no. 04, NARDHANA INDUSTRIAL AREA M.I.D.C. NARDHANA, Village- Jatoda, Taluka- Sindhkhede, District- Dhule.

The project was considered under category 3(b)-B1 of the schedule of the EIA Notification 2006. The PP gave a detailed presentation for their Clinker grinding unit at Village- Jatoda, Taluka- Sindhkhede, District- Dhule situated in the MIDC area. In the 128th meeting, the PP had presented the proposal of same unit at Village- Hol. However, to avoid procurement of agricultural land the PP has now decided to locate the project in Village Jatoda, in the MIDC area.

The proposal envisages commissioning of the project in 2 phases of 2 MTPA each. The Committee desired that EIA shall be prepared considering total production of 2 x 2 MTPA i.e. 4 MTPA. PP proposes to source Clinker (65%) from there captive cement plant at Rajasthan and grinding it with fly ash (30%) & Gypsum (5%) to produce PPC.

After detailed discussion the Committee made the following observations:

- 1. Stringent steps should be taken in the plant to reduce air pollution by using bag filters and covered conveyor belts throughout the plant. The outlet TPM should not exceed 50 mg/Nm³.
- 2. The Ambient Air Quality study should incorporate 12 stations out of which 4 shall be located at the Shirpur power plant, 4 in the downwind direction of plant and 4 elsewhere.
- 3. Water consent should be obtained and included in the EIA report.
- 4. There should be a STP of suitable capacity to treat waste water generated by persons employed and persons visiting the plant. Suitable Waste management facility [e.g. vermicomposting] for canteen waste shall be provided.
- 5. Details of 6.5 MW DG set and suitable emission control measures shall be outlined in the EIA Report.

Member Secretary

Page 11 of 76

- 6. PP proposes to consume 500 CMD of water; water balance statement for the same may be given.
- 7. The equipments used for grinding should be of proven energy efficiency available in the market and necessary proof thereof should be given.
- 8. PP will make efforts to ensure recycling of bags in which cement is filled and come up with an exclusive system for collection and recycling.
- 9. PP should take steps to harvest solar energy and rain water.
- 10. The ToR shall be in accordance with the provisions contained in the Model ToR prescribed by MOEF&CC in April, 2015.

After detailed deliberations the Committee decided to **approve ToR** for preparation of the EIA report subject to the inclusion of above (1-10) points.

VARUNESHWAR ORGANIC	S (10K)	
OT NO B-48 MIDC TASWADI	E KARAD SATARA	
		OT NO B-48 MIDC TASWADE KARAD SATARA

The PP gave a detailed presentation for ToR regarding green field project to manufacture Synthetic Organic Chemicals to the extent of 5.7 MT/M. The project was considered under category 5(f) - B1 of the schedule of the EIA Notification 2006.

After detailed discussion the Committee made the following observations:

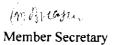
- 1. Since the project is going to be situated in Taswade MIDC which does not have CETP, the project shall be a Zero Liquid Discharge System.
- 2. Effluent should be treated in ETP consisting of primary, secondary & tertiary processes to be preceded by pre-treatment using H2O2 to neutralize bio-refractory chemicals in the effluent.
- 3. The boiler of 0.5 TPH capacity using bagasse as a fuel shall be followed by wet scrubber of sufficient capacity. The process emissions shall be passed through alkaline scrubber followed by a stack of height 6m above the roof level.
- 4. The ToR shall be in accordance with the provisions contained in the Model ToR prescribed by MOEF&CC in April, 2015.

After detailed deliberations the Committee decided to approve ToR for preparation of the EIA report subject to the inclusion of above (1-4) points.

Item no. 8	M/s. Shree Jay Jagdamba Stainless Steel Ltd.
·	Proposed manufacturing of MS/SS/ Alloy steel Billets, Ingots, Round bars, Rolled Product and structural item on the plot bearing Gat No.57, 58, P-1,59,60, 87,88 at village Abhitghar, Taluka- Wada, Distt. Thane
: .	

The PP remained absent hence deferred.

Member Secretary


Page 12 of 76

D

Item no. 9	Application for EC from MSRDC for BVSL
i	

The bief information of the project as submitted by the PP is as follows:

1	Name of the Project	Versova Bandra Sea Link (VBSL) Project in Mumbai, Maharashtra State
2	Name, address, e-mail & Contact no. of Proponent	Name: Mr. R.B. Gadge/ Mr. Shreekant. V. Jadhav. Address: Maharashtra State Road Development Corporation Limited (MSRDC), D-2, KC Marg, Nityanand Nagar, ONGC Colony, Bandra West, Mumbai, Maharashtra 400050 Telephone Number: 022-26400190/ 26400201/ 26558175/ 26558176/ 26433908 Email 1D: gadge101@gmail.com/
3	Name of Consultant	Address: M/s Fine Envirotech Engineers
4	Accreditation of Consultant (NABET Accreditation)	NABET - QCI-154
5	New Project /Expansion in existing project /Modernization /Diversification in existing project	New Project
6	If expansion/ Diversification, Whether environmental clearance Has been obtained for existing project (If yes, enclose a copy with compliance table)	Not Applicable
7	Activity schedule in the EIA Notification	8 (B)
8	Area Details	Total plot area (sq. m.): Built up area (Sq. m.): Length of sea link - 9.890 km
9	Name of the Notified Industrial area / MIDC area	
10	TOR given by SEAC? (If yes then specify the meeting)	TOR for EC was granted by SEAC –I in its 122 nd meeting held on 26 th February 2016.
11	Estimated capital cost of the Project (including cost for land, building, plant and machinery seperately)	Rs. 5516 Crores.
12	Location details of the project:	The project is located along the West coast of Mumbai from Bandra West to Versova in Mumbai City. Location Plan is attached as Annexure-1 Bandra: Latitude:- 19\(^002\)^48.7\(^\) N, Logitude:- 72\(^049\)^23.6\(^\) E Versova: Latitude:- 19\(^007\)^29.3\(^\) N Logitude:- 72\(^048\)^56.7\(^\) E Elevation above Mean Sea Level (metres):- at MSL of 13.2
13	Distance from Protected Area/ Critically Polluted areas/ Eco- sensitive areas/ interstate boundaries	The proposed sea link passes through the CRZ 1, CRZ 1 (i) and CRZ I (ii) along the sea side. Approx distance from Sanjay Gandhi National park Borivali is 10.20 kms.

14	Sewage generation and treatment	Amount of sewage generation (CMD): 16CMD from labour camp of casting yard. Proposed treatment for the sewage: mobile STP Capacity of the STP (CMD) (If applicable): 25 CMD The treated sewage will be reused for sprinkling & dust containment excess if any will be drained to Network of MCGM.				
15	Solid waste Management	Solid waste generated during Construction phase was from Pile and Pilccap. Construction phase waste generated was approx.: 80,000 m ³ /day Solid wastes were disposed through dumpers on the same day without storing at site.				
16	Energy	The power was obtained through Reliance Power Supply During construction phase the power requirement was 100KVA However provision was made for 2 nos diesel power generating sets of capacity 100 KVA as a backup. Adequate height stack will be provided to DG set.				
17	Environmental	Consti	ruction Phase	:		
Bu	Management plan Budgetary Allocation		SR. No	ITEMS	COST (INR) CONSTRUC	DURING TION PER YEAR
			1	AIR ENVIRONMENT	14,40,000	-
			2	WATER ENVIRONMENT	6,72,000	
			3	NOISE ENVIRONMENT	1,20,000	
				TOTAL EMP COST	22,32,000.00	
		Operation Phase:				
			SR. No	ITEMS	COST (INR OPERATIO	DURING N PER YEAR
			1	AIR ENVIRONMENT	4,80,000.00	
			2	WATER ENVIRONMENT	2,24,000.00	
			3	NOISE ENVIRONMENT	40,000.00	
				TOTAL EMP COST	7,44,000.00	
		Disaste	r Managemei	nt Plan & CSR		- · · · · ·
Disaster Management Plan & CSR SR. No ITEMS				COST (INR)		
						75 lacs
						20 lacs
		3		mental & social Awareness progra		35 lacs
		4	Green ar			42 lacs
			Total			I72 lacs
18	EIA Submitted (If yes then submit the salient features)	Print Yes Executive Summary is attached as Annexure-2				

The PP brought to the notice the Order of NGT, Principal Bench, New Delhi in which Principal Bench considered the issue of whether the project of construction of Bandra-Versova Sea link would require Environment Clearance. The Principal Bench referred to the case of Vikram Kumar Tongat v/s Delhi Tourism Corporation and held that the above project would require EC. In Vikram Kumar Tongat case the Principal Bench had categorically concluded that the construction of bridge across the Yamuna is a

(an) into the Member Secretary

Page 14 of 76

project activity requiring prior EC under category 8(b) - B1 of schedule of EIA Notification 2006. The Committee considered the ambit of category 8(b) and noted that the said category pertains to "Townships and Area Development" project covering an area of greater than or equal to 50 ha and / or built-up area of greater than or equal to 1, 50, 000 sq. m. In so far as the present project impact the environment around by congesting / decongesting areas by providing a high volume link between 2 points of Mumbai city, it is fully justified that the project is considered as an "Area Development Project".

ElA report which was considered by the Committee. All aspects pertaining to air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project. The dispersal of the traffic at the landing of the sealink / connectors was addressed by the PP. Impact of marine ecology with specific impact on the benthic organisms during and after construction of the sea link has been brought out in the EIA report. The impact on geo-morphology of coastal area with reference to possible erosion and accretion of beaches by virtue of sea link was detailed in the EIA report. Impact on social, cultural and economic activity of people residing in coastal area in particular fishermen was also discussed.

All these discussions indicated that the impacts which were considered would not be adverse to the extent of causing harm to the environment or the stake holders involved.

The Committee went in detail on impact of casting yards submitted by the PP. Two casting yards will be deployed as follows-

- Abandoned casting yard at Bandra survey no. B/I152 of Village Bandra [admeasuring 6000 sq.m]
- 2. Khardanda survey no. 1053,1213 [admeasuring 6000 sq.m]

The Committee desired that the following conditions shall be followed while operating the casting yards:

- a) No mangrove shall be disturbed.
- b) Permissions from MCZMA if needed shall be taken.
- c) Mobile STPs of 25 CMD should be installed in each casting yard. The water for curing shall be passed through activated carbon filter and pressured sand filter for reuse.
- d) Storm water shall be connected to storm water drain of the Municipality to avoid any stagnation of water in the premises.
- e) Casting yard DG set should not give rise to any noise pollution, for this purpose casting yard shall be established away from habitations. The roads and casting yard area shall be properly paved and water sprinkled to suppress the dust. DG set shall have stack of adequate height.
- f) If there is any change in location of casting yard the PP will have to approach to the SEIAA for fresh appraisal.

After considering all aspects of Environmental Impact the Committee decided to **recommend** the project for EC subject to the above (a-f) conditions.

(m) hatcher

Member Secretary

Page 15 of 76

23

Item no. 10	M/s Bhimashankar Sahakari Sakhar Karkhana Ltd. (ToR) Proposed
	expansion of Sugar Plant from 2500 TCD to 6000 TCD at gut no. 148, 206,
	Dattatraynagar, A/P Pargaon Via Awasan Bk., Tal. Ambegaon, Dist. Pune

The PP gave a detailed presentation for ToR for the proposal to expand sugar manufacturing unit from 2500 TCD to 6000 TCD. The project was considered under category 5(j) - B1 of the schedule of the EIA Notification 2006.

After detailed discussion the Committee made the following observations:

- 1. The proposed expansion should not entail any additional demand of irrigation water and therefore the PP should ensure that 75% sugarcane cultivating captive area should be converted to drip irrigation. Resolution of Board of Directors in this regard may be included in the EIA report.
- 2. There would not be any additional water requirement; however a detailed water balance incorporating recycling measures in particular considering recycling of spray pond effluents shall be given.
- 3. Presently the PP has ETP of 750 CMD. The Committee concluded that prima facie an ETP of 1300 CMD would be required for the treatment of effluent from sugar unit (600 CMD), excess spray pond (600 CMD) and co-generation (100 CMD). Details of inflow to the ETP and design of ETP may be given in detail.
- 4. Generation and requirement of bagasse may be carefully worked out, bagasse should not be sourced from outside. No other fuel other than bagasse shall be used.
- 5. Details of ash disposal and ash storage shall be given to ensure 7 days storage of ash generated from the premises.
- 6. 2 boilers of 180 TPH and 237 TPH, both bagasse fired, shall have a stack of height 72m and 60m. Details of air pollution controlling devices may be given to achieve an outlet TPM of less than 100 mg/Nm³.
- 7. Details of molasses storage with geometrics of dyke wall may be included.
- 8. Ambient Air Quality Studies minimum of 8 stations shall be carried out. 1 station may be included in colony / school area near the factory.
- 9. The ToR shall be in accordance with the provisions contained in the Model ToR prescribed by MOEF&CC in April, 2015.

After detailed deliberations the Committee decided to approve ToR for preparation of the ElA report subject to the inclusion of above (1-9) points.

(で) 名(り) Member Secretary

Page 16 of 76

Item no. 11	M/s. Pratap Organics Pvt. Ltd. (ToR)
	Proposed manufacturing of bulk drugs and intermediates of capacity 3600 MTPA at Plot No. K-6, Additional Mahad Industrial Area, Taluka: Mahad, District: Raigad,

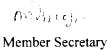
The PP gave a detailed presentation for ToR for their greenfield project to manufacture bulk drug and intermediates to the extent of 3600 MT/A. The project was considered under category 5(f) - B1 of the schedule of the EIA Notification 2006.

After detailed discussion the Committee made the following observations:

- 1) Provisions of DC regulations of MIDC should be followed. 33% of open area and 12% of total plot area may be kept reserved as a green space and parking space respectively.
- 2) The effluent stream shall be segregated into High COD and Low COD streams and treated effluent should be used for make-up water of cooling tower for washing & flushing to achieve a Zero Liquid Discharge system.
- 3) The PP shall ensure that Chloro/ Bromo compounds do not enter into ETP. Bromine shall also suitably recovered and not allowed to enter into the effluent stream.
- 4) PP shall ensure recovery of solvents to the extent of 95% and recovered solvents shall be used in the processes.
- 5) The by-products should be sold to authorized vendors and details may be given in the EIA report.
- 6) Details of material balance showing conversion and yield in respective steps involved w.r.t. all intermediates shall be given.
- 7) The ToR shall be in accordance with the provisions contained in the Model ToR prescribed by MOEF&CC in April, 2015.

After detailed deliberations the Committee decided to approve ToR for preparation of the ElA report subject to the inclusion of above (1-7) points.

Item no. 12	M/s. Ipca Laboratories Ltd. Production enhancement of synthetic drug API of
	capacity 539 MT/A at plot no. G-4, 5,6 &7, MIDC Waluj, Aurangabad.


The brief information of the project as submitted by the PP is as follows:

1.	Name of Project	Production Enhancement of Synthetic Drug API (From 347 MTA to 539 MTA)
2.	Name, address, e-mail & contact number of Proponent	Dr. Vivek Kumar Srivastava Designation: Sr. Vice President (Operations)
	named of Freponesia	Address: 142, AB, Kandivali Industrial Estate,
		Mumbai – 400 057
		e-mail: vivek.shrivastava@ipca.com
		Contact number: 0240 – 6611501 / 6611504
3.	Name of Consultant	M/s. Green Circle Inc.
4.	Accreditation of consultant (NABET Accreditation)	Gujarat High court stays order for NABET - No. C/SCA/5312/2016 dated: 05/04/2016 against Gazette Notification S.O. 648 (E), 03.03.2016 EIA Notification, 2006
5.	New Project / Expansion in existing project/	Expansion Project

	Modernization/					
	Diversification in exiting					
6.	project If expansion/ Diversification, whether environmental clearance has been obtained for existing project (If yes, enclose a copy with	Environme in 1997. C (MPCB)	ntal Clearance was not p	ore-requisite at the	e time of establish htra Pollution Cor	nment of the project ntrol Board
7.	compliance table) Activity schedule in the	Category	f 5(f) 'B' as per the prov	rision of "EIA No	otification No. S.C). 1533 (E)" dated
	ElA Notification	14.09.2006	: amended on December			
8.	Arca Details		area: 22591.00 sq.m. ea: 6685.53 sq.m.			
9.	Name of the Notified Industrial area / MIDC area		ra Industrial Developme d. Maharashtra.	nt Corporation (N	AIDC) Waluj Indi	ustrial Arca,
10.	TOR given by SEAC? (If yeas then specify the meeting)	Yes, 131st	SEAC meeting (15th & 1	6th July, 2016)		
11.	Estimated capital cost of the Project (including cost for land, building, plant and machinery separately)	Rs. 20.40				
12.	Location details of the project :	Longitude Location:	19°51'40.08" N : 75°13'24.67" E Plot No. G-4 to G-7, MI anjangaon, Taluka: Gang			: Maharashtra
13.	Distance from Protected Areas / Critically Polluted areas / Eco-sensitive areas / inter-State boundaries	No, Protec	ted areas/ Critically polls present in an around the	uted areas/ Eco- !	Sensitive areas/ in	
14.	Production details					
		Sr. No.	Product / Intermediate Name	Existing Quantity in MTPA	Proposed Quantity in MTPA	Total Quantity in MTPA
		1	DSA	120	0	120
		2	Oxantel Tartrate/Pamoate	5	-5	0
		3	Hydrochlorothiazid e	40	-40	0
		4	T-2A	24	0	24
		6	3 MT-2A Chlirothalidone	50	-45	5
		7	TFDSA	3	2	5
		8	CPSP	35	15	50
		9	Metochlopramide	50	-25	25
		10	Hel Aceclofenac	0	5	5
		11	Valsartan (MV- I.HCL)	0	20	20
		12	TBCA	0	50	50
		13	Levo Ester	0	10	10
		14	P-Toluene Sulfonil Urea (PTU)	0	10	10
		15	Lasamide	0	100	100
		16	3-CPP (Intermediate of Buprobion)	0	10	10
		17	DCBOC (Intermediate of Lamotrigind)	0	10	10
		18	CPD	0	10	10

		19	DTP (Intermed of Quetiapine)	iate 0		10	1	10
		20	TBTC	0		50		50
		. 21	R & D Product			5		5
L		TOTAL		347		192		539
15.	Total Water Requirement	Source: M	er requirement: 215 IIDC +Recycling ter balance chart at) KLD (v	wet season)
16.	Storm water drainage	Natural v	water drainage patt	ern	where all MIDC. Th Runoff fro	the facil ne land i om surro	ities are av s having g ounding are	aluj MIDC area vailable by entle slope. eas ultirnately
			of storm water: 98	50.79 m² (cono	small shal - Quantity - Size of S 26678.99	low stre of Ston SWD: M ³	ams. m water : Total area	medium and 9850.28 M ³ of rain water:
			SWD: 0.30 x 0.60 x		rated during	g monso	GII)	
17.	Sewage generation and treatment	Amount	of scwage generati	on: 12 CMD	ng ETP			
18.	Effluent characteristic	Sr. No.	Parameters	Inlet effi Characte		Outle efflue Chara		MPCB/ Standard
		1	рН	4.5 -9.5		7.0 -	7.6	5.5-8.0
		2	COD	3800 - 4	360	150 -	200	< 250 (mg/L)
		3	BOD	820 - 11	80	25-60		< 100 (mg/L)
		4	TSS	98-125		25-70)	< 100 (mg/L)
20.	ETP details Note on ETP technology	• Amount • Amount • Member The ETP	of Industrial efflue of treated effluent of waste water sen ship of the CETP (is comprised of pri	recycled: 87 K d to the CETP: if require): Ali mary, secondar	CLD: Only in Wiready Memi y & tertiary	ber treatme	ent unit's v	iz. equalization
	to be used	collection	ralization tank, aer followed by RO &			ondary cl	arifiers an	d final
21.	Disposal of the ETP sludge (If applicable)		d to CHWTSDF					
22.	Solid waste Management	Non-Haza	ardous Waste Hand	ling and Dispo	sal Details			
			Non - Hazardous Waste	Existing	Propos	ed	Total	Mode of Disposal
			Empty drums, Carboys etc	30 Nos/M	350 No	s / M	380 Nos / M	Sale
			Paper waste	1000 kg/M	200 Kg	g / M	1200 kg / M	Sale
		3	M.S.Scrap	1500 kg / M	1500 K	Ig/M	3000 kg / M	Sale
		4	Empty bags	100 kg / M	500 No	os/ M	600 nos / M	Sale
		5	Coal Ash	100 kg/M	400 kg	/M	500 kg/M	Sale
							~ _ ~	

Member Secretary

Page 19 of 76

nazardous V	Vaste Handling at	Waste Gene			
Sr. No.	Waste & Category	Existing (MTPA)	Prop osed (MP TA)	Total (MPTA)	Mode of Disposal
1	Used/Spent Oil (5.1)	1	0.5	1.5	Sale to authorized party
2	Spent Catalyst/Sp ent carbon (28.2)	18	18	36	CHWTSD F/ Cement plant
3	Spent mother liquor (28.4)	9	9	18	Sale to Authorized party
4	Discarded containers/ Barrels/ Liner (33.3)	2250	250	2500	To be decontami ated and reuse/sale
5	ETP sludge (34.3)	40	680	720	CHWTSD F
6	Distillation Residue from contaminat ed organic solvent (36.4)	3.60	24	27.6	CHWTSD F / Cemen plant
7	Process waste & residue (28.1)	-	200	200	CHWTSD F/Cement Plant
8	MEE salt (37.3)	-	80	80	CHWTSD F
9	Date expired, discarded & off specificatio n drugs/ medicines (28.5)	-	15	15	CHWTSD F/Cement Plant
10	Off specificatio n product (28.4)	-	5	5	CHWTSD F/Cement Plant
11	Spent ion exchange resin (35.2)	-	4	4	CHWTSD F / Cemen Plant
12	Spent Acid	-	400	400	Sale
13	E-waste	-	1	1	Disposal with authorized party

Disposal Method: Sale to authorized party or forwarded to CHWTSDF & Cement

- What are the possibilities of recovery and recycling of wastes? No possibility
 Possible users of solid waste: Boiler ash Sale to Brick Manufacturer
- Method of disposal of solid waste: Sale to authorized party

23.	Atmospheric Emissions (Flue gas characteristics SPM, SO2, NOx, CO, etc.)	Sr. No	Polluta	nt	Source of Emission		Emission rate (mg/Nm			centration ue gas (3)	n	
			SPM SO2 NOx CO		Boiler 3 TPH		52.37 9.51 0.25 Negligib	ole	Neg Neg	ligible ligible ligible ligible		
			SPM SO2 NOx CO		Boiler 2 TPH		102.6 9.91 0.22 Negligib	ole	Neg Neg	ligible ligible ligible ligible		
			SPM SO2 NOx CO		DG Set 1 60 KVA	0 [75.46 1.45 0.17 Negligit	ole	Neg Neg	ligible ligible ligible ligible		
24.	Stack emission Details: (All the stacks attached to process units, Boilers, Captive power plant, D.G. Sets, Incinerator both for	Plant Sectio & uni		Stac No.	i oronna	Dia	ernal ameter op)(m)	Emiss Rate (mg/N		Temp Exha Gase (°C)	ust	
	existing and proposed Activity). Please indicate the specific section to which the stack is attached. c.g.: Process section, D.G. Set. Boiler, Power Plant, incinerator etc. Emission	Boile: (3 TP		1	36	0.9)	SPM: SO2: NOx:		68.4		
	rate (kg/hr.) for each pollutant (SPM, SO2, NOx etc. should be specified	Boile (2 TP		2	36	0.9)	SPM: SO2: NOx:		123.0	5	
		DG S KVA	et 600	3	6	0.2	2	SPM: 75.46 SO2: 1.45	•	187.	7	
25.	Details of Fuel to be used:	Sr. No	Fuel		Daily Consum (TPD/ KLD) Existing	<u> </u>	osed	NOx: Calorif value (Kcals /kg)	ic	% Ash	% Sulph ur	
		2	HSD Coal /brique	ettes	300 L/day 15000 Kg/d			4200		28	0.5	0.50.4:
					m Western Co			Market.				
26	Energy	• Existing		quirem equirer	ent : 300 KVA nent : 700 KV I-by)					·		
27	Green Belt Development	• Green b	elt area: 7 r and speci Bot	455.03	sq. mt. rees to be plan	ted:	Comm Name	on	Турс	•		

My Miller

			1.	Hyophorbe	lagenicaulis	Bottle Pal	m	Flowering Plant
			2.	Areca cated	:hu	Areca Pali	n	Tree
			3.	Saraca asol	ia	Ashok		Tree
			4.	Mangifera	indica	Mango		Tree
			5.	Azadiracht	a indica	Neem		Tree
			6.	Rosa		Rose		Shurb
			7.	Cycas revo	lute	Cycus		Shurb
			8.	Delonix reg	gia	Gulmohor		Tree
			9.	Cassia fistu	la	Bahava		Tree
			10.	Mimusops	elengi	Bakul		Tree
			11.	Nyctanthes	arbor-tristis	Parijatak		Tree
			12.	Bauhinia ra	icemosa	Apta		Tree
			13.	Bombax ce	iba	Kate sawa	ır	Tree
			14.	Anthocepha	allus cadamba	Kadamb		Tree
			15.	Alstonia sc	holaris	Satwin		Tree
			16.	Citrus sp		Lemon		Tree
			17.	Ziziphus m		Ber		Tree
			18.	Erythrina in	ndica	Pangara		Tree
			19.	Ficus retus	a	Nandruk,		Tree
			20.	Putranjiva	roxburghii	Putranjiva	l	Tree
			21.	Albizia leb	beck	Shirish		Tree
			22.	Bambusea		Golden		Grass
			23.	Cordia my	ka	Cordia		Flowering Plant
			24	Alstonia m	acrophylla	Alstonia		Tree
			25	Michelia cl	nampaca	Son chafa		Tree
			26	Plumbago :	zeylanica	White		Shurb
			27	Adhatoda v	rasica	Adulasa		Shurb
			28	Bougainvil	lea spectabilis	Bougainv	illea	Flowering
					ecies of trees to be	cut, trees to b	e tran	splanted: No trees to
28.	Details of Pollution	cut/	transpla	anted.	Existing		1	
26.	Control Systems:	Sr. No.		Aspects	pollution control			posed to be alled
					system Mechanical dues	s collector	Cyc	lone Separator
		1		Air	followed by wet	scrubber		owed by Bag Filter
		2		Water	Effluent Treatme (ETP) & STP			
		3		Noise	The Boiler is be an isolated area ambient noise le CPCB standards The workers are with proper pers protective equip such as ear plug etc.	to have the evel as per s. provided conal ment (PPE)	kept to he nois stan The prove	Boiler would be t in an isolated area ave the ambient se level as per CPCB dards. workers would be wided with proper sonal protective ipment (PPE) such
					<u> </u>			ar plugs, ear muffs

(in the layer)
Member Secretary

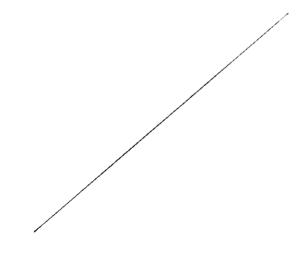
Thurfy Chairman

					be used with	etc.	The DG sets would
				acoustic enc			nelosed in canopy
				C-1-/Dansale	/dian-volta		vell as silencer. // Recycle/ disposal
		4	Solid Waste	Sale/Recycle CHWTSDF	z/disposai io		HWTSDF
	Environmental		ction phase: 16 L	akhs	-		
	Management plan	During operation	on phase: With break up):	65 Lakhe			
	Budgetary Allocation	• O&M cost (W	ith break up): 10) Lakhs			
29			-				
		During Constru	ction phase:			Capita	al Cost Per Annum
		S.N.		Pollution Con		(Lac)	
		1.		Dust suppress construction	ion during	3	
		2.		Green Belt de	velopment	6	
		3.		Solid waste m		3	
				facility			
		<u>4.</u> 5.		Environment Occupational		2	
				Total	- I Cutti	16	`
					•		
		During operation	on phase:				
		S.N.		ion Control	Recurring Co		Capital Cost Rs.
			Measu Air Po	llution	annum Rs. (L	akns)	(Lakhs)
		:	Contro		0.5		
				Pollution	1.0		8.0
			Contro	Pollution			_
			Contro		0.5		
			I	onment	2.0		3.0
į				oring and gement	2.0		2.0
				ational Health	2.0		5.0
-			Green		2.0		10.0
			Solid manag	waste ement	1.0		5.0
			Rainw	ater	1.0		5.0
Ē.			Harve	sting Activity	0.0		30.0
İ		Total EMP Co		renvity	10.0		65.0
30.	EIA Submitted (If yes then		ara collected		March to M	lay 2016	5
	submit the salient features)		he primary data		Refer		
		location of t visit, etc)	he sample collec	tion, number of			
		•Details of the	he secondary dat	a collection	India Meteo	rologica	al Department. Pune
		(i.e. Source	and year of data)	National ren	note sen	ising centre. Hydcrabad
						Survey o	of India, Pune (Year-
					Directorate	of Cens	us Operations,
					Maharashtra	ı	
					(Year 2001	<u>& 2011</u>)
			azard and mitigar				
31	Public hearing report		of the EIA stud project site is lo		Walui		
31	Public hearing report	inot applicable.	project site is to	cated in MIDC	rraiuj.		

The PP gave a detailed presentation for their project for augmentation of production of APIs from 347 MT/A to 539 MT/A. The Committee considered the project under category 5(f)-B1 of the schedule of the EIA Notification 2006.

mbittele

Member Secretary


Page 23 of 76

The ToR was approved in the 131st meeting and a sub-committee also visited the plant on 16.9.2016. [site visit report is enclosed as *Annexure 12.1*]

After detailed discussion the Committee made the following observations:

- 1. The baseline studies indicate that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project.
- 2. PP shall ensure that the production process avoids use of EDC (Ethylene Dichloride) and Tetra Chloro Ethane (TCE). Special attention should be given to Copper Cyanide handling and Dimethyl Formanide (DMF) shall be recovered by minimum of 15 stage distillation column.
- 3. The project will be run as a Zero Liquid Discharge System. Effluent stream shall be segregated into High TDS and Low TDS streams. Former will be led into solvent stripper, MEE and ATFD to generate dry salts which shall be sent to the TSDF (300 kg/day). Latter stream will be led to 80 KLD ETP thereafter RO. The condensate of RO and treated effluent shall be recycled to cooling tower effluent of 87 KLD. 27 KLD RO rejects will be treated in MEE.
- 4. The MEE and RO will be located in sister unit of PP, located 500m from the plant. The effluent shall be transported through pipeline to said MEE and RO and condensate shall be recycled to the plant for reuse.
- 5. PP shall ensure that electronic flow meter shall be installed at both ends of these pipelines to avoid indiscriminate disposal of high TDS effluents in the environment.
- 6. For sludge drying solar based bed shall be employed.
- 7. PP wants to add additional 3 TPH boiler in an existing 2 TPH boiler both coal fired. Emissions from boilers will be sent to cyclone separator followed by bag filter to achieve an outlet TPM of <100 mg/Nm³. Boilers will have stack of height 36m. DG set of 100 KVA shall have a stack of height 6m above the roof level.
- 8. The PP shall store hazardous waste in an elevated platform covered area and avoid leachate entering the Nalla. Caustic lye shall be converted to salt and sent to CHWTSDF. PP shall ensure that Nalla is not contaminated either by process effluents, floor washing or storm water.
- 9. There shall be a facility for storage of fly ash for 7 days.

After considering all aspects of Environmental Impact the Committee decided to **recommend** the project for **EC** subject to the above (2-9) conditions.

Member Secretary

Page 24 of 76

"Annexure 12.1"

Visit report- Ms. Inca Laboratories Ltd.

Date- 16.9.2016

A sub-committee comprising of following members visited the site on 16.9.2016 along with Dr. Sangewar, RO Aurangabad, MPCB and Shri. Kadam, SRO Aurangabad, MPCB and industry representative Shri. Srivastava and others -

- 1. Shri. T. C. Benjamin, Chairman
- 2. Prof. (Dr.) Ramesh Dod, Member
- 3. Shri, C. I. Sambutwad, Member
- 4. Shri. B. H. Sehgal, Member

The sub-committee made the following observations:

- The sub-committee noted that the industry is in operation since 2000 but the PP has not obtained the Environmental Clearance even though their manufacturing activity falls under 5(f) of the EIA Notification 2006.
- II. It was suggested by the sub-committee that one more gate should be provided considering the safety of people working during emergency.
- The sub-committee has observed that PP is using Studge Drying Bed for studge III. dewatering, however the sub-committee has recommended the use of decenter for the same.

No Studge Drying Bed should be operative within the premises.

- Scientific arrangement in the form of elevated platform and covered shed for temperary storage of ETP sludge should be made.
- IV. The PP should obtain the MIDC water consent/permission letter and submit the some at the time of EIA presentation.
- V. The sub-committee has noted that TPM levels at the outlet of stack is more than 100 mg/Nm². PP is instructed to improve the air pollution control system [bag filter] in a time bound manner so as to ensure the outlet TPM \leq 100 mg/Nm³.

The RO Aurangabad, MPCB should submit a report of this compliance within a month.

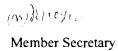
- The sub-committee has noted that water requirement and effluent generation is not realistic and need to be reworked, considering the recycling of treated efficient to the best possible extent.
- The axisting practice of sending the high TDS effluent stream to sister concern is meads to be discontinued and PP should provide RO and MEE of required capacity to treat high TDS stream in-house at the earliest. This was one of the ToR

197/65/16/1 "

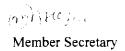
Page 25 of 76

Member Secretary

Item no. 13	M/s. Essar Oil Ltd.
	EC for proposed project for greenfield petroleum storage depot of capacity 36, 180
	KL at Khasrano. 108/109/110/111/112/113/115/119A1/119A2/119A3/119A4
	/119A5/119B, Neemgaon, Wardha


The brief information of the project as submitted by the PP is as follows:

1	Name of the Project	M/s. Essar	Oil Limited	
1 -	Name, address, e-mail & contact number of Proponent	Tower No. Off Bandra LBS Marg.	lishra imited - Head Marketing 2, Equinox Business Park Kurla Complex, Kurla (West) 400 070, Maharashtra	
	Name of Consultant		M/S. Ultratech	
(Accreditation of consultant (NABET Accreditation)		*LIST 'A' of MoEF – Rev. 45 September 05	. 2016
i I	New Project / Expansion in existing project/ Modernization/ Diversification in exiting project	New Projec		
1	If expansion/ Diversification, whether environmental clearance has been obtained for existing project (If yes, enclose a copy with compliance table)	Not Applica	able	
	Activity schedule in the EIA Notification	6ь) 'В'		
1	Area Details	Total plot a Built up ar Green Belt Parking Ar	: 4,735 sq. mt. : 63,000 sq. mt.	
1 -	Name of the Notified Industrial area / MIDC Area	Not Applica		
	TOR given by SEAC? (If yes then specify the meeting)	Yes, 123 rd S	SEAC- I meeting dated : 11 th March 2016	
(f	Estimated capital cost of the Project (including cost for land, building, plant and	Sr.	Particular	Cost (Rs Crores)
1	machinery separately)	1	Basic Engineering	0.62
		2	Civil facilities	37.14
		3	Mechanical	31.96
		4	Electrical	4.45
		5	Instrumentation	8.57
		6	Fire Fighting	9.53
	• • • • • • • • • • • • • • • • • • •	7	Environmental Protection	1.73
			Total	94.00
2 1	Location details of the project:	LatitudeLongitLocatideElevat	tude : Approx. 78.477927 E	a, Maharashtra
(Distance from Protected Areas / Critically Polluted areas / Eco- sensitive areas / inter-State boundaries	No such est	tablishment with in 10 Km. Radius (Study ar	ea)
4 1	Raw materials (including process chemicals, catalysts, & additives)	Not Applica	able	
4 I	Critically Polluted areas / Eco- sensitive areas / inter-State boundaries Raw materials (including process	Locati Elevat No such est	ion: At Village – Neemgaon, Dist Wardh lion above Mean Sea Level: 863-880 ft lablishment with in 10 Km. Radius (Study an	



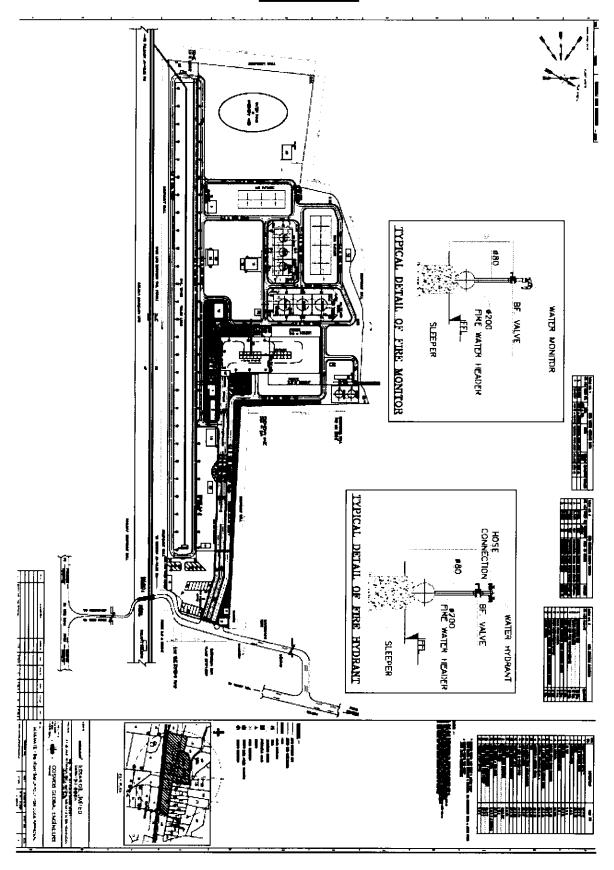
	!	SN	Tank No.	I	roduct	Type of Tank	Capacity, m ³	Class
		1	TK-1001		MS	IFVRT	2000	Α
		2	TK-1002		MS	IFVRT	2000	Α
		3	TK-1003		MS	IFVRT	2000	A
		4	TK-1004		MS	UG.HOR	70	A
		5	TK-1005, 6, 7 (Future Expansion)		MS	IFVRT	2000	A
		6	TK-2001		HSD	CRVT	4000	В
		7	TK-2002		HSD	CRVT	4000	В
		8	TK-2003		HSD	CRVT	4000	В
		9	TK-2004		HSD	UG.HOR	70	В
		10	TK-2005, 6, 7 (Future Expansion)		HSD/SKO	CRVT	4000	В
		11	TK-3001		ETHANOL	UG.HOR	20	Α
	1	12	TK-3002		ETHANOL	UG.HOR	20	Α
		13	TK-4001		SLOP	UG.HOR	5	-
		14	TK-5001		Water	CRVT	1950	-
		15	TK-5002		Water	CRVT	1950	-
		16	TK-5003		Water	CRVT	1950	
]		(Future Expansion)					
_	Rain Wat	er Har	vesting (RWH)	The site in Pond (N	s proposed only NW side of the plants er requirement:	for storage and distrib lot): 1800 m ³	PRAGE AND DISPATCH em. No manufacturing acturing	tivity will be do:
_	Rain Wat Total Wa	er Har ter Red	vesting (RWH)	The site in Pond (No. 1 Pond (s proposed only IW side of the plant of the	for storage and distribiot): 1800 m ³ 2 Source: Proposed Boage pattem: No disturbing the companion of the	em. No manufacturing ac ution of finished petrolet ore Well bance.	tivity will be do:
	Rain Wat Total Wa	er Har ter Red ater dra	vesting (RWH) quirement tinage ion and treatment	The site in Pond (No. 1 Pond (s proposed only W side of the plant of the p	for storage and distribiot): 1800 m ³ 2 Source: Proposed Boage pattem: No disturbing the companion of the	em. No manufacturing acution of finished petroleution of well bance.	tivity will be do:
	Rain Wat Total Wa Storm wa Sewage g	er Har ter Red ater dra	vesting (RWH) quirement tinage ion and treatment	The site in Pond (No. 1 Pond (s proposed only W side of the plant of the p	for storage and distribiot): 1800 m³ a Source: Proposed Boage pattem: No disturbing eneration: 10 CMD at Treated in OWS of a CMD as are as mentioned be	em. No manufacturing acution of finished petroleution of well bance.	Effluent Discharge
_	Rain Wat Total Wa Storm wa Sewage g	er Har ter Red ater dra	vesting (RWH) quirement tinage ion and treatment	The site i I Pond (N Total wat Fresh wat Natural st Am Pro Cap STP efflu N.	er requirement: er (CMD): 25 & form water drain. ount of sewage a posed Treatment bacity of STP: 10 ent characteristic	for storage and distrib (ot): 1800 m³ 2 Source: Proposed Boage pattem: No disturb generation: 10 CMD 1: Treated in OWS of 60 CMD cs are as mentioned be Influent Stream	em. No manufacturing acution of finished petroleu ore Well bance. capacity 55 m³/hr. clow: Treated effluent	Effluent Discharge Standards
_	Rain Wat Total Wa Storm wa Sewage g	er Har ter Red ater dra	vesting (RWH) quirement tinage ion and treatment	The site in Pond (No. 1 Pond (s proposed only W side of the pl er requirement: er (CMD): 25 & form water drain- ount of sewage a poscd Treatment pacity of STP: 10 ent characteristic Parameters pH	for storage and distrib (ot): 1800 m³ 2 Source: Proposed Beage pattem: No disturb generation: 10 CMD 1: Treated in OWS of 60 CMD cs are as mentioned beage	ore Well bance. Capacity 55 m³/hr. Clow: Treated effluent 7.5 to 8.0	Effluent Discharge Standards 7.5 to 8.0
	Rain Wat Total Wa Storm wa Sewage g	er Har ter Red ater dra	vesting (RWH) quirement tinage ion and treatment	The site i I Pond (N Total wat Fresh wat Natural st Am Pro Cap STP efflu N.	er requirement: er (CMD): 25 & form water drain ount of sewage a posed Treatment oacity of STP: 10 ent characteristic Parameters pH TSS	for storage and distrib (ot): 1800 m³ 2 Source: Proposed Boage pattem: No disturb generation: 10 CMD 1: Treated in OWS of co CMD 2 cs are as mentioned be 3 Influent Stream 5.5-7.5 100 mg/L	em. No manufacturing acution of finished petroleu ore Well bance. capacity 55 m³/hr. clow: Treated effluent 7.5 to 8.0 < 100 mg / lit.	Effluent Discharge Standards 7.5 to 8.0
	Rain Wat Total Wa Storm wa Sewage g	er Har ter Red ater dra	vesting (RWH) quirement tinage ion and treatment	The site i I Pond (N Total wat Fresh wat Natural st Am Pro Cap STP efflu N.	er requirement: er (CMD): 25 & form water drain ount of sewage a posed Treatment bacity of STP: 10 ent characteristic Parameters pH TSS BOD	for storage and distrib (ot): 1800 m³ 2 Source: Proposed Boage pattem: No disturb generation: 10 CMD 1: Treated in OWS of of CMD 2 cs are as mentioned be 3 Influent Stream 5.5-7.5 100 mg/L 500 mg/L	em. No manufacturing acution of finished petroleu ore Well bance. capacity 55 m³/hr. clow: Treated effluent 7.5 to 8.0 < 100 mg / lit. <100 mg / lit.	Effluent Discharge Standards 7.5 to 8.0 < 100 mg / lit <100 mg / lit
	Rain Wat Total Wa Storm wa Sewage g	er Har ter Red ater dra	vesting (RWH) quirement tinage ion and treatment	The site i I Pond (N Total wat Fresh wat Natural st Am Pro Cap STP efflu N.	er requirement: er (CMD): 25 & form water drain ount of sewage a posed Treatment bacity of STP: 10 ent characteristic Parameters pH TSS BOD COD	for storage and distrib (ot): 1800 m³ 2 Source: Proposed Boage pattem: No disturb generation: 10 CMD 1: Treated in OWS of co 2 CMD 2 cs are as mentioned be 3 Influent Stream 5.5-7.5 100 mg/L 500 mg/L 800 mg/L	em. No manufacturing acution of finished petroleu ore Well bance. capacity 55 m³/hr. clow: Treated effluent 7.5 to 8.0 < 100 mg / lit. < 250 mg / lit.	Effluent Discharge Standards 7.5 to 8.0 < 100 mg / lit <100 mg / lit <250 mg / lit
	Rain Wat Total Wa Storm wa Sewage g	er Har ter Red ater dra	vesting (RWH) quirement tinage ion and treatment	The site i I Pond (N Total wat Fresh wat Natural st Am Pro Cap STP efflu N. 1 2 3 4 5	er requirement: er (CMD): 25 & form water drain ount of sewage a posed Treatment sacity of STP: 10 ent characteristic Parameters pH TSS BOD COD TDS	for storage and distrib (ot): 1800 m³ 2 Source: Proposed Boage pattem: No disturb generation: 10 CMD 1: Treated in OWS of of CMD 2: are as mentioned be 3 Influent Stream 5.5-7.5 100 mg/L 500 mg/L 800 mg/L 400 mg/L	em. No manufacturing acution of finished petroleu ore Well bance. capacity 55 m³/hr. clow: Treated effluent 7.5 to 8.0 < 100 mg / lit. < 250 mg / lit. < 2100 mg / lit.	Effluent Discharge Standards 7.5 to 8.0 < 100 mg / lit <100 mg / lit <250 mg / lit <2100 mg / lit
	Rain Wat Total Wa Storm wa Sewage g	er Har ter Red ater dra	vesting (RWH) quirement tinage ion and treatment	The site i I Pond (N Total wat Fresh wat Natural st Am Pro Cap STP efflu N.	er requirement: er (CMD): 25 & form water drain ount of sewage a posed Treatment sacity of STP: 10 ent characteristic Parameters pH TSS BOD COD TDS Oil and Greas	for storage and distrib (ot): 1800 m³ 2 Source: Proposed Boage pattem: No disturb generation: 10 CMD 1: Treated in OWS of of CMD 2: are as mentioned be 3 Influent Stream 5.5-7.5 100 mg/L 500 mg/L 800 mg/L 400 mg/L	em. No manufacturing acution of finished petroleu ore Well bance. capacity 55 m³/hr. clow: Treated effluent 7.5 to 8.0 < 100 mg / lit. <100 mg / lit. <2100 mg / lit. <10 mg / lit. <10 mg / lit.	Effluent Discharge Standards 7.5 to 8.0 < 100 mg / lit <100 mg / lit <250 mg / lit
	Rain Wat Total Wa Storm wa Sewage g	er Har ter Rec ater dra enerat	vesting (RWH) quirement tinage ion and treatment	The site i I Pond (N Total wat Fresh wat Natural st Am Pro Cap STP efflu N. 1 2 3 4 5 6 OWS wil Cap Am Am	er requirement: er (CMD): 25 & form water drain. ount of sewage apposed Treatment bacity of STP: 10 ent characteristic. Parameters PH TSS BOD COD TDS Oil and Great be designed to bacity of the OW ount of treated e ount of water se	for storage and distrib (ot): 1800 m³ 2 Source: Proposed Boage pattem: No disturb generation: 10 CMD 1: Treated in OWS of or 2 CMD 2 cs are as mentioned be 3 Influent Stream 5.5-7.5 100 mg/L 500 mg/L 400 mg/L 400 mg/L achieve oil content of	em. No manufacturing acution of finished petroleu ore Well bance. capacity 55 m³/hr. clow: Treated effluent 7.5 to 8.0 < 100 mg / lit. <100 mg / lit. <2100 mg / lit. <10 mg / lit. less than 10 ppm :55 m³/hr.) :	Effluent Discharge Standards 7.5 to 8.0 < 100 mg / lit <100 mg / lit <250 mg / lit <2100 mg / lit

24	Disposal of the ETP sludge (If applicable)	Hazardo	ous waste	will be se	ent to C	HWTSDF	F at Mar	ndwa, Nagp	ur	
25	Solid waste Management	Non Ha	zardous	Solid Wa	ste:					
		Sr. No	,	Waste		Quantity	,		Disposal	
		1	Dry	Garbage		6 Kg/day			r to authorized	
		2	We	t Garbage		2.5Kg/day	у	Vermi	Composting (of	f-site)
		Hazard	ous Was	te:						
		Sr. No.		Sched		pe		Qty	Method of	f Disposal
		1	Sludge	ory No. 34 e – generating of stora	ted fron	n	5 MT (appro	per year ox)	CHWTSDF a Nagpur	t Mandwa,
26	Atmospheric Emissions (Flue gas	> P!	astic dru on Biode iodegrad:	ms and ba gradable \	gs will Waste is	be sold to f any will	MPCE be han		l party MPCB authoriz ture for landsca	
	characteristics SPM, SO2, NOx, CO, etc.)	riot ripi	, nearle							
27	Stack emission Details: (All the stacks attached to process units. Boilers, captive power plant, D.G. Sets, Incinerator both for	Sect	ant ion & nits	Stack No.		ght from und level (m)	1111	ternal Dia. Top) (m)	Emission Rate	Temp. of Exhaust Gases
	existing and proposed activity). Please indicate the specific section to which the stack is attached, e.g.:	DC	i Set	1	6 al	oove roof		0.5	3000	160 °C
	Process section, D.G. Set. Boiler, Power Plant, incinerator etc. Emission rate (kg / hr) for each pollutant (SPM, SO2, NOx etc.	DC	Set	2	6 al	oove roof		0.5	3000	160 °C
28	should be specified Details of Fuel to be used:									
		SN		iel	Daily	y Consun				
		1	Diesel			288 L/h	<u> </u>			
				Fuel: Loca ansportation		rel to site:	By Ro	ad		
29	Energy	Power s DG sets	upply	: From : : 2 x 90	MSED 0 kVA.	CL – 2200	0KW	··	admeasuring 20	0 m ² to
		generate	about 2	0 KW ener	rgy.					
30	Green Belt Development	Number	and spec	cies of tree	es to be	planted:	650 nos	of Open Are :. ees to be trai		
31	Details of Pollution		1		1					
	Control Systems:			Existing Pollution ntrol Syst			P	roposed to	be Installed	
		Air				OG Set sta VA	acks of	6m above ro	oof for a capacit	y of 2x900
		Wate	er .						he capacity of 5 II be provided	5 m ³ /hr

				Noise Solid Waste		 Ear muf Green B Hazardous V Mandwa, Na 	e Enclosure for DG sets flers and ear plugs clt plantation Waste shall be disposal to gpur ous waste will be dispose	o CHWTSD	
32	Environmer Managemer Budgetary /	nt pla		S	Environment		Capital Expenditure (In Crores)	Recur Expend (In Cr	diture
					nission Control and RS, Al dome/IFR)		7.5 (5 Cr for VRS + 3X0.5 for IFRS)	(0.23 (3%)
					ater and Wastewate lech OWS/ETP)	er Management	1.6	0	.16(10%)
				3. So	lid Waste Manager / Bio-remediation)		0.1	0.	.01 (10%)
				4. Gr	eening Drive		0.15	0.	08 (50%)
				an sto	ocess Safety Facili d Funds for HSE (I orage/ FH system, A .C, HCD, Radar ga	Fire water AOPS, Safety	14.0 (9 CR for F/F & 5Cr for Part OF automation)		0.42(3%)
				6. La Ce	b Equipments and	Monitoring	0.5	0	.05(10%)
					TOTA	L	23.85		0.95
33	E1A Submit		If yes then submit	Yes					
34	hearing con- then submit	iducte		Yes					
35	Air pollution in the project area.	n, wa	ter pollution issues	No					
35 36.	in the project area.	on, wa u, Ifan	ter pollution issues						
	in the project area. Storage of c	on, wan, If an chemi	nter pollution issues ny icals (inflammable/ex Tank No.	plosive/haz	roduct	Type of Tank	Capacity, m ³	Class	
	in the project area. Storage of c	on, wa	nter pollution issues ny icals (inflammable/ex Tank No. TK-1001	plosive/haz	roduct MS	Type of Tank IFVRT	200	00 A	
	in the project area. Storage of c S 1 2	on, wa	nter pollution issues ny icals (inflammable/ex Tank No. TK-1001 TK-1002	plosive/haz	roduct // MS // MS	Type of Tank IFVRT IFVRT	200	00 A	
	in the project area. Storage of c S 1 2 3	on, wan, If an chemi	ny icals (inflammable/ex Tank No. TK-1001 TK-1002 TK-1003	plosive/haz	MS MS MS	Type of Tank IFVRT IFVRT IFVRT	200 200 200	00 A 00 A 00 A	
	in the project area. Storage of c S 1 2 3 4	on, wa	ter pollution issues ny cals (inflammable/ex Tank No. TK-1001 TK-1002 TK-1003 TK-1004	plosive/haz	MS MS MS MS MS	Type of Tank IFVRT IFVRT IFVRT UG.HOR	200 200 200	00 A 00 A 00 A 70 A	
	in the project area. Storage of c S 1 2 3	on, wa	ny icals (inflammable/ex Tank No. TK-1001 TK-1002 TK-1003	plosive/haz	MS MS MS	Type of Tank IFVRT IFVRT IFVRT	200 200 200	00 A 00 A 00 A 70 A	
	in the project area. Storage of c S 1 2 3 4	on, wa	reals (inflammable/ex Tank No. TK-1001 TK-1002 TK-1003 TK-1004 TK-1005, 6, 7	plosive/haz	MS MS MS MS MS	Type of Tank IFVRT IFVRT IFVRT UG.HOR	200 200 200	00 A 00 A 00 A 70 A 00 A	
	in the project area. Storage of c S 1 2 3 4 5	on, wa	ricals (inflammable/ex Tank No. TK-1001 TK-1002 TK-1003 TK-1004 TK-1005, 6, 7 (Future Expansion)	plosive/haz	MS MS MS MS MS	Type of Tank IFVRT IFVRT IFVRT UG.HOR IFVRT	200 200 200 200 200	00 A 00 A 00 A 70 A 00 A	
	in the project area. Storage of c S 1 2 3 4 5	on, wa	ricals (inflammable/ex Tank No. TK-1001 TK-1002 TK-1003 TK-1004 TK-1005, 6, 7 (Future Expansion) TK-2001	plosive/haz	MS MS MS MS MS MS MS MS MS	Iype of Tank IFVRT IFVRT IFVRT UG.HOR IFVRT	200 200 200 200 400	00 A 00 A 00 A 70 A 00 A	
	in the project area. Storage of c S 1 2 3 4 5	n, wa	ter pollution issues ny cals (inflammable/ex Tank No. TK-1001 TK-1002 TK-1003 TK-1004 TK-1005, 6, 7 (Future Expansion) TK-2001 TK-2002 TK-2003 TK-2004	plosive/haz	MS M	Iype of Tank IFVRT IFVRT IFVRT UG.HOR IFVRT CRVT	200 200 200 200 400 400	00 A 00 A 00 A 00 A 00 A 00 A 00 B 00 B	
	in the project area. Storage of c S 1 2 3 4 5	n, wa	ter pollution issues ny cals (inflammable/ex Tank No. TK-1001 TK-1002 TK-1003 TK-1004 TK-1005, 6, 7 (Future Expansion) TK-2001 TK-2002 TK-2003	plosive/haz	MS M	Type of Tank IFVRT IFVRT UG.HOR IFVRT CRVT CRVT CRVT	200 200 200 200 400 400 400	00 A 00 A 00 A 00 A 00 A 00 A 00 B 00 B	
	in the project area. Storage of c S 1 2 3 4 5	on, wa	reter pollution issues respectively cals (inflammable/ex Tank No. TK-1001 TK-1002 TK-1003 TK-1004 TK-1005, 6, 7 (Future Expansion) TK-2001 TK-2002 TK-2003 TK-2004 TK-2005, 6, 7	plosive/haz	MS HSD HSD HSD HSD HSD HSD HSD HSD HSD HS	Iype of Tank IFVRT IFVRT UG.HOR IFVRT CRVT CRVT CRVT UG.HOR CRVT	200 200 200 200 400 400 400	00 A 00 A 00 A 00 A 00 A 00 B 00 B 00 B	
	in the project area. Storage of c S 1 2 3 4 5 6 7 8 9 1	on, wa	reter pollution issues recals (inflammable/ex Tank No. TK-1001 TK-1002 TK-1003 TK-1004 TK-1005, 6, 7 (Future Expansion) TK-2001 TK-2002 TK-2003 TK-2004 TK-2005, 6, 7 (Future Expansion) TK-2005, 6, 7 (Future Expansion)	plosive/haz	MS HSD HSD HSD HSD HSD HSD HSD HSD HSD H	Iype of Tank IFVRT IFVRT UG.HOR IFVRT CRVT CRVT CRVT CRVT UG.HOR CRVT	200 200 200 200 400 400 400	00 A 00 A 00 A 00 A 00 A 00 B 00 B 00 B	
	in the project area. Storage of c S 1 2 3 4 5 6 7 8 9 1	on, was chemically seemed as a second seemed seemed as a second seemed seemed as a second seemed seem	reter pollution issues respectively. Tank No. TK-1001 TK-1002 TK-1003 TK-1004 TK-1005, 6, 7 (Future Expansion) TK-2001 TK-2002 TK-2003 TK-2004 TK-2005, 6, 7 (Future Expansion) TK-3001 TK-3001 TK-3001	plosive/haz	MS HSD HSD HSD HSD HSD HSD HSD HSD HSD H	Iype of Tank IFVRT IFVRT UG.HOR IFVRT CRVT CRVT CRVT CRVT UG.HOR UG.HOR UG.HOR	200 200 200 200 400 400 400	00 A 00 A 00 A 00 A 00 A 00 B 00 B 00 B	
	in the project area. Storage of c S 1 2 3 4 5 6 7 8 9 1 1 1 1 1	on, was chemically seemed as a second seemed seemed as a second seemed seemed as a second seemed seem	reter pollution issues recals (inflammable/ex Tank No. TK-1001 TK-1002 TK-1003 TK-1004 TK-1005, 6, 7 (Future Expansion) TK-2001 TK-2002 TK-2003 TK-2004 TK-2005, 6, 7 (Future Expansion) TK-2005, 6, 7 (Future Expansion)	plosive/haz	MS HSD HSD HSD HSD HSD HSD HSD HSD HSD H	Iype of Tank IFVRT IFVRT UG.HOR IFVRT CRVT CRVT CRVT CRVT UG.HOR CRVT	200 200 200 200 400 400 400	00 A 00 A 00 A 00 A 00 A 00 B 00 B 00 B	
	in the project area. Storage of c S 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1	on, was on, if are chemically seen as a second of the chemical secon	ricals (inflammable/ex Tank No. TK-1001 TK-1002 TK-1003 TK-1004 TK-1005, 6, 7 (Future Expansion) TK-2001 TK-2002 TK-2003 TK-2004 TK-2005, 6, 7 (Future Expansion) TK-3001 TK-3001 TK-3002 TK-4001	plosive/haz	MS M	Iype of Tank IFVRT IFVRT IFVRT UG.HOR IFVRT CRVT CRVT CRVT CRVT UG.HOR UG.HOR UG.HOR UG.HOR	200 200 200 200 400 400 400	00 A 00 A 00 A 00 A 00 A 00 B 00 B 00 B	

The project was considered under 6(b)-BI category of EIA Notification 2006. The PP gave a detailed presentation of their proposal for establishing Greenfield Petroleum Storage Depot of 36,180 KL comprising of 6 x 2000m³ overhead tank for motor spirit, 6 x 4000m³ tank for HSD/SKO, 2 x 20m³ overhead tanks for Ethanol and 2 x 70m³ underground tanks for slop.

After detailed discussion the Committee made the following observations:

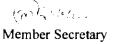

- 1. The baseline studies indicate that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project.
- 2. The project envisages use of ground water for all the water requirements. The PP has submitted a certificate for requirement of 25 CMD water which can be met through borewell. It will not only cater to process requirement but also supply for top-up fire water tank.
- 3. At Construction phase a mobile STP of sufficient capacity and at operation phase 10 CMD STP shall be installed. Treated water shall be used for gardening.
- 4. DG set of 2 x 900 KVA will have a stack of height 6m above highest rooftop level.
- 5. PP shall resort to rain water harvesting through a pond of 1800 m³ which shall be lined. PP shall tap solar energy to the extent of 20 KW however, the PP should try to augment this generation of electricity by solar energy by installing solar panel on open area available to ensure 100% solar based illumination of the plant.
- 6. Road in front of main entrance leading to railway line and beyond poses traffic problems during emergency. For this purpose PP shall widen the road fronting their entrance upto 500m to the North and till the railway crossing in the south to a width of 7m (2 lanes). No on-street parking should be allowed. If the vehicles have to be evacuated they will cross the railway line and proceed towards highway. In case level crossing is not open, then they will be diverted to the Northern side sufficiently away from the plant for parking.
- 7. Risk Assessment and Risk Mitigation Studies were carried out. There is a contingency of off-site emergency, hence hazard management plan shall be shared with the District Administration. Diagram enclosed in the *Annexure 13.1* gives the layout of the plot with the all hazard management facilities. Maharashtra Pollution Control Board (MPCB) should verify the provision of these facilities before granting Consent to Operate.
- 8. There should be online monitoring of VOCs/ Hydrocarbon using Photoionization detection based VOC monitoring system.

After considering all aspects of Environmental Impact the Committee decided to **recommend** the project for **EC** subject to the above (2-8) conditions.

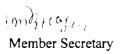
Member Secretary

Page **30** of **76**

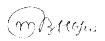
<u>"Annexure 13.1"</u>



Item no. 14	M/s. Shri Dnyaneshwar Sahakari Sakhar Karkhana Ltd. For proposed
	expansion of sugar capacity 7000 TCD and Co-gen 31.5 MW at Village Bhende
	B. k., Taluka Newasa, Ahmednagar.


The brief information of the project as submitted by the PP is as follows:

1	Name of the Project	M/s.Shri Dnyaneshwar SSK Ltd,							
2	Name, address, e-mail &contact number ofProponent	Name: Mr Anil P. Shewale, Managing Director Address: Village-BhendeBk Tal.—Newasa Dist.— Ahemadnagar 414605 Telephone number:02427- 255525/6/7 Email ID:dsskltd@gmail.com							
3	Name of Consultant	Ultra-Tech							
4	Accreditation of consultant (NABET Accreditation)		Ultra- Tech Environment consultancy and Lab (Lab. MoEFgazetted). NABET/EIA/1417/RA010						
5	New Project / Expansion in existing project/Modernization/Diversification in exiting project	Modernization for Sugar & Expansion for co-gen							
6	If expansion/Diversification, whetherenvironmental clearancehas been obtained forexisting project (If yes,enclose a copy withcompliance table)	Env	Environmental Clearance was not required for existing Sugar Unit. Environmental clearance has been obtained for existing distillery unit & co-gen unit from MoEF, New Delhi.						
7	Activity schedule in theEIA Notification		- Sugar – Co-Gen Pov	V07					
8	Area Details	Tota	al plot area (Sq t up area (Sq.	. m.):132					
9	Name of the Notified Industrial area / MIDC Area		ect is not in no						
10	TOR given by SEAC? (If yes then specify the meeting)	TOR received during 117th SEAC I meeting.							
11	Estimated capital cost of the Project (including cost for land, building, plant and machinery separately)	Rs. 96.90Crores							
12	Location details of the project :	Latitude: Approx. 19°26'59.65"N Longitude: Approx. 75° 2'13.27"E Location: Village- BhendeBk Tal. – Newasa Dist. – Ahemadnagar 414605 Elevation above Mean Sca Level (meters): 523							
13	Distance from Protected Areas / Critically Polluted areas / Eco- sensitive areas / inter-State boundaries		such establish					a)	
14	Raw materials (including process chemicals, catalysts, &additives)	# RawMaterial Quantity/day							
	chemicals, catalysis, teadditives,	l	Sugarcane		7000TPD				
		2.	Sulfur Lime			3.6 T			
		l	Baggasse in se	eason	1761 TPD				
15 Production details							1		
		#	Production	No.	Cat	Unit	Proposed	Capacity	·]
			Unit				Existing	Add	Total
		1	Sugar	5(j)	В	TCD	5000	2000	7000
		2	Co-Gen	1(d)	В	MW	12	19.5	31.5



16	Process details / manufacturing details	For sugar: This is a simple three step process namely Cane milling. Evaporation and Crystallization. For Co-Gen Power: This is a simple three step process namely Water preparation, Steam Generation and Power Generation.						
17	Rain Water Harvesting(RWH)	Level of the Ground water table: NA. Size and no of RWH tank(s) and Quantity: NA Location of the RWH tank(s): NA Size, nos of recharge pits and Quantity: NA Budgetary allocation (Capital cost and O&M cost): NA O & M cost Rs.NA						
18	Total Water Requirement	Total water requirement: 451 Sr. Category Water No Consur			Loses (M³	Effluent Generation	Disposal	
		''0		(M ³ /Day)		/Day)		
		1 1	Processing	2012		1779	233	Total 761
			Cooling	1074		958	116	m³ cffluent
			Boiler/DM Lab &	1050 30		873 10	177 20	& excess
			Washing	30		10	20	Spray pond water
			Brushing	163		47	116	would be
			Mill	41		0	41	treated in
		1	Bearing Vacuum	145		87	58	full-fledged ETP
		1	pump	173		07	56	LII
		1	sealing					
		1	Total Godonina	4515		3754	761	
19	Storm water drainage	Gardening 761 Natural water drainage pattern: NA Quantity of storm water: NA						
''								
		Size of	SWD: NA					
20	Sewage generation and treatment	Amount of sewage generation (CMD): 28m³/d Proposed treatment for the sewage: Upto Tertiary Treatment recycled for gardening. Capacity of the STP (CMD) - 35 Soak pits already provided. STP shall be provided in proposed phase						
21	Effluent characteristic							
		SR. NO.	SR. PARAMETER RAW NO. EFFLU		RAW EFFLUI	TREATED ENT QUALITY (MPCB LIMIT		
		1.	pН	3.2 – 4.		. (5.5-8.5	
		2.	B.O.D		2000	Ŋ	Max. 100	Mg/lit.
		3.	C.O.D		4000	<u>-</u>	Max. 250	Mg/lit.
		4.	T.S.S.		162		Max. 100	Mg/lit.
		5.	Oil & grea	ise	5		Max. 10	Mg/lit.
22	ETP details	Amount of effluent generation (CMD):761m³/day Amount of treated effluent recycled (CMD):761m³/day (direct recycle) Capacity of the ETP (CMD): 1500m³ (Existing + Proposed) Amount of water send to the Sewer Line (CMD):Nil Membership of the CETP (If require): No						
23	Note on ETP technology to be used	Effluent Treatment Plant: This is sober water except temperature, comes from cooling-purging and boiler blow-down. A detention tank with suitable holding capacity and shallow depth shall be provided. The water after cooling will be suitable for irrigation purpose. As an alternative, this will be used as diluents to moderate effluent, stream (B) below and further treated. The Moderately polluted wastewater is the floor vessel washing, de-min plant, laboratory and process, which has low pH and has organic matter. After the pH correction of this stream, it will be taken to bio-oxidation, followed by tertiary treatment by way of dual media filter, which can be						

		disposed on land for irrigation or re-cycled to plant. This can also take care of condensate water.							
24	Disposal of the ETP sludge (If applicable)	To be sent to Composting.							
25	Solid waste Management	Non Hazardous Solid waste:							
			aste		Qty	Treatmen	<u></u>	Disposal	
			Canteen		35 kg/day	Vermi-co	mposting	Own Garden	
			rp Sh	ıdge	60 kg/day	Composting		Sales	
		Sv	veepii	ngs	35 kg/day	Segregation		Sales	
		Garden trash Ash			30 kg/day	Collection		Mulehing	
				32 T /day	Collection		Brick kiln & composting		
26	Atmospheric Emissions(Flue gas characteristics SPM, SO2, NOx, CO, etc.) Stack emission Details: (All the stacks attached to process units, Boilers, captive power plant, D.G.Sets, Incinerator both forexisting and proposedactivity). Please indicatethe specific section towhich the stack is attached.e.g.: Process section, D.G.Set, Boiler, Power Plant, incinerator etc. Emissionrate(kg/hr) for each pollutant (SPM, SO2, NOx etc. should be specified	#	Sou	ігсе	Pollutant	ln-plant Measures	Control	Equipment	
		****	Boi	ler	SPM, CO	Dry Baggasse boiler feed	tall Sta	ispersion through ck with height as EF/ CPCB	
		2	D. (Sets		SO ₂	As per CPCB norms			
		3	ETI	P	CO ₂	Closed conduit	Fully A	erobic. No cess-	
27					will be remov s of 20, 20, 3			iler will installed.	
		Sr. Ch No. to		Chim	iney attached			mits SO2 Kg/	
			tph Boile (Pro) 2 DG: KVA (Exis		er No.1 80	76 mt.			
					er 2 110 oosed)	86 mt,			
		2			et 2 Nos, 400 each	4.0 mt	28.8		
					set 1 No. KVA cosed)	7.0 m			
28	Details of Fuel to be used:	Baggasse: 1761 TPD Source of fuel:Owned factory Mode of transportation of fuel to site:By Road							
29	Energy	Power supply: Existing + proposed 1500KW DG sets: Number and capacity DG sets to be used: 3 Nos. 2 nos. of 400 KVA & 1 no. of 1000 KVA. Details of the non-conventional renewable energy proposed to be used: NA							

30	Green Belt Development	Green belt area (Sq. m.):4,50,000 Existing No. of trees: 30,000 & proposed 10,000Nos. Number, size, age and species of trees to be cut, trees to be transplanted: Nil					
31	Details of Pollution Control Systems:						
	- Common Systems.	S. No.		Existing	Proposed to be installed		
		i)	Air	-	Dust Collector & Serubber for Steam Boiler& Stack as per MPCB		
		ii)	Water	Domestic Effluent to ETP after septic tank. Full fledged Primary, Secondary and Tertiary for Trade Effluent, fully aerobic ETP	Domestic Effluent to ETP after septic tank. Full fledged Primary, Secondary and Tertiary for Trade Effluent, fully aerobic ETP		
		iii)	Noise	Acoustic enclosures will be provided to D.G. Set. The noise levels in the day time shall be maintained 75dB(A) and 70 dB(A) during night time. Trees act as a Noise Buffer.	Acoustic enclosures will be provided to D.G. Set. The noise levels in the day time shall be maintained 75dB(A) and 70 dB(A) during night time. Trees aet as a Noise Buffer.		
		iv)	Solid Waste	Composting or To Authorised Ageney	Composting or To Authorised Agency		
32	Environmental Management plan Budgetary Allocation	7.6 Cn	оге				
33	EIA Submitted (If yes then submit the salient features)	Purpose of this Report is to examine whether our efforts address all the published requirements of Ministry of Environment and Forests, New Delhi; such as All options to be explored, not merely the site. Land to be Minimum, Load-bearing, Level, and without Rain-wash pollution possibilities. Water consumption to be Minimum, no encroachment on others existing source, and recovery-recycling to be practiced. Wastewater to be segregated and accordingly treated. Land should not come in the migration route of wildlife and transitory birds. Consideration of aesthetics (odour and noise nuisance) is necessary. Proper Green Belt to be designed (CPCB Guidelines are available). Transportation risk to be minimized. Rehabilitation or resettlement if involved must be resolved smoothly. In all above efforts, transparent approach must be maintained. This is attempted here by keeping the following objectives: To know the existing environmental status. To estimate the future pollution load. To design preventive and curative steps so that any probable significant impact can be tumed insignificant first by control measures and inconsequential next by further mitigation measures. To superimpose the future resultant pollution load on existing environmental conditions due to the proposed activity. To understand the views of other departments and incorporate measures to fulfill the statutory requirements. To prepare an environmental management plan (EMP) including monitoring schedule to serve as "Watch-dog" To make this Report available to all stake-holders so as to be useful.					

Marigue

34	hearing o	aring report (If public onducted nit the salient features)		As per requirement of the Notification, MPCB conducted public consultation and the report is submitted to MoEF, submitted copy along with EIA report.				
35	Stora	age of chemicals (inflam		,				
	#	Name	Number of Storage's	Maximum Quantity of storage at any point of time				
	1	Alcohol	4	3200 KLD				
	2	Sulphuric acid	1	20 KL				
	3	Molasses storage	5	22000 MT				

The project was considered as category 5 (j)-B1 for sugar unit and 1(d)-B1 for co-gen plant as per the EIA Notification 2006. The PP envisages augmenting the sugar production from 5000 TCD to 7000 TCD and co-gen plant from 12 MW to 31.5 MW, simultaneously improving the quantity and quality of sugar through use of modern equipments. ToR was approved in the 117th meeting and also a subcommittee visited the plant on 28.9.2016 (visit report enclosed as *Annexure 14.1*)

After detailed discussion the Committee made the following observations:

- 1. Proposed expansion as per the baseline studies will not increase environmental parameters beyond prescribed limits.
- 2. To conserve water PP should adopt drip irrigation as the only mode of irrigation. Presently PP has achieved 25% of their cane growing area under drip irrigation therefore the Committee desired that entire cane growing area should be covered under drip irrigation by 2025.
- Bagasse generation is 1900 MT/day and bagasse requirement is 1853 MT/day during season.
 Therefore PP will not have to source bagasse from outside. No fuel other than bagasse shall be used. There will not be any co-generation in the off-season.
- 4. PP intends to scrap their 2 x 20 TPH and 30 TPH boilers and retain 80 TPH and 40 TPH boilers. In addition PP wants to install one 110 TPH boiler. All the boilers shall be using bagasse as a fuel. Stack height for 80 TPH, 40 TPH & 110 TPH boilers will be 76m, 65m & 85m respectively. The flue gases shall be passed through multicyclone and ESP of sufficient capacity to achieve an outlet TPM of < 100 mg/Nm³.
- 5. The existing facility has an ETP of 1500 CMD as design capacity. The PP will be required to send excess spray pond water to ETP for treatment and outlet effluent shall be reused/recycled in PP's own premises to achieve a Zero Liquid Discharge.
- 6. A STP of 35 CMD shall be installed and treated water shall be used for gardening.
- 7. The PP has claimed that no additional water will be required for proposed sugar manufacturing. However expansion for the co-generation plant additional water of 200 CMD will be required. No water will be required for cooling.
- 8. Sludge shall sent to mechanical sludge dewatering.
- 9. Silos to store fly ash for a minimum of 7 days shall be installed in the factory premises.
- 10. Risk Assessment and Risk Mitigation Studies were carried out by the PP. The Committee desired that dyke wall of proper dimension shall be constructed for containment of spillages.

After considering all aspects of Environmental Impact the Committee decided to **recommend** the project for **EC** subject to the above (2-10) conditions.

Member Secretary

Page 36 of 76

"Annexure 14.1"

Visit report- M/s. Shri Dnyaneshwar Sahakari Sakhar Karkhana Ltd. Taluka- Newasa,

District-Ahmednagar

Date- 28.09.2016

In pursuant to the decision taken in the 135th SEAC-I meeting, a sub-committee comprising of following members visited the site on 28.9,2016 along with Field Officer of MPCB and representatives of industry -

- 1. Shri. T. C. Benjamin, Chairman
- 2. Prof. (Dr.) Ramesh Dod, Member
- 3. Shri, C. I. Sambutwad, Member

A sub-committee made the following observations.

- The PP has agreed to fully adopt drip irrigation system for the sugarcane area by 2025 and was asked to submit the board resolutions in this regard.
- II. The PP is asked to submit the revised water budget considering the best possible water conservation measures.
- III. The sub-committee has suggested to submit the water permission from Irrigation Deptt. for sugar expansion and co-generation plants at the time of EIA presentation.
- IV. It was noted by the sub-committee that existing boilers of 20 TPH (02) and 30 TPH (01) were to be replaced with 80 and TPH, new boilers with multicyclone and wet scrubber as Air Pollution Controlling devices. However, the sub-committee has noted that PM to levels in the surrounding area are nearing 100 mg/Nm³ and hence has recommended to install the ESP for the boilers. One more boiler of 1 [0 TPH for the co-generation will be provided having ESP as APC system.
- V. The existing facilities having ETP of 1500 CMD as designed capacity. The subcommittee has suggested that the excess spray pond water to be taken to ETP for
 treatment and shall be 100% reused/ recycled within the own premises so as to
 make the unit as Zero Liquid Discharge System.
- VI. The PP has claimed that no additional water will be required for the proposed expansion of sugarcane crushing and for expansion in co-generation, additional water of 200 CMD will be required. This is due to back pressure route co-generation technique, in which no water is required for curling purpose.
- VII. Mechanical sludge dewatering unit to be installed by PP in place of sludge drying bed.

mobileden

Chairman

Page 37 of 76

- VIII. The sub-committee has suggested minimum of 7 days storage facility for fly ash storage and 15 days storage facility for storing the treated water.
- IX. The sub-committee has suggested to collect the domestic sewage and treat it in a STP of suitable size and recycle the treated sewage for gardening.

X. The PP has to provide details of the emissions and APC to show that outlet TPM is less than 50 mg/Nm³.

This becomes more relevant in the light of air pollution induced diseases prevailing in the vicinity in an abnormal manner. The statistics of incidence of such diseases collected from PHC. Kokane, 3 km from the factory site is depicted below.

	Upper respiratory tract infections	COPD	Bronchitis
2014-2015	5230	50	
2015-2016	6370	71	2

T.C.Benjamin Chairman Ramesh Dod Member

C.I.Sambutwad

Member

Item no. 15	M/s. Eternis Fine Chemicals Ltd.
	For expansion of our existing project at MIDC-Kurkumbh, Plot no. D-9/1, D-9/2, D-9/3 & D-15, Taluka- Daund, Pune.

PP remained absent hence deferred.

Item no. 16	M/s. Ambernath Organics Pvt. Ltd.	
1 1	- [1] - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	Proposed Synthetic organics at plot no. 21/2, Dhatav MIDC Roha Raigad	
		1.11

PP remained present, the Committee pointed out that in the 130th meeting decision was taken that the project was located in an area which appears as Ecologically Sensitive in the Draft Notification for ESA villages in the Western Ghats. The Committee decided to wait till the said Notification was finalized; therefore the Committee did not take up the case for appraisal.

gralles ...

Page 38 of 76

Chairman

Member Secretary

Item no.17	M/s. MAHARASHTRA FISHERIES DEVELOPMENT CORP. (ToR)
	Modernization of Sassoon Dock Fisheries Harbour at survey no. 5/600, Mumbai

The project was considered under category 7 (e) – B1 as per the EIA Notification 2006. M/s. Maharashtra Fisheries Development Corporation (PP) submitted the proposal for modernization of Sassoon dock fisheries harbor located in survey no. 5/600, Mumbai city. The project does not envisage any augmentation of the fish intake capacity of dock but envisages refurbishment of the facility associated with it.

After detailed discussion the Committee made the following observations:

- 1. The Committee felt that the location of fishing dock in south Mumbai is an outdated concept which compounds the problems of traffic, ambience and convenience of public. The said land could much better be utilized for purposes which could exploit the commercial potential of the location, being located in the heart of central business district of Mumbai. The Committee desires that PP shall outline the reasons for selection of site location, details of alternate sites with comparative reasons and reason for continuing the fishing dock in the said locality.
- The Committee observed that requirement of fresh water for modernization is 2000 CMD. The Consent of BMC shall be obtained regarding requirement of water and included in the EIA report.
- 3. Steps conservation of water shall be adopted and waste water shall be prevented to enter into sea
- 4. Quantum to be sent to the ETP shall be determined and proper treatability studies should be done to design ETP. A STP of 50 CMD shall be installed.
- 5. Since the location falls in CRZ the permission of MCZMA will be required.
- 6. The ToR shall be in accordance with the provisions contained in the Model ToR prescribed by MOEF&CC in April, 2015.

After detailed deliberations the Committee decided to **approve ToR** for preparation of the EIA report subject to the inclusion of above (1-6) points.

Item no. 18	Minor Mineral (stone) Kolhapur
ļ	

Previous consideration: Minutes of the 82nd Meeting held on 3rd, 4th & 5th July, 2014

<u>Decision:</u> DMO presented total 46 nos. of proposals. The proposals were considered earlier in 75th SEAC-1 meeting. DMO informed that out of 46, 8 new cases are having approved mining plans and 1 quarry is ongoing on lease. After discussions and deliberations SEAC-1 found that Village Sadegudawale in Chandgad Taluka and Village Vesarde in Bhudargad Taluka are Ecologically Sensitive Areas (ESA) as per HLWG Report on Western Ghats. Therefore, mining activity cannot be allowed in the aforesaid ESA Villages.

Previous consideration: The 134th Meeting held on 7th, 8th & 9th September, 2016

m Parceju.

Page 39 of 76

Member Secretary

<u>Decision:</u> The Committee went through the order of Hon'ble National Green Tribunal (NGT-WZ) in Appeal no. 29/2015 on dt. 2.01.2016 and noted that NGT had directed SEAC-1 to send its recommendation to SEIAA regarding application for grant of Environmental Clearance for stone quarrying in 1.0 ha area at S.N. 106, Village Vesarde, Tal. Bhudargad, Dist Kolhapur. The Committee had not appraised the proposal in its 82nd meeting since the quarry was situated in ESA Village as per the HLWG report on Western Ghats. The Committee requested Member Secretary, SEAC-1 to place the item in next meeting so as to take necessary decision.

Previous consideration: 135th meeting held on 21, 22 & 23rd Sept. 2016

<u>Decision:</u> The PP contends that he had applied for mining permission before 17th April 2013 (cut-off date) by virtue of which his case could be considered. Exact position and details may be kept before the Committee by Member Secretary, SEAC-I. For this the item was deferred.

Present consideration: 136th meeting

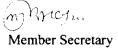
The Committee deliberated on the proposal. The Committee noted that vide MoEF&CC Notification dated 15.1.2016 S.O 141 (E) the authority for appraising minor mineral project less tan 5ha has been delegated to District Level Environment Impact Assessment Authority (DEIAA), therefore this Committee cannot appraise present project which envisages quarrying in area of 1ha.

Therefore the Committee decided to request the SEIAA to transfer the case to Collector Kolhapur.

Item no. 19	M/s. Cane Agro Energy India Ltd.
1.7	
	Sugar unit expansion from 2500 TCD to 9000 TCD at Raigaon Post Hingangaon
	(bk) Tal Kadegaon Sangli

The brief information of the project as submitted by the PP is as follows:

1.	Name of the Project	M/s. Cane Agro Energy India Ltd. (CAEIL)
2.	Name, address, e-mail & contact number of Proponent	Name:Dr. JaykarPatil (CEO) M/s. Cane Agro Energy India Ltd. (CAEIL) Address:At Raigaon, Post Hingangaon, Tal. Kadegaon, Dist. Sangli, Maharashtra
		Telephone number:02347-245148/49/66 Email ID:Caneagro1@gmail.com
3.	Name of Consultant	M/s. Sailech Research & Development Organization
4.	Accreditation of consultant (NABET Accreditation)	Sr. No. 124 in List 'A' of O.M. of MoEF, Gol , New Delhi Dated 05/06/2013
5.	New Project / Expansion in existing project/ Modernization/ Diversification in exiting Project	Expansion in Existing Industry 2500 TCD to 9000 TCD and New-36MW Bagasse Based Co-Generation Plant.
6.	If expansion/ Diversification, whether environmental clearance	Expansion from 2500 TCD to 9000 TCD Sugar manufacturing. Existing capacity doesn't attract Environmental Clearance


	has been obtained for	1							. <u>-</u>		
	existing project (If yes,										
	enclose a copy with compliance table)										
7.	Activity schedule in theEIA Notification	1 (d) 5(j)									
8.	Area Details										
		İ	Land Uti	ilizat	ion L	and	Area, acre	%			_
			Built up	area	1	5.0		50			
			Green be	elt ar	ea 6	.0		20			7
			ETP/ESI	<u> </u>	2	.0		6.0	56		7
			MSEB/	yard	7	'		23	.33		7
			Total		3	0		99	.99 say 10	0%	7
9.	Name of the Notified Industrial area / MIDC Area	Raigaon,	Post Hinga	ngao	n, Tal. Kadega	on, l	Dist. Sangli, Maha	arashti	a		
10.	TOR given by SEAC? (If yes then specify the meeting)	92 nd SEA	AC Meetin	g Da	ted 22/12/14						
11.	Estimated capital cost of the Project (including cost for land, building, plant and machinery separately)	250 Cr	250 Cr								
12.	Location details of the project :	Longitud Location:	Latitude: 17°24'46.I03"N Longitude: 74°19'11.24"E Location: Raigaon, Post Hingangaon, Tal. Kadegaon, Dist. Sangli								
				an Se	a Level (metre	s):72	20.285 M				
13.	Distance from ProtectedAreas / Critically Pollutedareas / Eco-sensitive areas/ inter- State boundaries	Not Appli	саые								
14.	Raw materials (including process chemicals, catalysts, & additives).	List of raw materials to be used		che nat	ysical and emical ure of raw terial	(to Da pr	ouantity onnes/ ay) full oduction pacity	Sou of mate als		Means of transport ion (Source t storage site) with justificat	at o
		Sugarcai	ne	Harvested mature		9000 MT / Day		Nea villa		Sufficien space is a	t open
		Lime		As an Cao		I4 MT / day		Local Vendors		Lime Go	
		Sulphar		/ G	phur Powder ranular phur Powder %)	61	MT / day	Local Vendors		Sulphur	Godown
15.	Production details	By products	liate	•	Existing (T/Year)		Proposed activity (new/ modernization / expansion) (T/Year)		Total (T/Year)		
		Main Products Main Products: a) Sugar			2500 TCD		6500 TCD	9000 TCD		D	
		b) Electricity By-Products				36MW 36MW					
		Dy-riod	ucio				L		L		

Mblugin

	<u> </u>		Molasses	16000	МТ		16560	0 MT	T			
ļ		11 /	Bagasse	432000			2925	- 1	2000 N			
]	1		Pressmud	14000			50000	MT		2000 1		
		-/-										
Ì		1 1	ermediate						Ì			
		1	ducts									
16.	Rain Water Harvesting	As Expansion is in existing unit, and industry is located in MIDC all facilities are provided and										
	(RWH)	enhanced in future.										
		Level of the Ground water table: Size and no of RWH tank(s) and Quantity										
		Location of the RWH tank(s)										
		Size,	Size, nos. of recharge pits and Quantity: 10 soak pits of size 3x6.5x3 lit.									
		Budgetary allocation (Capital cost and O&M cost)- Water Balance (M³/Day)										
17.	Total Water Requirement											
		6		Existing (S	ugar	Unit	2500			r 9000	TCĐ	and 36 MW
		Sr		TCD) Water Requ	iroma	nt		Water Requ		nt	7	
	}	l i	Description	water Keqt	L			water Keqt	Со	Su	L	1
		o.		Sugar	os		fluent	Sugar	-	b	os	Effluent
				Unit	se	1	enerati	Unit	Ge	Tot	se	Generatio
					8	on			n	al	s	n
		1.	Domestic	31	1	30	l	37	5	42	02	40
			Industrial	I	1	Į.				1		
			Process					1	39	_	61	
			(Machinery cooling) Cooling Tower Blow					310	5	705	7.	87.6
				540	34	20	Λ			ļ	4	
					0	20	U			0	0	442*(spray
	İ							0	0			pond
			Down					ļ				overflow)
			Down		<u> </u>			 	 	 	32	
		2.	Boiler Feed Washing	Nil	Ni	Ni	1	0	39	395	5.	69.7
ļ		-		<u> </u>	1				5		30	
				Nil	Ni	Ni	1	270	35	628		628
			7,43,11,19		1	- ' '	<u> </u>	<u> </u>	8		 -	020
				Nil				Nil (Recycled	1			
			Gardening	(Recycled from				from	0	0	0	0
				ETP)	-	ĺ		ETP)				
			Industrial						1.	173	94	785.3+
			Use	540		200		580	11 48	172 8	2.	442*
			(a+b+c+d)						40	0	7	=1227.30
			_ ,					ŀ			94	
		3.	Grand Total	571	34	23	0	617	11	177 0	4.	1267.30
		3.	(1+2)	5/1	1			017	53	(A)	(B	(C)
			(1.2)		-					(21))	
		Tr.	tal Water Requi	ramant . 1770			Effl	uent Generation	on (C)	= A-	- B =	1267.30 Say
		<u> </u>	'				126	7				
18.	Storm water drainage		xpansion is in e									
			and built in gutte		two p	onds	suitably	placed.				
			ral water drainag									
			tity of storm wa of SWD:	ner.								
19	Sewage generation and		unt of sewage g	eneration (CN	(D)- 2	0m ³						
• •	Treatment		osed treatment f					septic tank a	nd Soa	k pit		
			city of the STP					-F		- F-7		
20	ETP details	Amo	unt of effluent g	eneration (CN	ИD):							
			city of the ETP				550m ³					
			unt of treated ef				214					
			unt of water sen					nah thalattan -	uhm:•	the lass	or ki	۸
21	Note on ETP technology		bership of the C nced Technolog							me ien	crN	-1
41	to be used	Auva	areca recimolog	, with prima	y, sec	onu	ary and i	cruary neam	will.			
22	Disposal of the ETP	The s	ludge is utilized	for composti	ing / n	rgan	ic manu	re with the on	ess mi	ıd.		
<u></u>		,	6		٠			pi				

myregez.

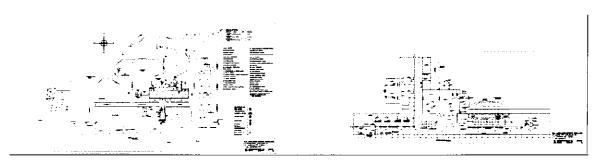
	sludge (If applicable)										
23	Solid waste Management	Sr. No.	Source	Qty.	Form (sludge/ dry/ slurry)	Composi	ition				
		1.	Raw water treatment plant								
		2	ETP	60kg/d	a		ge is utilized for composting with the press mud.	g / organic			
		3	Process			generation Press mu manure Ash is ut	will be used as a raw materion of electricity and will be used composting a will be used composting for composting with filter ca	organic			
		4	Spent Catalyst								
		5	Oily Sludge			<u> </u>					
		6	Others like Battery waste, e waste ete (Pl. Specify)					:			
		If waste(s) contain any hazardous/toxic substance/radioactive materials or heavy metals then provide quantity, disposal data and proposed precautiona Not applicable What are the possibilities of recovery and recycling of wastes?: Possible users of solid waste:									
		Sludge is / organic Bagasse Pressmuo	s generated of manure wit will be used d will be use	h the press mu as a raw mate d composting	tment of waste id. erial for the gen / organic man	eration of e	P. The sludge is utilized for electricity posting with filter cake	composting			
24	Atmospheric Emissions (Flue gas characteristics	Sr. No.	Pollutant		Source of	Emissio					
	SPM, SO2, NOx, CO, etc.)	1	SPM		Emission Proposed	(kg/hr)	(g/m3)	_			
	,	2	S02		Boiler			_			
		3	N0X CO		Proposed						
		5	Others		Boiler Other			_			
25	Stack emission Details:		H₂O, CO:	2	effluents						
23	(All the stacks attached to process units, Boilers,		#	Parameter			Data	7.0			
	captive power plant, D.G. Sets, Incinerator both for	1		Boiler capac	city		160 T/h at 110-125 kg/cm ² Pr. and 580 °C Temp.				
	existing and proposed activity). Please indicate	3		Chimney, ht			72 m				
	the specific section to which the stack is attached. e.g.: Process	4		APC device	in boiler		ESP				
	section, D.G. Set, Boiler,	DG set a	nd Boiler:								
	Power Plant, incinerator etc. Emission rate (kg/hr.) for each pollutant (SPM, SO2, NOx)		capacity, TP	Н 160 ТР	•						

					,										
		Pres	sure kg/cm²		110-125										
		Tem	perature ⁰ C		580										
		Turk	Turbine capacity, MW 36 MW												
		Turk	oine type		Back Pre	ssure									
		Seas days	on operation,	n. 160-180											
		1 1	s used for seas	son	Mill Bag	asse									
		Boil	er efficiency %	6	70.00 ±2	.0									
		On I	Bagasse/cane		70.00 ±2	.0									
			l water perature ⁰ C		70-80 °C										
		cons	tive power umption % of ration		28										
			o-generator iency %		90.00										
		Utili	zation level %	,	80 in 1st j in 3rd year	year, 9 rand o	00 in 2 nd y onward	/ear, 95							
26	Emission Standard	Boiler													
			Pollutants Emissic			nission Proposed			мрсв	Consent]				
			` ' '						andard mit		Limit (mg/Nn	n3)	(mg/Nm	13)	
					ng/Nm3)		(mg/Ni	11.5)							
			TPM						150		150				
		SO2 NOX		┼					1.64						
27	Ambient Air Quality Data	Pollu		Pe	rmissible		Propose	ed .	Remark	s					
					andard			Concentration (in µg/m3)							
		PM2		60			37.62		L <u></u>						
[PM1 SO2		100 80			60.29 6.45				1				
		NOX		80			8.37								
28	Details of Fuel to be used:	CO Sr.	Fuel	2 Doi	ly Consum	ntics	0.43	Calorific	%	%					
20	Details of Fuel to be used.	No	ruei		D/KLD)	риоп		value (Keals /kg)	Ash	Sulph ur					
			<u> </u>	Exi	sting	Prop	osed	, ,]				
		1	Gas					<u></u>							
		3	Naptha HSD					_ 	- -						
		4	Fuel Oil]				
		5	Coal												
		7	Lignite Others (Bag	gasse	Baga	asse								
			pl. specify)		,										
		Source	of fuel:Mill b	agass	se and cane	trash v	vill be ma	in fuel for th	ne propose	d Cogen Pr	oject during				
		crushir	ng season and of transportation	saved	l bagasse ar	nd cane	trash wi	ll be the main	n fuel duri	ing the off s	eason period				
L		1-4000	o. umisportatio	711 U1	inci to out.										

@ Bright

29	Energy	Power supply: • Existing power requirement: MSEB • Proposed power requirement: by Power Generation DG sets: • Number and capacity DG sets to be used (existing and proposed):Number 2.& Capacity 320KVA 500KVA									
30	Green Belt Development	Number Numbe	Green belt area (Sq. m.): 6 Acres Number and species of trees to be planted:Existing 7500 nos. of trees within the premise. Number, size, age and species of trees to be cut, trees to be Transplanted—								
31	Details of Pollution Control Systems:	Sr. No.	Air	Existing pollution control system		Proposed to be installed					
		2	Water	ETP		ETP					
		3	Noise	Advanced Technology		Advanced Technolo					
		4	Solid waste	Proper disposal system premises	Proper disposal system within premises						
32	32 Environmental Management plan Budgetary Allocation	• 0&M	cost (With break cost (With break Environmental As	up):	Capital Expendi in Crore		Recurring Expenditure in Crores	Rs			
		I I	Emission control I	Engineering		0.25					
		2 V	Water & Wastewa	ter management		0.5					
		3 S	solid Waste		1.00		0.16				
		4 (reening Drive		0.5	0.5 0.15					
			Monitoring		0.01		0.09				
			environmental Ce				0.09				
			Other aspects like Safety, Security et	Rain Water Harvesting, c.	0.2		0.04				
		T	otal		7.73		1.28				
33	EIA Submitted (If yes then submit the salient features)	• Details sample of • Details of data): Potentia • Conclu	of the primary decollection, numbers of the secondary March 2015 to MI hazard and mitigation of the EIA s	gation measures- Details El tudy: - Details EIA Report	ntion in chap and year	pter 3					
34	Public hearing report (If public hearing conducted then submit the salient features)	Date of the public hearing:20/2/2016 • Name of the newspaper in which the advertisement appeared (Please attach the copy):1) Times of India-21/1/2016. 2)Sakal-21/1/16 • Location of the public hearing:On Site • Number of people attended the hearing:143 • Objection(s) / Suggestion(s) if any: No Objection									
35	Air pollution, water pollution issues in the project area, If any	Not app	licable								

(m) Me) Les


The PP gave a detailed presentation on the EIA Report pertaining to expansion of sugar unit from 2500 TCD to 9000 TCD and installation of a new co-generation plant of 36 MW. The proposal was considered under category 5(j)-B1 [sugar unit] and 1(d)-B1 [co-generation unit] of the schedule of the EIA Notification 2006.

After detailed discussion the Committee made the following observations:

- 1. The baseline studies indicate that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project.
- 2. The PP has brought entire cane growing area under drip irrigation. No extra water will be required for expansion of sugar unit. The MPCB shall verify whether any water is drawn from any other sources and if so shall verify certificate for water availability.
- 3. Bagasse generation is 4, 32,000 MT/Y as against the bagasse requirement of 3, 37,760 MT/Y (2, 45,760 MT/Y during season and 92,000 MT/Y during off-season). The surplus bagasse should be stored and disposed of without causing any environment pollution.
- 4. The PP intends to replace 2 boilers of 32 TPH capacity each by a single boiler of capacity 160 TPH. The emission from this boiler shall be passed through MDC and ESP of 99.9% efficiency to achieve a TPM of less than 100 mg/Nm³ at the stack end. The stack height shall be 75 m.
- 5. The PP intends to expand ETP capacity from 750 CMD to 1300 CMD. The effluent generated from sugar generation, boiler blow down and spray pond shall be led into the ETP. ETP will comprise of grit chamber, oil / grease separator, equalization tank, aeration tank and clarifier followed by filtration unit. Sludge which will be generated from filtration shall be dried in the mechanical sludge dewatering system. Supernatant liquid shall be passed through sand and activated carbon filter and Potassium Permanganate (KMnO₄) treatment and after treatment shall be used for gardening. TDS levels shall be brought down below 2100 mg/lit.
- 6. Risk Assessment and Risk Mitigation Studies were carried out. Diagram enclosed in the *Annexure 19.1* gives the layout of the plot with the all hazard management facilities. Maharashtra Pollution Control Board (MPCB) should verify the provision of these facilities before granting Consent to Operate. There will not be any incidence of off-site emergency as submitted by the PP.

After considering all aspects of Environmental Impact the Committee decided to **recommend** the project for **EC** subject to the above (2-6) conditions.

"Annexure 19.1"

m Pallodia

Things

Page **46** of **76**Member Secretary
Chairman

Item no. 20	M/s. Pudumjee Pulp & Paper Mills Ltd.
	Proposed 16MW+ 5MW Coal Based Co-generation Power Plant at Plot No. K-5, Additional MIDC, Mahad, Raigad
	Additional Milbe, Mailad, Raigad

The Committee observed that the PP had submitted the proposal for coal based co-generation plant [category 1(d) - B1]. It would be ancillary activity with paper manufacturing without pulp manufacturing [5(i)-B1].

The Committee desired that both these activity should be considered together for appraisal so that air, water, noise aspects can be considered in comprehensive manner. PP may check requirement of public consultation for co-generation as well as paper manufacturing unit.

Deferred.

Item no. 21	M/s. Classic Oil Ltd. (ToR)
	Proposed Greenfield project of Specialty Chemicals and intermediate of capacity Product- 1420 MT/M, and By-products 854.54 MT/M at B-14, Mahad MIDC, District-Raigad.

The project was considered under category 5 (f) – B1 as per the EIA Notification 2006. The PP gave a detailed presentation for ToR for the preparation of the EIA report. PP is subsidiary of Indo amines and proposes to carry out the present project in the same premises where it was earlier manufacturing edible oils. The project is a greenfield project envisaging manufacturing of Specialty Chemicals and intermediates to the extent of 1420 MT/M along with by-products of 854.54 MT/M.

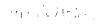
After detailed discussion the Committee made the following observations:

- 1. PP shall carry out detailed Risk Assessment and Risk Mitigation studies which should enable it for identifying risk contours whereby location of gates can be identified.
- 2. The by-products should not be indiscriminately disposed but reused. 35% HCl should be concentrated to at least 30% using Graphite heat exchangers and shall be marketed. Sodium Hydrolyte should be recycled.
- 3. ETP per se will be based on treatability studies. The project shall be run as a Zero Liquid Discharge System considering vagaries plaguing CETP at MIDC, Mahad. However the Committee convinced that if at the time of EIA appraisal the CETP at Mahad can treat effluents, the Committee may consider sending the effluents to the CETP. The PP shall install MEE of suitable capacity to achieve a Zero Liquid Discharge status.
- 4. PP shall ensure that there will not be entering of leachate in nearby waterbody.
- 5. The ToR shall be in accordance with the provisions contained in the Model ToR prescribed by MOEF&CC in April, 2015.

After detailed deliberations the Committee decided to **approve ToR** for preparation of the EIA report subject to the inclusion of above (1-5) points.

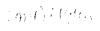
gratified Water

Page 47 of 76


Chairman

Member Secretary

Item no. 22	M/s. Privi Biotechnology Pvt. Ltd.
And the same and t	EC for proposed greenfield project for R&D pilot plant for food and non-food additives at plot no. D-122, TTC Industrial area, Nerul, Navi Mumbai.


The brief information of the project as submitted by the PP is as follows:

1.	Name of	project	Proposed Greenfield project of R&D. Pilot plant for food and non-food additives at Plot No.: D-122, TTC industrial area, thane – Belapur road, Nerul, Navi Mumbai - 400 706, Maharashtra						
2.	Name, ac of propor	ddress, e-mail & contact number nent	Mr. Pramod Nambiar Plot No.: D-122, TTC industrial area, thane – Belapur road, Nerul, Navi Mumbai - 400 706, Maharashtra Email id: pradip.yelave@privi.co.in						
3.	Name of	consultant	M/s. Goldfinch Engineering Systems Pvt. Ltd.						
4.	Accredita		S. No. 69 in QCI NABET List 139 (Aug. 2016)-for the proposed project category (5t) of the MoEF EIA notification Schedule						
5.	New proj project/n existing p	ject/expansion in existing nodernization/diversification in project	New						
6.	If expans environm obtained	tion/diversification, whether nental clearance has been for existing project (If yes a copy with compliance table)	Proposed is a Greenfield Project						
7.	Activity	schedule in the EIA Notification	5 (f) - B						
8.	Arca Det	ails	Total plot area: 2100 sq.m.						
9.	Name of MIDC ar	the Notified Industrial Area/ ca	TTC Industrial Area, Nerul						
10.		en by SEAC? (If yes then the meeting)	yes						
11.	(Includin	d capital cost of the project g cost for land, building, plant hinery separately)(INR)	13.0 Cr						
12.	Lacation	details of the project:	Latitude – 19.049069 N Longitude – 73.026778 E Location: TCC Industrial Area, Nerul Elevation above mean sea level meters: 43 ft.						
13.		from protected areas/ critically areas/ Eco Sensitive area/ inter-	No such area in the vicinity.						
14.	Raw mat	erials (including process s, catalysts & additives)	Pl. Refer Pre-feasibility Report.						
15.		on Details	Pl. Refer Pre-feasibility Report.						
	Propose	d Production Capacity:							
	SN	Products	Quantity in kg						
16.	1	Flavors & fragrances like Vanillin Flavor esters	20 kg/batch max						
	2	Food additives and neutraceut Xylitol Fatty Acids Mono & diglycerides etc	50 kg/batch max						
	3	Biopolymers ete	50 kg/batch max						
17.	Rain wat	er Harvesting (RWH)	Rain water harvesting will be implemented at the site						

	Source	-	Consu	mption (CMD)			(CMD) add (+) / W	Reaction ater loss (-)	Effluent	(CMD)	
	Domestic 4.00					1.00			3.00		
	Industrial 4.00					0.50	. <u>. </u>		3.5		
	Cooling		40.00			35			5.00		
	Boiler F	eed	36.20				nsate recycle 1D splash los	(29 CMD ed back) and (ss)	0.20		
	Floor w		5.00			0.5		<u>.</u>	4.5		
	Garden	ing	4.00			4.00		<u> </u>	16.20		
	Total Recycle		93.20 45.00			77.00			10.20		
	From 2		48.20		-						
9.		er drainage		 		al water	drainage pati	tern: Proper and	l separate s	torm water drains available,	
20.	. Sewage generation and treatment					of sewag	ge generation	(CMD): 3 sewage: It wil	l treat in co	rnbine ETP	
21.	Effluent C	Nuent Characteristics					able below:	- 			
	S. No. Parameters		ers l	exet 1		Effluent eteristies		Inlet to RO		RO Reject to Evaporator	
	1	Flow m³/day			16.20			16.20		3.24	
	2	рН	-		6 - 7	7		6 - 7		6 - 7	
	3	COD	mg/L		4500 - 7500		···	200 - 250		200 - 250	
	4	BOD	1			- 3500	_	80 - 100		80 - 100	
	5	TDS		-	5000 -			5000 - 7000		30000 - 35000	
	6	TSS	t	ng/L	80 - 1.) 10 - 20 Amount of effluent generation : 1		10 – 20		
12.	ETP detai	Is				Capaci	ity of the ETI	P: 21 CMD			
23.	Note on E	TP technolo	ogy to be	used						atment plant of capacity 21 C uid Discharge(ZLD)	
24.	Disposal	of The ETP	sludge			ETP sl	udge will be	disposed to M	WML. Talo	ja 	
25.	Solid Was	ste Manager	ment			Please	refer Table I	Belaw:			
	Industria	l Waste									
	S. No.	Type of W	Vaste		Uni	t	Quantity	Disposal Met	thod		
	1	Empty bar	parrels, bottles and containers		Nos	. / year	500	Sold to author	authorized recyclers		
	2	E -waste Solid waste from process		Kg	/ year	100	Sold to author	rized recyclers			
	3			Kg	/ year	7200	Used as manu	ire / send to	MWML, Taloja		
	4	Solid wast	id waste from con, technique		Kg	/ year	3000	Send to MW	AL, Taloja		
	5	Solid adso	rhant roc	1 : 1	year	800	Send to incine	vertion MW	/MI Taloia		

				,							
					·nt		Eaur/	ea of limitesion	Er	níssion rate	
		S. No. Pollutant			Source of Emission		Proposed				
		1.	SPM	SPM B		Boiler/DG		<50 mg/m ³			
26.	Atmospheric Emissions (Flue gas characteristics SPM, SO ₂ , NO _X , CO	2.	SO ₂		E	 3oile	r/DG	<1	00 mg/m ³		
						J	эгосс	ess	<1	00 mg/m ³	
			4.	Total 6		inie F	roce		<2	0 mg/m³	
				Conte	nt						
27.			5.	NOx			301le	r/DG	<2	00 mg/m ³	
21.	Stacks emission Details	,	Refer Tabl	le Belov	:						
	Attached to	Boiler (Non	IBR) Kg/hr	Ther Kcal		Fluid He	ater	(Non IBR)		DG KVA	
İ	Capacity	1500		5000	0					315	
	Fuel type	CNG/FO/LD	O/Biofuel	CNG/LDO/Biofuel					LDO		
	Fuel qty kg / hr	103 SCM/hr/ Kg/hr/ 86. 86.23 Kg/hr							/	60 Kg/hr	
	MOC	MS								MS	
	Shape	Round							Rectangular		
	Height m (above ground level)	30							3.5 m		
	Mitigation Measures	Stack	ek							Stack, Acoustic enclosure	
			Pollutant (SPM, SC		MPCB Cons		ent	Emission Standar Limit		rd	
28.	Emission Standard		SPM/TPN			0 mg/Nm ³		150 mg/Nm ³			
			SO ₂			00 mg/Nm	3	135 mg/Nm ³			
			Pollutant		Permissib Standard H)			Proposed Concentration	n		
20		į	SPM (PM	[10]		100 μg/m	13	50-60 μg/m ³			
29.	Ambient Air quality data	i	RPM (PM	12.5)		60 μg/m³	_	20-40 μg/m ³			
			SO ₂			$80~\mu g/m^3$		20-40 μg/m ³			
			NOx			80 μg/m ³		20-40 μg/m ³			
		S. No	Type o	ıf Fı	nel	Proposed			Total		
30.	Details of Fuel to be used:		1	CNG / FO				109.68 SCM/hr / 90.26 Kg/hr	,	109.68 SCM/hr / 90.26 Kg/hr	
			2	2 LDO for DG and boiler		OG and		146.23 Kg/hr		146.23 Kg/hr	
		Source of Fuel: From market/ out sider fuel companie Mode of Transportation of fuel to site: By Road					ies				
31.	Energy		Power Sup	ply: 31	5 K	.VA					
32.	Green Belt Development		DG sets: 0 Green belt	TDG se t area :	t of 350	315 KVA m²	will	be provided			
			Green belt area: 350 m ²								

Member Secretary

		Number	of species of tree	s & shrubs to be planted: 120 Nos.		
	Details of pollution control Systems:	S. No.	Source	To be installed		
		1	Air	By dispersal into atmosphere through chimney of adequate/ recommended height.		
33		2	Water	ETP with RO and Evaporator.		
33		3	Noise	Acoustic enclosure for proposed D.G of 315 KVA & PPE.		
		4	4 Solid Waste Hazardous waste will be disposed to CHWTSDF, Taloja.			
34.	Environmental Management plan Budgetary Allocation	Will be p	provided during l	ilA report		
35.	EIA submitted (If yes then submit the salient features)	EIA Rep	ort submitted.			
36.	Public hearing report (If public hearing conducted then submit the salient features)		I project is in No	tified Industrial area		
37.	Air pollution, water pollution issues in the project area, if any		gulated & monit	effluent from MIDC area already exists. All industries are ored by MPCB in this MIDC area with developed		

The project was considered under category 5(f)-B1 of the schedule of the EIA Notification, 2006. The PP gave detailed presentation for EIA report for proposed greenfield project for R&D pilot plant for food and non-food additives for the following projects sanctioned by Government of India:

Project No.1: Sanctioned by Department of Biotechnology

'Pilot scale translational facility for value added chemicals from biomass'

Project No.2: Sanctioned by Indo German Science & Technology Center

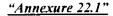
'Design of Selective nanoporous membrane bioreactor for efficient production of biobutanol from lignocellulosic sugars'

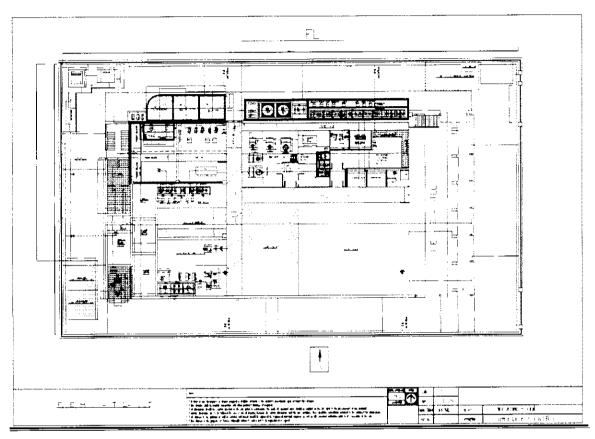
Project No.3: Department of Science and Technology

Green enzymatic fat-splitting technology for production of fatty acids and acyl glycerols

After detailed discussion the Committee made the following observations:

- 1. The baseline studies indicate that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project.
- 2. The project will run as a Zero Liquid Discharge system. The liquid effluent shall be processed through RO, MEE and ETP each of 21 CMD capacity.
- 3. The PP contended that there would not be any odor problem.
- 4. The PP shall be deploying 1.5 TPH boiler and 50,000 kcal/hr thermic fluid heater which will be using CNG/LDO, the emission of thereof shall be let out through stack of height 30m. Notwithstanding the relatively non-polluting character of emissions the TPM <100 mg/Nm³.
- 5. 99% recovery of solvents shall be achieved. Unused solvents shall be sold to authorized vendors.
- 6. The project does not classify as accidental hazardous unit however the Committee insisted that Alcohol water solution should not be prepared in situ but outsourced from outside. *Annexure* 22.1 gives diagram of hazard management facilities provided by the PP.


With Hickory


Chairman

Page 51 of 76

Member Secretary

After considering all aspects of Environmental Impact the Committee decided to **recommend** the project for EC subject to the above (2-6) conditions. This recommendation will be restricted to the projects of Gol presented before the Committee. For any new projects the PP shall apply for fresh EC.

Item no. 23	M/s. Seya Industries Ltd.
11cm no. 25	Who sey a lite destries been

Proposed greenfield project Chlor-alkali plant (270 TPD), coal based Captive Power Plants (CPP), manufacturing of synthetic organic chemicals (888.4 TPD), Sulphuric Acid and allied products (550 TPD) at plot no. D-16, MIDC Tarapur, Taluka-Palghar, District-Palghar, Maharashtra.

The brief information of the project as submitted by the PP is as follows:

1.	Name of project	Greenfield Project of Chlor-Alkali Plant, Coal Based Captive Power Plant, Manufacturing of Synthetic Organic Chemicals, Sulphuric Acid and Allied Products
2.	Name, address, e-mail & contact number of proponent	Mr. Ashok G. Rajani M/s. Seya Industries Limited Plot No. D-16. Tarapur MIDC, Palghar, Maharashtra Email: seyainl@gmail.com Tel: 022-26732894/ 022-66779071
3.	Name of consultant	Name: M/s. Kadam Environmental Consultants

4.		litation of consultant	M/s Kadam Environmental (ABET/EIA/1316/SA/ 2 001					
		ET Accreditation) roject/expansion in existing	extended upto April 4, 2017	xtended upto April 4, 2017						
5.	projec n in ex	t/modernization/diversificatio	New	New						
6.	whether has be project	ansion/diversification, or environmental elearance on obtained for existing t (If yes enclose a copy with iance table)	It is a Greenfield Project	t is a Greenfield Project						
7.	Activi	ty schedule in the EIA	1(d), 4 (d), 5 (f)							
8.	Notifie Area I		Category "B" Total plot area - 156367 m ²	(15.63 ha.)						
9.		of the Notified Industrial MIDC area	Tarapur Industrial Area, Pal							
10		given by SEAC? (If yes then y the meeting)	Yes. 125 th Meeting of State Level April, 2016	l Expert Apprai	sal Committee-1, held on 13 th					
11	(Inclu	ated capital cost of the project ding cost for land, building, and machinery separately)	INR 1972 Cr.							
12	Locati	on details of the project:	Code Latitude A 19°48'25.85"N B 19°48'27.38"N C 19°48'39.72"N D 19°48'41.08"N E 19°48'40.98"N F 19°48'42.80"N Location: Plot No. D-16. Ta Elevation above mean sea le							
13	eritica Sensit bound	ee from protected areas/ fly polluted areas/ Eco ive area/ inter- sate aries naterials (including process	Gujarat State Boundary: 14.06 kms towards North (from project site to Dahanu Road Station)							
15		cals, catalysts & additives)	Detailed in ELA Report							
		ction Details	As given below:							
	Propo	sed Production Capacity:		T						
	S. No.	Products		Quantity (MTPM)	·					
	A	Chlor-Alkali								
	I	Caustic Soda (100%) Lye/Pri	lls/Flakes	8100						
	2	Chlorine		7128						
	3	Hydrogen Gas		202						
16	В	Synthetic Organic Products	<u> </u>	-						
	I	Mono Chloro Benzene (MCE	3)	7500						
	2	Para Nitrochloro Benzene (Pl	NCB)	6000						
	3	Ortho Nitro Chloro Benzene	(ONCB)	3000						
	4	Para Dichloro Benzene (PDC	TB)	3333						
	5	Ortho Diehloro Benzene (OD	OCB)	1666	-					
	6	Di Methyl Sulphate (DMS)		2000						
	7	Di Methyl Aniline (DMA)		200						
	8	Ortho Anisidine (OA)		1800						
- 1	1	Ť		1						

	9	Red B Base					1050	-			
	10	Sulphuric Acid					16500				
	11	Allied Products:				*****					
	i	Thionyl Chloride			3000						
	ii	Liq.SO:				600					
	iii	Liq. SO ₃					6750	_			
	iv	65% Oleum					1500	•			
	v	24% Oleum			·		1500				
	vi	Chloro Sulphonic Acid	L(CSA)				3000		_		
	Details	s of By-Products:	-							!	
	S. No.	Name of Product				Quant (MTP					
	1	Dil. HCl				20320					
	2	Crude Di Chloro Be				600					
	3	Dil. Sulphuric acid (Sodium Hypochlori		<u>) </u>							
	5	Dil. Sulphuric acid (a)							
	6	Meta Nitro Chloro I			CB)	126					
	7	Di Nitro Chloro Ber	nzene (E	NCB)	63					
	8	Sodium Acetate				410					
		s of Captive Power Plan	is:				<u>. </u>				
	S. No.	Plant					(MW)				
	1	CPP-t									
	i	Power					11.35				
	ii	Steam					133 TPH				
	2	CPP-2					45				
	<u>i</u>	Power Waste Heat Recovery	Systen	n frai	m Sulphuric Acid	Plant	43				
	i	Power					8.0				
17	Proces details	s details / manufacturing	<u> </u>	Deta	ailed in ElA report						
18	Rain v	vater Harvesting (RWH)		Deta	illed in EIA report						
19	Total v	Water Requirement		Wat	er requirement wil	l be 813	86 KLD, it	will be sourced	from MID	oc.	
20	Storm	water drainage		SWI	D will be construct	ed and	connected	to natural drain	age system).	
21	Sewag	c generation and treatme	ent	40 k	CLD of STP will be	design	for treating	ng 36 KLD of So	ewage.		
22		nt Characteristics		-							
		ı Inlet and Outlet Chara	cteristic	s of E	TP 1 (Synthetic O	rganic (Chemical p	product Plants		,	
	S. No.	Parameters	ETP Inlet Chara	cteristic	s	ETP Outlet Cl	haracteristi	ics			
	1	Design Flow		<u>/</u>	400			400			
_	2	pН	-		4 - 9			7.5 - 8.5			
23	3	BOD	rite 850 1 (70-72%) 7954 Benzene (MNCB) 126 enzene (DNCB) 63 410 Ints: Capacity (MW) 11.35 133 TPH 45 ry System from Sulphuric Acid Plant 8.0 Detailed in EIA report. H) Detailed in EIA report. Water requirement will be 8136 KLD, it will be sourced from MIDC. SWD will be constructed and connected to natural drainage system. How the system of ETP 1 (Synthetic Organic Chemical product Plant) Fracteristics of ETP 1 (Synthetic Organic Chemical product Plant) Unit ETP Inlet Characteristics ETP Outlet Characteristics 400 m³/day 400 400 400]			
•	4	COD	mg/l		4000 - 5000			<150			
	5	TSS			300 - 400			<20		<u> </u>	
	6	TDS			 					- 	
	7	0 & G									
				s af E		-Alkalı	Plant, Sult		Utilities)		

min repres

	S.			[Т		T		<u> </u>		
	No. Parameters Unit				v Water	After Pr	imary	After	r Tertiary	RO Perr	neate	RO Reject
	1	Design Quantity	m³/day	350	0	3500		3500	l	2470		618
	2	pН		7.0	−7.5	7.0 - 7.3	5	7.0 –	7.5	7.0 – 7.5	5	7.0 - 7.5
	3	BOD ₃ , 27°C	mg/L	25-	30	15-20		<10		< 02		< 100
	4	COD	mg/l.	50-	75	50-60		<50		<05		<300
	5	TSS	mg/L	100	-150	80-100		<50		<04		<250
	6	TDS	mg/L		0-5000	4000-50	00	<500	0	<150		<30000
	Design	Inlet and Outlet Ch	aracterisi 	ics fo	r MEE 							
	S. No.	Parameters	Unit		Fed to	MEE	After treatn	MEE nent				
	1	Design Quantity	m³/ day		700		700					
	2	pН			7.0 -	7.5	7.5-8.	.5				
	3	BOD ₃ , 27 ⁰ C	mg/L		<100		< 02					
	4	COD	mg/L		<300		<05					
	5	TSS	mg/L		<250		<04					
	6	TDS	mg/L		<3000	0	<150					
24	ETP de	tails n ETP teehnology to	be used	Qt Qt M Tv ET tre	Capacity of ETP I & ETP II: 400 KLD & 3500 KLD Qty. of treated Effluent Recycled: 2927 KLD Qty. of Effluent sent to CETP: 318 KLD Membership of CETP (if require): Yes, attached in EIA report Two separate effluent treatment plants will be provided: ETP 1: Primary, secondary and tertiary treatment will be provided and treated effluent will be sent to CETP. ETP 2: Primary, tertiary, RO and MEE will be provided and treated							
26	Dispos	al of The ETP sludg	e		effluent will be recycled back (ZLD). To MWML, Taloja CHWTSDF							
27		Vaste Management		+	As given below:							
		<u> </u>			S. No. Pollutant		Source o Emission		Emissio Standard Limit	4 Cor	ncentra lue gas	
28		oheric Emissions (F. eristics SPM, SO ₂ , I	_	1.	S	РМ	Boi	ler/DG	100 mg/	mg/m³ <100 mg		m ³
	,			2.	S	O ₂	Boi	ler/DG	100 mg/	00 mg/m ³ <100 mg/m		m ³
				3.	N	Юx	Boi	ler/DG	100 mg/	m ³ <10	00 mg/1	m³
29	Stacks	emission Details		Re	fcr Tabl	e Below:						· · · · · · · · · · · · · · · · · · ·
	Details	of Process Vents ar	d APCM:									
	Stack No.	Stack Attached to		tack t.,	Stack Dia.	Stack Exit	Sta Ex	ick it	APCM		expecte Collutar	

missigur

Page **55** of **76**

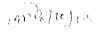
					(Top m		Veloci m/s	٠٠,٦٠	Temp. °K				
Chlor	-Alkali Plant												
i	Waste air De- Chlorination U	nit	30)	0.40		1.5		308	3 Stage Caus Serubbing System	tic	Cl ₂	
2	HCl synthesis I	Jnit	30)	0.15		1.5		308	Single Stage DM Water Scrubbing System		HCl, (C1 ₂
Synth	etic Organic Chen	_	duc	ts pla	nt								
3	Nitro Chloro be plant (NCB)	enzene	15	;	0.50		1.5		308	Caustie Scrubber		NOx	
Sulph	uric Acid Plant												
1	Chloro Sulphor Acid vent	nic	26)	0.40		10.0		308	HCl gas is scrubbed wit CSA (part of process) followed by vent		HCl	
2	Sulphuric acid	plant	50	,	1.50		12.0		323	Serubber followed by stack. Online SO2 analyzer		SO ₂ , A	Acid Mist
3	Thionyl Chloric plant	ie	30	,	0.25		12.0		323	Serubber followed by stack		HCl. S	SO ₂
4	Sulphuric Acid Chlorine shed	Plant	15		0.50		1.5		308	Caustic Scrubber		Cl ₂	
Details (of Flue Gas Stack	s and AP	and APCM							1			1
Stack No.	Stack Attached to	Capaci	ty	Stac Ht.,	k m	Stac Dia. (Top			ick Exit locity,	Stack Exit Temp, °K	AP	°CM	Expected Pollutant
1	Boiler (Waste Heat Recovery) At Sulphuric Acid Plant (8 MW)	32 TPJ:	I	40		1.0		15.	2	523		equate ek Ht.	PM, SO ₂ , NOx
2	DG Set (1.5 MW)	1.5 MV	ν <u> </u>	30		1.2		15.	0	373	Sta	equate ck Ht.	PM, SO ₂ . Nox
3	Boiler – CPP 1 (11.35 MW)	140 TP	Н	80		3.2		1 7.	5	423	ade fiel		PM. SO ₂ . NOx
4	Boiler – CPP H (45 MW)	200 TP	Н	90		3.0		17.	5	423		P with quate d	PM, SO ₂ . Nox
				S.		Туре	of Fu	el	Prop	osed		ource	
Details of Fuel to be used:			1		Coal			1104	TPD	ł	mported	l	
Clans (2		HSD			300	lit/hr	7	ocał Do	

mill come

Page **56** of **76**

		Pla	nts		Requirement	Source		
		Chi	or-Alkali		45 MW	Power Plant (45 MW)		
31	Energy	Che	othetic Orgar emical Produ phuric Acid	ets and	16.89 MW	.89 MW Power Plant (11.35 MW) Waste Heat Recovery Boiler (8 MW)		
		basis			used as an emerge	ncy backup power on need		
32	Green Belt Development	Gree	n belt: 25800) m ²	& shrubs to be pla			
		S. No	Name of Plant	Paramet s	Operational	Controls at Design Stage		
				Air Emissio	ns	stic Scrubber		
		1	Chlor- Alkali Plant	Waste Water		I be treated in ETP followed MEE treatment and will be		
			1 min	Solid Waste	Brine Sludg	Brine Sludge will be sent to CHWTSDF		
	Details of pollution control Systems:	2	Syntheti c Organic chemical Products	Air Emissio	ns Caustic Seri	Caustic Scrubber		
				Waste Water	Effluent will to CETP	Effluent will be treated in ETP and sent to CETP		
33				Solid Waste	Will be sent per the SHV	to CHWIF/ CHWTSDF as V rules		
		3		Air Emissio	followed by	Scrubbed with CSA (part of process) followed by vent/ Caustic Scrubber/ On line SO ₂ analyser		
			Sulphuri c Acid Plant	Waste Water	No waste wa	ater is generated		
				Solid Waste	Waste will b	Waste will be given to appropriate vendors		
				Air Emission	ns ESP and Ad	ESP and Adequate Stack Height Effluent will be treated using RO and MEE and will be reused		
		4	CPP I &	Waste Water				
				Solid Waste		Fly Ash will be given to Brick manufacturing plant		
		S No.	i Head		Approxim Capital co (INR in La	st Recurring cost		
		1	Air Pollution Monitoring	<u>; </u>	790	103.5		
١	Environmental Management plan Budgetary Allocation	2	Water Poll & monitori	ng	1/51	1666		
		3	Noise Polli Solid and I			0.2		
		4	waste mana	gement	22	10		
		5	Ecology an Biodiversit		5.7	1		
_	EIA submitted (If yes then submit	Total			2568.7	1780.7		

(my interfere


		Baseline monitoring was carried out in Summer season of March-June 2016. EMP, RA/DMP is provided in detail in the EIA report
36	Public hearing report (If public hearing conducted then submit the salient features)	Not Applicable. Proposed project is in Notified Industrial area
37	Air pollution, water pollution issues in the project area, if any	No pollution issues regarding Air and water identified in the area. Effluent will be directed to existing CETP of the industrial area. All industries are being regulated & manitured by MPCB in this MIDC area with developed infrastructure

The PP gave a detailed presentation for production of Chlor-alkali, synthetic organic chemicals, Sulphuric acid & allied products and 2 Captive Power Plants. The project was considered under category 4(d) [chlor-alkali]/5(f) [synthetic organic chemicals] /1(d) [captive power plant], B1of the schedule of EIA Notification 2006.

After detailed discussion the Committee made the following observations:

- 1. The PP produced a letter from Deputy Engineer, MIDC Sub-division, Tarapur. The letter was sent to Water Resource Department for renewal for 8.20 MCM and additional 13.1 MCM of water. This allotment will be done at the State cabinet level. Therefore any EC granted will be conditional to the water requirement being sanctioned by the Government.
- 2. The plot layout shall contain 33% of non-built-up area as green belt where trees shall be planted and 12% of total plot area as parking (including visitors` parking). An extra gate shall be provided on northern side for easy evacuation in addition to the already existing gates. Thus there will be a total of 4 gates at south-western (1) and western (2) sides.
- 3. The Committee was concerned about proper disposal of by-products. The by-products' names and its mode of disposal was depicted in the following table-

Sr. no.	Name of the by-product	Mode of disposal
1.	Dilute HCl (30%)	Sell to proper industry
2.	2-Dichloro Benzene	To be used as raw material in captive DCP plant of PP
3.	Dil. H ₂ SO ₄ (78% – 80%)	Sell to fertilizer industry
4.	Sodium Hypochlorite	Sell to textile industry
5.	Dil. H₂S	Sell to Single phosphate fertilizer
6.	Meta Nitro Benzene	Sell to proper industry
7.	Di nitro Benzene	Captive use
8.	Sodium Acetate	Sell to proper industry



- 4. Annexure 23.1 gives details of Air emission and control.
- 5. PP shall ensure power back-ups for all APCs and independent metering. An outlet TPM of less than 100 mg/Nm³ shall be achieved. Suitable control measures to handle fugitive emissions shall be installed.
- 6. Provision shall be made on site for, storage of 2 days of fly ash generated. Fly ash shall be sold to cement/ brick manufacturers.
- 7. Hazardous waste shall be stored in an elevated area in a scientific manner (10 MT at given time). *Annexure 23.2* gives details of mode of disposal of hazardous waste.
- 8. PP has done an elaborate study on Risk Assessment and Risk Mitigation. *Annexure* 23.3 gives layout diagram for various hazard management facilities. MPCB should verify this before granting Consent to Operate. Workers should be physically analyzed for Benzene metabolites at regular intervals. PP shall establish online monitoring of Benzene.

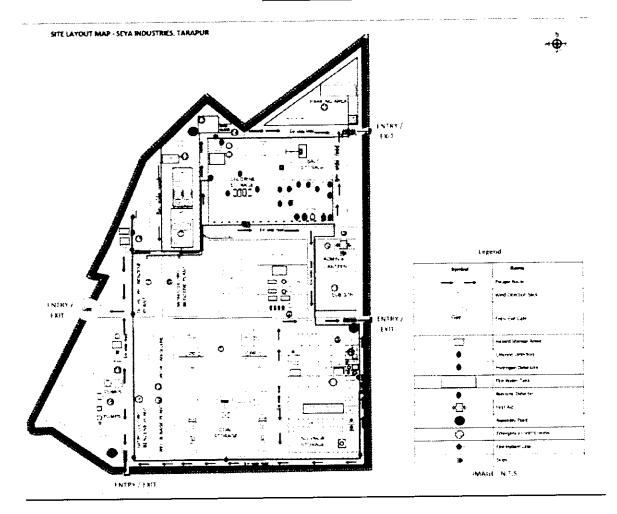
The baseline studies indicate that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project. After considering all aspects of Environmental Impact the Committee decided to **recommend** the project for EC subject to the above (1-8) conditions.

"Annexure 23.1"

Stack No.	Stack Attached to	Stack Ht., m	Stack Dia. (Top), m	Stack Exit Velocity, m/s	Stack Exit Temp, °K	АРСМ	Expected Pollutants
Chlor-A	Alkali Plant						-
1	Waste air De- Chlorination Unit	30	0.40	1.5	308	3 Stage Caustic Scrubbing System	Cl ₂
2	HCI synthesis Unit	30	0.15	1.5	308	Single Stage DM Water Scrubbing System	HCl, Cl ₂
Synthet	tic Organic Chemical	products	plant				
3	Nitro Chloro benzene plant (NCB)	15	0.50	1.5	308	Caustic Scrubber	NOx
Sulphu	ric Acid Plant						
1	Chloro Sulphonic Acid vent	20	0.40	10.0	308	HCl gas is scrubbed with CSA (part of process) followed by vent	НСІ
2	Sulphuric acid plant	50	1.50	12.0	323	Scrubber followed by stack, Online SO ₂ analyzer	SO ₂ , Acid Mist
3	Thionyl Chloride plant	30	0.25	12.0	323	Scrubber followed by stack	HCI, SO ₂

4	Sulphuric Acid Plant Chlorine shed	15	0.50	1.5	308	Caustic Scrubber	CI ₂	
---	--	----	------	-----	-----	------------------	-----------------	--

Details of Flue Gas Stacks and APCM:


Stack No.	Stack Attached to	Capacity	Stack Ht., m	Stack Dia. (Top), m	Stack Exit Velocity, m/s	Stack Exit Temp, K	APCM	Expected Pollutants
I	Boiler (waste Heat Recovery) At Sulphuric Acid Plant (8 MW)	32 TPH	40	1.0	15.2	523	Adequate Stack Ht.	PM, SO ₂ , NOx
2	DG Set (1.5 MW)	1.5 MW	30	1.2	15.0	373	Adequate Stack Ht.	PM, SO ₂ , Nox
3	Boiler – CPP I (11.35 MW)	140 TPH	80	3.2	17.5	423	ESP with adequate field	PM, SO ₂ . NOx
4	Boiler – CPP II (45 MW)	200 TPH	90	3.0	17.5	423	ESP with adequate field	PM, SO ₂ . Nox

"Annexure 23.2"

S. No.	Type of Waste	Hazardous Waste Category	Quantity MTPA	Source	Treatment / Disposal
Haza	rdous Waste				
1	Distillation Residue	20.3	672	Process	Collection, Storage, transportation and send to MWML, Taloja CHWIF for incineration.
2	Spent Oil	5.1	10	Process	Collection, storage, reuse/ sale to authorized recycler
3	ETP Sludge and MEE Salts	35.3	7280	ЕТР & МЕЕ	Collection, Storage, transportation and send to MWML, Taloja CHWTSDF
4	Spent Carbon	36.2	137.5	ЕТР	Collection, Storage, transportation and send to MWML. Taloja CHWTSDF
5	Spent Catalyst	35.2	248.4 MT per 1-2 years	Process	Will be given for regeneration/ reactivation to authorized vendor
6	Disearded drums and containers	33.1	2000 No./M	Process	Collection, decontaminations, storage, reuse/ sale to authorized recycler
Non-	Hazardous and othe	r Solid Waste			
1	Brine Sludge		6804	Caustic Soda Plant	Collection, Storage, transportation and send to MWML, Taloja CHWTSDF
2	Sulphur Sludge	-	396	Sulphuric Acid Plant	Sludge will be given to authorized vendors
3	Fly ash (CPP-I & CPP-II)		23846	Coal Based Power Plants	Shall be Sold to Brick making unit
4	STP Sludge	-	0.046	STP	Will be used as Manure in Gardening

yer, profess.

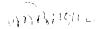
"Annexure 23.3"

Item no. 24	Mining of Quartzite at Bhandara (14.33 ha) [new]
	[Shri. P. M. Golchha, Nagpur (M.S.) from 9000 TPA to 90,720 TPA]

PP remained absent hence deferred.

Item no. 25	Major Minerals Ratnagiri (2)

PP remained absent hence deferred.


graph (Glice

Thuy

Item no. 26	M/s. Vedant Re-Rolls Pvt. Ltd.
	New Project 400 MTDPhase III, MIDC Area, Additional Jalna, Dist. Jalna.

The brief information of the project as submitted by the PP is as follows:

1	Name of the Project	VEDA!	NT RE-RO	OLLS PVT I	,TD						
2	Name. address. & contact number of Proponent	Phase I Jaina	Mr. Narendra Pahade Phase III, Addl MIDC area. Jaina 9422216993								
3	Name of Consultant	M/s. U	M/s, Ultra-Tech								
4	Accreditation of consultant (NABET Accreditation)	NABE	NABET Certificate Number: NABET/EIA/1417/RA010								
5	New Project / Expansion in existing project/Modernization/ Diversification in exiting project	New									
6	If expansion/Modernization. Whether environmental clearance has been obtained for existing project	New pi	New project								
7	Activity schedule in the E1A Notification	3(a), "l	В"								
8	Area Details	Built u	p area:24.	53,469.00 m .662.40 m ²							
9	Name of the Notified Industrial area / MIDC Area			ional MIDC							
10	TOR given by SEAC?	Yes. T	OR receiv	ed during 8	4th SEAC						
11	Estimated capital cost of the Project (including costfor land, building, plant and machinery separately)	Rs 125.00 Cr.									
12	Location details of the project:	1. Latitude19°52'30.83"N 2. Longitude75°49'22.82"E 3. Location- A8 additional Jalna 4. Elevation above Mean Sea Level (metres) 563 meters									
13	Distance from Protected Areas / Critically Polluted areas / Eco-sensitive areas/ inter- State boundaries	Withir eco-se	n 10 km ar nsitive are	rea of influer eas or inter-s	nce zone th tate bound	ere is no protected area, aries	eritically p	olluted area.			
14.	Raw materials (including process		S no.	Raw Mate	rial	Quantity (TPD)	Logistic	es .			
	chemicals, catalysts, & additives).		1	MS Scrap	-	170	By road	1			
			2	Sponge In		260	By road				
				Ferrous Si		0.40	By road				
			3	Met Coke		0.05	By road				
			4			0.80	By road				
		_	5	Aluminun	n	0.80	Бутоас	1			
15	15 Production Details		ne of lucts. roducts rmediate lucts	Existing	Proposed (new/mo	l activity dernization/expansion)	Total	Total			
			n ducts ets/Ingot	Nil	400 TPD 400 TPD		400TPD 400TPD	6000TPM			

		MS Structural TMT Bar
16	Process details / manufacturing details	This industry will be engaged in production of MS Billet/Ingot or MS Structural TMT Bar
17	Rain Water Harvesting	Proposed to collect the roof top water and collected in tank.
18	Total Water Requirement Total water requirement:	Fresh water (CMD): 106 & Source MIDC Recycled water (CMD): 78 Use of the water: Process (CMD): Cooling water (CMD):47 DM Water (CMD): Dust Suppression (CMD): Drinking (CMD):6 Green belt (CMD):48 Fire service (CMD): Others (CMD): scrubber 5
19	Storm water drainage	Natural water drainage pattern By gravity quantity of storm water Size of SWD 300x450mm
20	Sewage generation and treatment	Amount of sewage generation (CMD)12 Proposed treatment for the sewageSTP Proposed Capacity of the STP (CMD) (If applicable)15CMD Proposed
21	Effluent characteristic	Water is used only for cooling application; hot water is sent to cooling tower and recirculated.
22	ETP details	NA
23	Note on ETP technology to be used	NA
24	Disposal of the ETP sludge (If applicable)	NA
25	Solid waste Management:	Hazardous Waste: Empty oil drum shall be sold to recyclers. Solid Waste:
	- Ividitage interior	# Particulars Quantity
		This solid waste will be used for brick manufacturing and filling of low line area.
26	Atmospheric Emissions: Flue gas characteristics(SPM, SO2, NOx, CO)	S. Pollutant Source of Emission rate Concentration in flue gas 1 SPM Furnace 1.23 g/sec -
27	Stack emission Details: (All the stacks attached to process units, Boilers, captive power plant, D.G. Sets. Incinerator both for existing and proposed activity). Please indicate the specific section to which the stack is attached. e.g.: Process section, D.G. Set. Boiler. Power Plant. incinerator etc. Emission rate (kg/hr.) for each pollutant (SPM, SO2, NOx, ctc.	Plant section No. I from Diameter ground level (M) Wet 1 35 1 1.23 g/sec 140 Wet Scrubbe, Venturi, ID Fan attached to the furnace

marial street

28	Details of Fuel used:	S. No.	Fuel	(TPD/KI.		Calorific value (Kcals/kg) %	Ash %	Sulphur %		
			<u></u>	Existing	Proposed _					
		L	Gas			-	-			
		2	Naphtha_	-	-	ļ		 -		
		3	HSD	<u> </u>	<u> </u>	-		-		
		4	Fuel Oil	<u> </u>	-	-	ļ-	-		
		5	Coal	<u> </u>	20MTD	_				
		6	Lignite	·	-		_			
		7	Electricity	-	35000KVA	<u> </u>	1			
		Mode o	ortation of Tr		line					
29	Energy	: Exi	supply: sting power r posed power	equirement: requiremen	t:35.000KVA					
		DG sets:320 kVA -1 No. Number and capacity DG sets to be used (proposed)								
	t I	Details	of the non-co	onventional	renewable ene	rgy proposed	tobe used	d:		
30	Green Belt Development	Green belt area 9.600 Sq. Mtrs. Number and species of trees to be planted 120 Nos Number, size, age and species of trees to be cut, trees to be transplanted Nil								
31	Details of Pollution Control	S. No). Parameter	- рт	oposed to be in	nstalled				
31	Systems:	i)	Air	Dı	ust collector w oposed		er	1		
		ii)	Water	Pr	efabricated ST	P	-]		
		iii)	Noise							
		iv)	Solid Wa		ollection . Segr	regation& reus	se 			
32	Environmental Management plan Budgetary Allocation		l cost = 89.25 1 Cost = 9.25							
33	EIA Submitted (If yes then submit the salient features)	Yes								
34	Public hearing report (If public hearing conducted then submit the salient features)	Projec	et comes unde	r MIDC Jal	na 					

Previous Consideration: Minutes of the 84th Meeting held on 1st & 2nd August, 2014

Decision: The case was considered as B1 category. The case was discussed on the basis of the presentation made by the proponent. Besides the TOR presented by the project proponent and the Model ToR, following points shall also be covered during the preparation of EIA report:

- 1. The stack height and diameter details.
- 2. Detailed water balance including Rain Water Harvesting.

(m) m (c) c co Member Secretary

Page 64 of 76

- 3. Scientific storage and disposal of slag and pre-treatment of slag. Storage facility to be shown on layout plan.
- 4. Water sampling of water in lake of north and its result.
- 5. 10 station for Ambient Air Quality (baseline and incremental).
- 6. As the PP proposes to use Pet Coke outsourced from Reliance Industries Ltd, its properties, sulphur content and recovery and control of SO2 emission in EIA to be incorporated.

The environmental consultant to be engaged for preparation of EIA/EMP report should be accredited by Quality Council of India (QCI)/ NABET. For data collection and analysis only MoEF or NABL approved laboratories should be employed. As soon as the draft EIA report is prepared, the same may be submitted to the Maharashtra Pollution Control Board (MPCB) for conducting public hearing as per EIA Notification, 2006 and MoEF OM no. J-11013/36/2014-AI-I dt.16th May, 2014. After revising the EIA Report, addressing all concerns raised during the public hearing /public consultation, the same shall be submitted to the SEAC I, Maharashtra for appraisal.

Previous Consideration: The 111th Meeting held on 28th & 29th September, 2015

Decision: The Committee noted that the project was considered as 3(a) - B1 category of E1A Notification, 2006. The PP gave a detailed presentation of their proposed project to produce billets/ingots of capacity 400 TPD and/or MS structural bars of capacity 400 TPD.

After detailed deliberations the Committee made the following observations:

- 1. The parking should have a minimum area of 6600 sq. m and to be shown in the layout plan.
- 2. Pet Coke will not be used for any circumstances as a fuel.
- Stack height calculation should be given with all details of quantum of particulate matter in the emission. Pollution controlling equipments shall be installed to ensure a particulate level of emissions at the Stack end not to exceed 100 mg/Nm³.
- 4. Secondary fume extraction system shall be incorporated as per the CPCB norms.
- 5. Slag management and disposal shall be carried out without any adverse Environmental Impact.
- 6. Project requires 138 m³/day water. PP has not yet obtained consent from MIDC for this. Nor has the PP shown any captive water source. PP will have to produce proper evidence of adequate water availability.

For the compliance of the above points the proposal is deferred.

Previous consideration: The 124th Meeting held on 30th & 31st March, 2016

Decision: The Committee considered the project under 3(a) - B1 category of EIA Notification, 2006. The PP gave a detailed presentation of their proposed project to produce billets/ingots of capacity 400 TPD and/or MS structural bars of capacity 400 TPD.

The proposal was considered in the 111th meeting when certain points of compliance were given. The PP submitted the compliance as follows:

in Hillegen

Chairman

Page 65 of 76

Member Secretary

S.	Point for compliance	Submission of the PP	Observations of the Committee
no.	•		
1.	The parking should have a minimum area of 6600 sq. m and to be shown in the layout plan.	6600 sq. m has been shown in the layout plan for parking.	accepted
2.	Pet Coke will not be used for any circumstances as a fuel.	The PP gave a commitment not to use pet coke as a fuel. Only electric induction furnace will be employed.	Noted. However, in the Consent to Establish the MPCB has allowed use of coal in the furnace, Coal should not be used. The MPCB should modify the Consent to Establish.
3.	Stack height calculation should be given with all details of quantum of particulate matter in the emission. Pollution controlling equipments shall be installed to ensure a particulate level of emissions at the Stack end not to exceed 100 mg/Nm ³ .	The stack height required has been worked out as 17m considering the particulate matter emissions after the flue gases passed through the pollution controlling equipments has been shown as 1.23gm/s.	Noted. It is not clear that how the particulate emissions have been worked out as 1.23gm/s. The PP may produce details of emission levels at furnace source and subsequent reduction in particulate matter as the flue gases passes through the Ventury Scrubber and Cyclone. The stack height calculation may be carried out using the value of particulate matter emissions obtained at the cyclone outlet.
4.	Secondary fume extraction system shall be incorporated as per the CPCB norms.		Noted. However the calculations as per the observation 3 above will have to be applied for the system.
5.	Slag management and disposal shall be carried out without any adverse Environmental Impact.		material matrix, it does not leach. It will not have any adverse impact on environment.
6.	Project requires 138 m³/day water. PP has not yet obtained consent from MIDC for this. Nor has the PP shown any captive water source. PP will have to	from Deputy Engineer, Jalna indicating that the required quantum of water will be provided.	supply from MIDC will be required.

produce proper evidence of	infrastructure work. No
	date for completion has
	been given.

After detailed discussion the Committee decided to defer the proposal for compliance of point no. 3, 4 & 6 above.

Previous consideration: The 128th Meeting held on 2nd, 3rd & 4th June, 2016

The PP made a presentation on the issues raised in the 124th meeting. After discussion the Committee made the following observations:

- 1. The revised water budget indicates that water demand of 65 m³/day is apparently on the basis of production involving manufacturing of structured steel (TMT) and not ingots as indicated in the application of Form 1. Therefore Form 1 will have to be revised by PP and necessary change in the EIA Report with regards to final production shall be made. Secondly quantity of water required for the production has to be worked out process-wise in detail.
- 2. The PP has given a description of emission control and calculation of stack height. The emission from the induction furnace has been shown as 150 mg/m³, this should be more rationally worked out on the basis of quantum of scrapped metal charged, the period for which the melting process is carried out and number of 'heats' carried out in an hour. The primary fume calculation should be based on the above variables and stack height calculation should be on the basis of particulate matter emission/hour. Similarly secondary fume extraction has to be managed by roof top suction and containment through scrubber of suitable capacity.
- 3. The PP submitted a letter of Deputy Engineer, MIDC, Sub-Division Jalna that the request of water for their project could be considered only after the pipeline infrastructure work of MIDC is completed for which a period of 3 months should be required. The Committee desired that a firm assurance for water by Executive Engineer, MIDC shall be submitted.

For the compliance above the proposal was deferred.

Previous consideration: The 133rd Meeting held on 24th & 25th August, 2016

Decision: The Committee noted that the project was considered as 3(a) - B1 category of EIA Notification, 2006. The PP gave a presentation on compliances points raised in 128th meeting. The Committee made the following observations:

- 1. The revised water balance now is pegged at 105.5 CMD; in the earlier presentations it was shown as 135 CMD and 65 CMD respectively. Reasons for these variations may be given and final figure backed by justification.
- 2. One induction furnace will be fired at 1 time; if PM emission in 1 heat is taken as 20kg, the stack height comes to 45m. PP has calculated this as 35m and this need to be corrected. The emission management will be through Venturi scrubber and high efficiency hydro cyclone to achieve a TPM level less than 100 mg/Nm³.

Bugh when

Page **67** of **76**

Chairman

Member Secretary

3. PP submitted a letter from Deputy Engineer, MIDC sub-division, Jalna. The letter does not indicate availability of water.

The PP submitted that he had a private tank situated at a distance of 9km from the plant. The Committee desired that its sub-committee should visit the site and verify the water availability. Deferred for the site visit.

Previous consideration: 135th meeting held on 21st, 22nd & 23rd Sept. 2016

<u>Decision:</u> PP remained present. However PP did not produce the requisite yield certificate from GSDA. Hence deferred.

Present consideration: 136th meeting

The Committee noted that the project was considered as 3(a) - B1 category of ElA Notification, 2006. The PP gave a detailed presentation of their proposed project to produce billets/ingots of capacity 400 TPD and MS structural bars of capacity 400 TPD.

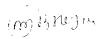
PP submitted certificate from Senior Geologist, GSDA Jalna certifying that from the various sources of water 175 CMD of water can be made available. The requirement of water for the project is pegged at 105 CMD.

After deliberations the Committee made the following observations:

- 1. The layout should have parking of 6600 sq.m and green belt of 33% of open area.
- 2. Pet coke will not be used under any circumstances.
- 3. The PP shall have a stack of height 45m. The emission management will be through ventury scrubber and hydrocyclone to achieve an outlet TPM of <100 mg/Nm³. Secondary fume extraction system shall be incorporated as per the CPCB norms.
- 4. Slag shall be disposed off without causing any obstruction to existing water courses.
- 5. PP shall utilize captive sources of water during scarcity months if MIDC is unable to produce requisite amount of water.
- 6. Metal containing slag will be separated using electromagnet and refuse shall be used as road constructing material.
- 7. The workers in the plant should be protected from extreme temperature by providing them with heat resistant clothing and adequate rest periods to prevent over exposure. There should be regular health check-ups to monitor physical parameters of workers who are employed near the furnace.

The baseline studies indicate that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project. After considering all aspects of Environmental Impact the Committee decided to **recommend** the project for **EC** subject to the above (1-7) conditions.

million


Member Secretary

Page **68** of **76**

Item no. 27	M/s. Alkyl Amines Chemicals Ltd.
	30000 KLPY anhydrous (absolute) alcohol manufacturing plant at plot no. A-7 & 25, MIDC Patalganga, Village-Kaire, Tal-Khalapur, Raigad

The brief information of the project as submitted by the PP is as follows:

ī	Name of the Project	30000 KLPA Anhydrous (Absolute) Alcohol Manufacturing Plant at Patalganga MIDC
2	Name, address, e-mail &contact number ofProponent	Shri, Kirat Patel Executive Director Alkyl Amines Chemicals Limited. 401-407 Nirman Vyapar Kendra, Plot No. 10, Sector 17, Vashi, Navi-Mumbai 400703. kirat@alkylamines.com Phone: 022-24920809
3	Name of Consultant	Ultra-Tech
4	Accreditation of consultant (NABET Accreditation)	Ultra- Tech Environment consultancy and Lab (Lab. MoEF gazetted). NABET/EIA/1417/RA010
5	New Project / Expansion in existing project/Modernization/Diversification in exiting project	Expansion
6	If expansion/Diversification, whetherenvironmental clearancehas been obtained forexisting project (If yes.enclose a copy withcompliance table)	Existing plant commissioned during 1986.
7	Activity schedule in theEIA Notification	Synthetic Organic Chemical Industry 5(f)
8	Area Details	Total plot area (Sq. m.):31480
9	Name of the Notified Industrial area / MIDC Area	PatalgangaMIDC Area.
10	TOR given by SEAC? (If yes then specify the meeting)	Current proposal was presented in 123 rd meeting of SEAC I dated 11 th March 2016 to obtain Terms of Reference.
11	Estimated capital cost of the Project (including cost for land, building, plantand machinery separately)	Rs. 4.28 Cr
12	Location details of the project:	Plot No. A-7 & 25, MfDC Industrial Area, Patalganga Village – Kaire, Tal. – Khalapur, Dist. –Raigad, Maharashtra. PIN – 410 220 Geographical Co-ordinates Latitude: 18° 52' 52.95" N Longitude: 73° 10' 45.82" E Elevation above Mean Sea Level (meters): 20
13	Distance from ProtectedAreas / Critically Pollutedareas / Eco- sensitive areas / inter-State boundaries	Kamala bird sanctuary is situated at 5.8km, however Patalganga MIDC is located outside the declared Eco-Sensitive zone of the sanctuary.
14	Raw materials (includingprocess	Specially Denatured Spirit as raw material
1.5	chemicals, catalysts, &additives) Production details	Aluminosileate as molecular sieve 30000 KLPA Anhydrous (Absolute) Aleohol
15	r foduction details	30000 REL A Allingtions (Alessand) Alles

	Process details / manufacturing details	adsorbents an	se to use Moleular Si d for vapour phase e size opening 3 angs	thanol dehydra	tion the	sieve devel	oped is metal al	uminosiicates witi
		(K ₂ O, Na ₂ O). During dehyd	Al ₂ O ₃ . SiO ₂ . XH ₂ O tration of ethanol, the otassium form of mo	water of hydrolecular sieves h	olysis fi nas pore	lls the cavit	ies or pores in the	he molecular imeter of water
		molecule is 2	.8 angstrom and the having strong dipol orcs, Ethanol vapour	diameter of eth es and elastic.	anol mo They are	decule is 4.4 drawn into	angstrom. The the porcs and c	ondensed at the
		of the molecu	ılar sieves.					
7	Rain Water Harvesting(RWH)	Level of the	Fround water table: If RWH tank(s) and G	NA.				
		Location of the	he RWH tank(s): NA					
		Size, nos of r	echarge pits and Qua	ntity: NA	-4). NIA			
		Budgetary all O & M cost	location (Capital cos	and O&M cos	st): NA			
8	Total Water Requirement	Sr. No.				sting uent	Proposed Input	Proposed Effluent
		1.0	Domestic	30	20		0	0
		2.0	Industrial					
-			2.1 Processing	30	95		0	6*
			2.2 Boiler	95	20		0	0
ļ			2.3 Cooling	705	147		6	0
			2.4 DM Water	55	35		0	0
			Total Industrial	885	297	<u> </u>	6	0
		3.0	Gardening	2	317		0	0
			Total (1+2+3)	917	317			
19	Storm water drainage	Quantity of s Size of SWD	r drainage pattern: N storm water:NA o: NA					
20	Sewage generation andtreatment	Proposed tre	ewage generation (C atment for the sewag the STP (CMD) - 25	e: Upto Tertiai	ry Treati	ment recycl	ed for gardening	<u>.</u>
21	Effluent characteristic	SR. NO.	PARAMETER	RAW EFFLUENT		TREATE QUALIT (MPCB I	Y	UNITS
		1.	pH	7-9		6.5-8.5		
		2.	B.O.D	1000 - 1500		Max. 100)	Mg/lit.
		3.	C.O.D	2000 – 3000		Max. 250		Mg/lit.
		4.	T.S.S.	100 - 250		Max. 100		Mg/lit.
		5.	Oil & grease	3 – 5		Max. 10		Mg/lit.
22	ETP details	Amount of t Capacity of Amount of Membershir	effluent generation (Greated effluent recyc the ETP (CMD): 120 water send to the Sev to of the CETP (If req	led (CMD):29°) m³(Existing) ver Line (CMD uire): Already	7m³/day)):Nil membe	г		
23	Note on ETP technology to be used	Effluents are oxidation. T Biomass is s filter and ac into CETP.	e treated in ETP by p the treated degasified the treated degasified the treated degasified the treated degasified tivated earbon. Final	process such as I mixed liquor of bed. Clarified ly treated wate	equalization equal	ation and no le secondar rater is treat ted with coo	ed with tertiary	arate biomass. treatment with sai
	Disposal of the ETP sludge (If				L CIM			

and steples

136th Meeting of State Level Expert Appraisal Committee - 1 held on 5th, 6th & 7th October, 2016

	Solid waste Management	Γ.,		Otri	Treatment		Disposal			
		Waste Distilla Residue		Qty 30mt/year	Treatment		CHWTSDF/ Authorized co-processor			
26	Atmospheric Emissions(Flue gas characteristics	L		ons envisaged from	n proposed project. H	nce, new stack is not proposed				
Ì	SPM, SO2, NOx, CO, etc.)						***************************************			
27	Stack emission Details: (All the stacks attached toprocess units, Boilers, captive power plant, D.G. Sets, Incinerator both forexisting and proposedactivity). Please indicatethe specific section towhich the stack is attached.e.g.: Process section, D.G. Set, Boiler, Power Plant, incinerator etc. Emissionrate(kg/hr) for eachpollutant (SPM, SO2, NOxetc, should be specified				m proposed project. H	ence, new stack	is not proposed			
28	Emission Standard		stack propos				·			
29	Details of Fuel to be used:	Type:- Imported / Indian Coal Transportation: - Through dumpers from Port. The existing consented quantity of 96 MTD imported coal / 140 MTD Indian coal is sufficient to cat for this proposed expansion. No additional requirement for proposed expansion.								
30	Energy	Existing Total power requirement Connected load – 3622 KW Maximum Demand – 1860 KVA Source: MSEDCL (22 KV express Feeder) Proposed Loads Connected - 150 KW Consumed - 75 KW								
31	Green Belt Development	Green belt area (Sq. m.): 1840 m ² Existing No. of trees: 183 Nos. Number, size, age and species of trees to be cut, trees to be transplanted: Nil								
32	Details of Pollution Control Systems:									
		1								
	Control Systems.	S. No.		Existing		Proposed to b				
	Control Systems.	1 1	Air		& Scrubber for & Stack as per	Not applicable manufacturing	e for proposed alcohol g plant			
	Control Systems.	No.	Air Water	Dust Collector Steam Boiler of MPCB Treated effluer treatment in E Domestic sewa treatment in S	& Stack as per It to CETP after IP Ige to greenbelt after IP	Not applicable manufacturing Not applicable manufacturing	e for proposed alcohol g plant e for proposed alcohol g plant			
	Control Systems.	No.		Dust Collector Steam Boiler MPCB Treated effluer treatment in E Domestic sewa treatment in S Acoustic enclo D.G. Set. The noise leve shall be mainta 70 dB(A) durin	& Stack as per It to CETP after IP age to greenbelt after IP sures provided to Is in the day time tined 75dB(A) and ag night time.	Not applicable manufacturing Not applicable manufacturing Acoustic encl to D.G. Set. The noise level be maintained dB(A) during	e for proposed alcohol g plant e for proposed alcohol g plant osures will be provided els in the day time shall 175dB(A) and 70			
	Control Systems.	No. i) ii) iii)	Water Noise Solid Waste	Dust Collector Steam Boiler MPCB Treated effluer treatment in E Domestic sewa treatment in S Acoustic enclo D.G. Set. The noise leve shall be mainta 70 dB(A) durin Trees act as a 1 To Authorized	& Stack as per at to CETP after TP age to greenbelt after TP sures provided to als in the day time tined 75dB(A) and ag night time. Noise Buffer. Agency	Not applicable manufacturing Not applicable manufacturing Acoustic enclusion to D.G. Set. The noise level be maintained dB(A) during Trees act as a To Authorize	e for proposed alcohol g plant e for proposed alcohol g plant osures will be provided els in the day time shall 175dB(A) and 70 night time. Noise Buffer. d Ageney			
33	Environmental	No. i) ii) iii)	Water Noise Solid Waste	Dust Collector Steam Boiler MPCB Treated effluer treatment in E Domestic sewa treatment in S Acoustic enclo D.G. Set. The noise leve shall be mainta 70 dB(A) durin Trees act as a 1	& Stack as per at to CETP after TP age to greenbelt after TP sures provided to als in the day time tined 75dB(A) and ag night time. Noise Buffer. Agency	Not applicable manufacturing Not applicable manufacturing Acoustic enclusion to D.G. Set. The noise level be maintained dB(A) during Trees act as a To Authorize Capital (Rs. Lakh)	e for proposed alcohol g plant e for proposed alcohol g plant osures will be provided els in the day time shall 175dB(A) and 70 night time. Noise Buffer.			
33		ii) iii) iv) Total I Air Po	Water Noise Solid Waste nvestment (Dust Collector Steam Boiler MPCB Treated effluer treatment in E Domestic sewa treatment in S Acoustic enclo D.G. Set. The noise leve shall be mainta 70 dB(A) durin Trees act as a 1 To Authorized	& Stack as per at to CETP after TP age to greenbelt after TP sures provided to als in the day time tined 75dB(A) and ag night time. Noise Buffer. Ageney tonal)	Not applicable manufacturing Not applicable manufacturing Acoustic enclusion to D.G. Set. The noise level be maintained dB(A) during Trees act as a To Authorize Capital (Rs. Lakh) 178	e for proposed alcohol g plant e for proposed alcohol g plant osures will be provided els in the day time shall 175dB(A) and 70 night time. Noise Buffer. d Ageney O & M cost			
33	Environmental Management plan	ii) iii) iv) Total I Air Po ETP	Noise Solid Waste nvestment (I	Dust Collector Steam Boiler of MPCB Treated effluer treatment in E Domestic sewa treatment in ST Acoustic enclor D.G. Set. The noise leve shall be mainta 70 dB(A) durin Trees act as a 1 To Authorized	& Stack as per at to CETP after TP age to greenbelt after TP sures provided to als in the day time ained 75dB(A) and ag night time. Noise Buffer. Ageney Tonal) Vent absorber)	Not applicable manufacturing Not applicable manufacturing Acoustic enclusion to D.G. Set. The noise level be maintained dB(A) during Trees act as a To Authorize Capital (Rs. Lakh) 178 99.45	e for proposed alcohol g plant e for proposed alcohol g plant osures will be provided els in the day time shall 175dB(A) and 70 night time. Noise Buffer. d Ageney O & M cost (Rs.Lakh) 2 33.54 2.72			
33	Environmental Management plan	ii) iii) iv) Total I Air Po ETP Occup. Garder	Noise Solid Waste nvestment (I	Dust Collector Steam Boiler of MPCB Treated effluer treatment in E Domestic sewa treatment in ST Acoustic enclor D.G. Set. The noise leve shall be mainta 70 dB(A) durin Trees act as a 1 To Authorized Existing & Addition	& Stack as per at to CETP after TP age to greenbelt after TP sures provided to als in the day time ained 75dB(A) and ag night time. Noise Buffer. Ageney Tonal) Tent absorber)	Not applicable manufacturing Not applicable manufacturing Acoustic enclusion to D.G. Set. The noise level be maintained dB(A) during Trees act as a To Authorize Capital (Rs. Lakh) 178 99.45	e for proposed alcohol g plant e for proposed alcohol g plant osures will be provided els in the day time shall 175dB(A) and 70 night time. Noise Buffer. d Ageney O & M cost (Rs.Lakh) 2 33.54 2.72 0.25			
33	Environmental Management plan	ii) iii) iv) Total I Air Po ETP Occup Garder Hazard	Noise Solid Waste nvestment (I	Dust Collector Steam Boiler of MPCB Treated effluer treatment in E Domestic sewa treatment in ST Acoustic enclor D.G. Set. The noise leve shall be mainta 70 dB(A) durin Trees act as a 1 To Authorized Existing & Addition	& Stack as per at to CETP after TP age to greenbelt after TP sures provided to als in the day time ained 75dB(A) and ag night time. Noise Buffer. Ageney Tonal) Tent absorber)	Not applicable manufacturing Not applicable manufacturing Acoustic enclusion to D.G. Set. The noise level be maintained dB(A) during Trees act as a To Authorize Capital (Rs. Lakh) 178 99.45	e for proposed alcohol g plant e for proposed alcohol g plant osures will be provided els in the day time shall 175dB(A) and 70 night time. Noise Buffer. d Ageney O & M cost (Rs.Lakh) 2 33.54 2.72			

34 EIA Submitted (If yes then submit the salient features)

EIA report was prepared as per standard ToR prescribed by MoEF&CC

Previous consideration: The 123rd Meeting held on 11th & 12th March, 2016

<u>Decision:</u> The project was considered under 5(f)-B1 category of ElA Notification 2006. The PP gave a detailed presentation of each proposal to expand capacity of existing industrial unit by manufacturing anhydrous alcohol (Ethanol) by molecular sieves to the extent of 30000 KLPY. The Committee considered the proposal for approval of ToR.

The PP submitted that the process will not consume any extra water and would be a Zero Liquid Discharge Process. Considering the hazardous nature of raw materials and products, a separate chapter on Risk Assessment and Risk Mitigation shall be a part of EIA Report. The PP shall install a STP of 20 CMD for treatment of domestic waste water.

For the EIA report the prescriptions of Model ToR by MoEF published in Notification dated April, 2015 shall be adopted. After detailed discussion, the Committee decided to approve ToR in the lines mentioned above.

Previous consideration: The 134th Meeting held on 7th, 8th & 9th September, 2016

Decision: The PP gave a detailed presentation of their ElA report pertaining to the capacity expansion of existing industrial unit by producing anhydrous Ethanol by molecular sieves to the extent of 30000KLPY. The project was considered under category 5(f)-Bl of the schedule of the ElA Notification, 2006.

The process envisages dewatering of raw materials (specially Denatured Spirit). The process does not involve any addition in water intake and effluents generation. (6 m³/day of water generated) will be recycled. No additional manpower would be required for the process.

The Committee discussed in detail about the non-functional CETP at MIDC Patalganga. The concern of the Committee has already been conveyed to the CEO MIDC. Apparently no action has been taken yet. The present PP is also a member of CETP Association and the project contributes to effluent inflow to CETP. Under present circumstances such inflows are not treated but are directly deposited in the creek jeopardizing health and safety of the public.

Unless the CETP at Patalganga MIDC is functional the Committee cannot recommend any new projects in MIDC Patalganga. Therefore the item is deferred.

Previous consideration: 135th meeting held on 21st, 22nd & 23rd Oct. 2016

<u>Decision:</u> In pursuance of the Committee's contention that it would not be possible to appraise the project unless the CETP which has been dysfunctional for a long time is revived, the PP submitted the Termination Notice served by the MIDC on M/s. Hydroair Tectonics (PCD) Pvt. Ltd. (the operators of the CETP) and M/s. Patalganga and Rasayani Industries Association. The PP submitted that a meeting was held on 10.8.2016 under chairmanship of CEO, MIDC in which it was decided that, pending

Con Vallace

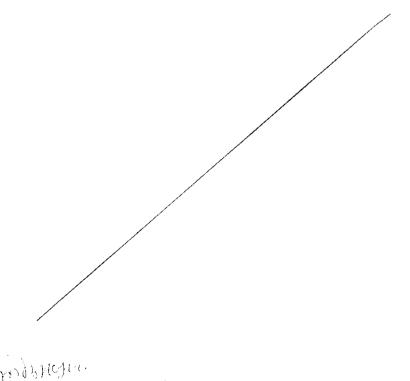
Page 72 of 76

Member Secretary

finalization of the court matter, procedure to appoint the new agency to run the CETP at MIDC Patalganga should be taken up. The Committee noted this development but felt that there is, still, no credible indication that the CETP will be revived.

The Committee decided to defer the project in the light of this contention and hoped that the MIDC will ensure operating of the CETP at the earliest, so that the present proposal can be considered.

Present consideration: 136th meeting


The Committee noted that the MIDC has initiated the process of reviving the defunct CETP at Patalganga. The Committee decided to follow-up with MIDC to ensure that CETP shall be made functional at the earliest so that environmental sanctity of water bodies were not compromised. In this context the Chairman, SEAC I spoke to Chief Engineer, MIDC who confirmed that CETP will be made operational through a new agency within 3 months.

The recommendation for EC of present project should be conditional to the CETP at Patalganga being made fully functional.

After deliberations the Committee made the following observations:

- 1. Annexure 27.1 gives details of hazard management facility that PP will provide. There is a contingency of off-site emergency, hence hazard management plan shall be shared with the District Administration.
- 2. ETP should be revamped to achieve a TAN (Total Ammonical Nitrogen) level of <50 mg/lit.

The baseline studies indicate that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project. After considering all aspects of Environmental Impact the Committee decided to **recommend** the project for **EC** subject to the above conditions and observations.

Member Secretary

Page 73 of 76

"Annexure 27.1"

malley les

my?

"Annexure A"

The Specific and General conditions applicable for Mining of Stone:

Specific conditions:

- 1. Provisions stipulated in Maharashtra Minor Minerals Extraction (development and Regulation) Rules 2013 shall be strictly adhered to.
- 2. District Collector and District Mining officer will be held responsible personally for non-compliance of the conditions stipulated in the Environmental clearance and shall be liable for legal action under Environment (Protection) Act of 1986.
- 3. District Collector will take bank guarantee of Rs. 2,00,000/- OR upto 2% of the annual royalty, whichever is higher, for the given lease from the lease holder to ensure the compliance of the conditions stipulated. In case of violation of stipulated conditions by project proponent bank guarantee so obtained shall be forfeited and legal action under the law should be initiated against such project proponent.
- 4. It shall be ensured that there is no fauna dependent on the areas close to mining for its nesting.
- 5. To prevent dust / particulate matter pollution, the lease holder shall take up tree plantation in an area 10 m from the boundary of the leased area and also on either side of the road leading to the quarry from the already surfaced road.
- 6. District Collector and Project proponent to ensure that there is no violation of the Supreme Court order given in related matters.
- 7. District Collector shall prepare closure plan and get it approved by the competent authority for all abandoned mines in the District.

General conditions:

- 1. Precise mining area will be jointly demarcated at site by officials of Mining/Revenue department prior to mining operations for all proposals under consideration. Such site plan, duly verified by competent authority shall be submitted to Environment Department.
- 2. All necessary statutory clearances shall be obtained before start of mining operations.
- 3. Mining / loading shall be limited to day hours' time only. The quarrying / loading shall not be done during night hours.
- 4. No mining shall be carried out in the safety zone of any bridge and/or embankment.
- 5. No mining shall be carried out in the vicinity of natural/ manmade archeological sites.
- 6. The lease holder shall obtain necessary prior permission of the competent authorities for drawl of requisite quantity of water (surface water and groundwater), if required for the project.
- 7. Waste water, if any, shall be properly collected and treated so as to conform to the standards prescribed by MoEF/CPCB.
- 8. No wildlife habitat will be infringed.
- 9. Where, the quarrying is in a hilly terrain hill cutting shall be allowed only in the recharge zone to be identified by the officials of GSDA.
- 10. Environmental clearance is subject to obtaining clearance under the Wildlife (Protection) Act, 1972 from the competent authority, if applicable to this project.
- 11. Green belt development shall be carried out considering CPCB guidelines including selection of plant species in consultation with the local DFO/Horticulture Officer.
- 12. Parking of vehicles should not be made on public places.
- 13. Transportation of materials shall be done by covering the trucks / tractors with tarpaulin or other suitable mechanism so that no spillage of mineral/dust takes place.
- 14. Appropriate mitigation measures shall be taken to prevent any kind of pollution in consultation with the Maharashtra Pollution Control Board. It shall be ensured that there is no leakage of oil and grease from the vehicles used for transportation.
- 15. Vehicular emissions shall be kept under control and regularly monitored. The mineral transportation shall be carried out through the covered trucks only and the vehicles carrying the mineral shall not be overloaded.

m Marreyer

- 16. Special Measures shall be adopted to prevent the nearby settlements from the impacts of mining activities. Maintenance of roads through which transportation of minor minerals is to be undertaken, shall be carried-out regularly.
- 17. Dispensary facilities for first-aid shall be provided at site.
- 18. Occupational health surveillance program of the workers should be undertaken periodically.
- 19. Provision shall be made for housing the workers at site, if required, with all necessary infrastructure and facilities such as fuel for cooking, safe drinking water, medical health care and sanitation etc.
- 20. Ambient air quality will be monitored at the site and the nearest habitation in the months of January, April and November. Ambient air quality at the boundary of the precise mining area shall conform to the norms prescribed by MoEF, GOI.
- 21. Measures shall be taken for control of noise levels to the limits prescribed by CPCB.
- 22. An Environmental Audit shall be annually carried out during the operational phase and be submitted to the Environment Department.
- 23. Digital processing of the entire lease area in the district using remote sensing technique shall be done regularly once in three years for monitoring and report submitted to the Environment Department. The funds earmarked for environmental protection measures shall be kept in separate account and shall not be diverted for other purpose. Year wise expenditure on environmental protection measures shall be reported to the Regional Office, Ministry of Environment and Forests, Bhopal.
- 24. Revenue Authorities shall submit within 3 months their policy of (i) Standard operating process/ procedure to bring into focus any infringement/deviation /violation of environmental norms /conditions, (ii) Hierarchical system or Administrative order to deal with environmental issues and to ensure compliance of EC conditions and (iii) System of reporting of non-compliance /violation of environmental norms to the District collector.
- 25. The Mining officer shall submit six monthly reports in hard and soft copy on the status of compliance of the stipulated environmental clearance conditions including results of monitored data (both in hard & soft copies) to the Environment Department, and the District Collector and the respective Regional Office of the Maharashtra Pollution Control Board.
- 26. Any change in mining area, khasra /Gat numbers, entailing capacity addition with change in process and or mining technology, modernization and scope of working shall again require prior Environmental Clearance as per provisions of EIA Notification, 2006 (as amended).
- 27. SEAC-I has appraised the proposals on the basis of information submitted by concerned District Mining Officer. Mining Officer shall submit the list of blocks satisfying conditions stipulated above to Revenue & Environment dept. The list of blocks and conditions stipulated above shall be made available in public domain. It should be published in two local language newspapers and displayed at each block where mining operation is proposed. District mining officer should ensure this and submit compliance report to Environment department with approval from Collector.

=0=

mmlegen

Member Secretary

Page 76 of 76

my