The 135th Meeting of State Level Expert Appraisal Committee - 1 held on 21st, 22nd & 23rd September, 2016 at Parishad Sabhagraha, Hall no. 3 & 4, 7th Floor, Main Building, Mantralaya, Mumbai- 400 032.

The following members were present for the Committee meeting:

Shri. T. C. Benjamin	Chairman	21st, 22nd & 23rd Sept. 2016
Prof. (Dr.) Bhaskar N. Thorat	Member	21st Sept. 2016
Shri. Chandrakant I. Sambutwad	Member	21st, 22nd & 23rd Sept. 2016
Prof. (Dr.) Ramesh Dod	Member	21st, 22rd & 23rd Sept. 2016
Shri. D A Hiremath	Member	absent
Shri. Madan M. Kulkarni	Member	21st & 23rd Sept. 2016
Shri. Balbir H. Sehgal	Member	21st, 22nd & 23rd Sept. 2016
Shri. M. B. Hajari	Member Secretary	21st, 22nd & 23rd Sept. 2016

At the outset, the Chairman welcomed all Members present to the meeting. Thereafter the items were taken up for discussion.

1		11 5 1 1 £ 124th mosting	
	★	Confirmation of minutes of 134th meeting	
		Contribution of militaries	
	I .		

The minutes of the 134th SEAC-I meeting were confirmed unanimously.

Discussion	Discussion on site visit reports
Item 1	

1. M/s. Alkyl Amines Chemicals Ltd., MIDC Kurkumbh

The Committee went through the visit report (enclosed as *Annexure C*). The visit report shall be considered while appraising the project.

1. M. C. C.

Member Secretary

Page 1 of 93

man 3

"Annexure C"

Visit report- M/s. Alkyl Amines Chemicals Ltd. At MIDC Kurkumbh Date- 14.9.2016

Pursuant to the decision taken in the 134th meeting a sub-committee comprising of following members along with Shri. Shinde, FO Pune, MPCB and representatives of PP visited the site on 14.9.2016-

- 1. Shri. T. C. Benjamin, Chairman
- 2. Prof. (Dr.) Ramesh Dod, Member

The sub-committee made the following observations:

1. At the outset the sub-committee observed that there is a scope for conserving water by reusing the treated utility effluents and STP effluents for gardening and flushing. The PP should achieve this through process reengineering and must save 300-345 CMD of fresh water from MIDC.

The PP should take necessary steps to effect such saving.

2. The Hydrocavitation trials are still in progress they aims at determining optimum operating condition [pressure initial and final temperature, contact time etc.]. The PP was unable to give any definite time frame in which the trials can be completed and cavitation process upscaled for industrial application.

The sub-committee has noted that under the circumstances PP will have to ensure that effluent management is geared up to address the achievement of consent parameters of BOD, COD, TDS and TAN.

This becomes more pertinent with respect to sisters concern at Patalganga where the only option appears to be revival of CETP without further delay.

- 3. The Nitrification- Denitrification process appears to be casually taken up. The entire ETP needs to be revamped under the supervision of technical expert/ MPCB to ensure the achievement of consented parameter particularly TAN, TDS and COD.
- 4. The proposed expansion should ensure the Zero Liquid Discharge by its own. MPCB should ensure this before granting Consent to Operate.
- 5. The minimum stack height provided needs to be increased to 30m for all boilers operating on coal, bagasse, FO etc.

T. C. Benjamin

Ramesh Doo

2. M/s. Aikyl Amines Chemicals Ltd., MIDC Patalganga

The Committee went through the visit report (enclosed as *Annexure D*). The visit report shall be considered while appraising the project.

Member Secretary

Page 2 of 93

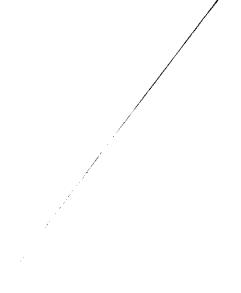
Annexure. 'n

Visit report- M/s. Alkyl Amines Chemicals Ltd. At MIDC Patalganga Date- 13.9.2016

Pursuant to the decision taken in the 134th meeting a sub-committee comprising of following members along with Shri. Sachin Desai, FO MPCB and representatives of PP visited the site on 13.9.2016-

- 1. Shri. T. C. Benjamin, Chairman
- 2. Prof. (Dr.) Ramesh Dod, Member
- 3. Prof. (Dr.) Bhaskar Thorat, Member
- 4. Shri, Balbir Sehgal, Member

The sub-committee made the following observations:


- The sub-committee has seen the existing ETP and has noted that there is no I. separate treatment for TAN (total Ammonical Nitrogen) bearing effluents. The PP has agreed to provide Hydrocavitation reaction in a time bound manner and intends to recycle the effluents to achieve Zero Liquid Discharge status.
- The sub-committee noted that the utility effluents are directly way mixed II. with treated trade effluents and sent to CETP. But CETP is dysfunctional since last 1 year the sub-committee is of the opinion that PP should reuse the treated effluents either wholly or partly and facilitate water conservation. The revised water budget may be submitted.
- III The sub-committee has noted that there was no treatment of domestic sewage. It should be treated in a compact STP of size 10 CMD and treated sewage should be recycled back for flushing or gardening within own premises.
- PP should provide the silos for 07 days storage of fly ash. IV.
- V. The PP should improve the air pollution controlling system so as to achieve the desired outlet TPM levels for both coal fired and FO based boilers.
- All DG sets stacks should be 3m above the roof top in the premises. VI.
- Mode of disposal of by-product spent caustic and aqueous Sodium Bromide should be detailed.

T. C. Benjamin

B.N. Thorat

3. <u>Jaina Steel Mills Visit- M/s. Gayatri Ispat Pvt Ltd., M/s. Vedant Re-Rolls Pvt. Ltd., M/s. Gajlaxmi Steel Pvt Ltd., M/s. Kalika Steel Jaina Pvt Ltd.</u>

The Committee went through the visit report (enclosed as *Annexure E*). The visit report shall be considered while appraising the project.

man della

Member Secretary

Lings

Page 3 of 93

"Annexure E"

Visit report- Jaina Steel Mills

Date -17.9.2016

A sub-committee comprising of the following members visited the four steel mills situated in Additional MIDC, Jalna- M/s. Kellike Steel Jalna Pvt Ltd., M/s. Vedant Re-Relis Pvt. Ltd., M/s. Gejleoni Steel Pvt Ltd., and M/s. Geyetri Ispat Pvt Ltd. on 17.9.2016-

- 1. Shri. T.C. Benjamin, Chairman
- 2. Prof. (Dr.) Ramesh Dod, Member
- 3. Shri, Madan Kulkarni, Member
- 4. Shri. C.I.Sambutwad, Member
- 5. Shri, B.H.Sehgal, Member

The visit was occasioned due to the persistent concern of the Committee regarding availability of water required by the steel plants for their expanded activity. MIDC Jalna has been providing water for their industries from the Jayakwadi Dam, which, due to continuous failure of monsoon has not been able to provide water even for the basic need of domestic consumption (7% storage on 1st Oct. 2015) Jalna.

District itself has persistent water scarcity, borne out of scanty rainfall. As against the average rainfall of the district of 650-750mm, the district has been experiencing drought with rainfall recording as low as 400-450mm (source: official website of Jalna District).

The rainfall details of Jalna is as follows (source: official website of Jalna District):

Annual sverage	2012	2013	2014	2015
700.9 mm	348,4mm	823.7mm ·	438.5 mm	634.0mm

The historically scanty rainfall has resulted in poor ground water potential, as depicted in the following table [source: Central Ground Water Board] -

Taluka	Area type	Net annual ground water evallability	Stage of ground water development
Jaina	command	1281 ha m/year	53-58%
	Non-command	11884.04 ha m/year	
	total	13165 ha m/year	

It is with this background of acute water scarcity that the situation of the 4 steel plants have to be seen. Their water requirements, as per the submissions of the respective PPs are as follows (after expansion):

M/s. Kalika Steel Jaina Pvt	100 CMD	700 TPD
Ltd. M/s. Vedent Re-Rells Pvt.	105 CMD	400 TPD
Ltd. M/s. Geyetri Espet Pvt Ltd.	135 CMD	1000 TPD
	65 CMD	250 TPD

Member Secretary

Chairman

Page 4 of 93

The sub-committee is of the view that the precarious water situation in Jalna warrants the PPs to provide at least 4 months' requirement from captive sources and not MIDC's water supply. This will mean that the individual industries should have captive storages of water in the 4 summer months to the extent shown below:

5. RC.	Name of the project	Water requirement (captive) in the month of March-June
1	M/s. Kalika Steel Jaina Pvt Ltd.	12000 m³
2	M/s. Vedent Re-Rolls Pvt. Ltd.	12600 m³
3.	M/s. Gayetri Ispat Pvt Ltd.	16200 m ³
<u>J.</u>	M/s Gailmoni Steel Pvt Ltd.	7800 m³

M/s. Kalifer Steel Joins Pvt Ltd.

Total water requirement- 100 CMD

Actual weter requirement	Description of captive sources	Observations of the sub-committee
100 CMD	The PP has shown two captive sources of water- 1)Sirsewadi 2)Jalna Rural 1. In Sirsewadi, the PP has a open well of 5m diameter and 12m depth located at a distance of 100m from the foot of percolation tank. GSDA has indicated the water availability of 75 CMD in summer. 2. In Jalna Rural, the PP has a open well of 6m diameter and 12m depth. GSDA has indicated water availability of 50 CMD. This well is at a distance of 6 km from the site.	install a D6 set of suitable capacity. 2) Considering the evaporation and yield losses the water availability will be only 60% of the total availability indicated by 6SDA which comes to be 99 CMD.

M/s. Gallesmi Steel Pet Ltd.

Total water requirement- 65 CMD

Actual ex	ter Description of captive sources	Observations of the sub-committee
65 CMD	PP has shown a captive source which is at a distance of 51m from the proposed project site. Dimensions of the storage well are 50m x 20m x 4m.	recharge. Its capacity is only 4000 M
		2. This will not be sufficient to meet the needs of the PP.

(m) 160/12

Member Secretary

my

Page 5 of 93

M/s. Vedest Re-Rells Pvt. Ltd.

Total water requirement- 105 CMD

Actual	weter	Description of captive sources	Observations of the sub-committee
requirement 105 CMD	<u>.</u>	The PP has shown two open wells in MIDC plot where PP intends to establish this plant.	 IInd open well cannot be considered as a reliable water source for running a steel industry.
		1st well is 5m in diameter and 12m depth of water. It can yield 50 CMD of water.	2. The yield certificates of these 2 bore wells were not available.
		2 nd is unlined open well of 5m diameter and having 5m water depth.	cloims that can yield sufficient quantity
	*.	The PP has constructed two bore in the same plot of 6.5 or 1.5 inch diameter.	

M/s. Gerstri Isset Prt Ltd.

Total water requirement- 135 CMD

Actual	uater	Description of captive sources	Observations of the sub-committee
135 CMD		The PP has shown two captive sources: 1) Unlined querry of size 60m x 30m x 6m Available water comes to 6400 m3 considering 40% evaporation loss. 2) IInd source is of proposed reservoir to be constructed in a plot owned by the PP	STANDE, MANCH LESS SAIDLE OF THE
		at a distance of 11um from the proposed site. There is also a well of 9.4 m diameter and 20m depth. The yield details has not been furnished.	requirement of 16200 m.

T.C.Berlinnin

C.I. Sambutwad

Parad Dod

B. H. Seng Member Anden Kullerni Member

4. M/s. Ipca Laboratories Ltd., Waluj, Aurangabad

The Committee went through the visit report (enclosed as Annexure F). The visit report shall be considered when the item is taken in the agenda.

and their s

Though

Page 6 of 93

Member Secretary

"Annexure F"

Visit report- M/s. Ince Laboratories Ltd.

Date- 16.9.2016

A sub-committee comprising of following members visited the site on 16.9.2016 along with Dr. Sangewor, RO Aurangabad, MPCB and Shri. Kadam, SRO Aurangabad, MPCB and industry representative Shri, Srivastava and others -

- 1. Shri, T. C. Benjamin, Chairman
- 2. Prof. (Dr.) Romesh Dod, Member
- 3. Shri, C. I. Sambutwad, Member
- 4. Shri, B. H. Sehgal, Member

The sub-committee made the following observations:

- The sub-committee noted that the industry is in operation since 2000 but the PP has not obtained the Environmental Clearance even though their manufacturing activity falls under 5(f) of the EIA Notification 2006.
- It was suggested by the sub-committee that one more gate should be provided considering the safety of people working during emergency.
- III. The sub-committee has observed that PP is using Sludge Drying Bed for sludge dematering, however the sub-committee has recommended the use of decanter for the same.
 - No Sludge Drying Bed should be operative within the premises.
 - Scientific arrangement in the form of elevated platform and covered shed for temporary storage of ETP sludge should be made.
- The PP should obtain the MIDC water consent/permission letter and submit the IV. same at the time of EIA presentation.
- V. The sub-committee has noted that TPM levels at the outlet of stack is more than 100 mg/Nm3. PP is instructed to improve the air pollution control system [bag filter] in a time bound manner so as to ensure the outlet TPM \leq 100 mg/Nm³. The RO Aurongobad, MPCB should submit a report of this compliance within a month.
- VI. The sub-committee has noted that water requirement and effluent generation is not realistic and need to be reworked, considering the recycling of treated effigunt to the best possible extent.
- VII. The existing practice of sending the high TDS effluent stream to sister concern is needs to be discontinued and PP should provide RO and MEE of required capacity to treat high TDS stream in-house at the earliest. This was one of the ToR

W/16/16

Member Secretary

Page 7 of 93

Item no. 1	Minor Minerals (sand) Pune [134th compliance]

Previous consideration: The 134th Meeting held on 7th, 8th & 9th September, 2016

Decision: The proposals were considered under 1(a)-B2 category of the schedule of EIA Notification 2006. In the 116th meeting, the Committee had deferred some cases which were in the submergence of Ujani dam, since Hon'ble High Court had given a stay on extraction of sand in the submergence of Ujani dam. The PP brought to the notice of the Committee that the said stay granted by Hon'ble High Court has been lifted in the light of the fresh policy on desilting of reservoirs adopted by the State Government.

The Committee observed that the certificate of GSDA was ambiguous with respect to depth of sand available. Unambiguous report required to be submitted by the PP. Deferred.

Present consideration: 135th meeting

The proposals were considered under category 1(a) - B2 of the schedule of the EIA Notification 2006. The Committee reconsidered the 7 proposals previously discussed in the 134th meeting. Senior Geologist, GSDA explained how the depths of sand were measured using steel rods. The excavation of sand is limited to only 1m in all the cases and more than 2m of sand will remain in the river bed after excavation.

Gramsabha resolutions have been obtained in all the proposals. There are no riverine structures within 500m of sand gats. After considering all aspects of Environmental Impact the Committee decided to **recommend the 7 proposals** as depicted in the table below for EC subject to the conditions given after the table:

	Name Of village	Taluka	Name Of the River	Numb- er	Location Of the Sand Gut (Gut No.) etc	the sand		of sand in block as per GSDA	depth recoman	sand resourses LxBxD in m3 =	1	Sabha	Wether Block marking is cluster (Y/N)
1	Palasdev	Indapui	Bhima River	-	262, Old Gavthan, 1, 2, 3, 5, 6, 7	925x110	10.18	4.50	1.00	35954	Y	Y	N
2	Diksal	Indapui	Bhima River	-	2 to 11, 23, 24	1250x100	12.50	4.15	1.00	44170	Y	Y	N
3	Kalthan-1	Indapu	Bhima River	_	1 to 11, 22, 24, 25, 147, 153, 154, 157, 163	1000x130	13.00	4.25	1.00	45936	Y	Y	N
4	Kumbhargaon	Indapu	Bhima River	-	328 to 345	697x130	9.06	4.75	1.00	32018	Y	Y	N

Page 8 of 93

Chairman

Member Secretary

4		Kalewadi	Indapur	Bhima River	-	126, 144, 145, 153, to 156, 167, 172, to 176, 185, 205 to 214, 243 to 250, 259, 260, 261, 263, 266	1080x85	9.18	4.50	1.00	32438	Y	Y	N
ϵ	,	Dalaj No. I	Indapur	Bhima River		1054, 135, 107, 108, 1255, 1245, 1246, 1247, 1252	876x160	14.02	4.25	1.00	49527	Y	Y	N
	7	Dalaj No. 3	Indapur	Bhima		514 to 521, 525, 526	600x150	9.00	4.25	1.00	31802	Υ	Y	N

Conditions:

- 1. Annexure B
- 2. Only manual mining will be allowed. If PP desired to use suction machines, the explicit permission of State Govt. shall be taken.
- 3. Decision of the Committee will be subject to the decisions of the Hon'ble High Court regarding these sand gats.
- 4. A minimum of 2m of sand depth should be left on the river bed after excavation.
- 5. No excavation shall be allowed 500m from any bridge or riverine structures.

Item no. 2	M/s. Novozymes South Asia Pvt. Ltd. (ToR)
	For proposed manufacture of enzymes at plot no. A-1, Patalganaga-Borivali
	Industrial Area, Raigad

The PP gave a detailed presentation for manufacturing enzymes to the extent of 75 Tons/Month and blending and repacking of solid product (750 Tons/Month), and liquid product (800 Tons/Month). The Committee went through the presentation and concluded that neither process nor the establishment of the industry will come under any of the categories of EIA Notification 2006. However the activity affect Air and Water Acts. and hence MPCB should consider this aspect while granting Consent.

It will, therefore not be necessary to appraise the Project for EC; hence delisted.

Item no. 3	ChemSpec Chemicals Pvt. Ltd.
	Proposed expansion industrial project at plot no 3-c, Taloja, MIDC, Panvel, Raigad

The project was considered under 5 (f) B1 category of EIA Notification, 2006. The PP gave a detailed presentation of their proposed expansion of manufacturing of Cosmetics and Pharma intermediates from 1476 MT/annum to 6132 MT/ annum.

Member Secretary

Page 9 of 93

The Committee recalled the points raised in the ToR prescriptions and site visit conducted on 9.10.2015; in particular providing space for parking, ETP and the need for proper housekeeping practices to keep the environment clean.

After detailed discussion the Committee made the following observations:

- 1. The baseline studies indicate that Ambient Air Quality with reference to PM₁₀ and PM_{2.5} are abnormally high. In this context the MPCB shall be alerted through a letter to its Member Secretary.
- 2. PP intends to procure land from nearby Choksey Chemicals Pvt. Ltd. (Plot no. 3B). MOU has been signed in this regard. However the layout does not show any space for parking and ETP. Revised layout may be submitted in this regard. A small gate shall be provided on south-eastern side of the plot. Parking space shall be increased from the present 5% to 12%.
- 3. Several products are hazardous in nature and may be mutagenic, carcinogenic and teratogenic. Some of these products are banned in some countries. In this context thorough MSDS studies shall be carried out with reference to following chemicals
 - i. Trichlorocarbanilide (TCC)
 - ii. Triphenyl tetraezoyl Bromo Biphenyl (TTBB)
 - iii. 4- Bromomethyl 2- cyanbifihellyl (Bromo OTBN)
 - iv. Trizene group compounds (EHT, DHBT, Tinosorb S, Tinosorb M)
- 4. The PP shall not deploy EDC which is a known carcinogenic and an alternate solvent may be indicated.
- 5. The water balance may be reworked w.r.t following
 - a. The reuse of utility effluents after passing through RO
 - b. STP effluents to be used for gardening
 - c. Boiler blow down
- 6. New STP of 30 CMD shall be installed. ETP shall be upgraded from 56 to 150 CMD. The location of these facilities shall be shown in the layout. Sludge drying beds may be replaced by mechanical sludge dewatering (centrifugal decanter).
- 7. Flue gases produced from 2 boilers and 2 thermopacks shall be passed through stack of appropriate height considering Indian coal (worst possible scenario). TPM calculations may be submitted.
- 8. Bio-refractory effluent should be mineralized through pre-treatment.
- 9. Proper names [1UPAC] of chemicals shall be given.

For the compliances of the above, the item was deferred.

Item no. 4	M/s. Eternis Fine Chemicals Ltd.
	For expansion of our existing project at MIDC-Kurkumbh, Plot no. D-9/1, D-
	9/2, D-9/3 & D-15, Taluka- Daund, Pune.

PP remained absent hence deferred.

min lifer

4

Chairman

Member Secretary

Page 10 of 93

Item no. 5	M/s. Jay Bhavani Ispat Pvt.Ltd.
	Proposed steel plant with rolling mill of of MS/SS/Alloy steel Billets, Ingots, Round bars, Rolled Product, wires, forging and structural item on the plot bearing Gat No.23,27, 22/1 (p), 15(p) at village Abhitghar, Tal. Wada, Thane

PP remained absent hence deferred.

Item no. 6	M/s. Vinati Organics LTD. (ToR)
	At plot no. A-20 & D-30/2, Lote MIDC, Lote Parshuram, District- Ratnagiri.

The project was considered under 5 (f) B1 category of EIA Notification, 2006. The PP gave a detailed presentation for ToR for replacing their existing product Tertiary Butanol (which was included in previous EC along with 7 other products ATBS, Na-ATBS, IB, DAAM, MTBE, PTBT, TOA, Methyl ester) with Para Tertiary Butyl Phenol, taking advantage of the market demand. This change apparently does not create significant impact on the environment but all the same, will require an analysis of the industrial production process of Para Tertiary Butyl Phenol.

Therefore the Committee desired all the production processes of the various products should be considered individually as well as wholistically.

The manufacturing capacities will be modified as follows:

Existing EC covered products (1, 37,000 TPA) – Tertiary Butanol (10000 TPA) + Para Tertiary Butyl Phenol (43000 TPA) = 1, 70,000 TPA

After detailed discussion the Committee made the following observations:

- 1. The project should be a Zero Liquid Discharge Process. So that the load in CETP at Lote MIDC will not increase due to the present project.
- 2. PP wishes to deploy a thermopac of 30 lackcal/hr using Indian Coal. Emission management shall be done to ensure a TPM of < 100 mg/Nm³.
- 3. HAZOP study shall be carried out for all the processes together as well as processes involving production of specific products, in particular *Lili-Aldehyde*.
- 4. The ToR shall be in accordance with the provisions contained in the Model ToR prescribed by MOEF&CC in April, 2015.

The Committee decided to approve ToR subject to the above observations (1-4).

150 1 10 pm

Things

Page 11 of 93

Chairman

Item no. 7	M/s. Galaxy Laboratories Pvt. Ltd.
	Prop. Intermediates and specialty agro chemicals at plot no. B10, Newasa MIDC, at post-Tukai Shingve, Newasa, Ahmednagar

The brief information of the Project as submitted by the PP is as follows:

1	Name of project	Proposed Intermediate and specialty chemicals (Synthetic organic chemicals) manufacturing unit for API by Galaxy Laboratories Pvt. Ltd. at Plot No. B-10, MIDC Newasa industrial area At Post. Tukai - Shingve, Taluka. Newasa Dist. Ahmednagar
2	Name, address, e-mail &Contact number of Proponent	Name: Shrikant Deshmukh (M.D.) Address: Galaxy Laboratories Pvt. Ltd Plot No. B 22, MIDC Aurangabad industrial area ,Gut No 34, Grampanchayat Satara Parisar, Beed by pass road. Aurangabad. 431005 Telephone number: +91-240-2376105, 2376119 Mobile Number:9822029283 Email id: shrikant.d@galaxylaboratories.com
3	Name of eonsultant	Aditya Environmental Services Pvt. Ltd.,
4	Accreditation of Consultant (NABET Accreditation)	5 (f)- A
5	New Project / Expansion in existing project/Modernization/ Diversification in exiting project	Expansion
6	If expansion/ diversification, whetherenvironmental clearance has been obtained for existing project (If yes, enclose copy with compliance table)	Not Applicable
7	Activity schedule in the EIA Notification	5(f)
8	Area Details	Total plot area (sq. m.): 48400 Built up area (Sq. m.): 32716.67 (existing & proposed)
9	Name of the Notified Industrial area / MIDCarea	MIDC Newasa Industrial Area Tukai- Shingve
10	TOR given by SEAC? (If yes then specify the meeting)	TOR issued in 115th SEAC – I meeting held on 3,4.5th December 2015 Item no 11.
11	Estimated capital cost of the Project (including cost for land, building, plant and machinery separately)	Land cost Building 1430 Lacs Plant & Equipment
12	Location details of the project:	Latitude: 19°18'18.875"N Longitude: 74°51'13.364"E Location: Plot No. B10, MIDC Newasa industrial area At Post. Tukai - Shingve, Taluka. Newasa Dist. Ahmadnagar Elevation above Mean Sea Level (metres): 561
13	Distance from Protected Areas / Critically Pollutedareas / Eco- sensitive areas/ inter-State boundaries	No Protected Areas / Critically Polluted areas / Eco-sensitive areas in study area.
14	Raw materials (including Process chemicals, catalysts, & additives).	Please refer Chapter 2 of the EIA
15	Production details	Product details:
		Sr. No Product Name Capacity (TPA)
		Existing
		1 Hydrogen Gas 18.72 Laes NM ³ (250 NM ³ /Hr)
		Proposed
		Furfuraldehyde (Fufural) 600
		2 Furfuryl Alcohol 360

					1490		
			rfuryl Amine	1 (C)11E(A)	480		
		 	clohexenyl Ethyl An		120		
			iclabendazole (Crude		100		
			Chloro-4-Amino-2,1,				
			Furoie Acid		60		
			taphenyl Ethyl Amin		240		
		9 Pc	olly Allylamine Hydro	chloride (PA	A11) 160		
		10 Cl	lorohexanone (6-Chi	oro-2-Hexano	one) 240		
		11 Fu	ıran		600		
		To	otal (proposed)		2984		
		Ву	y products				
			ent acid		510		
		2 So	odium hydrosulphide	solution	188		
		3 Pc	tassium bromide salt	solution	2225		
16	Process details / manufacturing details	Please ref	er Chapter 2 of the E	IA			
17	Rain Water Harvesting (RWII)	Size and r x 12.5 x 2 Location	he Ground water table to of RWH tank(s) an m of 302 KL capacit of the RWH tank(s): I of recharge pits and Q allocation (Capital co	d Quantity: 1 y Near main gat Juantity:	e		er storage tank of 12 of the EIA for details
18	Total Water Requirement	Fresh wat Source: M Recycled Use of the Industrial Drinking	ter requirement: 165 cr (CMD): 93 HDC water (CMD): 72 e water: (existing + process/ cooling/ boi (CMD): 28 (Fresh 12 it (CMD): 28 (Recycle)	proposed) ler feed (CMI + Recycle 10)): 109 (Fres	sh 81 + Recycle	28)
19	Sewage generation and treatment	Amount of Proposed treatment	of sewage generation treatment for the sew	CMD): 25 age: Sewage		treated in comb	nined Effluent
20	Effluent characteristic	Sr. No.	Parameters (pH, BOD, COD, heavy metal, etc)	Inlet efflu	ent istic (Total	Outlet effluent Characte ristic	Effluent discharge standards (CPCB / MPCB)
		1.	рН	6-9		6.5-9	6.5-9
		2.	COD (mg/l)	2500 - 30	00	< 250	250
		3.	BOD (mg/l)	1000 - 15		< 100	100
		4.	TDS (mg/l)	1100 - 12		< 2100	2100
		5.	TSS (mg/l)	150 - 200 < 10	 -	< 100	100
		6.	O & G (mg/l) Chlorides	250 - 300		<600	<600
		8.	Sulphates	250- 300		<1000	<1000
21	ETP Details	Amount of Capacity Amount of for CT m Amount of Members	of effluent generation of the ETP (CMD: of treated effluent rec ake up, process, and of water send to the C thip of the CETP (If r	(CMD): 72 75 ycled (CMD) gardening. ETP (CMD): equire): NA	NA. No disc	nt generated wi	ll be treated & used
22	Note on ETP technology to be used	> Aeratio	on tank > Sec. elarifie	r > Sand filter	ollection tank > Activated	Neutralization carbon filter >	n tank > Pri. clarifier Treated water tank
23	Disposal of the ETP sludge (If applicable)		ge will be disposed to				
24	Solid waste Management	Hazardou	is waste:		Quantity		
		Categor	y Hazardous waste	Generation	Quantity in TPA	Disposal	
			Existing				

D. 1716) ...

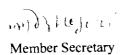
1hmj

<u> </u>			NIL		N	IL	NIL		
			Proposed			-			
		35.3	Chemical si water treatm		waste 3	30	CHWTSD	F (landfill)	
		20.3	 	Distillation Residue		275	CHWTSD	CHWTSDF/ Used as Fuel in Boiler	
!		20.3	Distillation (chlorinated		2	25	CHWTSD	F	
		33.2	Contaminat	_	ags 2	2	CHWTSD	F (incineration)	
		28.1	Process res	idue (iron s	ludge) 4	45		F (landfill)	
		28.2	Spent Catal	lyst];	225		F/ Authorized Recycler/ manufacturer	
		28.3	Spent Char	coal		40	CHWTSD	F/ Used as Fuel in Boiler	
		33.1	Contaminat Barrels/ lin			500 Nos./A	MPCB au	thorized Drum recycler	
		Solid Wast	e:		Qty		 :		
		Sr. No.	Source		(TPA)		sposal	notions / land fill	
		1.	Ash Spent corn c	xob	1850 5000	Bu	ming in boile	acturer / land fill er / TFH	
		provide quas per MPC What are the Possible us Method of	nantity, dispose B norms. The possibilities sers of solid wardisposal of	al data and of recovery aste: Spent of lid waste.:	proposed and recyc orn cob w Hazardon	precaution Hing of warill be used	nary measures astes : No l as fuel in bo	rials or heavy metals then s. Hazardous waste dispos- iler. Ash for brick making ad to CHWTSDF. Non-	
			will be used as						
25	Atmospherie Emissions	Sr. No.	Pollutant Source of Em Boiler		of Emissic	on	100 mg/Nn	ion in flue gas	
	(Flue gas characteristics SPM, SO2, NOx, CO, etc.)	2	SPM TFH					100 mg/Nm ³	
		3	SO ₂	Boiler			240 kg/day		
		4	502	TFH			153 kg/day		
26	Stack emission Details: (All the stacks attached toprocess units,	Plant Section			ightfrom oundlevel	(m)	nternal Diameter	Temp. of Exhaust	
	Boilers, captive power plant, D.G. Sets, Incinerator both for existing and	& units Existing					Top)(m)	Gases	
	proposed activity). Please indicate	IBR Boi	ler	30				-	
	the specific section towhich the	Reactor		11		-		-	
	stack is attached. F.g.: Process	DG set		3.:	(above re	00f) -	·	-	
	section, D.G. Set, Boiler, Power Plant incinerator etc, Emission rate	New Boiler (n	iour)	30		1	0.6	180	
	(kg/hr.) for eachpollutant (SPM.	TF11 (ne		30			0.35	240	
	SO ₂ , NO _x ete, should be specified	HCI Scru	<u> </u>	18			*	Ambient	
			a scrubber	18			*	Ambient	
		H2S sen		18			*	Ambient	
		+ 	hall be finalize	ed during d	etailing st	age.			
27	Details of Fuel to be used:	Sr. No	Fuel		nsumption	1	% Ash	% Sulphur	
1		 							
!			Cool	Proposed			30	0.8	
		1	Coal Eumace oil	15 TPD (boiler)		30	0.8	
		1 2 3	Furnace oil HSD	15 TPD (1.7 TPD 64 Lit/hr	boiler) (TFH) (emergend	cy use)	0.01		
		1 2 3 Source of	Furnace oil	15 TPD (1.7 TPD 64 Lit/hr mported/loc	boiler) (TFH) (emergend (al , Fuma	ice oil Lo	0.01		
28	Energy	Source of Mode of T	Furnace oil HSD Fuel: - Coal in ransportation oply: power requires	15 TPD (1.7 TPD 64 Lit/hr mported/loo of fuel to s ment: 320 F	boiler) (TFH) (emergenceal, Fumaite: By Ro	ice oil Loc oad	- 0.01 cal	4.5	

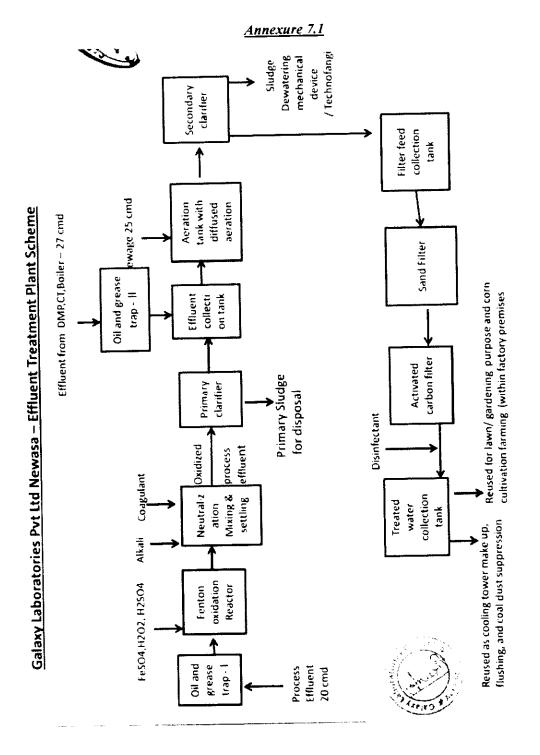
ľ			green belt a				e planted as per proposed		
30	Details of P	ollution control system	Sr. No.	Pollution control for	d to be installed				
			1	Air	ector / bag filter				
			2	Water	treatment plant				
			3	Noise	e/ PPE	_ 			
			4	Solid Waste		to CHWTSDF /	Recycler		
31	Environmer Managemer		Capital cos	it (With break up): See belo (With break up):See below	ow '				
	Budgetary /			nental Controlling Measure		Capital Investment(Rs. In Lakhs)	O&M Cost/Annum(Rs In Lakhs)		
			Air Pollu	tion Control		20	2		
				nent Monitoring	<u> </u>	5	2		
				llution Control		45	5		
			1	is waste & Solid waste mar	nagement	2	5		
			1	elt Development		2	3		
			Occupati	onal Health & Safety	-	2			
			Social we	elfare &upliftment		-	12		
			Other Gr	een Initiatives					
			Rain Wa	ter Harvesting		10	1		
			Solar Po	wer/LED	5	-			
			Energy C	onservation	5				
			Total			94	34		
32	salient featu		Period of data proposed to be collected: Dec 2015- Feb 2016 Details of the primary data collection (i.e. location of the sample collection, number of visit, etc): 8 locations Details of the secondary data collection (i.e. Source and year of data): Ahmednagar Municipa corporation Potential hazard and mitigation measures:- Conclusion of the EIA study: - No major impact on environment explosive/hazardous/toxic substances)						
	Sr. No. Name		Number of Storages	I Chemicai		Of	fax Qty f storage at any point of ime (KL)		
		Existing							
	1			15	Liquid	1	5		
	2	Hydrogen gas	120 Nos. o cylinders	f 2.49 kg/ cylinder	Gas	2	99 kg		
	 	Proposed							
	i	Methanol	1_	15	Liquid	1			
			2	15	Liquid	1	5		
	2	Toluene Furnace oil		15	Liquid				

PP gave a detailed presentation of their EIA report pertaining to manufacturing of APIs and Specialty Agro based Chemicals at their facility in Newasa MIDC. In addition to the existing facility for manufacturing of Hydrogen (18.72 lacs Nm3/annum) the proposed envisages 2984 TPA of such products in addition to 2923 TPA by-products. The Committee considered the EIA report and its presentation.

my planter


Member Secretary

Page 15 of 93


After discussion the Committee made the following observations:

- 1. The process generates large quantum of Chloro compounds both in liquid effluents and solid wastes. The Committee feels that Chlorine should be totally eliminated from effluents to achieve BOD/COD ratio to 0.3-0.4. Similarly solid chloro compounds in the hazardous wastes should not sent to the CHWTSDF, since incineration can generate harmful Dioxenes and Furans. For this purpose PP should compulsorily eliminate Chloro compounds at source through Fenton/ H₂O₂ treatment so as to mineralize the mother liquor after 1st and 2nd crops. The ensuing effluent treatment scheme is depicted in *Annexure 7.1*. The MPCB should verify the provisions of pre-treatment envisaged above before granting Consent to Operate.
- 2. The emissions from 3 TPH boiler using coal as a fuel and 6 lac kcal/hr thermic fluid heater should be passed through bag filter of suitable efficiency to achieve an outlet TPM of less than 100 mg/Nm³. Stack height for both boiler and thermic fluid heater should not be less than 30m.
- 3. The Consent certificate from MIDC for total water requirement of 100 CMD is given in the *Annexure 7.2.*
- 4. The PP shall effect maximum solvent recovery. The spent solvents containing spent H₂SO₄ and Sodium Hydrosulphide should be disposed of to vendors authorised by MPCB and should not be indiscriminately disposed of in the environment. The aqueous salt layer containing Bromine compound should be treated for crystallization of KBr and should be sold as by-product to authorised vendors only.
- 5. Annexure 7.3 indicates the diagram showing various hazard management facilities. There is a contingency of off-site emergency, hence hazard management plan shall be shared with the District Administration i.e. District Magistrate, Ahmednagar. There should be adequate dyke containment system for Ammonia, Chlorine and CS₂ (Carbon Disulphide).

The baseline studies indicates that all aspects of environmental impact were within limit. However since the project is located in a fairly remote industrial area which does not have a CETP, the effluent management should be strictly followed by the PP. The Committee decided to **recommend the project from EC**, subject to the above conditions (1-5).

25

Member Secretary

29

Annexure 7.2

MARASHTRA INDUSTRIAL DEVELOPMENT CORPORATION (A Government Of Maharashtra Undertaking)
No/DE/ANR/Works
10110

/2016 Office Of the Deputy Engineer, MIDC, Works Sub-Division, Ahmednagar. Date: -22/09/2016.

To, M/s. Galaxy Laboratories Pvt. Ltd. Plot No B-10, MIDC Newasa Indl. Area, Aurangabad-Pune Highway, Dist. Ahmednagar.

> Sub :- Supply of additional water for production at plot No B-10 for Galaxy Laboratories Pvt. Ltd.

Ref :- I. This office letter No. A-93883 Dtd. 23/03/2016. 2. You letter No. GLPL/MIDC/2016-17dated 22/09/2016.

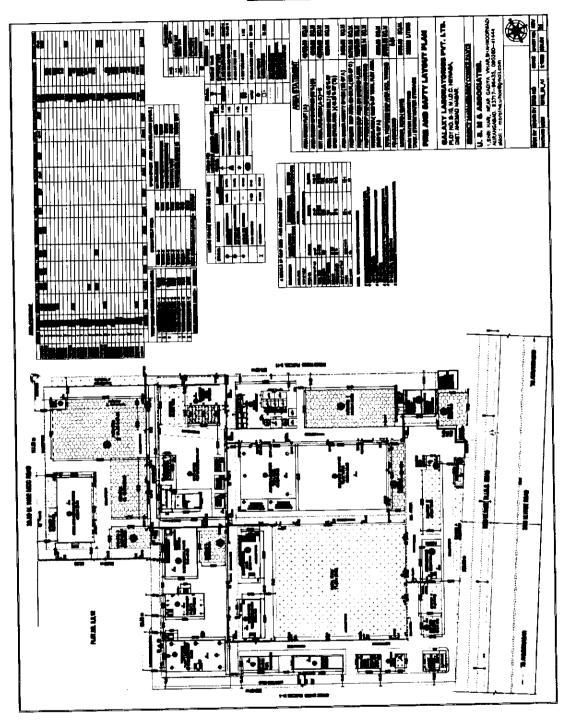
Dear Sir,

With reference to above subject matter, it is to inform to you that MIDC is in position to supply additional I00 m3 per Day Pure water to your plot No B-10 Newasa Indl. Area Subject to following complainces.

- 1) Necessary consent from MPCB for additional water consumption shall be obtained at your level.
- 2) You have to make storage arrangement 24 hours capacity & there will be no assurance of pressure of water.
- 3) Water will be supplied as per MIDC's rule applicable at the time of sanction of additional requirement & use there off.
- 4) Application for water connection should be made on line in single window system.

Thanking you,

Yours Fairhfully,

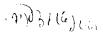

Deputy Engineer, MIDC, (W) Sub-Division,

Ahmednagar

Why & Holice Member Secretary

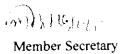
Page 18 of 93

Annexure 7.3


Member Secretary

Page 19 of 93

Item no. 8	M/s. Glenmark Pharmaceuticals Ltd.
	Expansion on plot no. B-25, 5 star MIDC Shendra Aurangabad.


The brief information of the project as submitted by the PP:

1	Name of project	Establishment of Synthetic Organic Chemical API Manufacturing facility by Organic Chemical API Manufacturing facility facil	Glenmark 10,							
2	Name, address, e-mail & Contact number of Proponent	Name: Mr. Sanjay Choubey Glenmark Pharmaceuticals Ltd. Address: Plot No. B-25, Five star MIDC. Shendra Aurangabad-431210 Telephone number: 0240-2622036/39 Mobile number: Email Id: sanjaychoubey@glenmarkpharma.com								
		Name: Aditya Environmental Service Pvt. Ltd.								
3	Name of consultant	QCI NABET List for the proposed category of the project.								
4	Accreditation of Consultant (NABET Accreditation)	5 (f)-B: Synthetic Organic Chemicals Manufacturing Industries								
5	New Project / Expansion in existing project/ Modernization/ Diversification in exiting project	Establishment of Synthetic Organic Chemical API Manufacturing Facility a	at existing unit							
6	If expansion / Diversification, whether environmental clearance has been obtained for existing project (If yes, enclose a copy with compliance table)	Diversification								
7	Activity schedule in the EIA Notification	5(f)-B								
8	Area Details	Total plot area (sq. m.): 118,955 Plint area (Sq. m.): 26,465 sq m (Existing + proposed)								
9	Name of the Notified Industrial area / MIDC area	5 Star MIDC, Shendra, Aurangabad								
10	TOR given by SEAC? (If yes then specify the meeting)	Ycs. 101th SEAC-I meeting dated 5th May 2015								
11	Estimated capital cost of the Project (including cost for land, building, plant and machinery separately)	Rs. 40 Crores								
12	Location details of the project :	Latitude: 19° 52' 19.269" N Longitude: 75° 30' 03.383" E Location: MIDC Shendra, Dist Aurangabad Elevation above Mean Sea Level (meters): 590								
13	Distance from Protected Areas / Critically Polluted areas / Eco- sensitive areas / inter-State boundaries	Not applicable								
14	Raw materials (including Process chemicals, catalysts, & additives).	Please refer EIA report								
15	Production details	Proposed (to be manufactured) products are as follow:	16							
}		No Therapeutic use Typical product	Quantity (TPA)							
		1 Anti Acne Adapalene	4							
]		2 Anti Alzheimer Riluzole								
		3 Anti depressant Bupropion HCl	\dashv							
1		4 Anti emetic Palonosetron	220.8							
		5 Anti Erectile Dysfunction Tadalafil								
-		6 Anti Fungal Fluconazole, Voriconazole	_							
		7 Anti Histaminic Desloratadine, Levocetrizene								

		8 A1		Rosuvastatin Calo		
		G Ar	nti hypertensive	Cilazapril, Olmes	artan Medoxomil.	
				Perindopril Erbut Linzolid	minem, Telmisartan	
		— —	titototio	Zonisamide, Oxc	arhazenine	
\		I		Sitagliptin, Tenes		
				Etoricoxib	5.15.00	
					agnesium Dihydrate	
Ì				Zolpidem Tartrat		
		PI	etelet Aggregation			
ļ			hibitor	Cilostazol		
				Dimethyl Fumara		
			J (1	Strontium Ranela	ate	
16	Process details / manufacturing	As per El	A report submitted char	pter 2		
	details	ļ <u> </u>	the Ground water table:	N. A		
17	Rain Water Harvesting	Level of t	ne Ground water table. no of RWH tank(s) and	Quantity: NA		
	(RWH)	Size and i	of the RWH tank(s): NA	A		
		Size nos	of recharge nits and Out	antity: NA		
	1	Quantity	of Rain Water Harveste	d: 40 cmd (During	g wet season of 122 d	lays only)
		Budgetar	v allocation (Capital cost	t and O&M cost):	20 Lacs	
18	Total Water Requirement	Total wa	ter requirement: 618 (EXISTING + PP	(OPOSED)	
1.0		Fresh war	ter (CMD): 340			
		Source: N	AIDC Shendra Aurangat	pad		
		Recycle v	water (CMD)– 278			
		l.,	c n /EVICTBIC	- DDODOSED)		
		Break up	as follows: (EXISTING cooling/Boiler (CMD):	528 (Fresh-305 +	Recycle- 223)	
		Domestic	c (CMD): 45 (Fresh-35,	Recycle- 10)	,	
		Green he	It (CMD): 45 (Recycle-	. 45)		
19	Sewage generation and treatment	Amount	of sewage generation (C	`MD): 40 (existin:	g + proposed)	
19	Sewage generation and treatment	Proposed	I treatment for the sewag	ge: Sewage water	partially treat in STF	'& then sent to ETP
!		for final	treatment.			
		Capacity	of the STP (CMD) (If a	applicable): 40 Cl	MD	
20	Effluent characteristic	I				Effluent
	}	Sr.		Inlet effluent	Expected outlet	discharge
i		No.	Parameters	Characteristic	effluent Characteristic	standards
				<u> </u>		
		1	pН	3 - 9	6.5-8.5	6.5-8.5
		2	TSS (mg/l)	1600	< 100	100
		3	TDS (mg/l)	6000	<2100	2100
		113	ID3 (mg/i)			
	1	4	 	30,000	< 250	250
		4	C.O.D. (mg/l) B.O.D. (mg/l)	30,000 12,000	< 250 < 30	30
		5	C.O.D. (mg/l) B.O.D. (mg/l)	12,000		
		4	C.O.D. (mg/l)	+	< 30	30
		5	C.O.D. (mg/l) B.O.D. (mg/l)	12,000	< 30	30
71	FTP Details	4 5 6	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (12.000 100 (CMD): 278	< 30	30
21	ETP Details	4 5 6 Amount	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (12.000 100 (CMD): 278 150 + 150 = 300	< 30 <10	30 <10
21	ETP Details	4 5 6 Amount Capacity Amount	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (y of the ETP (CMD): 1 of water to be send to t	12.000 100 (CMD): 278 150 + 150 = 300	< 30 <10	30 <10
21	ETP Details	4 5 6 Amount Capacity Amount Liquid I	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (y of the ETP (CMD): 1 of water to be send to t	12.000 100 (CMD): 278 150 + 150 = 300 the CETP (CMD)	< 30 <10	30 <10 will maintain Zero
21	ETP Details	4 5 6 Amount Capacity Amount Liquid I Member	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (y of the ETP (CMD): 1 of water to be send to t	12.000 100 (CMD): 278 150 + 150 = 300 the CETP (CMD)	< 30 <10	30 <10 will maintain Zero
		4 5 6 Amount Capacity Amount Liquid I Member unit)	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (y of the ETP (CMD): 1 of water to be send to to Discharge. eship of the CETP (If recommends)	12.000 100 (CMD): 278 150 + 150 = 300 the CETP (CMD)	< 30 <10	30 <10 will maintain Zero
21	Note on ETP technology	4 5 6 Amount Capacity Amount Liquid I Member unit)	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (y of the ETP (CMD): 1 of water to be send to t	12.000 100 (CMD): 278 150 + 150 = 300 the CETP (CMD)	< 30 <10	30 <10 will maintain Zero
22	Note on ETP technology to be used	Amount Capacity Amount Liquid I Member unit) Refer El	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (y of the ETP (CMD): 1 of water to be send to to Discharge. This of the CETP (If really the content of the CETP) A report for details	12.000 100 (CMD): 278 150 + 150 = 300 the CETP (CMD)	< 30 <10	30 <10 will maintain Zero
	Note on ETP technology to be used Disposal of the ETP	Amount Capacity Amount Liquid I Member unit) Refer El	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (y of the ETP (CMD): 1 of water to be send to to Discharge. eship of the CETP (If recommends)	12.000 100 (CMD): 278 150 + 150 = 300 the CETP (CMD)	< 30 <10	30 <10 will maintain Zero
22 23	Note on ETP technology to be used Disposal of the ETP sludge (If applicable)	Amount Capacity Amount Liquid I Member unit) Refer El	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (y of the ETP (CMD): 1 of water to be send to to Discharge. This is the CETP (If recommendate to the CETP) A report for details SDF, Ranjangaon	12,000 100 (CMD): 278 150 + 150 = 300 the CETP (CMD) quire): If yes then	< 30 <10	30 <10 will maintain Zero
22	Note on ETP technology to be used Disposal of the ETP	Amount Capacity Amount Liquid I Member unit) Refer E CHWTS	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (y of the ETP (CMD): 1 of water to be send to to Discharge. This post the CETP (If recommended in the CETP) A report for details SDF, Ranjangaon Taste Generation (proposition)	12,000 100 (CMD): 278 150 + 150 = 300 the CETP (CMD) quire): If yes then	< 30 <10 : NIL. Entire facility attach the letter: N	30 <10 will maintain Zero
22	Note on ETP technology to be used Disposal of the ETP sludge (If applicable)	Amount Capacity Amount Liquid I Member unit) Refer El	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (for the ETP (CMD): 1 of water to be send to to Discharge. The characteristic of the CETP (If recommendate to the centre of the CETP) Type of Waste	12,000 100 (CMD): 278 150 + 150 = 300 the CETP (CMD) quire): If yes then	< 30 <10 : NIL. Entire facility attach the letter: N	30 <10 will maintain Zero ot applicable (ZLD
22	Note on ETP technology to be used Disposal of the ETP sludge (If applicable)	Amount Capacity Amount Liquid I Member unit) Refer E CHWTS	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (y of the ETP (CMD): 1 of water to be send to to Discharge. This post the CETP (If recommended in the CETP) A report for details SDF, Ranjangaon Taste Generation (proposition)	12,000 100 (CMD): 278 150 + 150 = 300 the CETP (CMD) quire): If yes then	< 30 <10 : NIL. Entire facility attach the letter: N	30 <10 will maintain Zero ot applicable (ZLD) Disposal mode
22 23	Note on ETP technology to be used Disposal of the ETP sludge (If applicable)	Amount Capacity Amount Liquid I Member unit) Refer E CHWTS	C.O.D. (mg/l) B.O.D. (mg/l) Oil & Grease (mg/l) of effluent generation (for the ETP (CMD): 1 of water to be send to to Discharge. The characteristic of the CETP (If recommendate to the centre of the CETP) Type of Waste	12,000 100 (CMD): 278 150 + 150 = 300 the CETP (CMD) quire): If yes then sed) Categor	< 30 <10 : NIL. Entire facility attach the letter: N y Proposed 3.5 T/A	30 <10 will maintain Zero ot applicable (ZLD

						10000	T		
		2	Fiber drum			Nos./A			ĺ
		3	Aluminum foil			500000			
			Alamman Kin	Ì		No/A			1
		4	Poly bags scrap	, — —		3.5 T//			
		5	Aluminum sera			3.5 T/A			ļ
		6	Paper scrap			3.2 T/A			
		7	Metal serap		<u></u>	2.5 T/A	<u> </u>		
		8	Wooden scrap	l		6 T/A			
			Hazardous was	te		10.77	г	Sale to	Malif
			Used Oil		5.1	4.0 T/z	`		approved
		2	Spent mother l	iguor	28.4			CHWT	
		3	Discarded barr	els,	33.3	33000			authorized
			containers, line			No/A			/CHWTSDF
		4	Chemical slud waste water tro	ge from	34.3	3000	Γ/A	CHWT	
		5	Filter and filte which have or liquid		35.1	84 T/A		CHWT	
		6	Residue and w	astes	28.1	65 T/A	\	CHWT	
		7	Plastic drums. Drums, Gunny	MS	33.3	-		recycle	
		8	Waste /oil soa		5.2	1.5 T/		гергосе	
		9	Spent catalyst Charcoal	+	28.2		4	CHWTSDF	
		10	Distillation re	sidue	28.2	98 T/A		CHWTSDF	
		11	Off spec prod		28.3	3 T/A		CHWT	
		12	Date expired of and off specified drugs / produce	liscarded ication	28.4	12 T/A	4	CHWI	SDF
		13		Spent Solvent		15960	T/A	Distilla to auth vendor	
		14	Flue gas clear	ning	34.1	2 T/A	-	vendor	
		15	Resin from D	M Plants	34.2	1 T/A	·	Sale to registered reprocessor	
		16	Used batteries	s from UPS	NA	100 No/A		Return to supplier / manufacturer	
		17	Inculation wa	ste	NA	1.5 T	/A	CHWTSDF	
		If waster then pro	(s) contain any har ovide quantity, dis L separate segregate the possibilities of	posal data a ed storage w	nd proposed ill be provid	d precautio ded	nary me	asures: P	PES WIII DC
		Possible	users of solid was	te as given al Lwaste as giv	ove Zen above				
25	Atmospherie Emissions (Flue gas characteristics	Two ne	w Boilers each of d to be installed.	5 TPH steam	and 2 eme	ergency De	ا) sets ز ———	KV	
	SPM, SO2, NOx, CO, etc.)		ion source	1	2		3		4
		from		Boiler1	Boile	ет2	Boiler	3	Boiler4
			ng/New	Existing	Exis	-	New		New
		Fuel t		FO	FO		FO		FO
		 	ion details	+					
	is	SPM		<150 mg/nm ³	<150 mg/r		<150 mg/nn	n3	<150 mg/nm
		SO2		mg/nm3 54 kg/day		mio	772 k		772 kg/day
		NOx					31 kg/		31 kg/day
			on level from prop ency use only)	osed 2 DG s	ets (1000 k	VA capac	enty each	1)-2 x 9	b = 192 kg/day

Member Secretary

Page 22 of 93

		TPM ≤ 150 m	ng/NM3						
		Existing 2 DO	3 sets of 725 l	VA each					
26	Stack emission Details: (All the		proposed stacl	k details	2	3	4		
	stacks attached to process units, Boilers, captive power plant, D.G.	Stack numb				Boiler3	Boiler4		
1	Sets, Incinerator both for existing	Attached to)	Boiler! Existing	Boiler2 Existing	New	New		
	and proposed activity). Please indicate the specific section to which the stack is attached, e.g.:	Capacity (MT/hr)(ste	eam)	Existing	2	5	5		
	Process section, D. G. Set, Boiler, Power Plant, incinerator etc.	Fuel type	TO FO		FO	FO			
	Emission rate (kg/hr.) for each pollutant (SPM, SO ₂ , NO _x etc. should	Fuel quanti	ty	1.5 T/day		8.568 T/day	8.568 T/day		
	be specified	Material of	construction	MS	MS	MS	MS		
i		Shape (round/rect	angular)	Round	Round	Round	Round		
		Height, m (above	33	33	40	40		
			ize, in meters	0.30	0.30	0.5	0.5		
		Flue Gas qu Nm³/hr	uantity.	1711		5070	5070		
		 	rature deg C	83		270	270		
		Exit gas ve	locity, m/sec.	8.1		14.26	14.26		
		PM (mg/nr	n3)	<150		<150	<150		
		NOx		0.21 mg/nm3		0.354 gm/sec	0.354 gm/sec		
		Existing Pro	cess stack (we	et scrubber) - 5	m stack, partic	ulate matter <150	mg/nm³		
27	Details of Fuel to be used:	Proposed fu	el consumptio	n:					
		Sr. No.	Type of Fu				UOM		
		1	FO (for Bo	oilers)	2 x 8.568 =	TPD			
		2	HSD (for A			nax (Emergency nt only)	KLPD		
28	Energy	Power supply: Proposed power requirement: 2000 KVA DG sets: Number and capacity DG sets to be used (existing and proposed) – Existing – 1 x 725 KVA. (for power backup only) Proposed – 2 x 1000 KVA each (for power backup only) Details of the non-conventional renewable energy proposed to be used: Rain water harvesting, solar power, LED lights							
29	Green Belt Development	Green belt a	rea (Sq. m.):	25.615		D 1. 1.			
30	Details of Pollution control system	1 6-		Existing pollution	on	Proposed to be installed			
				Stack		Stack	- Laine FTD		
		2	Water 1	ETP,		Up gradation of			
				Aeoustic enclose	e, Silencer.	Aeoustic enclosi	ıre, Silencer.		
			Solid Waste	Waste managem	ient system	Waste managem	ent system		

mydettyr.

Member Secretary

Page 23 of 93

2 mg

		nent plan ry Allocation		O&M cost (With brea		Capital Ir	vestment	O&M Cost/Annum	
İ	Duugetai	y Amocation		17/14/10/direction Con-		(Rs. In La		(Rs. In Lakhs)	
				Water Pollution Co	ntrol	600		85	
Ì				Air Pollution Contro		25		2	
l				Environment		5		5	
				Monitoring/manage	ment	<u> </u>			
				Occupational Healt	h & Safety	10		5	
١				Green Belt Develop		15		8	
l				Hazardous waste &	Solid waste	15		50	
ļ				management		 		 	
				Other Green initiati		16		5	
Ì				Rain water harvesti	ng	30	<u></u>	5	
				Solar power / LED		10		5	
1				Energy conservatio	п	725		170	
İ				Period of data collec					
				given in chapter 4 Conclusion of the El	mitigation measu	res : Odors	due VOC har	`data): idling, Mitigation measur will be within managcable	
	Storage Sr.		Number of	given in chapter 4 Conclusion of the El limits /explosive/hazardous Capacity (KL) of	mitigation measu A study: impacts /toxic substance: Physical state as	res : Odors due to prop s)	osed project v	will be within manageable	
	<u> </u>	Name	Number of Storages	given in chapter 4 Conclusion of the El limits /explosive/hazardous	mitigation measu A study: impacts /toxic substances	res : Odors due to prop s)	osed project v	will be within manageable	
	Sr,		Number of Storages	given in chapter 4 Conclusion of the El limits /explosive/hazardous Capacity (KL) of each tank	mitigation measu A study: impacts /toxic substance: Physical state at Chemical Comp	res : Odors due to prop s)	Maximum	will be within manageable	
	Sr,	Name	Number of Storages	given in chapter 4 Conclusion of the El limits /explosive/hazardous Capacity (KL) of each tank	mitigation measu A study: impacts /toxic substances Physical state at Chemical Comp	res : Odors due to prop s)	Maximum point of tis	will be within manageable	
	Sr. No.	Name Existing tan	Number of Storages	given in chapter 4 Conclusion of the El limits /explosive/hazardous Capacity (KL) of each tank	mitigation measu A study: impacts /toxic substances Physical state at Chemical Comp Liquid, 100 % Liquid, 100 %	res : Odors due to prop s)	Maximum point of tis	will be within manageable	
	Sr, No.	Name Existing tan Acetone	Number of Storages	given in chapter 4 Conclusion of the El limits /explosive/hazardous Capacity (KL) of each tank	mitigation measu A study: impacts /toxic substances Physical state at Chemical Comp Liquid, 100 % Liquid, 100 % Liquid, 100 %	res : Odors due to prop s)	Maximum point of tis	will be within manageable	
	Sr, No.	Name Existing tan Acetone n-butanol Furnace	Number of Storages ks 2	given in chapter 4 Conclusion of the El limits /explosive/hazardous Capacity (KL) of each tank	mitigation measu A study: impacts /toxic substances Physical state at Chemical Comp Liquid, 100 % Liquid, 100 %	res : Odors due to prop s)	Maximum point of tis	will be within manageable	
	Sr., No.	Name Existing tan Acetone n-butanol Furnace Oil	Number of Storages ks 2 2 1	given in chapter 4 Conclusion of the El limits /explosive/hazardous Capacity (KL) of each tank 20 20 20	mitigation measu A study: impacts /toxic substances Physical state at Chemical Comp Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 %	res : Odors due to prop s)	Maximum point of tie	will be within manageable	
	Sr., No.	Name Existing tan Acetone n-butanol Furnace Oil Diesel	Number of Storages ks 2 2 1	given in chapter 4 Conclusion of the El limits /explosive/hazardous Capacity (KL) of each tank 20 20 20	mitigation measu A study: impacts /toxic substances Physical state at Chemical Comp Liquid, 100 % Liquid, 100 % Liquid, 100 %	res : Odors due to prop s)	Maximum point of tis	will be within manageable	
	Sr, No.	Name Existing tan Acetone n-butanol Furnace Oil Diesel Proposed ta	Number of Storages ks 2 1 Inks	given in chapter 4 Conclusion of the El limits /explosive/hazardous Capacity (KL) of each tank 20 20 20 20	mitigation measu A study: impacts /toxic substances Physical state at Chemical Comp Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 %	res : Odors due to prop s)	Maximum point of tie	will be within manageable	
	Sr, No.	Name Existing tan Acetone n-butanol Furnace Oil Dicsel Proposed ta Methanol	Number of Storages ks 2 1 1 nks	given in chapter 4 Conclusion of the El limits /explosive/hazardous Capacity (KL) of each tank 20 20 20 20 20	mitigation measu A study: impacts /toxic substances Physical state at Chemical Comp Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 %	res : Odors due to prop s)	Maximum point of tis	will be within manageable	
	Sr, No.	Name Existing tan Acetone n-butanol Furnace Oil Diesel Proposed ta Methanol Toluene	Number of Storages ks 2 1 Inks 2 2	given in chapter 4 Conclusion of the EI limits /explosive/hazardous Capacity (KL) of each tank 20 20 20 20 20 20 20	mitigation measu A study: impacts /toxic substances Physical state at Chemical Comp Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 %	res : Odors due to prop s)	Maximum point of tis	will be within manageable	
	Sr, No. 1 2 3 4 1 2 3 4	Name Existing tan Acetone n-butanol Furnace Oil Diesel Proposed ta Methanol Toluene EDC Ethyl acetate	Number of Storages ks 2 1 Inks 2 1 1 1 1 1 1 1 1 1 1 1 1	given in chapter 4 Conclusion of the El limits /ex plosive/hazardous Capacity (KL) of each tank 20 20 20 20 20 20 20 20 20 20 20 20 20	mitigation measu A study: impacts /toxic substances Physical state at Chemical Comp Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 %	res : Odors due to prop s)	Maximum point of tis 20 20 20 20 20 20 20 20 20 20 20	will be within manageable	
	Sr, No. 1 2 3 4 1 2 3	Name Existing tan Acetone n-butanol Furnace Oil Diesel Proposed ta Methanol Toluene EDC Ethyl	Number of Storages ks 2 1 Inks 2 1	given in chapter 4 Conclusion of the El limits /ex plosive/hazardous Capacity (KL) of each tank 20 20 20 20 20 20 20 20 20 20 20	mitigation measu A study: impacts /toxic substances Physical state at Chemical Comp Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 % Liquid, 100 %	res : Odors due to prop s)	Maximum point of tis	will be within manageable	

The PP gave a detailed presentation of their EIA report to manufacture therapeutic category APIs in their existing plant premises at 5 star MIDC, Shendra, Aurangabad to the extent of 18.4 TPM. The Committee considered the project under category 5(f)-B1 of the schedule of the EIA Notification 2006.

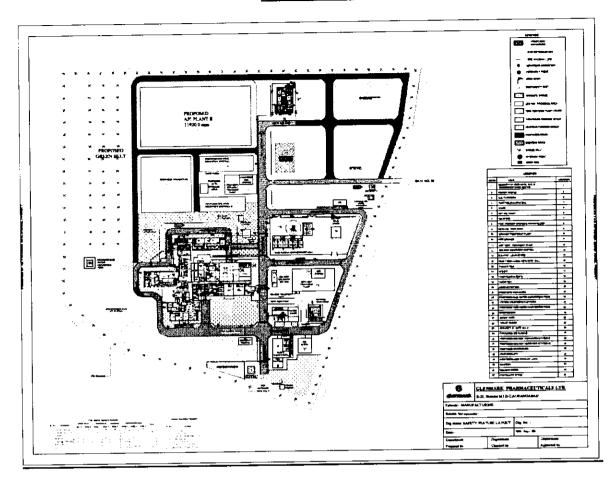
The PP claimed that presently they were not manufacturing any synthetic organic chemicals but only converting a biological plant source – latex extracted from the South American plant, "Cotton Lachari" to a therapeutic grade product, "Crofelmar".

Member Secretary

Page 24 of 93

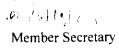
After detailed discussion the Committee made following observations:

- 1. The baseline studies indicate that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project.
- 2. The effluent management envisages segregation of effluents into high COD/BOD and low COD/BOD streams. Former will be subjected to RO and MEE and latter to a conventional effluent treatment process. The Committee was insistent that the Bromine/ Br products should not be allowed to enter the effluent stream. The effluent management will ensure that Bromine /Bromine compounds are segregated/recovered as NaBr so that they will not enter in effluent stream in any way.
- 3. The PP promised to submit an action plan to achieve this. The Committee noted that the project would run as a Zero Liquid Discharge Process.
- 4. The Committee went through the water balance and found that nearly 360 CMD water was additionally to be sourced from MIDC. The Committee was concerned about scarcity of water in the area, and therefore suggested that the entire water which could be recycled, amounting to 283 CMD should be used for gardening (50CMD) and cooling (233 CMD), thereby saving 90 CMD of MIDC water. The PP should restrict consumption of water to 340 CMD during dry and 285 CMD in wet season thereby effecting substantial saving of water drawn by MIDC.
- 5. The PP intends to use FO as fuel in the boilers. The PP should achieve a TPM of less than 100 mg/Nm³ at the stack end.
- The Risk Assessment and Risk Management studies show that there is a possibility of off-site emergency. Possibility of EDC/MDC leakages shall be considered and adequate detectors may be installed. A diagram showing various hazard management facilities is enclosed as *Annexure* 8.1.
- 7. The Committee is concerned about the solvent recovery. A table showing aspects of solvent recovery with details of vendors who will be procuring spent solvents from PP and mode of disposal by the vendors is enclosed as *Annexure 8.2*.
- 8. The PP shall ensure that THF will not be used in the process but shall be replaced by alternate solvent (DMF/Toluene) for manufacturing of Etoricoxib. However the Committee desired that notwithstanding this the PP shall undertake R&D to replace THF with Methylated THF and seek necessary clearances.


After considering all aspects of Environmental Impact the Committee decided to **recommend** the project for **EC** subject to the above (2-8) conditions.

2003

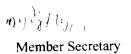
Member Secretary


Page 25 of 93

"Annexure 8.1"

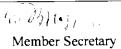
"Annexure 8.2"

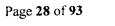
Sr No.	Solvent	Input Qty TPM	Type of recovery		% recovery	_	%	Qty	Qty	Residue qty TPM		Mode of Disposal
1	Acetone	73.3	DC, FC	84	91.0	6	1.5	56.0	3.7	0.9	11.7	Effluent to High COD
2	Methanol	72.9	DC, FC	90	93.0	5	1	61.0	3.3	0.7	7.3	Effluent to High COD
3	MDC	110.6	FC	82	72.0	24	1.5	65.3	21.8	1.4	19.9	Residue CHW TSDF/ Co- processing, Effluent to high COD
4	Toluene	23.6	DC, FC	85	92.0	6	1.5	18.5	1.2	0.3	3.5	Residue CHW TSDF/Co- processing, Effluent to high COD
5	IPA	22.2	DC, FC	92	74.0	22	1.5	15.1	4.5	0.3	1.8	Residue CHW TSDF/Co- processing, Effluent to high COD

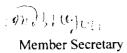


6 Ethyl Acetate 24.7 DC 65 80.0	17 2	12.8 2.7 0.3	Residue CHW TSDF/ Co- processing, Effluent to high COD
---------------------------------	------	--------------	--

Item no. 9	M/s. Dombivli Better Environment System Association
	Proposed expansion of CETP from 16 MLD to 26 MLD effluent and additional 4 MLD sewage at plot no- OS 8/3/PT, P-86/1, P-86/2, P-86/3 & x10 AM13 by DBESA, Dombivili, Thane.


The brief information of the project as submitted by the PP is as follows:


	Name of the Project	Additional	pgradation and expansion 4 MLD Sewage at Plot No	of existing CE o. OS- 8/3/PT, I	P-86/1, P-86/2, P-86	5/3 & x10 AM-	13					
	Name, address, e-mail & Contact and number of Proponent	Dombivili No. OS-8, Opp. Savit Dombivli (car Anant Kulkarni Better Environment System MIDC, Phase 1, ribai Phule, Kala Mandir, (East) Number - 0251-2425984	m Association,								
	Name of Consultant	Name: AB	C Techno Labs India Pvt l	Ltd								
	Aecreditation of Consultant (NABET Aecreditation)	1214/DAO	no Labs India Pvt. Ltd. ha 01 valid upto November 2	016.								
	New Project / Expansion in existing project/ Modernization/ Diversification in exiting project	Proposed additional	oposed upgradation and expansion to a capacity of 26 MLD (Trade effluent) plus 4 MLD of Iditional sewage from MIDC in totality									
,	If expansion/ Diversification, whether environmental clearance has been obtained for existing project (If yes, enclose a copy with compliance table)	No	7 (h) Common Effluent Treatment Plants (CETPs)									
,	Activity schedule in the EIA Notification	7 (h) Com	mon Effluent Treatment P	lants (CETPs)								
8	Area Details	S. No.	Particulars	Existing land area (Sqm)	Proposed Land Area for Expansion (Sq.m)	Total Area (Sqm)	% of Total Are					
			Process Area	8846.82	4391.79	13238.61	29.41					
		2	Ancillary / supporting buildings	376.37		376.37	0.83					
		3	Storage Area	106.14	-	106.14	0.23					
		$\frac{3}{4}$	Internal Roads Area	948	-	948	2.1					
		5	Parking Area	525	-	525	1.16					
		6	Green belt	16717	-	16717	37.14					
		7	Nallah	2761	-	2761	6.13					
		8	Open space	7719.67	2608.21	10327.88	22.95					
	Į.	Tota		38000	7000	45000	100					


9	Name of the Notified Industrial area/MIDC area	Dombivli										
10	TOR given by SEAC?(If yes then specify the meeting)	ToR was	granted	by SEAC I	Comm	ttee in the	108th meeting	g held	on13 th and 1	4 th August.		
11	Estimated capital cost of the Project(including cost for land,	Sr. No.		D	escrip	tion		Aı	mount in La	nes (Rs.).		
	building, plant and machinery separately)	1	Land	& Building					1823			
	separately)	2 Plant & Machinery							403			
		Piping + Electrical + Instrumentations + Painting + Erection & Commissioning							202			
		4	Other	Assets					225			
	-	TOTAL 2653										
12	Lucation details of the project:	Latitude: 19°13'3.88" N Longitude: 73°6'21.13" E Location: No. OS-8, MIDC, Phase 1, Opp. Savitribai Phule Kala Mandir, Dombivli East Elevation above mean sea level (meters) - 8 m amsl										
13	Distance from Protected Areas/Critically Polluted areas/ Eco- sensitive areas /inter-State boundaries	Not with										
14	Raw materials (including process chemicals, catalysts & additives).							Ste	Arnga			
		Sr. No.	1	Name of Chemical		e of ge	Usage Per Day	Storage (Tankers /Drums Etc)		Storage Quantity		
		1 Chlor (Indus		ide Prit		gulant in nary ement	20000 kg/day	,		80 Tons		
15	Production details	Not appl	icable				_					
16	Process detail/manufacturing details	CETP pr	ocess d	etails as attac	ehed ar	nexure						
17	Rain Water Harvesting(RWH)	Suitable	RWHv	vill be develo	ped to	r office bu	ilding structu	ire				
18	Total Water Requirement	s. :	Na I	Purpose	Existing Water Consum (KLD)			Proposed water consumption (KLD)		Total water consumption (KLD)		
		1	<u> </u>	Domestic pur	pose	5		5		10		
		2	I	rocess		10		10		45		
		3		Gardening FOTAL		35 50		10 25		75		
		<u> </u>	41 4		0 = =0t	umal flavy tl	heavah the no	dla on	both east &	west side of the project.		
19 20	Storm water drainage Sewage generation and treatment	4 MLD CETP.	y the ste sewage	received from	s a nat m Dom	bivli MID	C will be trea	ited ale	ong with 26	MI,D effluent in the		
21	Effluent characteristic											
		Paran	neter	Inlet mg/L(e pH)	хсері		Outlet mg/L(excep pH)	t	MPCB Norms			
		COD		2500			200 to 250	_	250			
					2500			200 to 250				

		TSS		900		<100		100		
		pli		6 to 9		6-8		6-8]
!	ETP details	• Ar • Ca • Ar • Ar	apacit moun moun	ty of CETP(CM at of treated eff at of water send	MD): fluent d to C	recycled: - NA	uent) + 4 M	ILD (Sev	wage)	
	Note on ETP technology to be used	ETP technol	logy i	is given as atta	iched	annexure				
1	Disposal of the ETP sludge (If applicable)	authorized C	CHW	TSDF, Taloja		ETP studge will be				
;	Solid waste Management	Municipal s	olid v	waste generatio	on wi	ll be negligible wh	ich will be	disposed	through local boo	
6	Atmospheric Emissions (Flue gas characteristics SPM, SO2, NOx, CO,	S.No.		Pollutant		Source of emission		ssion cg/hr)	Concentrate mg/Nr	
	etc.)	1		PM		DG sets (4 X500 kVA)	0.02 fc D	or each G	35	
		2		SO ₂		DG sets (4 X500 kVA)		or each G	10	
		3		NO _x		DG sets (4 X500 kVA)	0.9 for 6	eaeh DG	150	
7	Stack emission Details: (All the stacks attached to process units, Boilers, captive power plant,	Plant section &	- T	Stack. No		ight from ound level(m)	Emission rate		Temp of exhaust	gases.
	D.G. Sets, Incinerator both for existing and proposed activity). Please indicate the specific section to	DG sets (4 X 500 kVA) 1 to 4 3.5m(above roof level)each			0.02 kg/hr		125°C			
8	Process section, D.G. Set, Boiler, Power Plant, incinerator etc. Emission rate(kg/hr.) for each pollutant (SPM, SO2, NOx) etc. should be specified Details of Fuel to be used:					set of 500 kVA co	nsidering 8	0% Ioad	will be required.	DG scts w
	Energy	Power sup	ply:	case of powe						
		Proposed p Source: M DG sets: DG -set: 4 Details on	oower ISED 1 No (non-	of 500 KVA conventional	1200 tra St I rene				No	
0	Green Belt Development	Number, s	size, a	(sq.m):16717n age and species sed expansion	s of tr	ces to be cut, tree be carried out on v	s to be trans aean; plant	splanted	: Their will not be	any tree
31	Details of Pollution Control Systems:	S.No 1 2	Air Water		3.5 of CF ad	500 kVA ex ETP of 30M ditionally 4	ack heigl apacity LD capa MLD se	ht provided for ea ecity (26 MLD eff ewage)	luent &	
		4		Noise Solid waste		60 wi	G sets MT/Day E	TP sludg	nt, acoustic encloses will be generate PCB authorized	
32	Environmental Management plan Budgetary Allocation	Capital cos O & M Co	st (W	ith breakup) : Vith break up):	Rs.30 Rs. 1) Lakhs		= 		

					Sr.No. Recurring C			Capita Cost (Lakhs	\	Operational Cost in lakhs/annum 2 3		
					1	Air Pollution Control Water Pollution Control		5				
					2			10				
					3	Environment Monitoring And Management	1	-				
					4	Occupational H	ealth	•		2.		
				-	5	Green Belt		5		1		
				į	6	Solid waste management		5		2.		ļ
					7	Noise Pollution	<u> </u>	5 30	_	<u>1</u>		ļ
	1	mitted then submit t	h , valiant			Total					<u>'</u>	i
33	features		ne sanem Pe	riod of data o	collected :C	et 2016 to Dec 20	016 			<u>,</u>		
	Storage	of chemicals (inflan	ımable/explosiv	e/hazardous/	toxie subst	ances)		-			. 	
34	S.No	Name	Number of storage	Cap. (TPD)		l and chemical mposition	stora any j	ity of	Source Supp			ans of portation
	1	Poly Aluminium Chloride (Industry byproduct	Tanks (FRP coated)	20 TPD	B.P. > gravity	I State: Clear to liquid, M.P12 C, 100 C Specific -1.36 to 1.38, iical Formula: OH)mCl3n-m	80 T	ONS	Sudarshan Chemicals, E		y road	

The project was considered under 7 (h) – B1 category of the Schedule of the EIA Notification, 2006. The PP gave a detailed presentation about their proposal of augmentation of existing CETP from 16 MLD to 30 MLD which will also cater to a sewage load of 4 MLD.

The CETP has 130 members mostly manufacturing textile and related items. The PP had surveyed the detailed characteristics of effluents for 74 industries out of which 43 were closed and 10 were of green category.

After detailed discussion the Committee made following observations:

- 1. The commissioning of the project should be in conjunction with completion of pipelines that would take treated effluent of CETP to discharge point in the creek, as proposed by the National Institute of Oceanography.
- 2. An emergency storage tank shall be included in the CETP design to address shock loading.

Member Secretary

Page 30 of 93

3. The Committee noted that in the effluents of some industries there was traces of Chromium (Cr) which warrants Chromium reduction and Chromium removal. For this purpose the PP should do treatability studies for Chromium neutralization (attached as *Annexure 9.1*) at the cost of relevant industries and get the systems installed in such industries before commissioning of the project. This should be verified by the MPCB before granting Consent to Operate the CETP.

The Committee went through the all aspects of Environmental Impact and noted that the baseline studies indicated that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project. The Committee therefore decided to **recommend** the project for **EC** subject to the observations (1-3) above.

Member Secretary

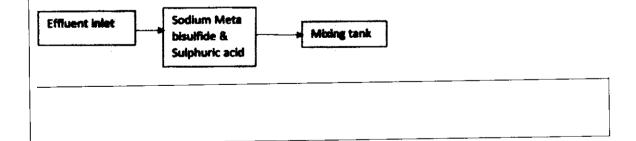
Thuy

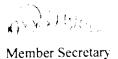
"Annexure 9.1"

TREATMENT FOR REMOVAL OF CHROMIUM FROM WASTE WATER

Introduction

In the textile industry it is observed that in some industry chromium is detected up to 2 ppm. For that chromium removal system is suggested to specified industry. Chromium is available in two form in waste water as Chromium (III) and Chromium (VI). There is two-step process is specified for chromium (VI) removal. This process is performed in two step. One is reduction of chromium (VI) into Chromium (III) and after that it will be precipitate by using precipitating agent. If in water only chromium (III) is there then it can be precipitate directly at PH 7 to 8.5.

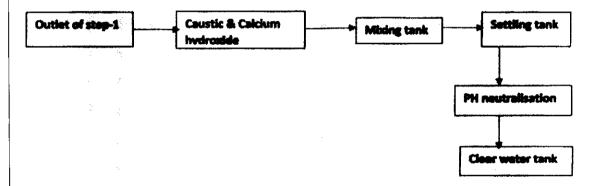

Option-1


Process description

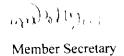
• Step-1: Process for reduction of chromium (VI) to Chromium (III)

in this process we will select the sodium meta bi-sulphite for reduction of chromium(VI) to chromium (III). PH will be decrease by sulphuric acid. In effluent water we will add Sodium Metabisulphite (Dosing rate will be set after the Jar test). Sodium Metabisulphite has capability of reduction of chromium (VI) to Chromium (III) at PH<

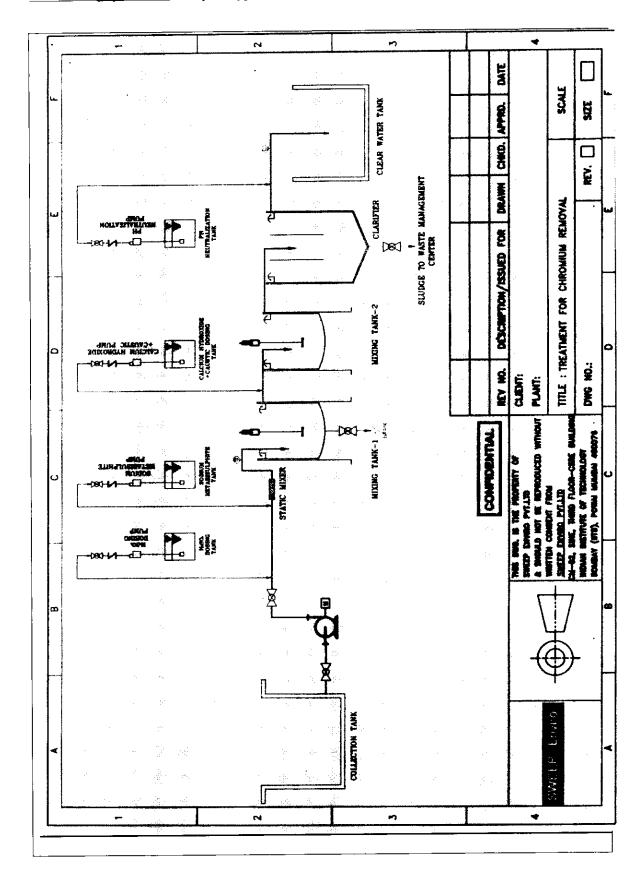
3. PH will be reduced by the sulphuric acid. There will be mixing tank provided for Mixing will be done by the agitator at 50 rpm. Retention time for reaction will be around 5 minutes.



23


• Step-2: Process for precipitation of Chromium (iii)

After reduction of chromium (VI) to chromium (III) addition of calcium hydroxide in the combination of caustic and PH will be adjusted to 9 to 10 (Dosing rate will be set after the jar test). We will provide rapid mixing and slow mixing after addition of chemical. For slow mixing retention will be 5 minutes and for slow mixing retention will be 20 to 25 minutes. Agitator is provided for mixing. For slow mixing agitator speed will be 50 to 60 rpm and for rapid mixing agitator speed will be up 20 to 30 rpm. After that water will transfer to settling tank to allow precipitation. Settling tank HRT will be around 2 to 3 hours. Clear water will be collected by overflow of settling tank. Sludge will be collected from bottom and it will be given to solid waste management centre. After that PH neutralization will be done by Acid.



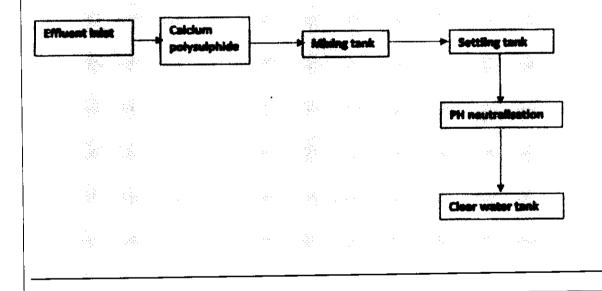
In the same process we will try with ferric chloride for precipitating chromium (III) for comparing the result instead of calcium hydroxide and caustic.

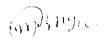
After that we can check the maximum removal percentage for chromium from the both the chemical dosing and finalize the chemical for dosing.

23

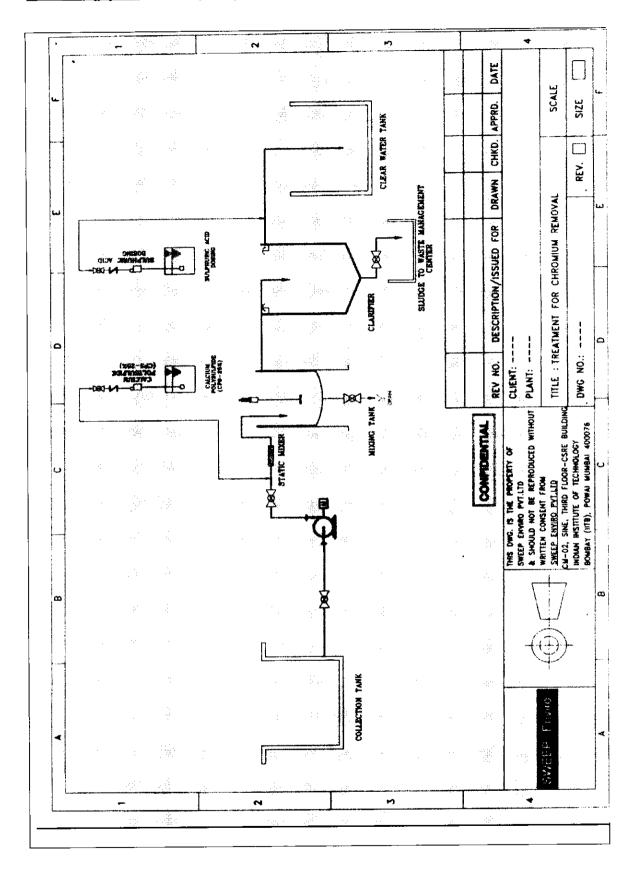
Carp Holice

Member Secretary




Option-2

Process description:


In the waste water calcium polysulfide will be dose, which is capable of reducing Hexavalent chromium to trivalent, and then precipitates it as hydroxide. Calcium polysulfide will be dose online after that reaction tank is provide with retention time of 10 to 12 minutes. Agitator is provided with speed of 20 to 30 rpm. After that settling tank is provided with the HRT of 2 to 3 hours. Clear water will be collected in tank. Sludge will be disposed to solid waste management centre.

Calcium polysulfide is alkaline in nature because of that acid is added to clear water to neutralise the PH.

Jung

Member Secretary

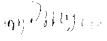
Page 36 of 93

Item no. 10	M/s. Vedant Re-Rolls Pvt. Ltd.
	New Project 400 MTDPhase III, MIDC Area, Additional Jalna, Dist. Jalna.

PP remained present. However PP did not produce the requisite yield certificate from GSDA. Hence **deferred**.

Item no. 11	M/s. Gajlaxmi Steel Pvt Ltd. Expansion of Existing Engineering Industrial SSI
	unit at F-4, Addl. MIDC, Jalna Tal & Dist Jalna

The Committee observed that the PP had been highly inconsistent in the submissions in the past presentations with regard to requirement of water for their production (ingots + structural steel). In present consideration the PP submits that the water requirement is 48 CMD and that they will be only producing ingots.


The water availability has been seen by the sub-committee during site visit as 4000 m³. Here they submit that they have alternate source of water the details of which they could not submit to the sub-committee.

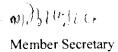
In the light of all these inconsistencies and non-compliances, the Committee decided that the PP should submit fresh proposal which would be final and not subjected to any change. Therefore **deferred**.

Item no. 12	M/s. Gayatri Ispat Pvt Ltd. Expansion of engineering industrial to produce MS Ingot/ Billet 1000 MTD and or
	structural bar, angles, channels 1000 MTD unit at G-6, Addl MIDC Jalna, Tq & Dist Jalna

The brief information of the project as submitted by the PP is as follows:

1	Name of the Project	M/S GAYATRI ISPAT PVT LTD. G – 6, Addl. MIDC. Phase II.Jalna
2	Name, address, & contact number of Proponent	Mr. Lokesh Bharuka G-6, Addl MIDC, Phase II.Jalna 9850239699
3	Name of Consultant	M/s. Ultra-Tech
4	Accreditation of consultant (NABET Accreditation)	NABET Certificate Number: NABET/EIA/1417/RA010
5	New Project / Expansion in existing project/Modernization/ Diversification in exiting project	Expansion
6	If expansion/Modernization. Whether environmental elearance has been obtained for existing project	No, was not required
7	Activity schedule in the EIA Notification	3 (a), "B"
8	Area Details	Total plot Area: 36550 m ² Built up area: Total 19.053 m ²
9	Name of the Notified Industrial area / MIDC area	Jalna

Page 37 of 93



10	TOR given by SEAC?	No. App	No. Applied for TOR							
11	Estimated capital cost of the Project (including cost for land, building, plant and machinery separately)		Rs.90.25 Cr.							
12	Location details of the project:	2. Longi 3. Locat 4. Eleva	1. Latitude 19°50'55.70"N 2. Longitude 75°51'12.32"E 3. Location 4. Elevation above Mean Sea Level (meters) 534 meters							
13	Distance from Protected Areas / Critically Polluted areas / Eco-sensitive areas/ inter- State boundaries	Within leco-sens	Within 10 km area of influence zone there is no protected area, critically polluted eco-sensitive areas or inter-state boundaries							
14.	Raw materials (including process	Sr.	Raw	Physical	Quantity	Means of				
	chemicals, catalysts, & additives).	No.	Materials MS Scrap	Nature Solid	(TPD) 380 TPD	transportation By Road				
		l i	Sponge Iron	Solid	580 TPD					
		2				By Road				
		3	Pig Iron	Solid	100TPD	By Road				
		4	Ferrous silicon	Solid	18 TPI)	By Road				
15	Production Details			•	·					
		Interm	of Products, By ediate Products			osed activity mization/expansion)				
		Main	-4-							
		MS B	illets/ ingots/	1000TPD						
			. 14 10 7		n Du sallina					
16	Process details / manufacturing details	Segrega	ition-Melting – I	apping-Castin	g-Re-roning					
17	Rain Water Harvesting	Size and Locatio	f the Ground wa d no of RWH tan n of the RWH tan os of recharge pi	nk(s) and Quar ank(s)Near the	ntity10mx 10mx shade	. 5m (1 no.).				
18	Total Water Requirement Total water requirement:	Fresh w Recycle Use of 1 Process Cooling DM Wa Dust Su Drinkin Green b Fire ser	Size, nos of recharge pits and Quantity Fresh water (CMD): & Source 135 CMD Recycled water (CMD): Use of the water: Process (CMD): Cooling water (CMD): 90 CMD DM Water (CMD): Dust Suppression (CMD): Drinking (CMD): 6CMD Green belt (CMD): 27CMD Fire service (CMD): Others (CMD): Scrubbing 12							
19	Storm water drainage	quantity Size of	water drainage of storm water SWD 300 x 45	0 mm gutter						
20	Sewage generation and treatment	Propose	t of sewage general treatment for cy of the STP (C	the sewage: s	septic tank/STP					
21	Effluent characteristic									
		Sr. No.	Parameter (pH. BOD COD, hea metal, etc	o, vy	nict effluent Characteristic	Outlet effluent Characte ristic				
		1	pH		6.5	7.00				
		2	COD		300-350 100-120	<200 <30				
		3	BOD							

(m)? 10 / ().
Member Secretary

22	ETP details	Amount of effluent generation (CMD): No Industrial effluent Capacity of the ETP (CMD) Amount of treated effluent recycled (CMD): Amount of water send to the CETP (CMD): Membership of the CETP (If require): If yes then attach the letter submit the letter									
23	Note on ETP technology to be used	Only Domestic Effluent									
24	Disposal of the ETP sludge (It applicable	Only domestic effluent, disposed on land for gardening									
25	Solid waste Management:	Sr. No.	Wast	e	Quanti	ity	Disposa				
		I	Offic	e waste	66 kg/	day	recycled	<u> </u>	ly paper	waste will be	
		2		sludge	~1 kg/	_	Own ga				
		3		ing waste		al	Sale. Ro	cycle			\longrightarrow
		4	1	ess waste- actory,	- 4 MII		Reuse				
		5	Slag		40MT		Resale, Can be used for Building				
							construction material, road making				
		Possible	By sal	e to the b if Solid W	s of recover rick manufa Vaste Brick lid waste	acture mani	er ufacturer		tes		
26	Atmospheric Emissions: Flue gas characteristics(SPM, SO2,	S. No.	Pollut		Source of emission		Emissio kg/hr	n rate	Concer flue ga	ntration in	
	Nox, CO)	1	SPM		Furnace			32660 NM ³ /hr		< 120mg/Nm3	
27	Stack emission Details: (All the	<u> </u>					<u> </u>		<u> </u>		
	stacks attached to process units. Boilers, captive power plant, D.G. Sets, Incinerator both for existing and proposed activity). Please indicate the specific section to which	Plant section & Units	1	Stack No.	Height from ground level (M)	Di (T	temal ameter op) (m)	Emiss Rate	sion	Temp. of Exhaust Gases	
	the stack is attached, e.g.: Process section, D.G. Set, Boiler, Power Plant, incinerator etc. Emission rate (kg/hr.) for each pollutant (SPM, SO2, NOx, etc. should be specified	Wet Scrubb attache the fur	ed to	1	40	[.]	3 M	32660 NM ³ /		140	

28	Details of Fuel used:	Source of Fuel: MSEB Mode of Transportation of: Transmission line										
			Transportation of : Transmission line fuel to site									
		S. No	Fuel	Daily Consumption (TPD/KLD)		Calorifie value (Kcals/ kg)	Ash %	Sulphur %				
			· · · · · · · · · · · · · · · · · · ·	Existing	Proposed		ļ	ļ				
		1 2	Gas Naphtha	-	-	Only Electr	ic Power	is used				
		3	HSD	-	-	omy meen	10 10 1101	i.i di.icd				
		4	Fuel Oil	+-								
		6	Coal Lignite		-							
		7	Other (Pl.	-								
		D.	specify)									
9	Energy		ower requi	rement: 1000 tirement: 39000								
		propused)	2 no. 500	/ DG sets to be KVA Proposed			a ha yand					
0	Green Belt		the non-co	nventional reno 0 m ²	ewable energ	ty proposed to	o be used					
	Development	Number a Number, s	nd species	of trees to be p		ing.15no. + N	New 265 :	no. = 280no.)				
31	Details of Pollution Control	S. No.		Existing	P	roposed to be	e installed					
	Systems:	i)	Air				ime extraction system ith Ventury Scrubber					
		ii)	Water	Septic Tank v soak pit		STP						
		iii)	Naise	Tree banker	Ţ	rec Banker						
		iv)	Solid Waste	Collection, segregation	C	Collection, Segregation						
32	Environmental Management plan Budgetary Allocation		Capital cost with break up O & M Cost with break up									
	7.200	S. No.	Details			curring Cost Per Month	Сад	oital Cost				
		1		ion Control	6.5		93.					
		$\frac{2}{3}$		ution Control	0.6	DU	12.	UU				
		4	Environme Manageme	ent Monitoring ent	and 0.4	15	-					
				on borrow/mine		70	-					
			Occupation Green Belt		0.5		20.	00				
		8	Solid wast	e Management	2.0	00	15.	00				
		9	Others (PI	. Specify) RWI	1 0.0)5 .60	06.	50				
33	EIA Submitted (If yes then submit the salient features)	Period of		ted 3 Months, Cry data collection	et, Nov & E	Dec - 2014	140					

(419816) rd

	sample collection, number of visit, etc): Details of the secondary data collection (i.e. Source and year of data) census book Potential hazard and mitigation measures Risk assessment and DMP design: Conclusion of the EIA study The project is necessary and helps in converting waste steel into usable finished products without any male effect on environment
i	steel into usable finished products without any male effect of environment

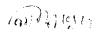
Previous consideration: The 104th Meeting held on 19th and 20th June 2015

Decision: The PP made a detailed presentation of the proposal to manufacture structural bars, angles and channels from M.S scrap, sponge iron etc. The plant will have a capacity 1000 MT/day.

After deliberations Committee made the following observations:

- 1) 33% of open area and 12% of total area may be kept reserved as a green space and parking space respectively.
- 2) MIDC's consent letter regarding assured water supply should be obtained.
- 3) Details of fuel consumption and stack height calculations.
- 4) Details of primary and secondary fume extraction system.
- 5) Traffic management studies including movement, holding area, loading unloading and facilities for drivers and cleaners.
- 6) Safety in material handling.

The standard **ToR** prescribed by MoEF & CC in its Notification of April 2015 for category 3(a) is **approved** for the preparation of EIA report.


The above mentioned points 1-6 may be included as additional ToR points while preparing EIA report.

Previous consideration: The 133rd Meeting held on 24th & 25th August, 2016

Decision: The Committee noted that the project was considered as 3(a) - B1 category of the EIA Notification, 2006. The PP made a detailed presentation of the proposal to manufacture structural bars, angles and channels from M.S scrap, sponge iron etc. to the extent of 1000 MT/day. The process involves melting scrap iron in 340 T induction furnace and passing the ingots through the rolling mill.

After detailed discussion the Committee made the following observations:

- 1. The Committee went through the all aspects of Environmental Impact and noted that the baseline studies indicated that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project.
- 2. The PP should set apart 4000 sq. m for parking and 6000 sq. m for green belt.
- 3. The emission management will be through venturi scrubber and high efficiency hydro cyclone followed by a stack of height 73m to achieve a TPM level of less than 100 mg/Nm³.
- 4. Water requirement after discussion and reduction of water in irrigation and domestic sewage comes to 100 m³/day. Considering scarcity of water in Jalna District, there should be sufficient water availability in the summer season. The PP submitted that he had a captive source of water at Jalna.
- 5. Asbestos should not be used for building construction.
- The workers in the plant should be protected from extreme temperature by providing them with heat resistant clothing and adequate rest periods to prevent over exposure. There should be regular health check-ups to monitor physical parameters of workers who are employed near the furnace.

Chairman

Page 41 of 93

Member Secretary

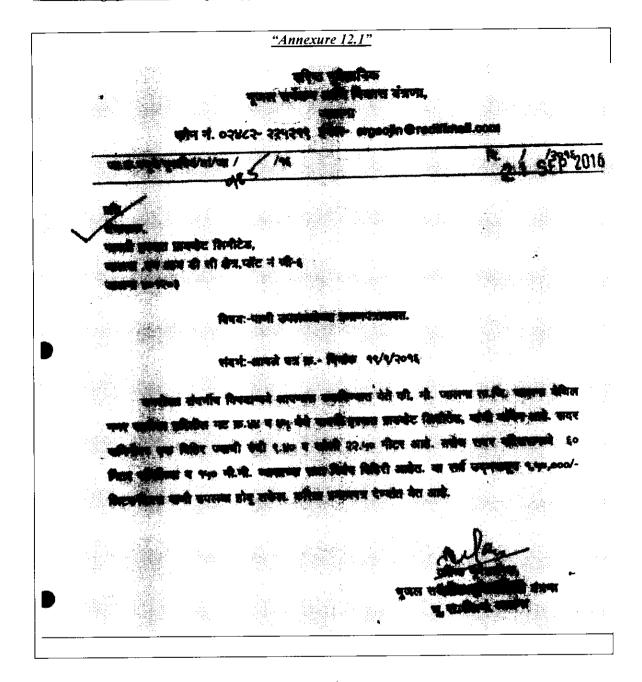
The PP submitted that he has a captive source of water at Jalna. The Committee desired that its sub-committee should visit the site to verify the water availability. Deferred for the site visit.

Present consideration 135th meeting:

The PP submitted compliance given in 133rd meeting. After detailed discussion the Committee made the following observations:

- 1. The PP should set apart 4000 m² for parking and 6000 m² for green belt.
- 1. The emission management should be through venturi scrubber and high efficiency hydrocyclone followed by a stack of height 54m to achieve an outlet TPM of less than 100 mg/Nm³. PP shall install secondary fume extraction system of sufficient capacity on the plant rooftop and treat the fumes through air pollution controlling system.
- 2. The Committee studied in detail the availability of water. The PP has submitted a letter from Senior Geologist, GSDA Jalna indicating that the PP could source 1,50,000 lit/day (150 CMD from its captive source in gut no. 44 & 45, Village- Jalna, Taluka- Jalna); the said letter is enclosed as *Annexure 12.1*. Further the Committee observed that the PP has in possession an abandoned quarry in plot no. B-105, Phase III, Additional MIDC Jalna which can supply 6400 m³ of water. Thus the Committee observed that during the 4 summer months a total quantum of 10800 m³ + 6400 m³ = 17200 m³ of water can be made available by the PP through captive sources as against requirement of 16200 m³ [135 CMD x 120 days]. Thus in the summer months the PP can run the plant in full capacity using the captive sources.
- 3. Asbestos should not be used for building construction.
- 4. The workers in the plant should be protected from extreme temperature by providing them with heat resistant clothing and adequate rest periods to prevent over exposure. There should be regular health check-ups to monitor physical parameters of workers who are employed near the furnace.

The Committee went through the all aspects of Environmental Impact and noted that the baseline studies indicated that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project. The Committee therefore decided to **recommend** the project for **EC** subject to the observations (1-4) above.


in morally

Page 42 of 93

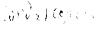
Chairman

2

Member Secretary

in of the

Member Secretary

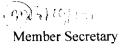


Page 43 of 93

Item no. 13	M/s. Kalika Steel Jalna Pvt Ltd.
	Application for grant of TOR for proposed 150000 TPA M.S. Re-rolled, M.S.
	Bars, Angles, Channels by installing to furnace at F-18, 19, Additional MIDC
	Area Jaina.

The brief information of the project as submitted by the PP is as follows:

1.	Name of the Project			alika Steel Jalna Pyt	. Ltd						
2.	Name, address, e-mail & contact number	Name: M/s Kal	ika Steel Jalna Pvt.	Ltd.,	1.1 42127						
l.	of Proponent			dditional MIDC Are	a, Jalna-43120	03					
		Email: <u>kalikajal</u>	na@gmail.com	annual Disaster							
		Contact Person: Contact: 0248-2	Mr. Arunkumar A	garwai -Director							
		Fax No: 0248-2									
	N. CO - Wheel	Name: Pollution & Ecology Control Services									
3.	Name of Consultant Accreditation of consultant (NABET	Van Angraditad	vida letter no. NAB	BET/EIA/02/12/47 d	ated 27/02/201)					
4	Accreditation)		vide lefter no. NAD	SE 1/1.1702/12/4/ u							
5.	New Project / Expansion in existing	New									
ļ	project / Modernization / Diversification										
	in existing project					<u></u>					
6.	If expansion/ Diversification, whether	-									
	environmental clearance has been										
	obtained for existing project (If yes.										
	enclose a copy with compliance										
	table)	The project falls	under the Cotegor	P' of the Schodul	e of EIA Notif	ication, 2006. Item no.					
7.	Activity schedule in the EIA Notification	- 3(a)	under the Category	y B of the selledal	e or mar rom	eutton, 2000. Item no.					
8.	Area Details		(sq. m.): 15300 m ²								
1 0.	/ Hear Dearis		q. m.): - 5029.29 m	2							
9.	Name of the Notified Industrial area /	Additional MID									
· ·	MIDC area										
10.	TOR given by SEAC? (if yes then	Yes 77th Meetin	ng of the State Leve	l Expert Appraisal (Committee (SE	AC-l)					
11.	specify the meeting) Estimated capital cost of the project:	Rs. 25 Cr.		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					
11.	(including cost of land, building, plant	Ks. 25 Cl.									
	and machinery separately)										
12.	Location details of the project:	Latitude - 19°5	0'42.30"N								
14.	Execution detains of the project.	Longitude - 75°									
		Location- Additional MIDC Area, Jalna in Maharashtra									
1		Elevation above	Mean Sea Level (r	neters) – 534 m							
1											
13.	Distance from protected Areas /Critically	No critically po	lluted area. No Nati	ional Parks/Wild life	Sanctuary wit	hin 10 km radius.					
	Polluted areas/ Eco-sensitive areas/ inter-										
	State boundaries			, , , , , , , , , , , , , , , , , , , 							
14.	Raw materials (including process	List of raw	Physical and	Quantity	Source of	Means of					
	chemicals, catalysts, & additives).	materials to	chemical nature	(tones/month)	materials	transportation					
		be used	of raw material	full Production		(Source to storage					
				eapacity		site) with					
ļ			- .	ALC TRE	6	justification					
İ		MS Scrap	Lumps	515 TPD	Gujarat,	Tarapaulin covered					
					Maharashira	trucks.					
					and Chhattisgar						
		11			Cnnattisgar h						
		Spanga lean	Lumps	220 TPD	Open	-do-					
		Sponge Iron	Lumps	220 11 15	Market	ut-					
15.	Production details	Name of	Existing	Proposed activity		Year)					
1 21.	110ddetion details	Products.	(T/Year)	(new/		7					
		By products a	•	modernization /	ľ						
		Intermediate	iiu	expansion)							
		Products		(T/Year)							
		I Noudets		(11.40.7)							
		L									
						_					



		Main Pro	ducts	-	M.S. Billets (700	M S Billets	- 700 TPD					
		By-Produ	ıcts		TPD)							
		Intermed										
		Products										
16.	Rain Water Harvesting (RWH)			d water table								
		Size and no Location o		/H tank (s) and Q	uantity							
				ge pits and Quant	ity							
		Budgetary allocation (Capital cost and O&M cost)										
17.	Total Water Requirement	Total wate		ement:): 70 m³/day & S	MIDC							
); /0 m /day & s MD); 16 m ³ /day								
		Average a	nnual Ra	in water storage								
		Rain water	ruse (CN	MD): m ³ /day								
			Sr.	Unit	Fresh water	Wastewate	r					
		i	No.		Requirement	Generation						
					(in CMD)	<u> </u>						
			$\frac{1}{2}$	Domestic use	7	6						
	1		2	Cooling purpose	43	-						
			3	Gardening	5	-						
			4	Serubber	15	10						
				Total	70	6						
		Use of the Process(Cl		/day								
				D): 43m ³ /day								
		DM Water	(CMD)	: m³/day								
		Dust Supp Drinking (
		Green belt	CMD): (CMD):	/m=/day Sm ³ /day treated=	water will be reused							
		Fire servic	e(CMD)):								
				rubber : 15 m³/da								
18.	Storm water drainage	Natural wa		age pattern - Qu	antity of storm water							
19.	Sewage generation and treatment			generation (CMI	D) - 6 m ³ /day							
		Proposed t	reatmen	t for the sewage -	- Sewage will be trea							
					l in Sewage Network	of MIDC						
20.	ETP details			t generation (CM	licable) – 40 KLD D) –							
20.		Capacity o	f the ET	P (CMD) –								
				effluent recycled								
			Amount of water send to the CETP (CMD): Membership of the CETP (If require): If yes then attach the letter submit the letter –									
			No wastewater generation									
21.	Solid waste Management:		ource		Qty (TPM)	Form	Composition					
		No				(Sludge/Dr						
						y/Slurry ete.)						
		1. R:	aw wate:	r treatment plant	Nil							
		2 E	TP		Nil							
		3. Pr	rocess		Proposed		Slag from					
					Quantity 28 T/Day		Induction Furnace					
		4. St	pent Cata	alyst	Nil							
			ily Slud		Nil							
				e Battery waste, e (Pl. Specify)	: Nil							
		provide qu	If waste (s) contains any hazardous/toxic substance/radioactive materials or heavy metals, provide quantity, disposal data and proposed precautionary measures.									
		what are the	ne possil	onnies of recover	y and recycling of w	astes?						
	·	· · · · · · -										

Mary Miller

22.	Stack Emission Details: (All the stacks attached to process units. Boilers, captive	Possible users of Solid waste – Since the solid waste generated from induction furnace is no hazardous in nature it can be use in hardening of working area, possibilities can be explore for its use in construction of internal village roads, and filling of stone quarry pits. Method of disposal of solid waste – The slag which is generated during melting of scrap an sponge in induction furnace is mostly comprising of SiO ₂ (silica) FeO (iron oxide) and Al ₂ O ₃ (alumina). These are fairly stable materials. Slag Crusher unit will be installed. After crushing slag is used for Hardening of working area, village internal roads. Since slag contains 32- 34 % of iron it will be always feasible & economically viable to extract maximum iron. Magnetic Separator will be used to separate the iron. The slag crusher that will be installed will be capable of crushing slag to 2 mm. Plant Section Stack Height Internal Emission Rate Temp. of Exhaust Gases							
	power plant, D.G. Sets, Incinerator both for existing and proposed activity). Please indicate the specific section to which the stack is attached, e.g.: Process section, D.G. Set, Boiler, Power Plant, incinerator etc. Emission rate (kg/hr.) for each pollutant (SPM, SO ₂ , NO _x etc.) should be specified	Stack attached to	1 st	ground level (m)	(TOP) (m)	For SO ₂	For NO _x	50°C	
		Induction						1	
23.	Green Belt Development	Green belt area Number and spe planted in const Number, size, a	ecies of tree ditation with	s to be planted the local For	d - Approxin est Departme	ent		will be	
24.	Details of Pollution Control Systems:	Number, size, age and species of trees to be Sr.			ollution				
25.	Environmental Management Plan Budgetary Allocation	iv) Solid Waste - Capital cost (With break up): O& M cost (With break up): Sr.N o. 1. Air Pollution Control 2. Water Pollution Control 3. Noise Pollution Control 4. Environment Monitoring and Management 5. Reclamation borrow/mined area (If applicable) 6. Occupational Health 7. Green Belt 8. Solid waste management 9. Others (Pl. Specify) Environmental Cell			10 1 - 3	ng Cost per (Rs. Lakhs)			
.26	EIA Submitted (If yes then submit the salient features) Public Hearing report (If	Period of data collected — February, March, April 2014 • Details of the primary data collection (i.e. location of the sample collection, number of visit, etc) • Details of the secondary data collection (i.e. Source and year of data) • Potential hazard and mitigation measures • Conclusion of the EIA study • Date of the public hearing — N.A							
21.	public hearing conducted then submit the salient	• Name of the r	ews paper i		dvertisement	appeared		 	

	features)	Location of the public hearing Number of people attended the hearing Objection(s) / Suggestion(s) if any
28.	Air pollution, water pollution issues in the project area, If any	-

Previous consideration: The 128th Meeting held on 2nd, 3rd & 4th June, 2016

The Committee considered the application of PP for EIA for proposed 1,50,000 TPA M.S re-rolled, M.S bars, angles, channels by using induction furnace. The Committee decided to defer the proposal for want of assured water supply for the processes. Hence deferred.

Previous consideration: The 133rd Meeting held on 24th & 25th August, 2016

<u>Decision:</u> The Committee noted that the project was considered under 3(a) - B1 category of the EIA Notification, 2006. The PP gave a detailed presentation of their proposal to convert their existing plant to produce 700 TPD of re-rolled MS bars from ingots sourced from outside to a composite plant comprising of induction furnace and rolling mill to produce the same quantum of MS bars.

The process will require upto 100 CMD of water. The PP could not give satisfactorily explanation to the quantum of water being made available in water scarcity area like Jalna. The Committee suggested that water could be sourced from some other similarly placed mills who have their own surplus captive water sources. The PP may indicate water availability either from captive sources of other mills.

Deferred for solution to water availability.

Present consideration 135th meeting:

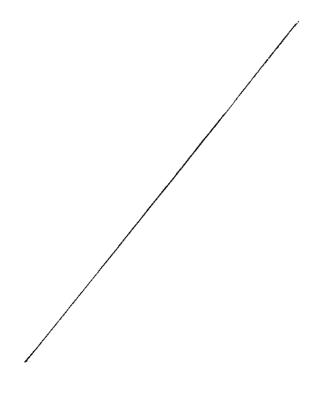
The Committee noted that the project was considered under 3(a) - B1 category of the EIA Notification. 2006. The PP gave a detailed presentation of their proposal to convert their existing plant to produce 700 TPD of re-rolled MS bars from ingots sourced from outside to a composite plant comprising of induction furnace and rolling mill to produce the same quantum of MS bars.

After detailed discussion the Committee made the following observations:

- 2. The PP should provide 1800 m² for parking and 3300 m² for green belt.
- 3. The emission management will be through venturi scrubber and high efficiency hydrocyclone followed by a stack of height 54m to achieve an outlet TPM of less than 100 mg/Nm³. PP shall install secondary fume extraction system on the plant rooftop and treat the fumes through air pollution controlling system.
- 4. The Committee has considered water requirement of 100 CMD. The Committee desires that for the 4 summer months when there is acute scarcity in Jalna, PP should be able to provide water from its captive sources. PP has provided water availability certificates as follows
 - a) Village- Sirsewadi, Taluka- Jalna (well): Senior Geologist, GSDA has certified water availability of 75 CMD in summer.[enclosed as *Annexure 13.1*]
 - b) Gut no. 139, Village- Jalna, Taluka- Jalna (well): Senior Geologist, GSDA has certified water availability of 50 CMD in summer. [enclosed as *Annexure 13.1*]

im) 3/10/1.51

Member Secretary


Page 47 of 93

c) Gut no. 139, Village- Jalna, Taluka- Jalna (1 bore well of 150mm diameter and 60m depth): Senior Geologist, GSDA has certified water availability of 25 CMD in summer.[enclosed as *Annexure 13.2*]

Thus total water availability is 150 CMD (in summer) as against requirement of 100 CMD. Therefore the Committee concluded that the PP was self-sufficient in water during summer. The PP should not burden MIDC in case of water shortage during the summer months.

- 5. The workers in the plant should be protected from extreme temperature by providing them with heat resistant clothing and adequate rest periods to prevent over exposure. There should be regular health check-ups to monitor physical parameters of workers who are employed near the furnace.
- 6. As a part of CSR activity the PP may take the lead to display daily Ambient Air Quality details in front of main gate of Additional MIDC, Jalna for public information. The PP may garner support from other steel mills in the MIDC for this initiative.

The Committee went through all aspects of Environmental Impact and noted that the air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project. The Committee therefore decided to **recommend** the project for **EC** subject to the observations (1-6) above.

in date of

Member Secretary

Page **48** of **93**

"Annexure 13.1"

करण पूरवातनक पूजल सर्वेद्यन सामि विकास वंत्रमा, Ann. 13-

पालग

कोन नं. ०२४८२- २२५२**१९ इंगेश- argeofin@rediffinali.co**m

मा.इ.वम्बे/मूसवियं/तां/जा /

/198

F 6 SEP 201

बात, व्यवस्थापक, कालिका स्टील, प्राप्तना प्रायखेट लिमीटेड एक-१८६९९ एम जाव डी सी क्षेत्र, प्राप्तना ४०१२०३

विषयः पाणी उपलब्धतेच्या प्रमाणवज्ञानावत.

संदर्भ: आपले पत्र क्र.- दि.१४/०९/२०१६

चपरोक्त संदर्भीय किनवात्त्रवे आधनास कळविण्यात केते की, मी. सिरसवाडी ता.जिं. जालगा विक्रम नट क्र.१५ वेकिस कासिका स्टील कास्त्रण प्रा.सि. यांच्या प्राचनको अस्तित्वात असलेल्या विक्रीरोपी कोली १४ मी. व व्यास ६ भी. असून संदर विदीर ही, सिरसवाडी प्राचर तलावाच्या प्रमाय वैद्यात वेते. सदर विहीरीन्दारे सर्वसाधारण पर्यन्य काळानको हियाळवात १ लाख सिटर/प्रतिदिनी व उन्हाळवात ४५ ते ८० हजार सिटर/प्रतीविनी पाणी उपसम्ब होतु सकेस.

मी. जालना ता.जि. जालना केवल गट इ.१३१ वेविस कालिका स्टीस जासना प्रा.ति. यांच्या जानेनकं अस्तित्वात असलेक्वा विद्वीरीकी कोली १६ मी. व जास ६ मी. सवर विद्वीरीक्दारे सर्वसाबारण वर्जन्य काळानको हियाकवात ७० इजार लिटर/प्रतीदिनी पाणी उपसब्ध होय शकेल.

वार्ड नुवसानक, मूजल सर्वतम् आमि विकास यंत्रणा

2

Member Secretary

Page 49 of 93

"Annexure 13.2"

वरिन्ड भूवैज्ञानिक भूजल सर्वेद्यन आणि विकास यंत्रणा, जालना

कोन नं. ०२४८२- २२५२९९ ईगेल- srgeojin@rediffmail.com

जा.क.वम्बे/मुसवियं/तां/जा /

/98

2 1/ SEP 2016

प्रति व्यवस्थापकः कालिका स्टीलः जालना प्रायकेट सिमीटेड एफ-१८६९९ एम आय डी सी केन्नः जालना ४०९२०३

विषय:-पाणी उपलब्दतेष्या प्रमाणपत्राबावत.

संदर्भ:-आपले पत्र झ.- दिशांक २९/०९/२०१६

उपरोक्त संदर्गीय विषयान्वये आपणास कळविन्यात येते की, मी. जालना ता.जि. जालना वेथिल गट क्र.१३९ येथिल कालिका स्टील जालना प्रा.लि. संख्या जागेनच्ये ६० मिटर खोलीच्या व १५० मी.मी. व्यासाच्या दोन विधन विहिरी अस्तित्यात असून सदर विश्रंण विहिरी मधून अंदाजीत हिवाकवात ४०,००० हजार लिटर/दिवस व उन्हाळवात २५,०००/- हजार लिटर/दिवस पाणी उपलब्ध होतू सकेल करिता प्रमाणपत्र देण्यांत येत आहे.

> विक्रण प्रशासिक. प्रजल विक्रण विक्रण विज्ञणा पु. श्र. विक्रण विक्रण

Item no. 14

M/s. Alkyl Amines Chemicals Ltd.

30000 KLPY anhydrous(absolute) alcohol manufacturing plant at plot no. A-7 & 25, MIDC Patalganga, Village-Kaire, Tal-Khalapur, Raigad

In pursuance of the Committee's contention that it would not be possible to appraise the project unless the CETP which has been dysfunctional for a long time is revived, the PP submitted the Termination Notice served by the MIDC on M/s. Hydroair Tectonics (PCD) Pvt. Ltd. (the operators of the CETP)

(m) & rupe

Member Secretary

Page 50 of 93

and M/s. Patalganga and Rasayani Industries Association. The PP submitted that a meeting was held on 10.8.2016 under chairmanship of CEO, MIDC in which it was decided that, pending finalization of the court matter, procedure to appoint the new agency to run the CETP at MIDC Patalganga should be taken up. The Committee noted this development but felt that there is, still, no credible indication that the CETP will be revived.

The Committee decided to **defer** the project in the light of this contention and hoped that the MIDC will ensure operating of the CETP at the earliest, so that the present proposal can be considered.

Item no. 15	Minor Minerals (stone) Sindhudurg

The Committee went through the decision of Hon'ble National Green Tribunal (Western Zone) Bench. Pune in Execution Application no. 22/2016 in Appeal No. 32 of 2015. The Committee observed that the Hon'ble NGT has taken an exception to the decision of the Committee to keep the cases in abeyance which were pending for the finalization of the Draft Notification of MoEF&CC on ESA villages, dated 14,9,2015.

The Committee deliberated on the decision taken by it and unanimously concluded that the said decision was consciously taken keeping in mind the high probability that Villages in Draft could appear in the Final Notification, in so far as the Draft Notification was based on meticulous and exhaustive studies of the High Level Working Group. Any decision to allow a prohibited activity will not be in the interest of the preservation of ecology of Western Ghats. The Committee is averse to taking an irreversible decision in this regard. Therefore though the Committee respects the views and comments made by Hon'ble NGT, it would rather not change its decision once taken.

Item no. 16	M/s. Shri Dnyaneshwar Sahakari Sakhar Karkhana Ltd.
	For proposed expansion of sugar capacity 7000 TCD and Co-gen 31.5 MW at
	Village Bhende B. k., Taluka Newasa, Ahmednagar.

The PP remained present. However the members desired to go through the EIA report which was not made available in time. Therefore **deferred**.

monujer

Page **51** of **93**

Chairman

Member Secretary

Item no.17	M/s. Modepro India Pvt. Ltd.
	District Thomas Andrews
	At plot no. D-16/2, MIDC TTC, Navi Mumbai, District-Thane.

The brief information of the project as submitted by the PP is as follows:

Name Acceptation Name Acceptation Name Acceptation Name Acceptation Name Acceptation Name Acceptation Name Acceptation Name Acceptation Acceptation Name Acceptation Acceptation Acceptation Acceptation Acceptation Acceptation Acceptation Acceptation Acceptation New Project/Expansion in existing project Diversification in existing project Diversification Acceptation No Diversification New Project/Expansion Acceptation No Acceptation Accep	1	Name of the project	Modepro India Pvt. Ltd.				-			
Accreditation of Consultant (NABET accredited QCI- NABET/EIA/RAAC/71 dated 2 rd Dec 2015.	2	Name, address, e-mail & contact	409, Bezzola Complex, V.N Purav Marg, Chembur, Mumbai - 400071 e-mail: info@modepro.com							
Consultant (NABET accreditation) New Project/Expansion in existing project Diversification in existing project If expansion Diversification in existing project If expansion No Diversification whether environmental clearance has been obtained for existing project (If yes, enclose a copy with compliance table) 5 (f), Project Category - B1	3	Name of Consultant								
Project/Expansion in existing project	4	Consultant (NABET		I- NABET/EIA/RAAC/	71 dated 2 nd Dec 2015.		- "			
If expansion	5	Project/Expansion in existing project /Diversification in	Expansion							
Activity schedule in the EIA notification	6	If expansion/ Diversification, whether environmental clearance has been obtained for existing project (If yes, enclose a copy with		D						
Total Plot Area 3670.60 - 3670.60	7		5 (f), Project Category -	В1						
Name of Notified Industrial area/ MIDC TTC - MIDC, Navi Mumbai.	8	Area Details	Total Plot Area Ground Coverage Built Up Area Green Belt Area	3670.60 1253.13 605.64	50.0	3670.60 1303.13 605.64				
Total Tota		Name of Notified			220.00	441,00				
Tok given by SEAC? Sr. No. Particulars Exiting Cost Proposed	9	Industrial area/ MIDC								
1	10	TOR given by SEAC?								
Estimated cost of the project: (Including cost for land, building, plant and machinery separately) 11 Estimated cost of the project: (Including cost for land, building, plant and machinery separately) 2 Building/Premises 3,98,20,817.00 0 3 Plant & Machinery / Equipment 10,06,54,976.0 4,00,00,000 4 Fumiture & Fixture 0 0 5 Office Equipment 0 0 0 6 Any other movable / immovable fixed assets (Please specify) a) IS (Electric Installation) 15 6 Capital work in progress (if any) 0 0 7 Capital work in progress (if any) 0 0 12 Location details of the 12 14,57,70,233.0 14,00,00,000 13 Location details of the 15 16 17 14 15 17 15 17 16 17 17 18 19 10 10 10 11 10 11 10 11 11 12 13 14 15 16 17 17 18 19 10 10 10 11 10 11 11 11 12 13 14 15 16 17 17 18 19 10 10 11 11 11 12 13 14 15 16 17 17 18 18 19 10 10 11 11 11 12 13 14 15 16 17 17 17 18 18 19 10 10 11 11 11 12 13 14 15 16 17 17 18 18 19 10 10 10 11 10 11 11 11 11 12 13 14 15 15 16 17 17 18 18 18 19 10 10 11 11 10 11 11 11 11 11 12 13 14 15 16 17 18 18 18 18 19 10 10 10 10 11 11 11 12 13 14 15 15 16 17 18			11 - 1 1 1 1		Exiting Cost	Proposed				
Estimated cost of the project: (Including cost for land, building, plant and machinery separately) Separately 3			l							
project: (Including cost for land, building, plant and machinery separately) 11		Estimated asstable	11 1 -		3,98,20,817.00					
11	-		ł L	<u> </u>	10,06,54,976.0					
and machinery separately) Solution of the Equipment of t	111	(Including cost for	<u> </u>							
separately) assets (Please specify) a) 1S (Electric Installation) 7 Capital work in progress (if any) 0 0 Total 14,57,70,233.0 4,00,00,000	''		11 1							
Total 14,57,70,233.0 4,00,00,000			assets (Please s		(Electric					
Total 14,57,70,233.0 4,00,00,000			7 Capital work in	progress (if any)	0	0				
			Total		14,57,70,233.0	4,00,00,000				
project Latitude 19° 3'51.24"N	12									
	12	project	Latitude	19° 3'5	1.24"N					

morra

Page 52 of 93

		Longitud	e 73	73° 1'43.99"E					
		Location	T	TTC - MIDC, Navi Mumbai					
,		Elevation (meters)	Above Mean Sea Level 18	3 m					
13	Distance from protected area/ critically polluted area/ Eco sensitive area/ Interstate boundary		expansion project is located in N	lotified TTC - MIDC area, I	Navi Mumbai.				
- •		Sr. No.	Product Name	Existing (T/A)	Proposed (T/A)	Total (T/A)			
		1	2-Benzoyl Pyridine	3.0	-	3.0			
!		2	Amide	2.4	-	2.4			
		3	2-Benzyl Pyridine	24.0	-	24.0			
;		4	4-Benzyl Pyridine	12.0	-	12.0			
		5	5,6-Dihydro-6-methyl-4-oxotl thiopyran-2-sulphonamide (D Intermediate Racemie)	orzolamide 0.6	-	0.6			
		6	(6S)-6-methyl-4-oxo-5,6-dihy thieno[2,3-b]thiopyran-2-sulp (Dorzolamide Intermediate)	honamide -	4.0	4.0			
		7	(6S)-6-Methyl-5.6-dihydro-4l b] thiopyran-4-one 7,7-dioxid (Dorzolamide Intermediate)		1.0	1.0			
		8	2-Bromo-5-benzoyl thiophene		10.0	10.0			
		9	3-Acetyl-2,5-dichlorothiopher	те -	10.0	10.0			
		10	2-Chlorothiophene	-	10.0	10.0			
		11	1-Methyl-I-phenyl-1-(2- pyridyl)methanol.HCl		10.0	10.0			
14	Production profile (tones/ year):	12	2-Chloro-3-methylthiophene	-	10.0	10.0			
	,,	13	4-Methoxy-5-[3-(morpholin-4 2-nitrobenzonitrile (Gefitinib	Intermidiate)	3.0	3.0			
		14	(-)-3,4-Dihydro-2-(3-methoxy 211-thieno-[3,2-e]-1,2-thiazind sulfonamide-1,1-dioxide		1.0	1.0			
•		15	5-Chlorothiophene-2-carbony		1.0	1.0			
		16	Trans-4-Methyl Cyclohexyl A Hydrochloride (Glimepiride in	ntermediate)	-	1.2			
		17	5-Chlorothiophene-2-carboxy (Rivaroxaban Intermediate)	lic acid -	2.0	2.0			
		18	4-{4-[(5S)-5-(Amino methyl)- oxazolidin-3-yl]phenyl} morp Rivaroxaban Intermediates)		1.0	1.0			
;		19	3-(Bromomethyl)-7-chloro-1- benzothiophene (Sertaconazol intermediate)		1.0	1.0			
•		20	Ethyl 2-chloro-2-[2-(4-metho: hydrazono]acetate (Apixaban	Intermediate)	2.0	2.0			
		21	2-Amino-N-(2-fluoro-6-methy phenyl)thiazole -5-carboxamid Intermediate)	de (Dasatinib -	2.0	2.0			
		22	2-Acctylbenzo[b]thiophene (Z Intermediate)	ileuton -	1.0	1.0			
		23	(S)-3-((2R,5S)-2-((S)-(4- (benzyloxy)phenyl)((4-fluorophenyl) -5-(4-fluorophenyl) -5		1.0	1.0			

			((trimethylsilyl)oxy)pe									
	H	oxazolidin-2-one (Ezetimibe Intermediate TOTAL				13.2	70.0		113.2			
		Name of	Products, By products	Existing		Proposed activity		Total	113.2			
			mediate Products	Existing	I .	ew)	vity	Total				
15	By Products	By Produ	cts	No By Produc	ts Ne	o By Produc	ets	-				
		Intermedi	ate Products	No Intermedia Products		o Intermedia oducts	ate	-				
16	Rain Water Harvesting (RWII)	1) Level of 2) Level of 3) Size and 4) Location	Rain water Harvesting is not deployed 1) Level of the Ground water table (Pre Monsoon Water Level) - 3.20 mbgl 2) Level of the Ground water table (Post Monsoon Water Level) - 1.02 mbgl 3) Size and no of RWH tank(s) and Quantity = 1x 10 KL RWH Tank 4) Location of the RWH tank(s) is behind the Building - II towards the Eastern boundary of the plot.									
17	Total Water Requirement	Existing: I-After Expa Total water Source: TT Total Wate Domestie: Processes: Boiler: 12.0	Total Water Requirements: Existing: I4.8 m³/day After Expansion: 48.5 m³/day Fotal water requirement after expansion: 48.5 m³/day Source: TTC - MIDC Fotal Water Requirement: Domestie: 2.6 m³/day Processes: 10.0 m³/day Boiler: I2.0 m³/day Cooling Tower: 19.9 m³/day									
18	Storm water drainage		Storm water drained into MIDC drainage line									
19	Sewage generation and Treatment	Quantity of Sewage generation: 2.1 m³/day Proposed Treatment: Septic tank overflow routed to Aeration Tank of ETP.										
20	Characters of effluent	Sr. No. 1. 2.	Details pH Total Dissolved solid Chemical Oxygen De	emand	Units mg/lit mg/lit	High COD/TI Concent 3.9 67745.2	tration 5	203 290	D/TDS ncentration 11.6			
		5.	Bioehemical Oxygen day, 27 °C Total Suspended Sol		mg/lit mg/lit	13403.0		219				
		(All the par	rameters are express in r	ng/Leycent nU)								
21	ETP Details	Quantity of Capacity of Quantity of Quantity of	Effluent Generation: 26 ETP: 30 m³/day & ME Effluent to be recycled Effluent to be sent to C	0.2 m³/day E of 5 CMD Cap : 6.8 m³/day ETP: 10.0 m³/da	ıy							
22	Note on ETP technology to be used	separately HCOD/TD Primary tre condensate condensate effluent. LCOD/LTI comprises of After Treat	Quantity of Effluent to be recycled: 6.8 m³/day Quantity of Effluent to be sent to CETP: 10.0 m³/day After expansion of the project HCOD/TDS & LCOD/TDS effluent load will get segregated and treated separately within the plant premises HCOD/TDS effluent from manufacturing process and scrubber would get treated by giving Pre Primary, Primary treatment. The overflow from the PST will be subjected to the Stripper MEE with ATFD. The condensate from the evaporator unit & ATFD will get stored in MEE Condensate tank. The MEE condensate will be further treated in Aeration tank of Conventional ETP along with LCOD & Sewage effluent. LCOD/LTDS effluent from Manufacturing process, scrubbers will be treated in conventional ETP comprises of Primary, Secondary & Tertiary Treatment facility. After Treatment of effluent it will be partially use for utility or gardening and remaining treated effluent will be sent to the CETP.									

23	Disposal of the ETP sludge (if applicable)		S.No 1 2	ET Slu	idge	Exis 450 kg//		Propos 4500 kg/A 373 kg/day		Total 9000 kg/A 373 kg/day	Manag Assoc	Thane Waste gement iation - TSDF,
		Solid I Sr. No	Hazardous W Particulars		Existin	g	Propo	esed	То		Method of Disposal	
		1	ETP Sludg	ge .	4500 k	g/A	4500 kg/A		900 kg/		Tans Thane Creek Was	
		2	Distillation Residue		0.1 T/A	,	2.43 T/A		2.5 T/A	A /	Manageme Association	n -
		3	MEE Resid				373 k	g/day	37: kg/	day I	CHWTSDI Mahape 90-95 % R	
		4	Spent Solv	rents	0.16 T/	D	0.43 T/D		0.5 T/I	9 9	Sale to authorized parties.	
24	Solid waste Management	5	Empty Carboys, E etc	Bags	100 kg/M		220 kg/M		320 kg/) MM 8	MPCB authorized recycler	
		6	Drums		100 units		185 units		28: uni			
		Non H Sr. No	azardous Wa Particulars		Existin	g	Propo	esed	То		Method of Disposal	
		1	Scrap Mat	erial	75 kg/l	М	75 kg	/M	150 kg/			
	Atmospheric	Sr. N	lo	Poll	lutant	Sou	irce of 6	emission	Ra	nission ate .g/hr)	Concer in flue (g/m³)	
25	Emissions (Flue gas characteristics SPM, SO ₂ , NO _x , CO,	1			ssion s / Day)		ler, ermopac 3. Set		27 Kg	'.04 g/hr 27043	1.707 g Or 110 Kg/day	g/m³ 08
	etc.)	2			M ssion y/NM³)		ler, ermopac 3. Set	ck &	27 K	m ³ /hr 7.04 g/hr 27043 m ³ /hr	< 0.15 Or < 1 mg/NM	50
	Stack emission Details: (All the stacks attached to	Plant Units	Section &	Stack No.	fron grou	า	dia (to	ernal imeter p) (m)			/Proposed	Temp. of exhaust (°C)
26	process units, Boilers, Boilers, captive power plant, D.G. Sets, Incinerator	/Hr)	er (600 kg) mopack	1	30		0.3	35		Existing Stack of will get r with stac 30m heig	15 m replaced k of	93
	both for	Scrul		1	11 r		0.5		_	Existing		32
	existing and proposed activity). Please indicate	DG S		1	7.16 abov	mtr	0.5			Existing Existing		50

	the specific section to which the stack is attached. e.g.: Process section, D.G. Set, Boiler, Power Plant, incinerator etc. Emission rate (kg/hr.) for each				Ground level							
	pollutant (SPM, SO ₂ , NO _x etc. should be specified											
		Sr. No.	Item	Existing Lit/Day	Propose Lit/Day		ny :	Calorific value (kcals / kg)	% Ash	% Sulphu	r	
27	Details of Fuel to be used		Furnace Oil (Boiler) Furnace (Thermic Fluid Heater)	288 546	288	1194		10,000	0.03 – 0.07%	4%		
	1	2.	Diesel	35 //hr (Total consumption will dependent on hours of power failure)	of on hour f power failure)	oend will de s of on hou power	mption cpend urs of	10000	0.03 % - 0.07 %	1.8 %		
				Dil: Local Ve tion of fuel to		d						
28	Energy	Details of Electric Existing Existing Existing Propose Propose Total Potal Co. D.G Set D.G Set Fuel use	Mode of transportation of fuel to site: By Road Details of Electricity Requirement Electricity Supplied by: MSEB Existing Power Demand: 311 KVA Existing Connected Load: 759 KW Proposed additional Power Demand: 380 KVA Proposed additional Connected Load: 105 KW Total Power Demand: 691 KVA Total Connected Load: 864 KW D.G Set D.G Set: 250 KVA X 1 Nos Fuel used: Diesel Consumption Qty: 35 L/Hr (D.G. Set will be operational during power failure only).									
29	Green Belt	Propose								·		
-/	Development	Total	: 605.64 s	q.m.								
30	Details of Pollution Control Systems	Sr. no	Con Air	nponents	1. Boi Comm				ommon s ght will b			

mostajeza

				1. 2.	Process: 2000 CFM acidic scrubber 500 CFM alkaline ubber	The existing scrubber capacities are sufficient to mitigate the emissions from the proposed activity		
		2		Water		P Capacity: 15 CMD	Up gradation of existing ETP to 30 CMD capacity & installation of 5 CMD capacity MEE	
		3		Noise		E, Green Belt Acoustic closures,	-	
		4		Solid waste	Ch Cro	embership with IWTSDF — Trans Thane eek Waste Management sociation, CHWTSDF at shape	Same facility will be utilized	
		Sr. Parameters				Recurring Cost per Annum (Rs.)	Capital Cost (Rs.)	
		1	Air Po	ollution Control		1,20,000/-	20,50,000/-	
		2	Water	Pollution Control	Control 10,10,000/-		1,30,00,000/-	
		3	Noise	Pollution Control		15,000/-	-	
	Environmental Management plan	4		onment Monitoring and gement	i	5,10,000/-	-	
31	plan □	5	Occup	ational Health		1,10,000/-	1,80,000/-	
	O&M cost (With	6	Green	Belt		40,000/-	-	
	break up): Budgetary Allocation	7	Solid	Waste Management		65,000/-	1,20,000/-	
		8	Rain V	Water Harvesting		20,000/-	1,50,000/-	
		Total (Rs.)				18,90,000/-	1,55,00,000/-	
		EMP	Cost: 1.	of the Project: 18.57 C .55 Crore AP cost: Rs 18,90,000	rore	1		
32	EIA Submitted (If yes then submit the salient features)	Yes						

The PP gave a detailed presentation of their EIA report envisaging augmentation of their production capacity of API intermediates and Fine Chemicals from 43.2 TPA to 113.2 TPA. The project was considered under category 5(f)-B1 of the schedule of the EIA Notification 2006.

The baseline studies indicated that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project. After detailed deliberations the Committee made the following observations:

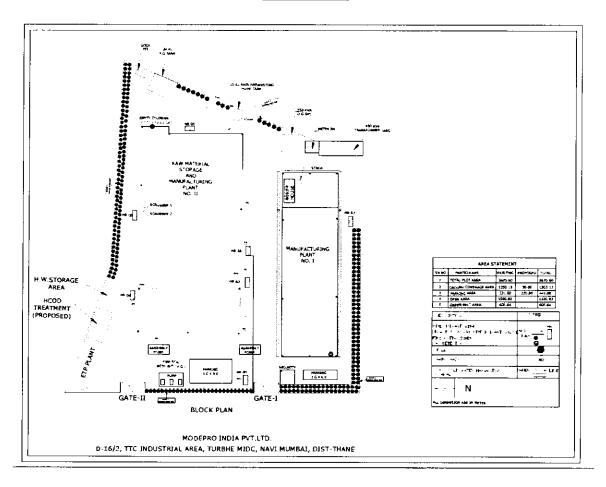
- 1. The PP submitted that the CETP at MIDC TTC, Navi Mumbai has capacity to take additional load. The Committee took note of this. MPCB may verify this before granting Consent to Operate.
- 2. The PP will provide 12% of plot area for parking and 33% of un-built area for green belt. 2 gates are existing on the Southern side of the plot adjoining the road.

monage.

Page 57 of 93

Chairman

Member Secretary

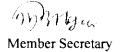

- 3. A detailed presentation was made on Risk Assessment and Risk Mitigation. There is a contingency of off-site emergency, hence hazard management plan shall be shared with the District Administration in case of accidents. Diagram enclosed in the *Annexure 17.1* gives the layout of the plot with the all hazard management facilities. Maharashtra Pollution Control Board (MPCB) should verify the provision of these facilities before granting Consent to Operate.
- 4. Effluent management envisages segregation of streams into High COD/TDS and Low COD/TDS streams. The former stream will be subjected to pre-treatment with Phenton / Hydrogen Peroxide (H₂O₂). This will be followed by stripper, MEE & ATFD. MEE condensate will be led to ETP. The latter stream will subjected to ETP comprising of primary, secondary and tertiary treatment. Domestic effluent will be led directly into aeration tank of ETP. ETP of 40 CMD shall be provided; thus the present augmentation should involve upgradation of ETP from 15 CMD to 40 CMD. Installation of 5 CMD stripper, MEE and ATFD will also be required. In this context 11.8 CMD ETP effluent should be recycled in cooling tower and flushing.
- 5. The emission from 1600 kg/hr boiler and 4 kcal/ hr thermopack (FO based) shall be led to stack of height 30m. Process emissions shall be subjected to alkali/acid scrubber followed by stack of height 6m above the roof level. An outlet TPM level of < 100 mg/Nm³ should be achieved.
- 6. There should be 90-95% recovery of solvents. 30 % of recovered solvent may be sold to authorized vendors, and the rest should be reused. Hazardous waste shall be sent to the CHWTSDF, Mahape. Chloro compounds should not be sent to hazard management facility but should be mineralized locally and disposed of in safe manner.

After considering all aspects of Environmental Impact the Committee decided to **recommend** the project for **EC** subject to the observations above (1-6).

m Pringer

Member Secretary

Annexure 17.1

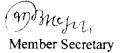


Item no. 18	M/s. Harmony Organics Pvt. Ltd. (ToR)
	At plot no. D-5, MIDC Kurkumbh, Taluka- Daund, Pune.

The PP made a detailed presentation for ToR pertaining to the expansion of their Synthetic Organic Manufacturing of aromatics and perfumery from 504 MT/M to 1480 MT/M. The project was considered under category 5(f)-B1 of the schedule of the EIA Notification 2006.

After detailed discussion the Committee made the following observations:

1. The project shall be run as a Zero Liquid Discharge System. The EIA report may outline water balance both for wet and dry seasons. EIA report shall explain why water requirement has increased by 10 times when production is increased only by 3 times. There appears to be under estimation of water consumed/ generated in the process, and effluents generated. The current situation is not analyzed realistically, such lacunae should be avoided in the EIA Report.

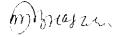

- 2. Treatability studies should form the basis for effluent management and designing of ETP. Detailed material balance will also be considered for ETP design.
- 3. The PP shall recover not less than 95% solvents. Recovered solvents shall be reused and unrecovered will be sold to authorized vendors only, whose details may be given.
- 4. Hazardous wastes like Sodium Chloride and Sodium Sulphate is proposed to be sent to the CHWTSDF, Rajangaon [this quantum may be given.] The Committee desires that Sodium Chloride should be sent to tannery industries as raw material.
- 5. The ToR shall be in accordance with the provisions contained in the Model ToR prescribed by MOEF&CC in April, 2015.

The Committee decided to approve ToR subject to the above observations (1-5).

Item no. 19	M/s. Harman Finochem Limited
	[편 - 이번 불살병(조건물) 이 이 그는 그는 그들은 물론이를 보고 하는 날이 성
	Proposed production of APIs and Bulk drugs of capacity 157.93 MT/MONTH at
	plot no-N-24, Additional Patalganga MIDC, Panvel, Raigad.
	[마마마 : : : : : : : : : : : : : : : : : :

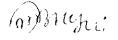
The brief information of the project as submitted by the PP is as follows:

1	Name of the Project	Harman Finochem Limited
2	Name, address, e-mail & contact number of Proponent	Mr. Bhupinder Singh Manhas 107-A, VINAY BHAVYA COMPLEX, 159 A, C.S.T.RC KALINA, SANTACRUZ (E), MUMBAI 400 098 (MS) INDIA. E-mail: bsm@harmanfinochem.com snehachavan@harmanfinochem.com Contact No.(+91 22) 6733 0214 /67330100/ 2652 8080
3	Name, of Consultant	sd engineering services pvt. ltd.,
4	Accreditation of consultant (NABET Accreditation)	Yes
5	New Project / Expansion in existing project/ Modernization/ Diversification in exiting Project	New Project
6	If expansion/ Diversification, whether environmental clearance has been obtained for existing project (If yes,	NA NA


	enclose a copy with							
	compliance table							
7	Activity schedule in the EIA Notification	5 (f), as per the provision of "EIA Notification No. S. O. 1533 (E)" Dated 14.09.2006 amended on December, 2009.						
8	Area Details	Plant utility, storage area (sq m): 6000 Parking area (sqm.) 2400 Green Belt- (sqm): 6300 MEE, ETP and R.O. Area(sqm): 400 Tank farm area (sqm):430 Road Area(sqm): 3400	Plant utility, storage area (sq m): 6000 Parking area (sqm.) 2400 Green Belt- (sqm): 6300 MEE, ETP and R.O. Area(sqm): 400 Tank farm area (sqm):430					
9	Name of the Notified Industrial area / MIDC Area	Open space(sqm): 1136 Additional Industrial Area MIDC Pata	lganga, Tal. Panvel	, Dist. Raigad (MS).			
10	TOR given by SEAC? (If yes then specify the meeting)	Yes (122 nd Meeting of SEAC- I on 24 th		ary 2016)				
11	Estimated capital cost of the Project (including cost for land, building, plant and machinery separately)	Capital Cost of Project: Rs.6932.24 Lacs.						
12	Location details of the project :	Plot No. N-24, Additional Industrial Area, MIDC Patalganaga, Tal. Panvel, Dist.: Raigad (MS)						
13	Distance from Protected Areas / Critically Polluted areas / Eco-sensitive areas / inter- State boundaries	The distance from Karnala Bird Sanctuary (Eco-sensitive area) to the project area is 3km in West North West direction.						
14	Production details							
		Name of Products	Existing (T/Month)	Proposed activity (new) (T/Month)	Total (T/month)			
				T (X / T / X D X I D / Y				
		Allopurinol Bisoprolol Hemifumerate	Nil Nil	10.00	10.00			
				10.00 24.00 15.00				
		Bisoprolol Hemifumerate Chlorpheniramine Maleate Divalproex Sodium Fenofibrate	Nil Nil Nil	10.00 24.00 15.00 15.00 10.00	24.00 15.00 15.00 10.00			
		Bisoprolol Hemifumerate Chlorpheniramine Maleate Divalproex Sodium Fenofibrate Ketamine Hydrochloride	Nil Nil Nil Nil	10.00 24.00 15.00 15.00 10.00 0.83	24.00 15.00 15.00 10.00 0.83			
1		Bisoprolol Hemifumerate Chlorpheniramine Maleate Divalproex Sodium Fenofibrate Ketamine Hydrochloride Lidocaine Base	Nil Nil Nil Nil Nil Nil Nil	10.00 24.00 15.00 15.00 10.00 0.83 10.00	24.00 15.00 15.00 10.00 0.83 10.00			
		Bisoprolol Hemifumerate Chlorpheniramine Maleate Divalproex Sodium Fenofibrate Ketamine Hydrochloride	Nil Nil Nil Nil	10.00 24.00 15.00 15.00 10.00 0.83	24.00 15.00 15.00 10.00 0.83			
1		Bisoprolol Hemifumerate Chlorpheniramine Maleate Divalproex Sodium Fenofibrate Ketamine Hydrochloride Lidocaine Base Lidocaine Hydrochloride Methyleobalamin Phenytoin	Nil Nil Nil Nil Nil Nil Nil Nil	10.00 24.00 15.00 15.00 10.00 0.83 10.00 12.00	24.00 15.00 15.00 10.00 0.83 10.00 12.00			
		Bisoprolol Hemifumerate Chlorpheniramine Maleate Divalproex Sodium Fenofibrate Ketamine Hydrochloride Lidocaine Base Lidocaine Hydrochloride Methyleobalamin Phenytoin Phenytoin Sodium	Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	10.00 24.00 15.00 15.00 10.00 0.83 10.00 12.00 0.10 10.00	24.00 15.00 10.00 0.83 10.00 12.00 0.10 10.00 15.00			
		Bisoprolol Hemifumerate Chlorpheniramine Maleate Divalproex Sodium Fenofibrate Ketamine Hydrochloride Lidocaine Base Lidocaine Hydrochloride Methyleobalamin Phenytoin Phenytoin Sodium Propofol	Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	10.00 24.00 15.00 15.00 10.00 0.83 10.00 12.00 0.10 10.00 15.00 8.00	24.00 15.00 10.00 0.83 10.00 12.00 0.10 10.00 15.00 8.00			
		Bisoprolol Hemifumerate Chlorpheniramine Maleate Divalproex Sodium Fenofibrate Ketamine Hydrochloride Lidocaine Base Lidocaine Hydrochloride Methyleobalamin Phenytoin Phenytoin Sodium Propofol Salbutamol Sulphate	Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	10.00 24.00 15.00 15.00 10.00 0.83 10.00 12.00 0.10 10.00 15.00 8.00 5.00	24.00 15.00 15.00 10.00 0.83 10.00 12.00 0.10 10.00 15.00 8.00 5.00			
		Bisoprolol Hemifumerate Chlorpheniramine Maleate Divalproex Sodium Fenofibrate Ketamine Hydrochloride Lidocaine Base Lidocaine Hydrochloride Methyleobalamin Phenytoin Phenytoin Sodium Propofol	Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	10.00 24.00 15.00 15.00 10.00 0.83 10.00 12.00 0.10 10.00 15.00 8.00	24.00 15.00 10.00 0.83 10.00 12.00 0.10 10.00 15.00 8.00			

Member Secretary

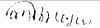
Page **61** of **93**



		Valsartan		Vil	1 1	2.00	12.00
		Total	1.			57.93	157.93
			·				
15	Rain Water Harvesting (RWH)	Level of the Ground water Size and no of RWH tank(s Location of the RWH tank(Size, nos of recharge pits an Budgetary allocation: Capital Cost: Rs. 10 lacs O&M Cost: Rs. 10000 /Year) and Quanti s) : Under G nd Quantity:	round	ım (1 Tank))	
16	Total Water Requirement	Total water requirement: • Fresh water (CMD): & Sou • Recycled water (CMD): 20.		/day sou:	rce-MIDC		
		Use of the water:		Existing		roposed	Total
		Domestic (CMD)			2	0	20
		Ind. Cooling (CMD):			9	5	95
		Boiler feed (CMD):			1	20	120
		Industrial processing and F washings (CMD):	loor		2	20	220
		Gardening (CMD)			1	5	15
		Total		470		70	470
17	Storm water drainage	• Natural water drainage patte • Quantity of storm water: -4 • Size of SWD: - 1.5 m ² Hum	121 m ³ /day [] ne pipe *150	Peak Flow	v]		
18	Scwage generation and Treatment	Amount of sewage generati Proposed treatment for the: Capacity of the STP (CMD)	sewage: SBR	based ST	ſP		
19	Effluent characteristic	Sr. Parameters No. (pH, BOD, COD, heavy metal, etc)	Inlet efflu Character	-	Outlet effluent Character	ristic stan	nent harge dards CB MPCB)
		1 pH	4 to 10		7 to 8	5.5-	9.0
		2 BOD mg/lit	800 to 10	00	<75		mg/l
		3 COD mg/lit 4 TSS mg/lit	2000 to 2 200 to 30		<150 <75		mg/l mg/l
		T 133 mg/m	1 200 10 30	<u> </u>	1 -12	1 100	1119/
20	ETP details	Amount of effluent generatio Capacity of the ETP (CMD Amount of treated effluent of the Membership of the CETP (I) : 250 recycled (CM [f require): A	ID):205	205 CMD +	Domestic 18 C	MD
21	Note on ETP technology to be used	For Low COD Low TDS Stream Primary Treatment consisting of screen chamber, oil and grease trap neutralization tank, primary settling tank with chemical oxidation. 2 stage biological treatment consisting of aeration tank stage I and stage II with secondary clarifiers. Tertiary treatment consist of Pressure sand filter and activated carbon filter and reverse osmosis For High TDS high COD Stream Stripper, MEE & ATFD					
22	Disposal of the ETP sludge (If applicable)	To CHWTSDF/ Cement Ind	ustries				

Type of W	aste			Qty/yr		Mode of dispos	Mode of disposal	
Boiler Ash				2.00 T/day	,	Send to CHWTS	SDF / Cement indust	
			f Hazardous v	vaste	O4 - W-/D	Disposal		
Category n	Category no. Category				Qty. Kg/Day	Disposat		
5.1/5.2		nt Oil/wa aining oil	ste & process	s residue	25 Kgs/ Day	Authorized ree /CHWTSDF	yeler/ reprocess	
20.2		nt solvent:			As per generation	Sale to authorized r	eeyeler/ reprocessor	
20.3		illation Re			1500 Kgs/ Day	Cement Industry/Cl	HWTSDF	
28.2	Spen	Spent Catalyst/Spent Carbon			1000 Kgs/ Day	Cement Industry/Cl	HWTSDF	
33.3	Dise	arded Co	ntainers/Barrel	s/ Liners	500 Nos./Month	Sale to authorized v	endor endor	
34.3	Slud	ge fro	m Waste	Water	300 Kgs/ Day	Cement Industry/ C	HWTSDF	
34.3	Inorg	ganie and	MEE Sludge		3000 Kgs/ Day	Cement industry/Cl	HWTSDF	
34.4			skimming Res		50 Kgs/ Day	CHWTSDF		
34.1	Flue	gas clear	ing residue, bo	oiler soot	16 Kgs/ Day	Cement Industry/Cl	HWTSDF	
CO, etc.) Stack emissic Details: (All the stack	Pl Se	lant ection	Staek No.	Height from	Diameter	Emission Rate	Temp. Exhaust	
attached to process units, Boilers, capti		units		ground level (m)			Gases	
power plant, D.G. Sets, Incinerator be for existing a	th TI	oiler 5 PH ! No.)	1 No. (Combine for boiler 1 & 2)	44	850	SO ₂ -8.878g/s PM ₁₀ -7.22g/s PM ₂ s-2.889 g/s	181°C	
proposed activity). Plea indicate the	se D	e.G set, 500 .VA	1	33	300	SO ₂₋ 1.167 g/s	146°C	
specific seetic to which the stack is attach e.g.: Process	st	rocess ack/ crubber	3	25 eac	h 300		-	
section, D.G. Set, Boiler, Power Plant,	: .							

26	Details of Fuel to be used:	Sr. No	Fuel	Daily Consu (TPD/KLD)	mption	Calorific value (Keals	% Ash	% Sulphur
				Existing	Proposed	/kg)		
		1	Furnace Oil		316 kgs/hr.	10500	<0.5	4.5%
		2	Coal OR		650 kgs/hr. OR	5200	10	0.6%
			Briquette		800 kgs/hr	4200	5	Nil
		3	HSD	-	300lit/hr	10700	<0.5	0.7%
27	Energy	• Mode Power	ce of fuel: Loca e of transportation supply: osed power requ	on of fuel to site				
		DG se		DG sets to be		,		
28	Green Belt Development	• Num	n belt area (Sq. i ber and species ber, size, age an Annexure V for	of trees to be p d species of tre	lanted: 110 Nos		anted: None	
29	Details of Pollution	Sr.		Existing	g pollution	Propose	ed to be	
	Control	No.	 	Control		Installe	d	/-41 £
	Systems:	I	Air			sufficie Cyclone	age Scrubber nt height for e Followed b	process.
		2	Water					D, ETP, RO
		3	Noise				c enclosure	& Vibration
		4	Solid & Hazardous Waste				al to CHWTS Industry/sal	
30	Environmental Management	• Capi	tal cost (With br 1 cost (With bre	eak up): 1013 l	acs			
	plan Budgetary Allocation	Sr. No.	Particular	an appropria	Recurring per annum (Lacs)	C	apital 'ost Laes)	
	Anocanon	I	Air Pollution	1 Control	580	4 (1 s	85.00 poiler (2 nos. crubber 5 no OG- 140	
		2	Water Pollut	tion Control 540		s	75.00(MEE TRIPPER 20 TP +RO 125	00) (150
l		3	Noise Pollut	ion Control	Ī	E	0.00 (ACOU NCLOSURI IBRATION	ES + ANTI
		4	Environment and Manage	t Monitoring ment	2	1	0.00	


	5	Occupational Health and Others	3.5	8.00 (Medical check up 2.0) (FIRST AID ROOM 4.00) (Medical staff and first aid facility consumables 2.0)	
	6	Green Belt	5	10	
	7	Solid waste management	70	15 (Haz. & non haz. Waste storage	
	8	Total	1201.50	1013	
31 E1A Submitted (If yes then submit the salient features)					

32 Storage of chemicals (inflammable/explosive/hazardous/toxic substances)

For the storage of chemicals HDPE Drums, MS Drums, Tanks, Warehouse and Teflon coated MS drums shall be used.

Safety feature

- Flame-proof light fittings will be provided.
- · Nitrogen blanketing will be provided.
- Work permit system will be followed.
- All tanks will be provided with Lightening arrestor
- Fire fighting equipment will be provided as PPE used at the time of material handling.
- Earthling-bonding will be provided for static charge.
- Drum handling trolley will be used for drum handling.
- Identification Labels and symbols will be provided on drums.
- NFPA labels will be provided on tank farm.
- Dyke wall will be provided for above ground storage tank.
- · Level gauge will be provided.
- Double drain valve will be provided.
- Tanker unloading procedure, spark arrester on the silencer and earthling facility will be provided.
- PPE's will be provided.
- Clear distance between each tank will be minimum of half the tank diameter.
- Dyke wall will be provided to the tanks. Double valve will be provided for dispensing of material.
- Drainage arrangement inside the dyke will be designed for collection of leakage and recycle to the tanks or manually
 collecting in drums.
- The tank farm layout and tank farm location will follow the rules of Petroleum Act 2003.
- All the necessary statutory licenses and approvals needed for the Class A flammable liquids will be obtained.
- Stainless steel pump with mechanical seal will be provided to the tank for transfer of solvents. Dedicate transfer
 line from storage tank to the day tank are provided to the pump with pressure gauze.
- The tanks will be provided with flame arrestor and breathing valve and vent condenser wherever necessary.
- Automatic sprinkler system will be installed on each tank for cooling the tanks externally and climinate the
 possibility of further aggravation of the situation.
- Provisions will be made to the facility for earthing the static charge generation during loading and unloading of tankers.
- Metal wire Jump-over connections will be provided on transfer lines for flange connections.
- The tanks will be properly connected to the earth pit.
- The area will be marked with sign boards.
- Day tanks will be provided in the manufacturing plants to keep the inventory to the minimum required and thus
 reduce potential risk.
- As per the factories act, the tanks will be frequently tested to its thickness and integrity by competent person.
- Fire hydrant piping will be laid around the tank farm and will be designed as per the IS and other applicable standards.
- Trained fire fighters shall be provided for the site.
- The area will be marked with red zone where necked flames, hot work will be strictly avoided.
- Work permit system will be implemented for carrying out any hot or cold work near the tank storage area, as well
 as all over the factory.
- Spill kits, sand buckets shall be provided. Spillage control procedure will be provided to the site.
- The area will provided with 24 hr security and kept in lock and key. Eye and body shower will be provided just
 outside the storage.
- All the tanks will be designed and fabricated as per the relevant Indian and international applicable codes.
- The tank layout and tank-farm layout vis-vis factory layout will be as per the applicable Petroleum Rules 2003, for the storage of Class A Flammable chemicals.
- The necessary approvals from the CCOE will be obtained.

The PP gave a detailed presentation of the EIA report on the proposal for manufacturing of APIs and bulk drugs to the extent of 157.93 MT/M. The project was considered under category 5(f)-B1 of the schedule of the EIA Notification 2006.

After detailed deliberations the Committee made the following observations:

- 1. A sub-committee has visited the site on 6.9.2016 (site visit enclosed as *Annexure 19.1*) and observed that watercourse flowing alongside of North-Eastern boundary of the plot should be trained so that it does not get contaminate with industrial effluents. PP has proposed to divert the flow through open Nalla on the South-Eastern side leading to closed conduit on south-western boundary to be connected to MIDC drain, thereby eliminating the passage of any storm water through the plant premises. The MPCB may verify the compliance of this diversion of storm water before granting Consent to Operate.
- 2. The PP should reserve space for parking of not less than 2400 sq. m. within the plant premises.
- 3. The project should be a Zero Liquid Discharge System. Effluent will be segregated into High COD/TDS and Low COD/TDS streams. The former stream will be subjected to stripper, MEE, ATFD system of capacity 100 CMD each to be followed by conventional ETP. The latter stream will be directly sent to ETP having primary, secondary and tertiary treatment processes to be followed by a RO of 205 KLD capacity. Condensate from MEE will be led to ETP and permeate from RO will be reused in cooling tower and boiler etc.
- 4. The PP shall ensure that Bromine (Br) or Bromine derivatives will not enter into effluent stream. Therefore, PP should eliminate use of Bromine in the process of Fenofibrate and outsource supply of alpha bromo, alpha Isobutyrate, thereby eliminating possibility of Bromine / Bromine compounds contaminating effluents/emissions.
- 5. Solvent recovery should be not less than 95%. The recovered solvents shall be recycled and unrecovered solvents shall be sold to vendors authorized by MPCB.
- 6. The PP intends to deploy two boilers of 5TPH capacity each using FO, coal & briquettes as fuels. The flue gases shall be passed through multicyclone and bag filter followed by stack of height 45m to achieve an outlet TPM of < 100 mg/Nm³.
- 7. Use of Chloroform shall be avoided.
- 8. The PP has done detailed Risk Analysis. There is a contingency of off-site emergency; the hazard management plan shall be shared with the District Administration. The provision of hazard management facility is depicted in *Annexure 19.2*. This may be verified by the MPCB before granting Consent to Operate.

The Committee went through the all aspects of Environmental Impact and noted that the baseline studies indicated that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project. The Committee therefore decided to **recommend** the project for **EC** subject to the observations (1-8) above.

moralin

Page 66 of 93
Member Secretary

"Annexure 19.1"

Visit report- M/s. Harman Finochem Pvt. Ltd. At Additional MIDC Patalganaga

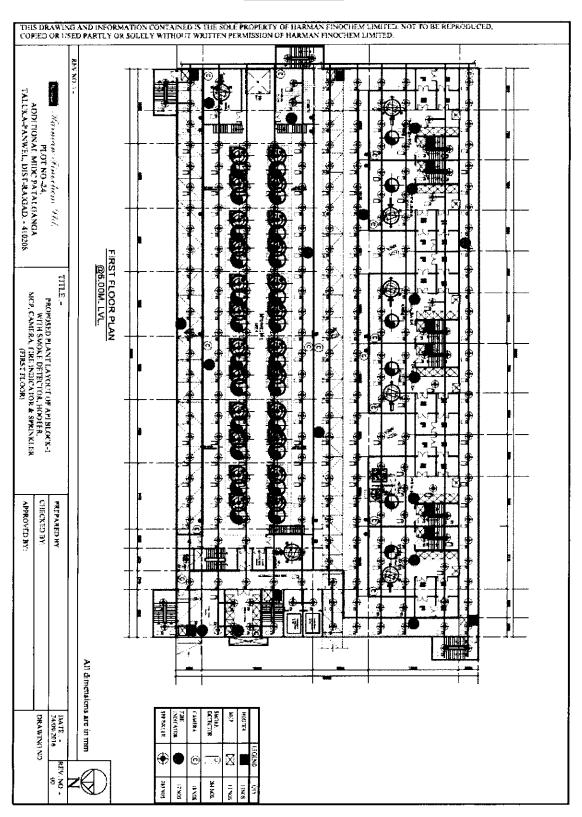
Date- 6/9/2016

Pursuant to the decision taken in the 133rd SEAC meeting, a sub-committee comprising of following members visited the site on 6.9.2016-

- 1. Shri, T. C. Benjamin, Chairman
- 2. Prof. (Dr.) Ramesh Dod, Member

A sub-committee was accompanied by Mr. Hazare, SRO, Raigad I and the FO.

The Committee had approved the ToR for the project for the preparation of EIA report in its 108^{th} meeting. The EIA is yet to be submitted by the PP. After detailed inspection of the premises the sub-committee made the following observations:


- Land is undeveloped and bounded by MIDC road, a hillock on south-western side and other undeveloped plots an north-western and south-eastern side. There is an unauthorised eatery near the road adjacent to the plot.
- II. No violations seem to have been committed. SRO reported that in Additional MIDC Patalganga no CETP pipeline is laid to collect the effluents from individual industries after treatment. It is expected that the individual industries in Additional MIDC Patalganga achieve Zero Liquid Discharge System.
- III. There is a watercourse flowing alongside north-eastern boundary of the plot, which is seasonal but needs to be a free unimpeded flow during monsoon. It is also necessary that Nalla should not get contaminated with industrial/domestic effluents. For this purpose it has to be closed through a conduit system across the plat.
- IV. The sub-committee further observed that run-off from the hillock can flow across unless it is properly managed through the scientifically prepared SWM system. The EIA should contain comprehensive SWM in details so as to tatally segregate ony impact of industrial activity.
- ToR for the project was approved in the month of August, 2015; more than six months has elapsed. The PP may take necessary steps to submit EIA Report without further delay.

and 1000

Member Secretary

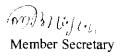
Page 67 of 93

"Annexure 19.2"

And By When,
Member Secretary

The state of the s

Page 68 of 93


Item no. 20	M/s BEC Chemicals Pvt. Ltd.	
-		
	Plot No. 24, MIDC Dhatav, Roha,	

The PP gave a detailed presentation of their EIA report pertaining to their expansion of manufacturing facility from 380 MT/A to 1365 MT/A of APIs. The project was considered under category 5(f)-B1 of the schedule of the EIA Notification 2006. The Committee noted that the proposal was earlier considered by Central EAC on 19.1.2016 which returned it to this Committee (SEAC-I) with a remark that the proposal can be considered as 'B' category as the Draft Notification of ESA villages Western Ghat is not yet finalized. The Committee therefore decided to go with the appraisal even though the project is situated at MIDC, Dhatav; Dhatav Village being an ESA village as per the High Level Working Group report. This appraisal will be subject to the Final Notification of ESA villages.

After detailed discussion the Committee made the following observations:

- 1. There is a requirement of 2000 sq. m for green space which the PP cannot provide in the plant premises. Therefore the PP has proposed making good the deficit in the MIDC land in front of plant after taking sanction from the MIDC. Dust absorbing trees shall be planted in this area and around the periphery of the plant. There is a 972 sq. m deficit in parking. No on street parking should be allowed. All vehicles shall be parked inside the plant premises. Augmentation in parking space may be achieved by resorting to multilevel parking.
- 2. The Committee noted that the CETP at Roha was being revamped and may take some time for commissioning. Considering nature of effluents of the present project, the present expansion may be commissioned only after commissioning of CETP at Roha. Otherwise the plant should be run as a Zero Liquid Discharge System.
- 3. The process envisages generation of several by-products whose disposal is of prime concern. It was decided that by-products will be disposed of as per the following protocol-

S. No.	Name of by-product	Existing production	Proposed production	Mode of disposal
1.	Polyalluminium	660	1650	Sale to M/s. Vasundhara Rasayan Ltd. (which will use as raw material for the production of Aluminium hydroxide paste) who has agreed to lift the entire stock.
2.	Hydrochloric Acid (HCl)	180	450	Sale to M/s. Vasundhara Rasayan Ltd. (which will use as raw material for the production of Aluminium hydroxide paste) who has agreed to lift the entire stock.
3.	Recovered Aniline	120	150	Fully recovered and made marketable

4.	Sodium Sulphite	250	310	The entire by-product will sold to M/s. Eureka Chemicals. It will not sent to the ETP.
5.	Acetic Acid	800	2720	Sold to authorized vendors
6.	Mixed solvents	Fully recovered	300	Sold to authorized vendors

- 4. The effluent management will be effected by segregating the streams into High COD/TDS and Low COD/TDS. The former will be subjected to MEE of 75 CMD and then ETP of 214 m3. The latter will be led to the same ETP. Domestic sewage shall be treated in the STP of capacity 20 CMD. The PP will save 10 m³ of water through rain water harvesting.
- 5. The emissions from ETP will have following characteristics-

pH	7-7.5
BOD	< 100 mg/lit
COD	200-205 mg/lit
TSS	< 100 mg/lit
Oil and grease	< 10 mg/lit

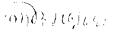
This shall be verified by MPCB before granting Consent to Operate.

- 6. The PP intends to add 2.5 TPH boiler to existing 1.5 TPH boiler. All will be using FO as a fuel. 1.5 TPH existing boiler will have a stack height of 30m. 2.5 TPH boiler and 1 lac kcal/hr of thermic fluid heater will have a common stack of height 30m. The PP shall achieve an outlet TPM of less than 100 mg/Nm³.
- 7. PP has done detailed Risk Assessment and Risk Mitigation Studies. There is a contingency of off-site emergency; the hazard management plan shall be shared with the District Administration. The Risk Mitigation Studies indicate that the production of Pentoxyphliy should be totally eliminated to eliminate storage and handling of raw materials exclusively used for this product like Thiobromine and DMF. Following Risk Mitigation measures are to be compulsorily followed
 - a. There should be a gate at the north-eastern side of the plant for easy evacuation. A 6m paved road should be laid on eastern boundary of the plant for vehicles to reach the Class A explosive storage.
 - b. NHS tank should be relocated away from HCl and located at the ETP site. The details of hazard management facility to be provided by the PP. This may be verified by the MPCB before granting Consent to Operate.

The Committee went through the all aspects of Environmental Impact and noted that the baseline studies indicated that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project. However since the project lies in an ESA village in the

and Hadra

Member Secretary

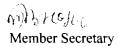

Page 70 of 93

Draft Notification for ESA villages in the Western Ghats, therefore the committee decided to keep the proposal in **abeyance** till the said Notification is finalized.

Item no. 21	M/s. Vipul Organics Ltd.
	At plot no. T-115, MIDC Tarapur Village: Pamtembhi, Taluka- Palghar, Thane

The brief information of the project as submitted by the PP is as follows:

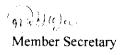
1	Name of the Project	M/s. Vipul Organics Limited					
2	Name, address, e-mail & contact number of Proponent	Mr. Vipul Shah 101, Andheri Industrial Estate, Off. Veera Desai Road, Andheri (West), Mumbai – 400053, Maharashtra, India Telephone: 022-661339999					
3	Name of Consultant	Name: M/	S. Ultratech				
4	Accreditation of consultant (NABET Accreditation)		f LIST 'A' of MoEF - Rev. 45	September 05,	2016		
5	New Project / Expansion in existing project/ Modernization/ Diversification in exiting project	New Proje	ct				
6	If expansion/ Diversification, whether environmental clearance has been obtained for existing project (If yes, enclose a copy with compliance table)	Not Applicable					
7	Activity schedule in the EIA Notification	2(t) .B,					
8	Area Details	Total plot: Built up ar Green Belt Parking Ar	ea : 3,600 sq. mt. : 410 sq. mt.				
9	Name of the Notified Industrial area / MIDC Area	<u>-</u>	dustrial Area of Tarapur MIDC				
10	TOR given by SEAC? (If yes then specify the meeting)	yes					
11	Estimated capital cost of the Project (including cost for land, building, plant and machinery separately)	Sr. No.	rticular	Cost (Rs Lakhs)			
	,		nd & Site Developement	100			
			ilding & Civil Work	175			
			ant & Machinery	450			
	j		mputer & Office Equipments	10			
			ectrical Installations	75			
			b Equipments	40			
		7 Furniture & Fixtures 20 8 Piping 25					
		Total	niig.	895			
12	Location details of the project:	Latitude	: Approx. 19°47'27.61"N	0,0	<u> </u>		
	The desire of the project.	Longitude	: Approx. 72°43'13.91"E				
		Location	: Pamtembhi, Thane, Maharas	ntra, Tarapur M	MIDC Area		
		Elevation a	bove Mean Sea Level: 49ft				



13 Distance from	Protected Areas /
I	rotected Areas / No such establishment within 10 Km. Radius (Study area)
sensitive areas	No such establishment within 10 Kill. Radius (study alea)
/ inter-State bo	undaries
	(including process chemicals, catalysts, & additives).
14 Raw materials	(including process elicinicals, calarysis, et additives).
SYNTHETIC	ORGANIC PIGMENTS & DYESTUFFS
Amines	
1	Different kinds of Fast Base such as Red B base, Bordeaux GP Base, etc.
2	Di anidine base
3	2-4-5 Trichloro Aniline
4	2-5 Dichloro Aniline
5	3-3 Dichloro Di Benzidine Di hydrochloride
6	Para chloroortho nitro aniline
7	Ortho chloro para nitro aniline
Couplers	
8	Different kinds of Naphthols like AS, ASBO, ASD, ASOL, ASPH, ASITR, ASIRG etc.
10	Bon Acid
Arylides	
11	Acetoacetanilide(AAA)
12	Acetoacetorthoanisidine(AAOA)
13	Acetoacetortho toluidine (AAOT)
14	Acetoacet-meta-xylidide(AAMX)
04 - 01	
Other Chemic	
15	Sodium nitrite
16	Hydrochloric acid
17	Caustic soda flakes Acetic acid
19	· · · · · · · · · · · · · · · · · · ·
19	Non ionic surfactant
20	Defearmer
20	Defoamer Activated carbon
21	Activated carbon
21 PIGMENT D	Activated carbon ISPERSION
PIGMENT D	Activated carbon ISPERSION Organic Pigment Powder.
PIGMENT D 1 2	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder
PIGMENT D	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water
PIGMENT D 1 2 3	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol
PIGMENT D 1 2 3 4	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant
21 PIGMENT D 1 2 3 4 5	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol
21 PIGMENT D 1 2 3 4 5	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent.
21 PIGMENT D 1 2 3 4 5 6	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent.
21 PIGMENT D 1 2 3 4 5 6	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent.
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent.
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Non ionic surfactant Dissolvent powder
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Non ionic surfactant Book defined by the company of the compan
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Dissolvent powder Bon Acid Amine
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2 3	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Poissolvent powder Bon Acid Amine Phosporous Trichloride
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2 3 4	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non lonic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Dissolvent powder Bon Acid Amine Phosporous Trichloride Caustic Soda Flakes
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2 3 4 5	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non lonic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Non ionic surfactant Dissolvent powder Bon Acid Amine Phosporous Trichloride Caustic Soda Flakes Soda Ash
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2 3 4 5 6	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Phosporous Trichloride Caustic Soda Flakes Soda Ash Mono Chloro Benzene
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2 3 4 5	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Dissolvent powder Bon Acid Amine Phosporous Trichloride Caustic Soda Flakes Soda Ash Mono Chloro Benzene UR SALTS
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2 3 4 5 6 FAST COLO	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non lonic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Dissolvent powder Bon Acid Amine Phosporous Trichloride Caustic Soda Flakes Soda Ash Mono Chloro Benzene UR SALTS Fast color base
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2 3 4 5 6 FAST COLO	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non lonic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Dissolvent powder Bon Acid Amine Phosporous Trichloride Caustic Soda Flakes Soda Ash Mono Chloro Benzene UR SALTS Fast color base Sodium Nitrite
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2 3 4 5 6 FAST COLO 1 2 3	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Dissolvent powder Bon Acid Amine Phosporous Trichloride Caustic Soda Flakes Soda Ash Mono Chloro Benzene UR SALTS Fast color base Sodium Nitrite Zine Chloride
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2 3 4 5 6 FAST COLO 1 2 3 4	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non lonic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Dissolvent powder Bon Acid Amine Phosporous Trichloride Caustic Soda Flakes Soda Ash Mono Chloro Benzene UR SALTS Fast color base Sodium Nitrite Zine Chloride Lingther Additional Amine Hydrochloric Acid
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2 3 4 5 6 FAST COLO 1 2 3 4 5	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non Ionic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Dissolvent powder Bon Acid Amine Phosporous Trichloride Caustic Soda Flakes Soda Ash Mono Chloro Benzene UR SALTS Fast color base Sodium Nivrite Zine Chloride Hydrochloric Acid Common Salt
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2 3 4 5 6 FAST COLO 1 2 3 4 5 6	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non lonic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Dissolvent powder Bon Acid Amine Phosporous Trichloride Caustic Soda Flakes Soda Ash Mono Chloro Benzene UR SALTS Fast color base Sodium Nitrite Zine Chloride Hydrochloric Acid Common Salt Sodium Sulphate
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2 3 4 5 6 FAST COLO 1 2 3 4 5 6 7	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non lonic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Non ionic surfactant Dissolvent powder Bon Acid Amine Phosporous Trichloride Caustic Soda Flakes Soda Ash Mono Chloro Benzene UR SALTS Fast color base Sodium Nitrite Zine Chloride Hydrochloric Acid Common Salt Sodium Sulphate Aluminium Sulphate
21 PIGMENT D 1 2 3 4 5 6 7 VAT DYES 1 2 3 4 5 NAPTHOLS 1 2 3 4 5 6 FAST COLO 1 2 3 4 5 6 7 8	Activated carbon ISPERSION Organic Pigment Powder. Inorganic Pigment Powder Di-Water Glycol Non lonic surfactant Anti settling agent. Biocides Vat Dyes in Crude form. Di water Dispersing agent. Non ionic surfactant Dissolvent powder Bon Acid Amine Phosporous Trichloride Caustic Soda Flakes Soda Ash Mono Chloro Benzene UR SALTS Fast color base Sodium Nitrite Zine Chloride Hydrochloric Acid Common Salt Sodium Sulphate

	1	Ortho Nitro	Anisole								
	2	Formaldehyo	ie						. <u></u>		
	3	Dichlone									
	4	Soda Ash									
	5	Caustic Soda	Caustic Soda								
	6	Catalyst 2									
	7	Common Sa	lt								
	8	Methanol									
	9	Ice									
Pro	oduction details			_							
ITS	SYNTHETIC ORGA	NIC PIGMEN	ITS &	DYESTUFFS							
I	Vame	Colour Inde		Name	C	olour Index	Name		Colour Index		
1 —	Yellow G	Yellow I		Yellow FGL		ellow 97	Red RN		Red 3		
	Yellow 10G	Yellow 3		Yellow 3R		ellow 139	Signal Red		Red 4		
	Yellow DHG	Yellow 12		Yellow H4G		llow (11	Carmine F		Red 5		
	Yellow GR	Yellow 11		Yellow H3G		ettou 154	Red F4R	5000	Red 8		
	Yellow 2GS	Yellow 14		Yellow HGR		na ryina ere	Bordeaux		Red 12		
	Yellow 2G	Yellow 17				rance 5	Scarlet		Red 21		
	Yellow 2G Yellow RN			Orange RN			Red N		Red 23		
- i —	- +	Yellow 63	4,150	Orange G							
	Yellow 2GX	Leisow 7.4		Orange RR		range 16	Rose F2B		Red 23		
	Yellow 5GX	Yellow 74		Orange RL		range 34	Pink FB	576	Red 31		
	Yellow HR-02X	Yellow 83	1	Orange HL		range 36	Red Violet		Red 32		
	Yellow HR-70X	Yellow 83		Red F2R		rd 2	Red 2BD		Red 48:1		
P	PIGMENT DISPERS	ION									
	Vame		Name			Name		Name			
Y	Yellow FG		Brilli	ant Pink F3RL		Red F2R		Orange F.	R		
Y	Yellow F2G		Pink FR			Red F4R		Orange Fo	G		
Y	Yellow F3G		Red Violet FR			Red FG3R		Orange F	3R		
	Yellow FR		Bordeaux FR			Red FB		Orange FGR			
	Golden Yellow FR		Violet FB			Brown FBL		Blue FB			
	Golden Yellow F3R		Olive Green FB			Red FGC		Blue FBG			
	Green FG		Black FBB			Red FR		Navy Blue FFBC			
1						Red FG		Turq.Blue			
	VAT DYES										
	Vame		Cole	our Index	l N	ame		Colour Inc	dor		
1 —	Yellow GCN			ow Z		ide Green FFB		Green I			
- 1 - 1	Golden Yellow RK			rge I	*******	live Green B		Green 3			
I	Golden Yellow GK	 		nge 4	-	hakhi 2G		Green 8			
					Property and	live R					
	Orange GR			ge 7 Polymonia (*)	2000000			Black 27			
	Pink R			Paristro de la la la la la la la la la la la la la		live D		Black 25	W11		
	Red 6B		Keu	19 电电子电阻器	В	rown BR		Brown I			
	Brill. Violet RR			#1		rown R		Brown 3			
+ $+$ $+$ $+$	Magenta B		1 2/1/2	el 3 como de la compa	®® R	mouran DDD		Brown 5	with the second		
1 H				CONTRACTOR OF THE PROPERTY OF		rown RRD					
_	Blue RSN		Blue	A character pulls	G	rey 3B		Black 16			
В	Blue RSN Blue BC		Alue Blue	4 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	G B	rey 3B lack CH		Block 16			
B	Blue RSN Blue BC Dark Blue BO		Alue Blue	A character pulls	G B	rey 3B		Black 16			
B	Blue RSN Blue BC		Alue Blue	4 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	G B	rey 3B lack CH		Block 16			
B D N	Blue RSN Blue BC Dark Blue BO NAPTHOLS Name		Alue Blue	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	B B	rey 3B lack CH		Block 16			
B D N	Blue RSN Blue BC Oark Blue BO NAPTHOLS		Blue Blue Blue	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B B N	rey 3B lack CH lack BB		Black 16 Green 9			
B D N	Blue RSN Blue BC Dark Blue BO NAPTHOLS Name		Blue Blue Blue Nan	4	B B N A	rey 3B lack CH lack BB		Riack 16 Green 9 Name			
B D N A	Blue RSN Blue BC Dark Blue BO NAPTHOLS Name AS		Blue Blue Blue Nam ASF	# Hard to the hard	B B N A	rey 3B lack CH lack BB ame SBS		Riack 16 Freen 9 Name ASITR			
B D N A	Blue RSN Blue BC Dark Blue BO NAPTHOLS Name AS ASTR		Blue Blue Blue Nam ASE ASE	A color of the property of the	B B N A A	rey 3B lack CH lack BB ame SBS SG		Name ASITR ASBR			
B D N A A	Blue RSN Blue BC Dark Blue BO NAPTHOLS Name AS ASTR ASBO	TS	Blue Blue Blue Nam ASE ASE	# Hard to the hard	B B N A A	rey 3B lack CH lack BB ame SBS SG SSW		Name ASITR ASBR			
B D N A A A A	Blue RSN Blue BC Dark Blue BO NAPTHOLS Name AS ASTR ASBO		Blue Blue Nam ASF ASF ASF ASC	A Property Parket	B B N A A A A	rey 3B lack CH lack BB ame SBS SG SSW SOL		Name ASITR ASBR	Const. No.		
B D N A A A F	Blue RSN Blue BC Dark Blue BO NAPTHOLS Name AS ASTR ASBO ASD FAST COLOUR SAL	Const. No	Blue Blue Nam ASF ASF ASC	A Property Parket	N A A A A	rey 3B lack CH lack BB ame SBS SG SSW SOL Const. No.	Name	Name ASITR ASBR			
B C N A A A A F N B	Blue RSN Blue BC Dark Blue BO NAPTHOLS Name AS ASTR ASBO ASD FAST COLOUR SAL Name BORDEAUX GP	Const. No	Blue Blue Nam ASF ASF ASC	A Property of the Color of the	B N A A A A A	rey 3B lack CH lack BB ame SBS SG SSW SOL Const. No.	Name RED ITR	Name ASITR ASBR ASLB	ADC 42		
B D N A A A A F N B	Blue RSN Blue BC Dark Blue BO NAPTHOLS Name AS ASTR ASBO FAST COLOUR SAL Name BORDEAUX GP DRANGE GC	Const. No	Nam ASF ASF ASC	A Control of the Cont	N A A A	rey 3B lack CH lack BB ame SBS SG SSW SOL Const. No.	Name RED ITR YELLOW C	Name ASITR ASBR ASLB	ADC 42 ADC 44		
B D N N A A A A B O S	Blue RSN Blue BC Dark Blue BO NAPTHOLS Name AS ASTR ASBO ASD FAST COLOUR SAL Name BORDEAUX GP DRANGE GC GCARLET GGS	Const. No	Rive Blue Blue Nam ASF ASF ASC	A Control of the Cont	B B N A A A A	rey 3B lack CH lack BB ame SBS SG SSW SOL Const. No.	Name RED ITR YELLOW C BLUE B	Riack 16 Green 9 Name ASITR ASBR ASLB	ADC 42		
B D N N A A A A F N B O So G	Blue RSN Blue BC Dark Blue BO NAPTHOLS Name AS ASTR ASBO ASD FAST COLOUR SAL Name BORDEAUX GP DRANGE GC GCARLET GGS GARNET GBC	Const. No.	Rive Blue Blue Nam ASF ASF ASC	A Company of the Comp	BB NAAAAAAAA	rey 3B lack CH lack BB ame SBS SG SSW SOL Const. No.	Name RED ITR YELLOW C BLUE B ORANGE R	Name ASITR ASBR ASLB	ADC 42 ADC 44		
B D N A A A A B O So G	Blue RSN Blue BC Dark Blue BC NAPTHOLS Name AS ASTR ASBO ASD FAST COLOUR SAL Name BORDEAUX GP DRANGE GC GCARLET GGS GARNET GBC RED B	Const. No.	Nam ASF ASF ASC	A CLASCA Name SCARLET R SCARLET R RED R RED RC BLUE BB	M B B N A A A A A A	rey 3B lack CH lack BB ame SBS SG SSW SOL Const. No.	Name RED ITR YELLOW C BLUE B	Name ASITR ASBR ASLB	ADC 42 ADC 44		
B D N A A A A F N B O S G R R	Blue RSN Blue BC Dark Blue BO NAPTHOLS Name AS ASTR ASBO ASD FAST COLOUR SAL Name BORDEAUX GP DRANGE GC GCARLET GGS GARNET GBC	Const. No.	Assertable Assertable	A Company of the Comp	B B N A A A A	rey 3B lack CH lack BB ame SBS SG SSW SOL Const. No.	Name RED ITR YELLOW C BLUE B ORANGE R	Name ASITR ASBR ASLB	ADC 42 ADC 44		

Name


Name

	0.46 45-1545-146 4			N. 4. 4. 11 11 A 11		<u></u>			
	Ortho-dianisidinedihydrochl	oride		Meta UridoAnilyne					
	Para Amino Benzamide			ITR Amine					
	2:4:5 Trichloro Aniline	V: 11. 7		K Acid					
	3:3 Dichloro Di Benzidine I) i i i ci		Vinyl Sulphone					
	O.T. Base			N Methyl J Acid	<u>a</u>				
	Fast Colour Base			Gama Acid					
	MDOL L GET		4 160 1 4	H Acid	0 D 1	·			
	VDCL product portfolio cor	nprises mor	e than 152 products in	Dyes, Intermedial	es & Powders				
I6	Process details / manufacturing details	This indu	manufacturing.						
17	Rain Water Harvesting (RWH)		Ground water table: o. of RWH tanks & Qt	y.					
			ink of capacity: 75 m ³						
			of RWH tanks: on grow						
			s of recharge pits & (g will be done				
			y allocation : Capital co	ost: 0.5 Lacs					
			cost: 0.04 Lacs/annum						
18	Total Water Requirement		er requirement:	1000	*>				
			er (CMD): 191.1 & So	ource: MIDC (Loca	ai)				
		Use of the							
		Process (Cooling a							
			vater (CMD) : 1. shing (CMD) : 0.	=					
		Drinking		=					
		Green bel		4					
		Boiler (C)		2					
19	Storm water drainage		orm water drainage pa		ice	· · · · · · · · · · · · · · · · · · · 			
		_							
20	Sewage generation and treatment	Proposed	of sewage generation: Treatment: Treated in of STP: NA		30 CMD				
21	Effluent characteristic								
		S.N.	Parameters	Influent Stream	Treated effluent	Effluent			
				e de la constante de la consta		Discharge			
			_11	5.5- 7.5	7.5 to 8.0	7.5 to 8.0			
		1	pН	5.5- 7.5	7.5 to 8.0	7.5 to 8.0			
		2	TSS	100 mg/L	< 100 mg / lit.	< 100 mg / lit.			
		3	BOD	500 mg/L	<100 mg / lit.	<100 mg / lit.			
		4	COD	800 mg/L	<250 mg / lit.	<250 mg / lit.			
		5	TDS	400 mg/L	<2100 mg / lit.	<2100 mg / lit.			
		6	Oil and Grease	50 mg/L	<10 mg / lit.	<10 mg / lit.			
			<u> </u>	<u> </u>	<u> </u>	,			
		ETP will 1	be designed to achieve	outlet effluent cha	racteristics.				
22	ETP details		f effluent generation (124.5				
			of the ETP (CMD)		130				
		Amount o	f treated effluent recyc	led (CMD) :					
			f water send to the Sev		104				
			nip of the CETP (If req		Yes				
23	Note on ETP technology to be used	ETP provi	ided with Primary / Sec	condary / Tertiary	treatment.				
24	Disposal of the ETP sludge (If	dge (If Hazardous waste will be sent to CHWTSDF at Taloja.							
ļ	applicable)		Solid waste Management Non Hazardous Solid Waste:						
25		Non Haza	rdous Solid Waste:						
25		Non Haza	o Waste	Quantity	Disposal				
25				Quantity 12 Kg/day	Disposal Hand over to authori	zed recyclers			
25		Sr.N	o Waste						
25		Sr.N	o Waste Dry Garbage	12 Kg/day	Hand over to authori	off-site)			

_		1							· · · · · · · · · · · · · · · · · · ·	
		Haza	rdous '	Waste:						
		Cat		Type o	f waste	Source	11413	Qty.	Meth	od of Disposal
		34				ETP		5	CHW	TSDF @ Taloja
		1	<u>1 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 1 –</u>					MTM		
			2 1 - 1	Spent 6		Manufacti Process	uring 	0.5 MTM		TSDF @ Taloja
		5.1 Sch		Used 1	ubricants	Plant & Machineri	ies	0.5 MT	rm chw	TSDF @ Taloja
		33 Sch			ontainers & Plastic	Raw Mate Storage	rial	100 (N	Re-us	ntamination &
				HDPE/ Gunny	LDTE/	Raw Mate Storage	rial	1000 (Nos.)	Deco	vendors ntamination & e or sell to
								(, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		vendors
26	Atmospheric Emissions (Flue	Plasti Non	ic drum Biodeg	is and bags radable Wa	will be so ste if any	CHWTSDF for ld to MPCB at will be handed posted and use	uthorized pa I over to MI	CB auth		ler
	gas characteristics SPM, SO2, NOx, CO, etc.)	Sr. No.	Po	llutant	Source of Emission		Emission Rate (kg/h	r)	Concer gas (g/1	tration in flue n3)
		1	SP		Boiler C	himney	0.5		150 mg	/m³
		2	SO)2	Boiler C	himney	2.5		400 kg/	day
27	Stack emission Details: (All the stacks attached to process units, Boilers, captive power plant, D.G. Sets,	1 1	nt Secti	on Stac		ght from und level (m)	Internal (Top) (m		Emission Rate	Temp. of Exhaust Gases
	Incinerator both for existing and proposed activity). Please indicate the specific section to	Boi	ler	1st	30		1		13500	130 °C
	which the stack is attached, e.g.: Process section, D.G. Set.	DG	Set	2nd	3.5	above roof	0.3		3000	160 °C
28	Boiler, Power Plant, incinerator etc. Emission rate (kg / hr) for each pollutant (SPM, SO2, NOx etc. should be specified Details of Fuel to be used:			•						
20	Details of ruet to be used.	l	1				1			
		#	Fuel		Daily C (TPD/K	onsumption LD)	Calorifi (Kcals/	c Value kg)	% Ash	% Sulphur
		l	Briqu (Bior	uette nass)	3 TPD		4197		2.98	
		Mode	of tran			site: By Road				
29	Energy	Power DG se	supply ts	: Fro	m MSEDO 250 kVA	nsported by co CL - 250 kVA	verea irucks			
30	Green Belt Development	Numb	er and	species of t	rees to be	mt. (34.1 % o planted: 25 no	s.		. 10	
31	Details of Pollution Control Systems:	Numb	er, size	Existing Pollution		Proposed to b		ransplan	iea:U	
				System						
		Air				Stack of 30m				
		Wate	r			ETP will be p	provided wit	h the cap	pacity of 130	KLD

		Noise		Acoustic Enclosure for DG sets. Ear mufflers and ear plugs Green Belt plantation		
		Solid Waste	1	Disposal to CHV	WTSDF Taloja, authoriz	zed recyelers/agents
32	Environmental Management plan					
	Budgetary Allocation	Sr.No	Environmental Aspect	### 1	Capital Expenditure Rs in Lacs	Recurring Expenditure Rs. in Lacs
		100 mg				
		1.	Emission Control and E	ngineering	20	4
		2.	Water and Wastewater		23	4.6
		3.	Solid Waste Manageme	nţ	10	2
		4.	Greening Drive		10	2
		5.	Process Safety Facilities	and EMP	12	2.4
		6.	Lab Equipments and Me	onitoring Cell	10	2
		7.	Social Activities, Award Programs	eness	5	1
			Total		90	18
33	EIA Submitted (If yes then submit the salient features)	Yes				

The project was considered under 5(f) – B1 category of the Schedule of the EIA Notification, 2006. The PP gave a detailed presentation of their proposal of establishing of green field project to manufacture 152 different types of dyes, intermediates & pigments totally amounting to 6096 MTPA.

After detailed discussion the Committee made the following observations:

- 1. The building where the plant is supposed to be operated is situated in a restricted area, which should conform to the statutory regulations of MIDC. Deficit of green belt shall be made good by utilizing a piece of land belonging to MIDC for tree plantation. There is a deficit in parking area also, PP should ensure that there should not be any on-street parking. Consent from MIDC regarding 191.1 KLD of water shall be verified by MPCB before granting Consent to Operate.
- 2. Product 5-Chloro ortho Toludine should be dropped from the product list.
- 3. The Committee insists that unless the new CETP at Tarapur is fully commissioned, the plant should be operated as a Zero Liquid Discharge system.
- 4. PP shall achieve solvent recovery of minimum 92%.
- 5. Effluent management envisages leading the composite stream comprising of process and dilute streams to the 130m³ ETP comprising of primary, secondary and tertiary effluent treatment processes to achieve following parameters-

TSS	<100 mg/lit
COD	<250 mg/lit
BOD	<100 mg/lit
TDS	< 2100 mg/lit

6. The flue gases from briquette fired 2 boilers of 3 TPH and 1 TPH capacity shall be passed through cyclone separator and bag filter to achieve an outlet TPM of < 100 mg/Nm³. Stack height shall be not less than 30m.

Member Secretary

Page 76 of 93

- 7. The PP shall not draw 159.1 KLD of water during monsoon and 191.1 KLD during non-monsoon season from MIDC. Rain water harvesting shall be effected through provision of an underground tank of 75m³.
- 8. The detailed risk assessment studies was carried out by the PP. There is a contingency of off-site emergency, hence hazard management plan shall be shared with the District Administration. The study indicates that there is a need to separate the Formaldehyde and HCl acid tank farm from Methanol storage. The diagram showing the provision of Hazard Management facilities in the plant premises shall be submitted.

The Committee went through the all aspects of Environmental Impact and noted that the baseline studies indicated that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project. The Committee therefore decided to **recommend** the project for **EC** subject to the observations (1-8) above.

Item no. 22	Minor Minerals (sand) Solapur	
l		1

The Committee had already recommended the proposal in its 129th meeting. However, the PP has approached the Committee for reappraisal of the same proposal since there was not sufficient time for auction before the cutoff date i.e 30.9.2016. The Committee desired that a fresh report of Senior Geologist, GSDA should be obtained since changes within sand gat could have taken place due to the monsoon flow. The Senior Geologist, GSDA has submitted a new report indicating that there were no changes in configuration of the sand gat.

After detailed deliberations the Committee decided to **recommend** the following proposal for **EC** subject to the conditions given after the table:

Sr. No.	Name Of Village	Πaluka	the river	num	Location of sand ghat (Gut No.)	Length		Area Of Sand ghat (L x B) in m2	Total depth of sand in the block as per GSDA in (m)	Total Depth recommended by GSDA for	sand
1	ShegaonDumala- Mundhewadi	Pandharpur	Bhima	1	Shegaon.Du- 284 to 290, Mundhewadi -171 to 176,293,	718	138	99084	4.00	1.80	63022

Conditions:

1. It has been clearly brought out in the site visit report that excavation will not affect *Chandrabhaga valvant* in any way. However, in the future if *Valvant* is affected in any way due to excavation, the mining should be stopped by the District Administration.

Member Secretary

Page 77 of 93

- 2. It is necessary to strengthen the access road from the proposed sand gat to the nearest tarred road at Village- Mundewadi. This work may be executed by the District Administration and completed at the earliest.
- 3. Mining should not exceed the depth of 1.8m.
- 4. Under no circumstance mechanical mining shall be adopted. Mining shall be done only by manual methods.
- 5. Migratory birds should not be disturbed during mining operation.
- 6. No trucks shall be parked on the river bed during mining operation.
- 7. Annexure B

Item no. 23	Minor Minerals (Stone) Kolhapur

1. Rosaria Rodrigues

The PP contends that he had applied for mining permission before 17th April 2013 (cut-off date) by virtue of which his case could be considered. Exact position and details may be kept before the Committee by Member Secretary, SEAC-I. For this the item was **deferred**.

2. Nishil Potdar-

Previous consideration: The 114th Meeting held on 19th, 20th & 21st November, 2015

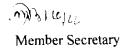
Decision: The proposals were considered under 1(a)-B2 category of the schedule of EIA Notification 2006. The brief information submitted by the PP and decision of the Committee are depicted below:

S. No.	Name of the Proponent, Mouz, Taluka, Land type	Gat No./ Survey No.	Area (ha)
1.	Shri. Nishil Potdar	290 part	2.05 ha
	Halkarni, Chandgad		

The PP made a detailed presentation of stone quarrying in Village Halkarni, Taluka-Chandgad. All aspects of environmental impact were considered and found to be within limits. The PP submitted that the proposed quarry is situated at a distance of 6.2km from the Village Titwade, which appears as an ESA village in the Draft Notification of MOEF and more than 10km of Maharashtra-Karnataka boundary. The Committee is familiar with the location of the proposed quarry by virtue of an earlier visit to an industrial project at Halkarni and is aware of the general ecological features of the area. The area is reportedly frequented by elephants as a route to the nearby water bodies. Therefore the Committee desires that the Collector should obtain a report from the District Forest Officer, whether quarrying in this area would compromise the wild-life habitat and movements. For this purpose the item is **deferred**.

Member Secretary

Page 78 of 93


Previous consideration: The 132nd Meeting held on 4th & 5th August, 2016

S. No.	Name of the Proponent, Mouz, Taluka, Land type	Gat No./ Survey No.	Area (ha)	Observation of the Committee	Recommendations
1.	Shri. Nishil Potdar Halkarni, Chandgad	290 part	2.05 ha	The PP presented a letter from Deputy Conservator Forest, Kolhapur Forest Division, Kolhapur in which he had submitted that "area where quarry is proposed is not frequented by wild elephants though wild elephants frequent almost all the extent of Chandgad Taluka in which the quarry is situated. To get more clarity in this issue, the Chairman requested Collector Kolhapur to submit a specific and comprehensive report.	would compromise the wild-life

Present consideration: 135th meeting

The proposals were considered under 1(a)-B2 category of the schedule of EIA Notification 2006. The brief information submitted by the PP and decision of the Committee are depicted below:

S. No.	Name of the Proponent, Mouz, Taluka, Land type	Gat No./ Survey No.	Area (ha)	Observation of the Committee	Recommendations
1.	Shri. Nishil Potdar Halkarni, Chandgad	290 part	2.05 ha	The PP produced a letter from Deputy Conservator of Forest, Kolhapur Forest Division, Kolhapur (attached as <i>Annexure 23.2.1</i>) which indicates that the area around the proposed quarry is neither frequented by wild elephants nor features any sources of water. The Committee had considered in its earlier meetings various parameters of Environmental Impact which were found to be within limits. The Committee again rechecked from its Google imagery that habitations, water	Recommended for EC subject to the following conditions: 1. Annexure A 2. If in the future any complaint is raised regarding disturbance of wild life due to quarrying, the Collector, Kolhapur should take necessary steps to stop the quarrying. The PP on its part should ensure that quarrying is done in such a way as to preserve ecological diversity of the area.

	bodies, roads and public	
	structures were beyond 200m	
	from the quarry.	

: night (@/c.)

Member Secretary

Page 80 of 93

20

"Annexure 23.2.1"

उप वनसंरक्षक, कोल्हापूर वनविभाग कोल्हापूर यांचे कार्यालय 'वनवर्धन' तारावाई पार्क, पोस्ट ऑफिस समोर,कोल्हापूर दुरध्वनी क्र.(०२३१) ६५१९५९ फॅक्स (०२३१) २६५२८०७ ई मेल :dyctkop२००७@yahoo.com

> क्र/कक्ष.५/वनसंवर्धन/🏞 🤊 ८/२०१६.१७ कोल्हापूर ३, दिनांक :- გ /०९/२०१६

प्रति.

अप्पर जिल्ह्याधिकारी ,कोन्ह्रापुर

विषय:- मोजे हलकर्णी ता.चंदगड येथिल खाणपटटा प्रस्तावबाबत संदर्भ :- १. जिल्हाखनिकर्म अधिकारी, कोल्हापूर कार्यालयाकडील पत्र क्र.कार्या/६अ/आरआर/३०५१/२०१५ दि.१८.१२.२०१५

- २.वनक्षेत्रपाल,पाटणे यांचेंकडील पत्र क्र.अ/सर्व्हें/१३६४/१५.१६
- ३. सहा वनसंरक्षक, (खा.कु.तो.व चन्यजीव) कोल्हापूर यांचे कडील अहवाल क्र.१९३ अ दि.२६.०८.२०१६

उपरोक्त रांत्यांन्यये गाँण खनिजपटटा मंजूर करणे बाबत मौ.हलकर्णी ता.चंदगड चेंथिश माराको भट क.२९० मंधिल ५.२० हे.आर क्षेत्रावरील गौगखनिज उत्खननाकरीता परवानगी मिळणे वावत श्रीनिशील पोतदार,रा बेळगांव यांनी पर्यावरण विभाग मंत्रालय मुंबई यांचेकडे सादर केलेल्या अर्जावर The State Level Expert Appriasal Committee च्या ११४ च्या क्रमांकाच्या बैठकीमध्ये उपस्थित केलेल्या चर्चेनूसार संदर्भ १ अन्वये मागणी केलेला सुधारीत अहवाल अपेक्षित असल्याने अर्जित क्षेत्राची फेर तपासणी अहवाल वनक्षेत्रपाल यांचे वरिष्ठ दर्जाचे अधिकारी सहा वनसंरक्षक, (खा कु.तो.च चन्यजीव) कोल्हापूर यांचे कडील अभिप्राय/अहवाल नूसार खालील प्रमाणे आहे.

- १. मौ.हलकर्णी ता.चंदगड येथिल मालकी गट क्र.२९० मधिल ५.२० हे.आर-क्षेत्रावर श्री.निशील पोतदार,रा.बेळगांव गौणखनिज उत्खननाकरीता परवानगी मागणी केलेली आहे.
- २. The State Level Expert Appriasal Committee च्या ११४ च्या क्रमांकाच्या बैठकीमध्ये मुददा ऋ.१३ उपस्थित केलेल्या चर्चनुसार चंदगड तालुक्यात वावरणारे सदर वनहत्ती हे हलकर्णी ग.क्र. २९० चे जवळपास किंवा सदर गांवचे आसपास वनहत्तीचा वावर आढळून येत नाहो.
- 3. मौ.हलकर्णी ता.चंदगड येथिल मालकी गट क्र.२९० मध्ये जिवंत पाण्याचे स्त्रोत नाही. तरी सदरचा प्रस्ताव नियमाप्रमाणे स्विकृत करण्यासाठी संदर्भ क्र.१ ते ३ अन्वये माहिती देण्यात

जिल्हा खनिकर्म आधकारी.

न्त्रत्वधिकारी कार्यालय, कांत्रपूर

सेरक्षक. कोल्हापुर वनविभाग कोल्हापुर

11. 3. 1 (C) (1)

Item no. 24	M/s. Chemco Innovative Chemie Pvt. Ltd. (ToR)
	For expansion in industrial project at plot no. T-24, 25, 26-27, 39 MIDC Tarapur, Tal-Palghar, District-Palghar.

The PP gave a detailed presentation for ToR for their proposal for expansion in dye intermediates from 33 TPM to 177 TPM. The project was considered under category 5(f)-B1 of the schedule of the EIA Notification 2006.

After detailed deliberations the Committee made the following observations:

- 1. PP should provide additional 300 sq. m for parking.
- 2. Stack height should be minimum of 30m.
- 3. Details of water balance shall be submitted.
- 4. Spent acid should be valorized by concentrating to 30% and sold to authorized agencies and not disposed of indiscriminately in the environment.
- 5. A separate chapter on Risk Assessment and Risk Management shall be included in the EIA report.
- 6. The ToR shall be in accordance with the provisions contained in the Model ToR prescribed by MOEF&CC in April, 2015.

The Committee decided to approve ToR subject to the above observations (1-6).

Item no. 25	M/s. Shakti Industries (ToR)
	For expansion in industrial project at plot no. K-2, MIDC Tarapur, Taluka-
	Palghar, Palghar.

The PP gave a detailed presentation for ToR for their proposal of change in product mix in the existing chemical manufacturing unit to produce 0.96 MT/M of hormones and steroids after discontinuing 165 TPM of the existing products. The project was considered under category 5(f)-B1 of the schedule of the EIA Notification 2006.

After detailed deliberations the Committee made the following observations:

- 1. A stack of height 30m shall be provided for thermax hot water system.
- 2. Domestic waste shall also be treated in the ETP.
- 3. A detailed water balance (considering water consumption) and material balance shall be given.
- 4. A separate chapter on Risk Assessment and Risk Management shall be included in the EIA report.
- 5. The ToR shall be in accordance with the provisions contained in the Model ToR prescribed by MOEF&CC in April, 2015.

The Committee decided to approve ToR subject to the above observations (1-5).

Member Secretary

Page 82 of 93

A/

Item no. 26	M/s. Clean Science and Technology Pvt Ltd.				
	Proposed Synthetic Organic Chemical Industry at D-26/3, MIDC Kurkumbh, Daund Pune.				

The brief information of the project as submitted by the PP:

1	Name of the Project	Proposed Kurkumb	M/s. Clean Science & Technology Pvt. Ltd. Proposed Synthetic Organic Chemical plant at located at D-26/3 MIDC. Kurkumbh, Tehsil Daund, District Pune, Maharashtra. Capaeity: 24,400 MTA					
2	Name, address, e-mail & contact number of Proponent	Address: Telephon	Mr. Krishna Ramnarayan Boob Address: 503, Pentagon - P4, Magarpatta City, Hadapsar, Pune, Maharashtra. Telephone number: 020-26899953 Email 1D: krishna@cleanscience.co.in					
3	Name of Consultant		Lonkar, Director-SMS Envocare Ltd.					
4	Accreditation of consultant (NABET Accreditation)		BET Accredited A 88th MoM dated 4th May, 2016)					
5	New Project / Expansion in existing project/ Modernization/ Diversification in exiting project	New Pro	ject					
6	If expansion/ Diversification, whether environmental clearance has been obtained for existing project (If yes, enclose a copy with compliance table)	NA						
7	Activity sehedule in the EIA Notification	Category 'B' Project Activity No. 5(f)						
8	Area Details	Total plot area: 19,193.00 sq. m. Proposed Built Up Area: 7,790.00 Sq. m Area available for green belt: 6,603.00 sq. m.						
9	Name of the Notified Industrial area / MIDC area	D-26/3, Kurkumbh MIDC, Taluka Daund, District Pune, Maharashtra.						
10	TOR given by SEAC? (If yeas then specify the meeting)	ToR Approved along with additional ToR Points on 31st March, 2015						
		S. No.	Fixed Assets	Proposed Amount (Rs in Lakhs)				
		1	Land	68.00				
		2	Building/Premises	1500.00				
	Estimated capital cost of the Project (including	3	Plant & Machinery/Equipment	5332.00				
11	cost for land, building, plant and machinery separately)	4	Furniture & Fixture	50.00				
	separately)	5	Any other movable/ immovable fixed assets	50.00				
		Cost of t	otal fixed assets	7000.00				
12	Location details of the project	Longitude: 18º24'4.39'' N Location: 74º31'26. 75'' E Elevation above Mean Sea Level (meters): 627.27 Refer Annexure 1: Location Plan						
13	Distance from Protected Areas / Critically Polluted areas / Eco-sensitive areas / inter-State boundaries	There are no Protected Areas / Critically Polluted areas / Eco-sensitive areas / inter-State boundaries falling within the project site. Project is located in Plot No. D-26/3, Kurkumbh MIDC, Pune area.						
			Products, By products & Intermediate	Proposed activity (T/Year)				
14	Production details	Hydroqu	inone, Catechol & their derivatives	10000				
			d Hydroxy Anisole & their derivatives	2400 23000				

19 19 / (c.) (c)

Page 83 of 93

<u>-</u>		Aniso	le & their derivat	ives	· · · · · · · · · · · · · · · · · · ·	9000		
		Total			24,400			
15	Rain Water Harvesting (RWH)	Level of the ground water table • Size and no of RWH tank(s) and Quantity: NA • Location of the RWH tank(s): NA • Size, no's of recharge pits and Quantity: 15 pits of 500 Liter capacity • Budgetary allocation (Capital cost and O&M cost): Capital Cost: 6 Lakhs, O&M Cost: 2 Lakhs.						
16	Total Water Requirement	Total water requirement: 540 CMD Fresh water (CMD) & Source: 540 CMD from Kurkumbh MIDC Use of the water Process (CMD): 80 Cooling tower & boiler feed (CMD): 400 DM Water (CMD): 20 Drinking (CMD): 20 Green belt (CMD): 20 Fire service (CMD): Storage I 50 m ² as an when required						
17	Storm water drainage	Nat • Qua • Size 200	ural water drainag antity of storm wa e of SWD: 18" (4 meter Length – S	ge pattern hter: 273.61 CMI 50mm) VCR Gut outh to North Ea	D tter st and west to No			
18	Sewage generation and treatment	• Prop	ant of sewage gen posed treatment for acity of the STP (or the sewage: A	SP	ЕТР		
	Effluent characteristic	Sr.	Parameters (pH, BOD, COD, heavy metal, etc)	Inlet effluent Characteristie	Outlet		Effluent discharge standards (CPCB /MPCB	
		1	pH	5	7.98		5.5 to 9.0	
		2	Total Suspended Solids	~ 100	6.0	6.0		
		3	Total Dissolved Solids	~ 1500	1856		<2100	
19		4	Chemical oxygen demand (COD)	4000	200		<250	
		5	Biological Oxygen Demand (BOD)	1400	65	"	<100	
		6	Oil & grease	5-7	BDL		<10	
		7	Sulphates	100	750 179		<1000 <600	
		8	Chlorides Phenols	BDL	BDL		<0.5	
		10	Free Ammonia	0.02	0.02		<0.5	
20	ETP details	Amount of effluent generation (CMD): 172 • Capacity of the ETP (CMD): 250 ETP with Aerobic Treatment system: 575 m³, ETP with Anaerobic Treatment System: 60 m³ • Amount of treated effluent recycled (CMD): Nil. • Amount of water send to the CETP (CMD): 172 Zero Liquid Discharge (ZLD) is proposed for ETP						
21	Disposal of the ETP sludge (If applicable)	5 T/N ETP	A Sludge will be se	nd to CHWTSDF		gaon		
		Sr. no	o Source		Qty. Com		sition	
22	Solid Waste Management	1	Distillation		3 TPM	-		
ZZ	зона waste манадешент	2	waste			200 kg/m -		
		3	ETP Sludg	е	5 TPM			

m) 3711/16

Page 84 of 93

Member Secretary

		4	Empt	y drum		1	50-200 no/m] -		
		5	Boile			5	0-60 TPM	T -		
		metals then • What are Packaging Empty Dru Boiler Ash	n prove the p mater ims: S i: Send i Resid	ide quar ossibilit ial & pl old to a I to bric due: Ser	ntity ties of astic utho k ma to to	ardous/toxic signardous/toxic signardous/toxic signardous and consequent and consequent signardous anufacturer of CHWTDF	and proposed d recycling of recycler	pre was	eautionary tes?	als or heavy 7 measures.
		Pollutant	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Source of Em	e		Emission Rate (Nm3/hr)		Concentr in flue ga	ation is (gm/m3)
		SPM							0.098	
		SO ₂				new Boiler-			0.0497	
		NOx		I (15	1/hr)	26218.3	-	0.068	
		CO						-		
		Others					-	\dashv	0.1	···
	-23 Atmospheric Emissions (Flue gas characteristics SPM, SO2, NOx, CO, etc.)	SPM								
-23		SO ₂		Propo	sed :	new			0.0153	
		NOx		Therm	юра	ick -1 (10	2915.2		0.08	
		CO		lakhs	keal	/hr)			•	
		Others								
		<u> </u>						\dashv	0.068	
		SPM							0.021	
		SO ₂			sed	DG Set 700	415,72			
		NOx		KVA					0.030	
		СО		7					0.018	
		Plant Section & units		Stack No.		Height from ground level (m)	Internal Diameter (Top) (m)	Ra	mission ate im3/hr)	Temp. of Exhaust Gases (K)
	Stack emission Details: (All the stacks attached to Process units, Boilers, captive power plant, D.G.	DG set-1		S-1		5.5	0.2	41	5.72	351
24	Sets, Incinerator both for existing and proposed activity). Please indicate the specific section to which the stack is attached, e.g.: Process section,	Boiler-1 — Thermo pa		S-2		30.5	1.2	26	218.3	353
	D.G. Set. Boiler, Power Plant, incinerator etc. Emission rate (kg/hr.) for each pollutant (SPM. SO2, NOx etc. should be specified	Thermo po	ack -	S-3		30	0.8	29	15.2	353
	502, 110A etc. should be specified	PM 10 (μg		,	100		<100	_	-	
		PM 2.5 (μ			60		< 60		-	
		SO ₂ (μg/1 NOx (μg/			80		< 80 < 80		 -	
			m-) 1 ³)		2		< 2		-	
		Sr. No	Fuel		1	Daily Consumption (TPD /KLD)	Calorific Value (Kca /kg)	als	% Ash	% Sulphur
25	Details of Fuel to be used:	1	Gas		+-		-		-	
23	Details of Fuer to be used:	2	├	htha	+-		-		-	-
		3	HS1		4	4 KLD (stand- by)	10700		0.01	0.2
		4	Fuel Oi		Oil -		5000			1.56
		5	Coa	1	4	40 MTD	5800		5-7	1.56

my3/16/4

Member Secretary

Page 85 of 93

		6	Lignite	Ţ <u>-</u>		-		
		7	Other	-	-	-	-	
		• Mode o	f fuel: Local M f transportation	arket a of fuel to site	: Road Trans	fer		
26	Energy	DG sets: Numbe Proposed Details of no use of	ed power required in and capacity of the non-convertion of the non-convertion of the non-convertion of the non-convertion of the non-convertion of non-conve	DG sets to be 700 KVA. entional rene- onal renewable	used wable energy	proposed to be u	sed : There is	
27	Green Belt Development	Numbe Numbe	elt area (sq. m.) r and species o r, size, age and lanted: No tree	f trees to be p species of tre	es to be cut, t	os nf trees will be rees to be tion	e planned.	
		Sr. no.	Existing po	llution contro	l system	Proposed to b	e installed	
		1	Air			Mechanical d single cyclone multiple cyclo	separator, one separator	
20	Details of Pollution	2	Water			ETP is provid	ed with ZLD	
28	Control Systems:	3	Noise	-		-		
		4	Solid Wast	Solid Waste -		CHWTSDF, Ranjangaon /and non Packaging material sends to recycler, Distillation residue are also used as a fuel		
		Capital cost (With break up): Rs. 188.00 Lakl O&M cost (With break up): Rs.43.00 Lakhs				Recurring		
		Sr. No.	Descriptio	n		Capital Cust (Lack)	Cost per annum (Laek)	
		1.	Air Pollut	on Control		80.0	5.0	
29	Environmental Management plan Budgetary Allocation	2.	Water Pol	lution Control		80.0	20.0	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.	Environmand Mana	ent monitoring	?	-	3.0	
		4.		r Harvesting		6.0	2.0	
		5.	Occupatio	nal Health		10	4.0	
		6.	Green Bel			10.0	6.0	
1		7.	Solid was	te managemer	nt	2.0	3.0	
		8.	Total			188	43	
30	EIA Submitted (If yes then submit the salient features)	Yes: EIA/EMP Online Submitted on 31st August, 2016 Period of data collected: March 2016 to May 2016 Details of the primary data collection (i.e. location of the sample collection, number of visit, etc): AAQM: 8 Locations Ground Water: 7 Locations Noise: 8 Locations Soil: 8 Locations Ecology & Biodiversity: 10 Km Radius from project Socio-economic: 10 Km Radius from project Details of the secondary data collection (i.e. Source and year of data): Metcorological Data: IMD, Pune Social data: School, Medical centers. GPs and Census of India						

Member Secretary

Page 86 of 93

				Potential hazard and r Conclusion of the EIA	nitigation meas study: Incorpo	ures: Incorporatorated in EIA/EI	ed in EIA/EMP re MP report	port
31	Storage of che	micals (infla	mmable/explosive	/hazardous/toxic substances)				
Sr. No.	Name	Nos. of storage	Capacity	Physical and Chemical Composition	Consumption (MT/A)	Maximum Quantity of storage at any point of time	Source of Supply	Means of transporta tion
	Acetone	1	16 KL	Colourless, volatile flammable, liquid, miscible with water	50	16 KL	Haresh Petrochem, Munibai	By Road
2	H ₂ O ₂ - 60%	1	100 KL	Colourless, liquid, slightly more viscous than water. Strong oxidizer & used as a agent & disinfectant	7800	100 KL	National Peroxide Ltd. Mumbai	By Road
3	Hexane	1	16 KL	Volatile aliphatic hydrocarbon, flammable, Colorless, Liquid	150	16 KL	Sachin Chemicals Mumbai	By Road
4	MEHQ	LOT	25 kg X 400 Nos.	White Solid (Flakes), Soluble in water.	1704	25 kg X 400 Nos.	Captive	Self- Product
5	Phenol	2	200 KL	Colorless liquids or white solids at room temp. More soluble in water than are alcohols and have higher boiling points.	17500	200 KL	SI group, Mumbai.	By Road
6	Anisol	2	1000 KL	Colorless liquid smells of of anise seed, insoluble, nontoxic	9000	1000 KL	Captive	Self- Product
7	Tertiary Butanol	1	50 KL	Clear liquid (odorless solid, depending on the ambient temp) with a camphor-like odor. Soluble in water and miseible with ethanol and diethyl ether.	1008	50 KL	Aki Shokai Co. Ltd., Japan.	By Sea
8	Guaiacol	LOT	200 kg X 50 Nos.	Colourless Liquid	2459	200 kg X 50 Nos.	Captive	Self- Product
9	NaOH (50 %)	1	100 KL	Clear liquid	4444	100 KL	Sachin Chemical	By Road
10	CuSO4	LOT	25 kg X 400 Nos.	Solid. (Crystalline granules solid. Powdered solid.) Odorless. Nauseous metallie.	3492	25 kg X 400 Nos.	Indian Platinum Pvt. Ltd. Mumbai	By Road
11	DMS	1	100 KL	Liquid, colourless, stench	6300	100 KL	Aarti Industry, Boisar.	By Road
12	Glyoxylie Acid	LOT	25 kg X 400 Nos.	Solid, Obnoxious	1623	25 kg X 400 Nos.	Import	By Road
13	Ethyl Acetate	1	16 KL	Liquid, ethereal, fruity	150	16 KL	Sachin Chemical	By Road
14	Zeolite	Lot	25 kg X 200 Nos	Solid Light grey-green coloured granular and powder Smell None, earth like	10	25 kg X 200 Nos	Captive	Self- Product

The PP gave a detailed presentation of the EIA report pertaining to establishment of a green field project for the production of synthetic organic chemicals to the extent of 24400 TPA. The Committee considered the project under category 5(f)-BI of the schedule of the EIA Notification 2006.

After detailed discussion the Committee made the following observations:

- 1. The project will run as a Zero Liquid Discharge Process.
- 2. The effluent will be segregated into 2 streams- i) high phenolic product stream will be sent to the anaerobic digester followed by ETP and ii) remaining shall be sent to the ETP of 258m³ having primary, secondary and tertiary processes. The outlet effluent of ETP shall be sent to RO & MEE of capacity 175 CMD each.

Member Secretary

Page 87 of 93

- 3. The PP proposes to deploy 1 boiler of capacity 12 TPH which will be coal fired and thermopack (coal) of 10lackcal/hr. Flue gases from the boilers should be passed through cyclone separator and bag filter followed by a stack of 32m height to achieve an outlet TPM of < 100 mg/Nm³.</p>
- 4. The detailed presentation was made on Risk Assessment and Risk Mitigation. There is a contingency of off-site emergency, hence hazard management plan shall be shared with the District Administration. The layout of the plot with the all hazard management facilities shall be submitted. Maharashtra Pollution Control Board (MPCB) should verify the availability of these precisions before granting Consent to Operate.

The Committee went through the all aspects of Environmental Impact and noted that the baseline studies indicated that air, water, ground water, noise and soil parameters would remain well within prescribed limits even after commissioning of the project. The Committee therefore decided to **recommend** the project for **EC** subject to the observations (1-4) above.

Discussion	M/s. Bharat Petroleum Corporation Ltd. [amendment in minutes] Jalgaon.
Item 2	
1	

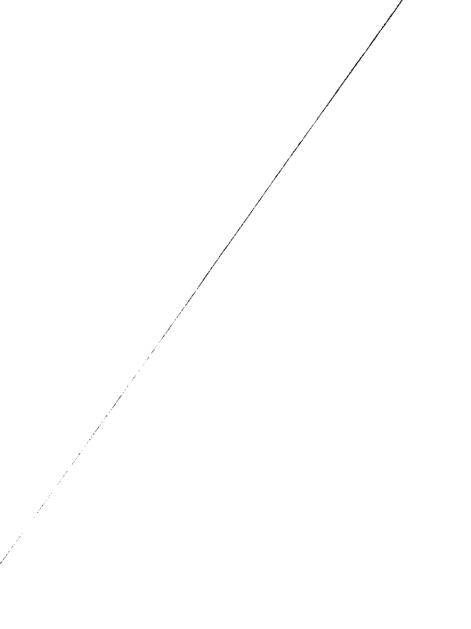
The Committee went through the decision of the SEIAA taken in its 101st meeting held on 10th, 11th & 16th May, 2016. While agreeing with the stipulations recommended in the minutes by SEAC-I in its 122nd meeting, the SEIAA gave an additional condition as follows-"PP informed that the total water requirement is only 15 KLD and not as mentioned in the SEAC minutes that it was 4800 KLD and the capacity of ETP will be 12 CMD and not 25 CMD as indicated in the minutes of SEAC. The information given by the PP was noted. However, the PP was advised to move the SEAC-I for amendment of the minutes appropriately."

The Committee deliberated on this observation by SEIAA and made the following observations:

- 1. The requirement of water for the 'process' shall be 15 KLD. However, requirement of water for fire-fighting shall be 4800 KLD.
- 2. The requirement of 25 CMD capacity for the STP was arrived at considering the increase in effluent load due to future expansion/floating user population. However, the PP submits that the 15 CMD STP would be sufficient for the present. So the PP may construct a 15 CMD STP to cater to the present load but may make provisions for future augmentation, should the need arise.

The minutes of 122nd SEAC-I meeting may be amended to incorporate the two observation as above.

9)) b) (4/1,


Member Secretary

Page 88 of 93

<u></u>	Proposed site visits
Discussion	1 tobasea sire amin
Item	
1	

The Committee decided to visit the following sites scheduled as follows:

- 1. M/s. Hindustan Electricity Generation Co. Pvt. Ltd. On 24.9.2016
- 2. M/s. Shri Dnyaneshwar Sahakari Sakhar Karkhana Ltd. On 28.9.2016
- 3. M/s. Harmony Organics Pvt. Ltd. On 1.10.2016

morale of

"Annexure A"

The Specific and General conditions applicable for Mining of Stone:

Specific conditions:

- 1. Provisions stipulated in Maharashtra Minor Minerals Extraction (development and Regulation) Rules 2013 shall be strictly adhered to.
- 2. District Collector and District Mining officer will be held responsible personally for noncompliance of the conditions stipulated in the Environmental clearance and shall be liable for legal action under Environment (Protection) Act of 1986.
- 3. District Collector will take bank guarantee of Rs. 2,00,000/- OR upto 2% of the annual royalty, whichever is higher, for the given lease from the lease holder to ensure the compliance of the conditions stipulated. In case of violation of stipulated conditions by project proponent bank guarantee so obtained shall be forfeited and legal action under the law should be initiated against such project proponent.
- 4. It shall be ensured that there is no fauna dependent on the areas close to mining for its nesting.
- 5. To prevent dust / particulate matter pollution, the lease holder shall take up tree plantation in an area 10 m from the boundary of the leased area and also on either side of the road leading to the quarry from the already surfaced road.
- 6. District Collector and Project proponent to ensure that there is no violation of the Supreme Court order given in related matters.
- 7. District Collector shall prepare closure plan and get it approved by the competent authority for all abandoned mines in the District.

General conditions:

- 1. Precise mining area will be jointly demarcated at site by officials of Mining/Revenue department prior to mining operations for all proposals under consideration. Such site plan, duly verified by competent authority shall be submitted to Environment Department.
- 2. All necessary statutory clearances shall be obtained before start of mining operations.
- 3. Mining / loading shall be limited to day hours' time only. The quarrying / loading shall not be done during night hours.
- 4. No mining shall be carried out in the safety zone of any bridge and/or embankment.
- 5. No mining shall be carried out in the vicinity of natural/ manmade archeological sites.
- 6. The lease holder shall obtain necessary prior permission of the competent authorities for drawl of requisite quantity of water (surface water and groundwater), if required for the project.
- 7. Waste water, if any, shall be properly collected and treated so as to conform to the standards prescribed by MoEF/CPCB.
- 8. No wildlife habitat will be infringed.
- 9. Where, the quarrying is in a hilly terrain hill cutting shall be allowed only in the recharge zone to be identified by the officials of GSDA.
- 10. Environmental clearance is subject to obtaining clearance under the Wildlife (Protection) Act, 1972 from the competent authority, if applicable to this project.
- 11. Green belt development shall be carried out considering CPCB guidelines including selection of plant species in consultation with the local DFO/Horticulture Officer.
- 12. Parking of vehicles should not be made on public places.
- 13. Transportation of materials shall be done by covering the trucks / tractors with tarpaulin or other suitable mechanism so that no spillage of mineral/dust takes place.
- 14. Appropriate mitigation measures shall be taken to prevent any kind of pollution in consultation with the Maharashtra Pollution Control Board. It shall be ensured that there is no leakage of oil and grease from the vehicles used for transportation.
- 15. Vehicular emissions shall be kept under control and regularly monitored. The mineral transportation shall be carried out through the covered trucks only and the vehicles carrying the mineral shall not be overloaded.

m) 316/6/6; Member Secretary

Page 90 of 93

- 16. Special Measures shall be adopted to prevent the nearby settlements from the impacts of mining activities. Maintenance of roads through which transportation of minor minerals is to be undertaken, shall be carried-out regularly.
- 17. Dispensary facilities for first-aid shall be provided at site.
- 18. Occupational health surveillance program of the workers should be undertaken periodically.
- 19. Provision shall be made for housing the workers at site, if required, with all necessary infrastructure and facilities such as fuel for cooking, safe drinking water, medical health care and sanitation etc.
- 20. Ambient air quality will be monitored at the site and the nearest habitation in the months of January, April and November. Ambient air quality at the boundary of the precise mining area shall conform to the norms prescribed by MoEF, GOI.
- 21. Measures shall be taken for control of noise levels to the limits prescribed by CPCB.
- 22. An Environmental Audit shall be annually carried out during the operational phase and be submitted to the Environment Department,
- 23. Digital processing of the entire lease area in the district using remote sensing technique shall be done regularly once in three years for monitoring and report submitted to the Environment Department. The funds earmarked for environmental protection measures shall be kept in separate account and shall not be diverted for other purpose. Year wise expenditure on environmental protection measures shall be reported to the Regional Office, Ministry of Environment and Forests, Bhopal.
- 24. Revenue Authorities shall submit within 3 months their policy of (i) Standard operating process/ procedure to bring into focus any infringement/deviation /violation of environmental norms /conditions, (ii) Hierarchical system or Administrative order to deal with environmental issues and to ensure compliance of EC conditions and (iii) System of reporting of non-compliance /violation of environmental norms to the District collector.
- 25. The Mining officer shall submit six monthly reports in hard and soft copy on the status of compliance of the stipulated environmental clearance conditions including results of monitored data (both in hard & soft copies) to the Environment Department, and the District Collector and the respective Regional Office of the Maharashtra Pollution Control Board.
- 26. Any change in mining area, khasra /Gat numbers, entailing capacity addition with change in process and or mining technology, modernization and scope of working shall again require prior Environmental Clearance as per provisions of EIA Notification, 2006 (as amended).
- 27. SEAC-I has appraised the proposals on the basis of information submitted by concerned District Mining Officer. Mining Officer shall submit the list of blocks satisfying conditions stipulated above to Revenue & Environment dept. The list of blocks and conditions stipulated above shall be made available in public domain. It should be published in two local language newspapers and displayed at each block where mining operation is proposed. District mining officer should ensure this and submit compliance report to Environment department with approval from Collector.

=0=

monthle jou

Member Secretary

Page 91 of 93

"Annexure B"

The Specific and General conditions applicable for Mining of Sand

Specific conditions:

1. Proposals are recommended for Environmental Clearance for period 2015-2016 only.

Provisions stipulated in Maharashtra Minor Minerals Extraction (development and Regulation) Rules 2013 and Government Resolution of Revenue and Forest Department dated 12/03/2013.

District Collector and District Mining officer will be held responsible individually for non compliance of the conditions stipulated in the Environmental clearance and shall be liable for legal action under Environment (Protection) Act of 1986.

District Collector will take bank guarantee upto 2% of the total auction cost for the given auction period from project proponent to ensure the compliance of the conditions stipulated. In case of violation of stipulated conditions by project proponent bank guarantee so obtained shall be forfeited and legal action under the law should be initiated against such project proponent.

The depth of sand layer to be mined, after retaining 2 m minimum layer below, should not be more than 2 meters as per Government Resolution of Revenue Department dated 12th March 2013 e.g. if

the total depth of sand is 3 m, only up to one metre of sand shall be mined.

It shall be ensured that excavation of minor mineral does not disturb or change the underlying soil characteristics of the river bed /basin, where mining is carried out.

It shall be ensured that mining does not in any way disturb the turbidity, velocity and flow pattern of the river water.

- A siltation study should be carried out before commencement of the mining activity or within a period of one year through some expert Agency like NIO/CWPRS to determine the siltation load so that there is no over exploitation of the material at any point of time. The mineral to be removed shall be determined based on siltation load. This study shall be steered by competent authority while granting further mining lease and or renewing of the license. A copy of siltation study shall be submitted to the Environment Department, the District Mining Officer and respective Regional Office of the State Pollution Control Board.
- It shall be ensured that there is no fauna dependant on the river bed or areas close to mining for its nesting.
- 10. Turtle nesting units' conservation is very important. Therefore sand mining in such areas is to be prohibited.

11. The green belt development/tree plantation will be made in an area of 20% of the total leased area either on river bank or along road side.

- 12. Measure for prevention & control of soil erosion and management of silt shall be undertaken. Protection of dumps against erosion, if any, shall be carried-out with geo textile matting or other
- 13. District Collector and Project proponent to ensure that there is no violation of the Supreme Court order and orders of the National Green Tribunal given in the related matters.

General conditions:

- Precise mining area will be jointly demarcated at site by officials of Mining/Revenue department prior to mining operations for all proposals under consideration. Such site plan, duly verified by competent authority shall be submitted to Environment Department.
- All necessary statutory clearances shall be obtained before start of mining operations. 2.
- Depth of mining shall be restricted to 3 m or water level whichever is less. 3.

No mining shall be carried out in the streams. 4.

Mining shall be limited to day hours time only. The loading shall not be done during night hours. 5.

No mining shall be carried out in the safety zone of any bridge and/or embankment. 6.

- No mining shall be carried out in the vicinity of natural/ manmade archaeological sites. 7.
- The lease holder shall obtain necessary prior permission of the competent authorities for drawal of 8. requisite quantity of water (surface water and groundwater), if required for the project.
- Waste water, if any, shall be properly collected and treated so as to conform to the standards prescribed 9. by MoEF/CPCB.

No wildlife habitat will be infringed. 10.

- Environmental clearance is subject to obtaining clearance under the Wildlife (Protection) Act, 1972 11. from the competent authority, if applicable to this project.
- Green belt development shall be carried out considering CPCB guidelines including selection of plant 12. species and in consultation with the local DFO/Horticulture Officer.
- Parking of vehicles should not be made on public places. 13.

.917)6) Who

- Transportation of materials shall be done by covering the trucks / tractors with tarpaulin or other 14. suitable mechanism so that no spillage of mineral/dust takes place.
- Appropriate mitigation measures shall be taken to prevent any kind of pollution in consultation with 15. the Maharashtra Pollution Control Board. It shall be ensured that there is no leakage of oil and grease from the vehicles used for transportation.
- Vehicular emissions shall be kept under control and regularly monitored. The mineral transportation 16. shall be carried out through the covered trucks only and the vehicles carrying the mineral shall not be overloaded.
- Special Measures shall be adopted to prevent the nearby settlements from the impacts of mining 17. activities. Maintenance of roads through which transportation of minor minerals is to be undertaken, shall be carried-out regularly.
- Dispensary facilities for first-aid shall be provided at site. 18.
- Occupational health surveillance program of the workers should be undertaken periodically. 19.
- Provision shall be made for housing the workers at site, if required, with all necessary infrastructure 20. and facilities such as fuel for cooking, safe drinking water, medical health care and sanitation etc.
- Ambient air quality will be monitored at the site and the nearest habitation in the months of January, 21. April and November. Ambient air quality at the boundary of the precise mining area shall conform to the norms prescribed by MoEF, GOI.
- Measures shall be taken for control of noise level to the limits prescribed by CPCB 22.
- An Environmental Audit shall be annually carried out during the operational phase and be submitted 23. to the Environment Department.
- Digital processing of the entire lease area in the district using remote sensing technique shall be done 24. regularly once in three years for monitoring and report submitted to the Environment Department. The funds earmarked for environmental protection measures shall be kept in separate account and shall not be diverted for other purpose. Year wise expenditure shall be reported to the Regional Office, Ministry of Environment and Forests, Bhopal.
- Revenue Authorities shall submit within 3 months their policy towards address (i) Standard operating 25. process/ procedure to bring into focus any infringement/deviation /violation of environmental norms /conditions, (ii) Hierarchical system or Administrative order to deal with environmental issues and ensuring compliance of EC conditions and (iii) System of reporting of non-compliance/violation of environmental norms to the District collector.
- The Mining officer shall submit six monthly reports in hard and soft copy on the status of compliance 26. of the stipulated environmental clearance conditions including results of monitored data (both in hard & soft copies) to the Environment department and the District Collector, the respective Regional Office of the Maharashtra Pollution Control Board.
- Any change in mining area, khasra /Gat numbers, entailing capacity addition with change in process 27. and or mining technology, modernization and scope of working shall again require prior Environmental Clearance as per provisions of EIA Notification, 2006 (as amended).
- SEAC appraised the proposals on the basis of information submitted by concerned District Mining 28. Officer. Mining Officer shall submit the list of blocks satisfying conditions stipulated above to Revenue & Environment dept. The list of blocks and conditions stipulated above shall be made available in public domain. It should be published in two local language newspapers and display at each block where mining operation is proposed. District mining officer should ensure this and submit compliance report to Environment department with approval from Collector.

nnistació

Member Secretary