GOVERNMENT OF INDIA MINISTRY OF ENVIRONMENT, FOREST AND CLIMATE CHANGE (IA DIVISION-INDUSTRY-3 SECTOR)

Dated: 07.06.2021

MINUTES OF THE 11th EXPERT APPRAISAL COMMITTEE (INDUSTRY-3 SECTOR) MEETING HELD DURING 31st MAY, 2021 & 1st JUNE, 2021

Venue: Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi-110003 through Video Conferencing (VC)

Time: 10:30 AM onwards

DAY 1 - 31st MAY, 2021 (MONDAY)

(i) Opening Remarks by the Chairman

Prof. (Dr.) A.B. Pandit, Chairman EAC has welcomed to the Committee members and opened the EAC meeting for further deliberations.

Prof. Pandit, also appreciates the efforts of the Ministry's Team (Industry 3 Sector) for preparation and uploading the agenda of the EAC meeting very systematic and timely on Parivesh Portal.

(ii) Details of Proposals and Agenda by the Member Secretary

Dr. R. B. Lal, Scientist 'E' & Member Secretary, EAC appraised to the Committee about the details of Agenda items to be discussed during this EAC meeting.

(iii) Confirmation of the Minutes of the 10th Meeting of the EAC (Industry-3 Sector) held during 18-19, May, 2021 at MoEFCC through VC.

The EAC, having taken note that final minutes were issued after incorporating comments offered by the EAC (Industry-3 Sector) members on the minutes of its 10th Meeting of the EAC (Industry-3) held on May 18-19, 2021 conducted through Video Conferencing (VC), and as such no request has been received for any modifications, in the minutes of the project/activities, confirmed the same.

After welcoming the Committee Members, discussion on each of the agenda items was taken up ad-seriatim.

Details of the proposals considered during the meeting **conducted through Video Conferencing (VC)**, deliberations made and the recommendations of the Committee are explained in the respective agenda items as under:-

Consideration of Environmental Clearance

Agenda No. 11.1

Expansion of Existing Production with addition of new Products by M/s Atul Limited, located at Survey No. 5, 6, 29, 30, 33 to 38, 80, 81, 84, 85, 91, 96 to 105, 108, 112 to 117, 142, 144 to 148, of Atul village and 274, 275, 276, 315, 316 and 321 of Haria village, Taluka & Dist.: Valsad, Gujarat- Consideration of Environmental Clearance

[Proposal No. IA/GJ/IND3/211612/2018, File No. J-11011/108/2015-IA II (I)]

The project proponent and the accredited Consultant M/s. San Envirotech Pvt. Ltd., made a detailed presentation on the salient features of the project and informed that:

The proposal is for Environmental Clearance to the project for expansion of Dyes, Chlor-Alkali, Pesticide, Bulk Drug & Pharmaceutical, Resins, Flavors & Fragrances, Other Chemicals & Co-Products manufacturing unit at Survey No. 5, 6, 29, 30, 33 to 38, 80, 81, 84, 85, 91, 96 to 105, 108, 112 to 117, 142, 144 to 148 of Atul village and 274, 275, 276, 315, 316 and 321 of Haria village, Taluka & District Valsad, Gujarat by M/s. Atul Limited.

The project/activities are covered under Category 'A' of item 5(b) 'Pesticides industry and pesticide specific intermediates', 5(f) 'Synthetic Organic Chemicals Industry' and 4(d) 'Chlor-Alkali Industry' of the Schedule to the Environment Impact Assessment Notification, 2006, and appraised at Central Level by Expert Appraisal Committee (EAC).

The standard ToR has been issued by Ministry vide letter dated 22/01/2019. Public Hearing for the expansion project has been conducted by the Gujarat Pollution Control Board on 01.01.2021 which was presided over by the Additional District Magistrate. The main point raised during the public hearing were related to employment, proper mitigation measures as well as and proper utilization of CER/CSR fund. No Litigation is pending against the proposal.

The Ministry had issued EC earlier vide letter no. IA-J-11011/108/2015-IA-II(I), dated 11.02.2019 to the existing project in favour of M/s. Atul Limited. Certified Compliance Report of existing EC is obtained from IRO-MoEFCC, Bhopal vide letter no. 18-A-30/2019 (SEAC)/201, dated 09.03.2020.

The details of products and capacity are as under:

Product Group

S.	Product Group			Category	Capacity (TPM)			
No.					Existing	Proposed	Total	
Α	Dyes			5(f)	1884.13	9286	11170.13	
В	Chlor-Al	kali		4(d)	7500	21133.29	28633.29	
С	Pesticide	es Tech		5(b)	2915.28	11370.59	14285.87	
D	Bulk	Drug	and	5(f)	350.6	1979	2329.6	
	Pharma	ceuticals						
Е	Resins			5(f)	3432.57	17000	20432.57	

F	Other Chemicals	5(f)	22094.267	40516.86	62611.127
	Total Production Capacity				
	of this group Sodium Thio				
	sulphate (dry basis)				
	Other Chemicals	5(f)	23094.267	42316.86	65411.127
	Total Production Capacity				
	of this group Sodium Thio				
	sulphate (wet basis)				
G	Flavors & Fragrances	5(f)	733.3	6500	7233.3
Н	Co Products:	-	417	3	420
	Total Production Capacity		39327.15	107788.74	147115.887
	with Sodium Thio sulphate				
	(dry basis)				
	Total Production Capacity		40327.15	109588.74	149915.887
	with Sodium Thio sulphate				
	(wet basis)				

Detailed Product List

S.	Product	Cat	CAS No.	(Capacity (TPM	l)
No.		ego ry		Existing	Proposed	Total
Α	Dyes					
1	Azo dyes	5(f)	2898-84-2	550	0	550
2	Sulfur Black		1326-82-5	833.33	1667	2500.33
3	Sulfur Dyes range		1326-40-5	25	0	25
4	Naphthol range		132-68-3	75	0	75
5	Fast Color Bases		17333-83-4	40	0	40
6	Disperse dyes		2872-48-2	118.5	0	118.5
7	Optical Brighteners		12224-03-2	10	0	10
8	Reactive Dyes		61951-85-7	127.3	834	961.3
9	Vat dyes		129-09-9	105	0	105
10	Indigo		482-89-3	0	500	500
11	Manganese sulphate		10034-96-5	0	1000	1000
12	40 % Manganese sulphate solution		10034-96-6	0	2500	2500
13	Pigments		4378-61-4	0	200	200
14	1- Aminoanthraquinon e		82-45-1	0	417	417
15	H-acid		90-20-0	0	500	500
16	4-amino-phenyl-4- beta hydroxy ethyl sulphone sulphate ester, Para base ester		2494-89-5	0	834	834

17	DNCB (Di Nitro		97-00-7	0	834	834
	Chloro Benzene)					
	Total Production		acity of Dyes	1884.13	9286	11170.13
В	Chlor-Aklali	4(d)				
18	Caustic		1310-73-2 &	4000	11100	15100
	soda/potash &		7783-28-0			
40	sodium sulfide		7700 50 5	2500	0700	40000
19	Liquid Chlorine /HCl		7782-50-5	3500	9768	13268
20	Lludrogon		7647-01-0 1333-74-0	0	265.20	265.20
20	Hydrogen otal Production Capa	ocity o		7500	265.29 21133.29	265.29 28633.29
C	Pesticides Tech	city o	Cilioi-Aikaii	7300	21133.29	20033.29
21	Carbamate group	5(b)	144171-61-9	43.3	66.7	110
	of Agrochemicals	3(5)	144171 01 3	40.0	00.7	110
	(Indoxacarb Tech,					
	Propoxur etc.)					
22	Diuron		330-54-1	220	200	420
23	Trichlo Carbon		79-01-6	8.3	0	8.3
24	Cartap HCI		15263-53-3	50	0	50
25	Carbendazim		10605-21-7	20.9	180.1	201
26	Phenoxy		94-75-7	2170	2750	5670
	Herbicides (e.g.					
	2,4-D & related					
	products)					
27	4-chloro-2-methyl		94-74-6		750	
	phenoxy- acetic					
	acid (MCPA)		100001 11 0		25.24	405
28	Pyridine based		138261-41-3	29.16	95.84	125
	insecticides & Herbicides					
	chemical e.g.					
	Imidacloprid					
29	Triazole based		60207-90-1	1.67	100.33	102
	Fungicide		00207 00 1	1.01	100.00	.02
30	Pyrethroids		91465-08-6	10	0	10
31	Sulphonyl urea		57-13-6	35.25	34.75	70
32	Glyphosate		1071-83-6	65	2935	3000
33	Isoprothiolane		50512-35-1	18.3	81.7	100
34	Fipronil		120068-37-	5	25	30
			03			
35	Formulations			200	2000	2200
36	Buprofezin		69327-76-0	4	0	4
37	Imazethapyr		81335-77-5	1.83	0	1.83
38	Kresoxim Methyl		143390-89-0	2.08	0	2.08
39	Fenoxaprop		71283-80-2	0.83	0	0.83
40	Cyhalofop		122008-85-9	0.83	0	0.83
41	Mesotrione		104206-82-8	0	300	300

	1	1	, , , , , , , , , , , , , , , , , , , ,			
42	Sulcotrione		99105-77-8	0	300	300
43	Glycin		56-40-6	0	1000	1000
44	Pyrazosulfurone		93697-74-6	0.5	29.5	30
45	BisPyribac Sodium		125401-92-5	0.83	29.17	30
46	Azoxystrobin		603-524-3	2.08	147.92	150
47	Quizalofop		100646-51-3	1.25	48.75	50
48	Thiamethoxam		153719-23-	10	90	100
			4			
49	Metribuzin		21087-64-9	10	50	60
50	Diafenthiuron		80060-09-9	4.17	25.83	30
51	Chlorantraniliprole		500008-45-7	0	70	70
52	5-Chloro 1-		42348-86-7	0	60	60
	Indanone					
	Total Production Ca	pacity	of Pesticides	2915.28	11370.59	14285.87
D	Bulk Drug and					
	Pharmaceuticals					
53	Mebendazole	5(f)	31431-39-7	2	0	2
54	Tolbutamide		64-77-7	2.5	0	2.5
55	Quiniodochlor		130-26-7	15	0	15
D1	Bulk Drugs &					
	Intermediates					
56	Dapsone-API	5(f)	80-08-0	9.6	65	194.6
57	Valacyclovir HCI		124832-27-5			
58	Celecoxib		169690-42-5			
59	Desvenlafixine		93413-62-8			
60	Mirabegron		223673-61-8			
61	Vildagliptin		1133208-42-			
			0			
62	Venlafaxine		99300-78-4			
	Hydrochloride					
63	5-Hydroxy methyl		38585-74-9		20	
	thiazole (5-HMT)					
64	Thiophene-2-		98-03-3		90	
	carboxaldehyde (2-					
	TC)					
65	1-Chloroacetyl-2-		207557-35-		10	
	carbonitrile		5			
	pyrrolidine (CACP)				_	_
66	Diclofenac sodium		15307-79-6	2.5	0	2.5
	/ potassium		(Na)		_	
67	Atenolol		29122-68-7	1.7	0	1.7
68	Furosemide		54-31-9	1.3	0	1.3
69	Trimethoprim		738-70-5	0.9	0	0.9
70	Para hydroxy		99-93-4	1.7	0	1.7
	acetophenone		100 000		_	
71	Para hydroxy		103-90-2	3	0	3
	phenyl acetamide					

72	Acyclovir		59277-89-3	5.2	0	5.2
73	Bethanechol		590-63-6	5.2	0	5.2
D2	Pharma		000 00 0	300		2094
DZ	Intermediates &			300		2034
	Chemicals					
74	4,4 Diamino		80-08-0		250	
14	,		80-08-0		250	
75	diphenyl sulphone 4.4 Dichloro		00.07.0		4000	
75	,		80-07-9		1000	
70	diphenyl sulphone		500.04.4		4.4	
76	3,3 Diamino		599-61-1		44	
	diphenyl sulphone		407.00.0			_
77	DHDPS & Other		127-63-9		500	
	sulfones					
Tota	al Production Capacit	_	_	350.6	1979	2329.6
	Ι	Phai	maceuticals			
E	Resins					
78	Epoxy Resin	5(f)	25085-99-8	2600	15000	17600
79	Vinyl Ester Resins		100-42-5	37.5	0	37.5
80	Ketone			20.8	0	20.8
	Formaldehyde					
	Resins &					
	Sulphonamide,					
	Formaldehyde					
	Resins					
81	UF/MF/PF/Di		461-58-5	270.9	0	270.9
	Cyandiamide					
	Resins					
82	Polyamide resins		63428-84-2	161.7	0	161.7
			68082-29-1			
83	Polygrip TPU		9009-54-5	41.67	300	341.67
	based					
84	Polygrip rubber		9003-35-4	300	1700	2000
	based					
To	tal Production Capac	ity of		3432.57	17000	20432.57
	•	esins				
F	Other Chemicals					
85	Anthraquinone,	5(f)	92-50-2	740	0	740
	Naphthalene,	` '				
	Benzene					
	Intermediates.					
	(Including Beta –					
	Naphthol & BON					
	Acid)					
86	Resorcinol	5(f)	108-46-3	460	600	1060
	(Meta hydroxy	٠(٠)		.00		
	phenol)					
87	Carbamite	5(b)	85-98-3	30	0	30
	Jaibaillio	J(D)	55 55 5			

88	Chlorzoxazone & other related products	5(f)	95-25-0	5	0	5
89	4 Ethyl 2,3 –	5(f)	59703-00-3	3.3	0	3.3
	Diorcopiperazino carbonyl Chloride					
90	Imino Dibenzyl 5	5(f)	33948-19-5	0.8	0	0.8
	carbonyl Chloride	O (I)	00040 10 0	0.0	Ŭ	0.0
91	Formaldehyde and base products	5(f)	50-00-0	3200	12000	15200
92	Sulfuric Acid/Oleum/ Chlorosulphonic Acid & Salts	-	7664-93-9	11550	0	11550
93	Sulpha Drug Intermediate	5(f)	119018-29-0	193.8	0	193.8
94	Acetyl Sulphanilyl Chloride and its derivatives	5(f)	121-60-8	1500	0	1500
95	Acetanilide	5(f)	103-84-4	500	0	500
96	Sulpha Methyl Phenazole Sodium	5(f)	60-80-0	1.1	0	1.1
97	Pyrazole Base	5(f)	288-13-1	10.5	0	10.5
98	Sulphanilic acid	5(f)	121-57-3	25	0	25
99	Bis Phenol A	5(f)	80-05-7	416.7	0	416.7
100	Hexamine	5(f)	100-97-0	150	0	150
101	Epoxy Intermediates	5(f)	28064-14-4	23.8	0	23.8
102	Hardners and auxiliaries	5(f)	19900-65-3	500	3500	4000
103	Hardener Intermediates	5(f)	19900-65-3	700	0	700
104	Bisphenol S & Intermediate Chemicals	5(f)	80-09-1	16.6	0	16.6
105	Sodium Thio sulphate (Dry basis)		7772-98-7	900	1600	2500
106	Sodium Thio sulphate (Wet basis)		10102-17-7	1900	3400	5300
107	Phosgene	5(f)	75-44-5	416.667	416.16	832.827
108	HX-13059	5(f)	212201-70-2	5	0	5
109	Alkyl ketene dimer	5(f)	144245-85-2	0	500	500
110	Anisole	5(f)	100-66-3	166	140	306
111	PF Resin	5(f)	9003-35-4.	0	200	200

112	CMC (Carboxy methyl cellulose)	5(f)	9004-32-4	0	2000	2000
113	HMMM (Hexa Methoxy Methyl Melamine)	5(f)	3089-11-0	0	40	40
114	m-Amino phenol	5(f)	591-27-5	0	250	250
115	Mono chloro	5(f)	108-90-7	0	2500	2500
440	benzene	E (£)	70.00.0	0	000	000
116	Propionyl chloride	5(f)	79-03-8	0	200	200
117	Resorcinol derivatives	5(f)	108-46-3	0	100	100
118	RF Resin (Resoform P- 18,19,20)	5(f)	65876-95-1 135020-80-3	85	320	405
119	Trichloro acetyl chloride	5(f)	76-02-8	0	200	200
120	Thio glycolic acid	5(f)	68-11-1	0	200	200
121	Thionyl chloride		9/7/7719	0	1000	1000
122	1,3	5(f)	504-02-9	80	40	120
	Cyclohexanedione					
F1	Agro, Pharma inter				Esters, etc.	
123	Trans-4-MCHI	5(f)	32175-00-1	315	0.0	
124	p-Anisyl		7693-41-6			
	chloroformate					
125	Di-Tert-Butyl		24424-99-5			
	Dicarbonate (Boc. anhydride)					
126	N, N-Disuccinimidyl Carbonate		74124-79-1			
F1.1	Chloroformate					-
127	1-Chloro ethyl chloroformate (1-CECF)		50893-53-3	100	800	2230
128	4-Nitrophenyl chloroformate (4-NPCF)		7693-46-1			
129	n-Pentyl chloroformate (n- PCF)		638-41-5			
130	Isobutyl chloroformate (IBCF)		543-27-1			
131	2 Ethyl Hexyl Cholroformate (2- EHCF)		24468-13-1			

132	Phenyl	1885-14-9		
102	Chloroformate	1000 110		
	(PCF)			
133	Benzyl	501-53-1		
133	Chloroformate	301-33-1		
404	(BCF)	70.00.4		
134	Methyl	79-22-1		
	chloroformate			
405	(MCF)	2222.54.2		
135	n-Hexyl	6092-54-2		
	chloroformate (n-			
	HCF)			
F1.2	Carbonate			
136	Di-tert-butyl	24424-99-5	100	
	dicarbonate			
	(DIBOC)			
137	Bis (4-Nitrophenyl)	5070-13-3	10	
	Carbonate (Bis-			
	NPC)			
138	Diphenyl carbonate	102-09-0	50	
	(DPC)			
139	Dimethyl carbonate	616-38-6	50	
	(DMC)			
140	1,1'-	530-62-1	20	
	Carbonyldiimidazol			
	e (CDI)			
F1.3	Isocyanates			
141	p-Toluene	4083-64-1	300	
	sulphonyl			
	isocyanate (PTSI)			
	and other			
	Isocyanates			
F1.4	Acid Chlorides			
142	N-	55112-42-0	50	
	Methylpiperazinyl	331.12 .2 0		
	carbamoyl chloride			
	Hydrochloride			
	(NPCCL)			
143	(Chlormethylene)di	3724-43-4	75	
170	methylammonium	0124 40 4	, , ,	
	chloride (VMR)/			
	Phosgeniminium			
	chloride and other			
4 4 4	Acid chlorides	70 44 7	60	
144	N,N-Dimethyl	79-44-7	60	
	carbamoyl chloride			
	(DMCCI)			

145	Hexaethyl		50-01-1		50	
	guanidinium					
	chloride (HEGCI)					
F1.5	Urea					
146	Tetrabutyl Urea		4559-86-8		75	
	(TBU)					
147	Tetramethyl Urea		632-22-4		75	
	(TMU)					
F1.6	Carbodiimide					
148	N,N'-Dicyclo		538-75-0		100	
	hexylcarbodiimide					
4.40	(DCC)				0001	2004
149	Sodium sulphite		7757-83-7		3261	3261
150	30% HCI		7732-18-5		4622.5	4622.5
151	Sodium		7681-52-9		1853.7	1853.7
	hypochlorite					
152	solution (10%) Potassium chloride		7447-40-7		740	740
153	Sodium Chloride		7647-14-5		2418.5	2418.5
	Production Capacity	, of thi		22094.27	40516.86	62611.127
	ding Sodium Thio su			22034.21	40310.00	02011.127
	Production Capacity		` '	23094.27	42316.86	65411.127
	ding Sodium Thio su					
-	T					
G	Flavors &		50-28-2			
G	Flavors & Fragrances		50-28-2			
G G1		5(f)	50-28-2			
G1	Fragrances Allyl Esters such as	5(f)				
G1	Fragrances Allyl Esters such as Allyl Caproate	5(f)	123-68-2	0	250	250
G1	Fragrances Allyl Esters such as Allyl Caproate Allyl cyclohexyl	5(f)		0	250 250	250 250
G1 154 155	Fragrances Allyl Esters such as Allyl Caproate Allyl cyclohexyl propionate	5(f)	123-68-2 2705-87-5	0	250	250
G1 154 155	Fragrances Allyl Esters such as Allyl Caproate Allyl cyclohexyl propionate Allyl Heptanoate	5(f)	123-68-2 2705-87-5 142-19-8	0	250 150	250 150
G1 154 155 156 157	Fragrances Allyl Esters such as Allyl Caproate Allyl cyclohexyl propionate Allyl Heptanoate Cyclogalbanate		123-68-2 2705-87-5	0	250	250
G1 154 155	Fragrances Allyl Esters such as Allyl Caproate Allyl cyclohexyl propionate Allyl Heptanoate Cyclogalbanate Styrene Based	5(f)	123-68-2 2705-87-5 142-19-8	0	250 150	250 150
G1 154 155 156 157	Fragrances Allyl Esters such as Allyl Caproate Allyl Cyclohexyl propionate Allyl Heptanoate Cyclogalbanate Styrene Based derivatives such		123-68-2 2705-87-5 142-19-8	0	250 150	250 150
154 155 156 157 G2	Fragrances Allyl Esters such as Allyl Caproate Allyl cyclohexyl propionate Allyl Heptanoate Cyclogalbanate Styrene Based derivatives such as		123-68-2 2705-87-5 142-19-8 68901-15-5	0 0 0	250 150 25	250 150 25
G1 154 155 156 157	Fragrances Allyl Esters such as Allyl Caproate Allyl Cyclohexyl propionate Allyl Heptanoate Cyclogalbanate Styrene Based derivatives such as Phenyl Ethyl		123-68-2 2705-87-5 142-19-8	0	250 150	250 150
154 155 156 157 G2	Fragrances Allyl Esters such as Allyl Caproate Allyl cyclohexyl propionate Allyl Heptanoate Cyclogalbanate Styrene Based derivatives such as Phenyl Ethyl Alcohol (PEA)		123-68-2 2705-87-5 142-19-8 68901-15-5	0 0 0	250 150 25 850	250 150 25 850
G1 154 155 156 157 G2 158	Fragrances Allyl Esters such as Allyl Caproate Allyl Cyclohexyl propionate Allyl Heptanoate Cyclogalbanate Styrene Based derivatives such as Phenyl Ethyl Alcohol (PEA) PE acetate		123-68-2 2705-87-5 142-19-8 68901-15-5	0 0 0	250 150 25 850 250	250 150 25 850 250
154 155 156 157 G2	Fragrances Allyl Esters such as Allyl Caproate Allyl cyclohexyl propionate Allyl Heptanoate Cyclogalbanate Styrene Based derivatives such as Phenyl Ethyl Alcohol (PEA) PE acetate PEME (Phenyl		123-68-2 2705-87-5 142-19-8 68901-15-5	0 0 0	250 150 25 850	250 150 25 850
G1 154 155 156 157 G2 158	Fragrances Allyl Esters such as Allyl Caproate Allyl Cyclohexyl propionate Allyl Heptanoate Cyclogalbanate Styrene Based derivatives such as Phenyl Ethyl Alcohol (PEA) PE acetate		123-68-2 2705-87-5 142-19-8 68901-15-5	0 0 0	250 150 25 850 250	250 150 25 850 250
154 155 156 157 G2 158	Fragrances Allyl Esters such as Allyl Caproate Allyl cyclohexyl propionate Allyl Heptanoate Cyclogalbanate Styrene Based derivatives such as Phenyl Ethyl Alcohol (PEA) PE acetate PEME (Phenyl ethyl ethyl methyl ether)		123-68-2 2705-87-5 142-19-8 68901-15-5 60-12-8 103-45-7 3558-60-9	0 0 0	250 150 25 850 250 200	250 150 25 850 250 200
154 155 156 157 G2 158	Fragrances Allyl Esters such as Allyl Caproate Allyl cyclohexyl propionate Allyl Heptanoate Cyclogalbanate Styrene Based derivatives such as Phenyl Ethyl Alcohol (PEA) PE acetate PEME (Phenyl ethyl methyl ether) Pommerol (Phenyl		123-68-2 2705-87-5 142-19-8 68901-15-5 60-12-8 103-45-7 3558-60-9	0 0 0	250 150 25 850 250 200	250 150 25 850 250 200
154 155 156 157 G2 158 159 160	Fragrances Allyl Esters such as Allyl Caproate Allyl cyclohexyl propionate Allyl Heptanoate Cyclogalbanate Styrene Based derivatives such as Phenyl Ethyl Alcohol (PEA) PE acetate PEME (Phenyl ethyl methyl ether) Pommerol (Phenyl ethyl isoamyl ether)		123-68-2 2705-87-5 142-19-8 68901-15-5 60-12-8 103-45-7 3558-60-9 56011-02-0	0 0 0 0	250 150 25 850 250 200 100	250 150 25 850 250 200
154 155 156 157 G2 158 159 160 161	Fragrances Allyl Esters such as Allyl Caproate Allyl Cyclohexyl propionate Allyl Heptanoate Cyclogalbanate Styrene Based derivatives such as Phenyl Ethyl Alcohol (PEA) PE acetate PEME (Phenyl ethyl methyl ether) Pommerol (Phenyl ethyl isoamyl ether) Styrene oxide		123-68-2 2705-87-5 142-19-8 68901-15-5 60-12-8 103-45-7 3558-60-9 56011-02-0 96-09-3	0 0 0 0 0 0	250 150 25 850 250 200 100 500	250 150 25 850 250 200 100 500

164	Phenyl		101-48-4	0	250	250
	acetaldehyde					
	dimethyl Acetal					
165	Styrallyl acetate		93-92-5	0	500	500
G3	Coumarin	5(f)				
	derivatives such					
	as					
166	Coumarin		91-64-5	0	500	500
167	Dihydrocoumarin		119-84-6	0	100	100
G4	Sunscreen	5(f)				
	products such as					
168	Avobenzone		70356-09-1	83.3	0	83.3
169	Octocrylene		6197-30-4	83.3	0	83.3
170	Octyl Methoxy		5466-77-3	200	0	200
	Cinnamate					
G5	Others such as					
171	Peonile	5(f)	10461-98-0	0	50	50
172	Mugetanol	5(f)	68901-15-5	0	25	25
173	Salicylaldehyde	5(f)	90-02-8	0	500	500
174	Evernyl	5(f)	4707-47-5	0	200	200
175	Heliotropin	5(f)	120-57-0	0	250	250
176	Helional	5(f)	1205-17-0	0	500	500
177	1,2 Hexane Diol	5(f)	6920-22-5	0	200	200
178	Indoflor	5(f)	18096-62-3	0	50	50
179	Floral	5(f)	63500-71-0	0	50	50
180	Cyclohexyl	5(f)	25485-88-5	0	100	100
	Salicylate					
181	Methyl Anthranilate	5(f)	134-20-3	0	300	300
182	Dihydroanethole	5(f)	104-45-0	0	50	50
183	Benzylideneaceton	5(f)	122-57-6	0	100	100
	е					
184	Hexenyl -3 -Cis-	5(f)	31508-11-8	0	25	25
	Benzoate					
185	Hexenyl	5(f)	61444-38-0	0	25	25
	Hexenoate, Cis-3					
186	Citronellyl	5(f)	7492-67-3	0	25	25
	Oxyacetaldehyde					
187	Karmaflor	5(f)	873888-83-4	0	25	25
188	Anethole	5(f)	4180-23-8	166.7	0	166.7
189	Raspberry Ketone	5(f)	5471-51-2	100	0	100
190	P-Aninyl Propanal	5(f)	5462-06-6	100	0	100
	Total Production Ca	pacity	of this group	733.3	6500	7233.3
Н	Co Products					
191	Phenol		108-95-2	0	3	3
192	30% HCI (By		7732-18-5	417	0	417
	product)					

Total Production Capacity of this group	417	3	420
Total Production including Sodium Thio sulphate (dry basis)	39327.15	107788.74	147115.887
Total Production Including Sodium Thio sulphate (wet basis)	40327.15	109588.74	149915.887

PP reported that the existing land area is 1126078.27 m². No additional land will be required for proposed expansion. Expansion will be done within the existing unit. Industry has already developed greenbelt in an area of 36.32% i.e. 409030 m² out of total area of the project. The estimated project cost is Rs. 1789.03 Crore excluding existing investment of Rs. 956.2 Crore. Total capital cost earmarked towards environmental pollution control measures is Rs. 451.81 Crore and the Recurring cost (operation and maintenance) will be about Rs. 138.43 Crore per annum. Total additional employment will be of 100 persons as direct and 200 persons indirect after expansion. Industry proposes to allocate Rs. 8.472 Crore towards Corporate Environmental Responsibility.

There are no National Parks, Wildlife Sanctuaries, Tiger/Elephant Reserves, Wildlife Corridors etc. within 10 km distance of the project site. Parnera Reserve Forest is at 0.62 km from project site. Par River is at a distance of 0.25 km in SE direction from project site. Pond of Hariya Village is at a distance of 0.07 km in W direction.

Ambient air quality monitoring was carried out at 8 locations during October, 2018 to December, 2018 and the baseline data indicates the ranges of concentration as: PM₁₀ (51.7 - 82.3 $\mu g/m^3$), PM_{2.5} (20.7 - 36.1 $\mu g/m^3$), SO₂ (8.5 - 9.2 $\mu g/m^3$), NOx (16.9 - 17.8 $\mu g/m^3$). AAQ modeling study for point source emission indicated that the maximum incremental GLCs after the proposed project would be 3.19 $\mu g/m^3$, 0.46 $\mu g/m^3$, 0.10 $\mu g/m^3$, 3.89 $\mu g/m^3$, 0.04 $\mu g/m^3$, 0.81 $\mu g/m^3$, 0.44 $\mu g/m^3$ and 0.194 $\mu g/m^3$ with respect to PM₁₀, SO₂, NOx, Ammonia, Cl₂, H₂S, HCl and Phosgene. The resultant concentrations are within the national ambient air quality standards (NAAQS).

Total water requirement is 42236 m³/day of which fresh water requirement of 18050 m³/day will be met from Surface Water Source – Par River. 9335 m³/day will be recycled/treated water, 11778 m³/day will be Treated STP water from Valsad/Pardi Nagarpalika, 3073 m³/day will be water from Rain water harvesting.

Total effluent generation will be 34866 KLD including domestic effluent (323 KLD). 443 KLD high TDS effluent will be taken to MEE, 99 KLD of high COD w/w will be incinerated in incinerator. 27143 KLD of low COD, low TDS effluent; out of which 19379 KLD will be treated in ETP and 7764 KLD will further passed through RO after treatment followed by MEE. 4480 KLD utility w/w generation; out of which 2500 KLD taken to RO followed by MEE and 1980 KLD w/w is direct disposal. So total 22513 KLD of effluent [323 Domestic sewage, 433 KLD MEE Condensate, 19379 KLD process effluent, 2378 Washing effluent] will be treated in ETP and propose to discharge 24493 KLD. The operations in the unit shall be managed further better and the total effluent shall be restricted to 20514 KLD for discharge to Estuary Zone of Par River through 4 km long pipeline from Industry.

Power connected load is 56000 kVA, which will be sourced from Dakshin Gujarat Vij Company Limited (DGVCL) and Captive Power Plant. No additional requirement of power. Unit has installed 2 D.G. Sets of 1010 kVA and 1500 kVA capacity for the power backup. Stack height of 11 m is provided as per CPCB norms to the proposed DG Set.

At present, flue gas emission is from stack attached to Coal/Lignite fired Boilers, PNG operated Hot Oil Unit, Oil Burner and Thermic Fluid Heater (6 L Kcal/hr). Electrostatic Precipitators with stack of different heights are installed for controlling the particulate emissions within the statutory limit of 150 mg/Nm³ for the existing boilers. There will be no addition of any flue gas stack in proposed expansion. Details of flue gas stacks are given below.

Table 1: Flue Gas stacks

Sr.	Stack attached	Fuel Type	Stack	APC	Probable					
No.	to		Height (m)	measures	emission					
Flue	Flue Gas Stacks- Existing									
>	> East Site									
1	FBC Boiler E1	Coal /Lignite	56	Electrostatic	SPM<100					
	(34 TPH)	(8.5 T/hr.)		precipitator	mg/Nm³					
2	FBC boiler E2	Coal /Lignite	56	Electrostatic	SO ₂ <600					
	(34 TPH)	(8.5 T/hr.)		precipitator	mg/Nm ³					
3	FBC boiler E3	Coal /Lignite	80.3	Electrostatic	NOx<600					
	(50 TPH)	(12.5 T/hr.)		precipitator	mg/Nm ³					
4	Hot Oil Unit	PNG	32.5	Adequate stack	SPM<150					
	(Resorcinol Plant	(27 sm ³ /hr)		height	mg/Nm³					
	(17 L Kcal/Hr)				SO ₂ <100 ppm					
5	DG set (Standby)	Diesel	10	Adequate stack	NO _X <50 ppm					
	(1010 kVA)			height						
>	West Site									
6	FBC Boiler W1	Coal /Lignite	70	Electrostatic	SPM<100					
	(45 TPH)	(11.3 T/hr.)		precipitator	mg/Nm ³					
					SO ₂ <600					
					mg/Nm ³					
					NOx<600					
					mg/Nm ³					
7	Hot Oil Plant	PNG	19	Adequate stack						
	(Shed B)	(27 sm ³ /hr)		height	mg/Nm ³					
	(10 L Kcal/Hr)				SO ₂ <100 ppm					
					NOx<50 ppm					
8	Oil burner	PNG	17	Adequate stack						
	(Shed B)	(27 sm ³ /hr)		height	mg/Nm ³					
	(Stand By)				SO ₂ <100 ppm					
	(10 L Kcal/Hr)				NOx<50 ppm					
9	Boilers	Coal/Lignite	106	Electrostatic	SPM<50					
	(2 Nos., W ₂ & W ₃)	(12.5 T/hr.)		precipitator	mg/Nm ³					
	(50 TPH each)				SO ₂ <600					
					mg/Nm³					

Sr.	Stack attached	Fuel Type	Stack	APC	Probable					
No.	to		Height (m)	measures	emission					
					NOx<300					
					mg/Nm³					
					Hg<0.03					
					mg/Nm ³					
10	DG set (Standby)	Diesel	11	Adequate stack	SPM<150					
	(1500 kVA)			height	mg/Nm³					
					SO ₂ <100 ppm					
					NO _X <50 ppm					
>	North Site									
11	Thermic fluid	PNG	12	Adequate stack	SPM<150					
	heater of	(20 sm ³ /hr)		height	mg/Nm³					
	DCO/DAP Plant				SO ₂ <100 ppm					
	(6 L Kcal/Hr) NOx<50 ppm									
Flue	Gas Stacks- Propo	sed								
Addit	tional flue gas stac	k is not requir	ed for propo	sed expansion						

PP reported that at present, process emission generation is from 57 nos. of stacks/vents. There will be addition of 32 process stacks in the proposed expansion project. Air pollution control measures like bag filter, cyclone, water, alkali, acid, caustic scrubbers will be provided as separate or in the combination. Details of process gas stacks are given below.

Table 2: Process Gas stacks

Sr.	Stack attached to	Stack	APC measures	Permissible limit
No.		Heig		
		ht (m)		
Proce	ss Gas Stack-Existing			
Atul E	ast Site			
1.	New Phosgene plant-	15	Alkali & water	PM-150 mg/Nm ³
	Furnace		scrubber	
2.	New Phosgene plant-	15	Alkali & water	Phosgene-0.1 ppm
	Reactor		scrubber	
Caust	ic Chlorine Plant			
3.	Dechlorination Plant	35	Alkali Scrubber	Cl ₂ -9.0 mg/Nm ³
	(Hypo unit)			HCI-20.0 mg/Nm ³
4.	Common stack of HCl Sigri	25	Alkali Scrubber	Cl ₂ -9.0 mg/Nm ³
	unit 1&2			HCI-20.0 mg/Nm ³
Sulfui	ic Acid (East Site)			
5.	Sulfuric Acid plant	30	Water scrubber	SO ₂ -2.0 kg/T
			with DCDA	Acid Mist-50.0
			system	mg/Nm ³
6.	Chloro Sulfonic Acid plant	11	Caustic and water	Cl ₂ -9.0 mg/Nm ³
	reactor		scrubber	HCI-20.0 mg/Nm ³
FCB p	plant			
7.	Foul Gas Scrubber	26.5	Caustic scrubber	SO ₂ -40.0 mg/Nm ³
				NOx-25.0 mg/Nm ³

Incine	rator			
8.	Incinerator	40	Alkali and water	PM-150 mg/Nm ³
			scrubber	SO ₂ -40 mg/Nm ³
				NOx-25 mg/Nm ³
NI Pla	nt		l	
9.	Foul Gas Scrubber	26.5	Caustic scrubber	SO ₂ -40 mg/Nm ³
				NOx-25 mg/Nm ³
NBD F	Plant		l	
10.	Spray Dryer	21	Water scrubber	PM-150 mg/Nm ³
11.	Scrubber S-902	25	Caustic scrubber	Phosgene-0.1 ppm
12.	Scrubber S-801/802	25	Caustic scrubber	HCI-20 mg/Nm ³
				NOx-25 mg/Nm ³
Resor	cinol Plant			
13.	Spray Dryer (Resorcinol	20	Water scrubber	PM-150 mg/Nm ³
	plant)			
14.	Scrubber Vent	15	Caustic scrubber	SO ₂ -40 mg/Nm ³
	(Resorcinol plant)			
	& related Products			
15.	Common Scrubber; 2,4D	5	Caustic scrubber	Cl ₂ -9 mg/Nm ³
	Plant			HCI-20 mg/Nm ³
				Phenol
16.	Dryer-1	26.5	Bag filter, water	PM with Pesticide
			scrubber	compound-20
				mg/Nm ³
17.	Dryer-2	26.5	Cyclone, bag	PM with Pesticide
			filter, caustic	compound-20
			scrubber	mg/Nm ³
18.	Dryer-3	26.5	Cyclone, bag	PM with Pesticide
			filter, caustic	compound-20
			scrubber	mg/Nm ³
19.	Dryer-4	26.5	Cyclone, bag	PM with Pesticide
			filter, caustic	compound-20
		00.7	scrubber	mg/Nm ³
20.	Dryer-5	26.5	Cyclone, bag	PM with Pesticide
			filter, caustic	compound-20
MED C:	Disast		scrubber	mg/Nm ³
MPSL		-	0	DI O . t
21.	Phosgene Scrubber at MPSL	7	Caustic scrubber	Phosgene-0.1 ppm
22.	Central Scrubber at MPSL	7	Caustic scrubber	Phosgene-0.1 ppm
NICO		4.0	14/	A (
23.	Central scrubber at Nico	12	Water scrubber	Acetonitrile, IPA
	Plant			
Ester		4.0	14/	F
24.	Scrubber at Ester plant for	12	Water scrubber	Formaldehyde-10
	Glyphosate			mg/Nm ³
Other				
25.	MCPA	19	Alkali & water	Cl ₂ -9 mg/Nm ³

			scrubber	UCI 20 mg/Nm ³
			Scrubbei	HCI-20 mg/Nm ³ SO ₂ -40 mg/Nm ³
26.	Fipronil	19	Alkali & water	SO ₂ -40 mg/Nm ³
20.		13	scrubber	HCI-20 mg/Nm ³
27.	Imidacloprid	20	Water followed by	NH ₃ -175 mg/Nm ³
21.	midaciopha	20	alkali scrubber	TVI 13-17 5 HIg/TVIII
28.	Pyrathroids	19	Alkali & water	SO ₂ -40 mg/Nm ³
20.	, yrannolas	.0	scrubber	HCI-20 mg/Nm ³
29.	Stack at Amine Plant	5	Caustic scrubber	NH ₃ -175 mg/Nm ³
30.	Central Scrubber MCPA	19	Caustic scrubber	HCI-20 mg/Nm ³
	Plant	_		.
31.	MPP plant scrubber	21	Water & Alkali	HCI-20 mg/Nm ³
			Scrubber	Phosgene-0.1 ppm
32.	Flavors & Fragrances Plant	21	Water scrubber	HCI-20 mg/Nm ³
			Followed by	
			caustic scrubber	
33.	Sulfur Black Plant	19	Alkali & water	H ₂ S
			scrubber	NH ₃ -175 mg/Nm ³
34.	Sulfur Dyes plant	19	Alkali & water	H ₂ S
			scrubber	NH ₃ -175 mg/Nm ³
	Vest Site			01.0.41.2
35.	Shed A05/03/44	19	Caustic scrubber	Cl ₂ -9 mg/Nm ³
20	Chad D2/42/24 Decetion	40	Cavatia assubbas	HCI-20 mg/Nm ³
36.	Shed B2/12/24 Reaction	19	Caustic scrubber	Cl ₂ -9 mg/Nm ³ HCl-20 mg/Nm ³
37.	Vessel Shed B18/02/24 Fan	19	Caustic scrubber	
37.	Siled B16/02/24 Faii	19	Causiic scrubbei	SO ₂ -40 mg/Nm ³ Cl ₂ -9 mg/Nm ³
				HCI-20 mg/Nm ³
38.	Shed C5/20/15 Chlorinator	19	Alkali & water	Cl ₂ -9 mg/Nm ³
00.	Siled Go/20/10 Gillorillator	13	scrubber	HCI-20 mg/Nm ³
39.	Shed D Niro Spray dryer No.	19	Water scrubber	PM-150 mg/Nm ³
	45			
40.	Shed D Niro Spray dryer No.	19	Water scrubber	PM-150 mg/Nm ³
	50			· ·
41.	Shed E 7/12/49 Spray Dryer	19	Water scrubber	PM-150 mg/Nm ³
42.	Shed F 6/1/15 Reaction	19	Alkali & water	Cl ₂ -9 mg/Nm ³
	Vessel		scrubber	HCI-20 mg/Nm ³
43.	Shed G 10/8/1 (receiver)	19	Alkali & water	Cl ₂ -9 mg/Nm ³
			scrubber	HCI-20 mg/Nm ³
44.	Shed H 11/6/17 Chlorinator	19	Alkali & water	Cl ₂ -9 mg/Nm ³
			scrubber	HCI-20 mg/Nm ³
45.	Shed K K-13/3/4 Final of	19	Alkali & water	SO ₂ -2.0 kg/T
	Sulfuric acid plant		scrubber	Acid Mist-50.0
40	Oh ad 145/00/05	40	Alleal: 0	mg/Nm ³
46.	Shed J15/09/25	19	Alkali & water	HBr
17	Shod 112/01/12	10	scrubber	SO ₂ -40 mg/Nm ³
47.	Shed J12/01/42	19	Alkali & water	SO ₂ -40 mg/Nm ³

48. Shed J12/03/36 19 Caustic scrubber SO ₂ -4 HCl-20 49. Shed N Scrubber Fan 19 Caustic scrubber Cl ₂ -9 r N20/08/24 50. Shed N Scrubber Fan 19 Alkali & water SO ₂ -4 N20/02/41 Atul North Site	mg/Nm ³ 0 mg/Nm ³ 0 mg/Nm ³ 0 mg/Nm ³ mg/Nm ³ 0 mg/Nm ³
49. Shed N Scrubber Fan 19 Caustic scrubber Cl ₂ -9 r HCl-20 50. Shed N Scrubber Fan 19 Alkali & water SO ₂ -4 scrubber Atul North Site	0 mg/Nm ³ mg/Nm ³
N20/08/24 50. Shed N Scrubber Fan 19 Alkali & water SO ₂ -4 N20/02/41 Atul North Site	
N20/02/41 scrubber Atul North Site	•
	0 mg/Nm ³
51 NEDH Plant Catalytic 24.5 Dog filter DM 45	
Incinerator SO ₂ -4 NOx-2	50 mg/Nm ³ .0 mg/Nm ³ 25 mg/Nm ³ aldehyde- /Nm ³
52. PHIN Plant 15.5 Water scrubber followed by two stage caustic scrubber with Ammonia/ steam injection at stack	gene-0.1 ppm
53. DDS (Pharma Plant) 20 Water followed by NH ₃ -1 acid scrubber	75 mg/Nm ³
54. SPIC II Plant (DCDPS) 30 Alkali & water SO ₃ scrubber	-
55. SPIC I Plant 30 Water scrubber followed by two stage caustic scrubber with Ammonia/steam injection at stack	75 mg/Nm ³
	75 mg/Nm ³
2 scrubber SO ₃	-
followed by two stage caustic scrubber with Ammonia/steam injection at stack	0 mg/Nm ³ gene-0.1 ppm
Process Gas Stack-Proposed	
and Caustic NH ₃ -1 scrubber	15 mg/Nm ³ 175 mg/Nm ³
acgrochemical, Diuron and Carbendazim followed by Caustic scrubber	gene-0.1 ppm 0 mg/Nm³
3 Common scrubber: 25 Caustic scrubber HCI-20	0 mg/Nm ³

	Mesotrione, Sucrotrione,			
	Triazole based fungicide			
4	Herbicides (2-4 D & related products)-SFD	25	SFD	PM-150 mg/Nm ³
5	Herbicides (2-4 D & related	25	Caustic scrubber	Cl ₂ -9 mg/Nm ³
	products)-Common Caustic			HCI-20 mg/Nm ³
	scrubber			
6	MCPA-Chlorination scrubber	25	Caustic scrubber	Cl ₂ -9 mg/Nm ³
				HCI-20 mg/Nm ³
7	MCPA-SFD	25	SFD	PM-150 mg/Nm ³
8	Glyphosate-Common	25	Caustic scrubber	HCI-20 mg/Nm ³
O	Caustic scrubber	20		Tior 20 mg/mm
9	Glyphosate-SFD	25	SFD	PM-150 mg/Nm ³
10		25	Water scrubber	NH ₃ -175 mg/Nm ³
10	Glycine	25		_
			followed by Caustic scrubber	HCI-20 mg/Nm ³
44	Diving a publication of Divinibation	25		Dhaaran 0.4 mm
11	Pyrazosulfurone, Bis Pyribac	25	Water scrubber	Phosgene-0.1 ppm
	sodium, Quizalafop,		followed by	HCI-20 mg/Nm ³
	Chlorantraniliprole: common		Caustic scrubber	SO ₂ -40 mg/Nm ³
10	scrubber	0-		00 40 (01 2
12	Metribuzine, Diafenthiurone:	25	Caustic scrubber	SO ₂ -40 mg/Nm ³
	Common scrubber			
13	Azozystrobin; Thiamthoxam-	25	Caustic scrubber	NOx-25 mg/Nm ³
	Common scrubber			
14	Alkyl ketene dimer	20	Water scrubber	HCI-20 mg/Nm ³
			followed by	SO ₂ -40 mg/Nm ³
			caustic scrubber	
15	PF Resin	20	Water scrubber	HCI-20 mg/Nm ³
			followed by	
			caustic scrubber	
16	Caustic- Chlorination	20	Water scrubber	HCI-20 mg/Nm ³
			followed by	Cl ₂ -9 mg/Nm ³
			caustic scrubber	
17	Caustic-Hypo unit	20	Water scrubber	HCI-20 mg/Nm ³
			followed by	Cl ₂ -9 mg/Nm ³
			caustic scrubber	
18	m-Amino phenol- Hot oil	20	Water scrubber	SO ₂ -40 mg/Nm ³
	generator		followed by	NO _x -25 mg/Nm ³
	3		caustic scrubber	3
19	m-Amino phenol-process	20	Water scrubber	SO ₂ -40 mg/Nm ³
			followed by	302 10 mg/14m
			caustic scrubber	
20	Mono chloro benzene	20	Water scrubber	HCI-20 mg/Nm ³
20	WOLLD DELIZELE		followed by	1101 20 mg/14m
			caustic scrubber	
21	Propionyl chloride	20		HCL20 ma/Nm3
∠ I	Propionyl chloride	20		HCI-20 mg/Nm ³
			followed by	SO ₂ -40 mg/Nm ³

			caustic scrubber	
22	Resorcinol-Hot oil generator	20	Water scrubber	SO ₂ -40 mg/Nm ³
			followed by	NO _x -25 mg/Nm ³
			caustic scrubber	
23	Resorcinol-Process	20	Water scrubber	SO ₂ -40 mg/Nm ³
			followed by	
			caustic scrubber	
24	Trichloro acetyl chloride	20	Water scrubber	HCI-20 mg/Nm ³
			followed by	SO ₂ -40 mg/Nm ³
			caustic scrubber	_
25	Thionyl chloride	20	Water scrubber	SO ₂ -40 mg/Nm ³
			followed by	
		_	caustic scrubber	
26	Ammonia system (at	6	Water Scrubber	NH ₃ -175 mg/Nm ³
	Sulfone)			
27	Scrubber Blower Discharge	20		Phosgene-0.1 ppm
	(at PHIN III)		followed by	
	0 11 51 5: 1		caustic scrubber	DI 0.4
28	Scrubber Blower Discharge	20	Water scrubber	Phosgene-0.1 ppm
	(at PHIN IV)		followed by	
00	Name Discours along	45	caustic scrubber	DM 450 /NI 3
29	New Phosgene plant-	15	Alkali and water	PIVI-150 mg/INm ³
00	Furnace	4.5	scrubber	Dhaana 0.4 aaaa
30	New Phosgene plant -	15	Alkali and water	Phosgene-0.1 ppm
24	Reactor	12	scrubber	LICL 20 m a /N m 3
31	Hardner Plant	12		HCI-20 mg/Nm ³
			followed by	
22	Engy plant	0	caustic scrubber	Taluana / FOLL
32	Epoxy plant	8	Caustic scrubber	Toluene / ECH

Details of Solid waste/Hazardous waste generation and its management.

There are around 83 types of hazardous waste will be generated after expansion. These wastes will be managed and disposed as per the Hazardous & Other Waste (Management and Trans-boundary Movement) Rules 2016 as amended till date. Details of hazardous wastes generation and their management are given below.

Sr.	Type of	Categor		Quantity		Method of D	isposal
No.	Waste	y as per HWM rules, 2016	Existin g	Propo sed	Total		
1.	Used oil	5.1	2	0.0	2.0	Collection,	Storage,
			KL/mont	KL/mo	KL/mont	Transportation,	sell to
			h	nth	h	registered refiner	s /recyclers
2.	Wastes/re	5.2/33.3	0.01	00	0.01	Collection,	Storage,
	sidues		MT/mon		MT/mon	Transportation,	Disposal by

	containing oil /contamina te cotton rags or other cleaning material		th		th	Incineration at own Incinerator
3.	Sludge & filters contaminat ed with oil	5.2	0.05 MT/mon th	00	0.05 MT/mon th	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator
4.	Membrane s	16.2	6 MT/mon th	45 MT/mo nth	51 MT/mon th	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co- processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
5.	Waste Resin	16.2	0.05 MT/mon th	00	0.05 MT/mon th	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co- processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
6.	Sulfurized Carbon	16.2	0.003 MT/mon th	00	0.003 MT/mon th	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co- processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
7.	Activated Carbon	16.2	0.0104 MT/mon th	00	0.0104 MT/mon th	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for coprocessing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL

8.	Brine	16.3	242.50	405	647.5	Collection, storage,
0.	purification	. 0.0	MT/mon	MT/mo	MT/mon	Transportation, disposal at
	sludge		th	nth	th	own TSDF OR disposal at
	Sidage			1101	(11	common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
9.	Sulphur	17.1	5.83	00	5.83	Collection, Storage,
	sludge		MT/mon		MT/mon	
			th		th	TSDF OR send to cement
						industry for co-processing
						OR disposal at common
						TSDF at SEPPL OR disposal
						at common TSDF at BEIL
10.	Hot Gas	17.1	0.0208	00	0.0208	Collection, Storage,
	filter Ash		MT/mon		MT/mon	Transportation, Disposal at
			th		th	own TSDF OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
11.	Bottom	17.1	0.5	00	0.5	Collection, Storage,
	Sludge		MT/mon		MT/mon	Transportation, Disposal at
	after		th		th	own TSDF OR send to
	recovery					cement industry for co-
	of Sulphur					processing OR disposal at
	Sludge					common TSDF at SEPPL OR
	orange					disposal at common TSDF at
						BEIL
12.	Waste	17.2	0.083	00	0.083	Collection, Storage,
	Catalyst		MT/mon		MT/mon	Transportation, Disposal at
	,		th		th	own TSDF OR send to
						cement industry for co-
						processing OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
13.	Spent	20.2	5	00	5	Collection, Storage,
.5.	Solvents	_0	KL/mont		KL/mont	, , ,
	30.70.1.0		h		h	Incineration at own
			''		''	Incinerator OR selling to
						actual user
14.	Various	20.3	10	00	10	Collection, Storage,
'-7.	type of	20.0	MT/mon		MT/mon	Transportation, Disposal by
	Residue		th		th	Incineration at own
	IVESIUUE		u i		u i	Incinerator OR co-processing
						at RSPL, Panoli OR co-
						, and the second
						processing at cement
						industry OR co- processing at

						SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
15.	OCBC/OC T distillation residue	20.3	154.042 MT/mon th	00	154.042 MT/mon th	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co- processing at cement industry OR co-processing at
						SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
16.	Waste residue Bulk Intermedia te (meta hydroxy phenol) (Tar)	20.3	15 MT/mon th	00	15 MT/mon th	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR selling to actual user OR co-processing at RSPL, Panoli OR co- processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
17.	Waste residue, (from Resorcinol Plant)	20.3	15 MT/mon th	00	15 MT/mon th	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR selling to actual user OR co-processing at RSPL, Panoli OR co- processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
18.	Distillation Residue (BI)	20.3	0	266.75 MT/mo nth	266.75 MT/mon th	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR selling to actual user OR co-processing at RSPL, Panoli OR co- processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at
		20.4	840	7004.7	7844.75	common facility at BEIL Collection, Storage,

20.	meta hydroxy phenol Plant) Sodium	20.4	th 550	MT/mo nth	th 550	own TSDF OR selling to actual user OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL Collection, Storage,
20.	Sulphite		MT/mon th	00	MT/mon th	Transportation, Disposal at own TSDF OR selling to actual user OR send to cement industry for co-processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
21.	Waste/Salt Lime Dust	35.3	5 MT/mon th	00	5 MT/mon th	Collection, Storage, Transportation, Disposal at own TSDF OR send to cement industry for co- processing OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL
22.	Waste fro m Urea Formaldeh yde Polymer product	23.1	0.25 MT/mon th	00	0.25 MT/mon th	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co- processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
23.	Sludge containing higher ami no compound	23.1	0.417 MT/mon th	00	0.417 MT/mon th	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co- processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
24.	Filter cake of Epoxy resins with resin	23.1	131.123 MT/mon th	277.5 MT/mo nth	408.623 MT/mon th	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing

	contaminat					at RSPL, Panoli OR co-
	ion					processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
						common facility at BEIL
25.	Aluminum	26.1	15.417	00	15.417	Collection, storage,
	Hydroxide		MT/mon		MT/mon	Transportation, disposal at
			th		th	own TSDF OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
26.	Iron	26.1	80	00	80	Collection, storage,
	sludge		MT/mon		MT/mon	Transportation, disposal at
			th		th	own TSDF OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
27.	Brass	26.1	0.667	00	0.667	Collection, Storage,
	residue		MT/mon		MT/mon	Transportation, Disposal at
			th		th	own TSDF OR send to
						cement industry for co-
						processing OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
28.	Still/Other	26.1	8.67	00	8.67	Collection, Storage,
	residue		MT/mon		MT/mon	Transportation, Disposal by
			th		th	Incineration at own
						Incinerator OR co-processing
						at RSPL, Panoli OR co-
						processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
						common facility at BEIL
29.	Darco/filter	26.1	2.083	00	2.083	Collection, Storage,
	aid sludge		MT/mon		MT/mon	Transportation, Disposal by
			th		th	Incineration at own
						Incinerator OR co-processing
						at RSPL, Panoli OR co-
						processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
						common facility at BEIL
30.	Iron	26.1	62.5	00	62.5	Collection, storage,

	Residue		MT/mon		MT/mon	Transportation, disposal at
			th		th	OWN TSDF OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
31.	Hyflo	26.1	0.5	00	0.5	Collection, Storage,
	sludge		MT/mon		MT/mon	Transportation, Disposal by
	olaago		th		th	Incineration at own
						Incinerator OR co-processing
						at RSPL, Panoli OR co-
						processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
20	DED	26.1	0.4	00	0.4	common facility at BEIL
32.	PER	∠0.1	0.4 MT/mon	00	0.4 MT/mon	Collection, Storage,
	crystal					Transportation, Disposal by
	residue		th		th	Incineration at own
						Incinerator OR co-processing
						at RSPL, Panoli OR co-
						processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
						common facility at BEIL
33.	Filter aid	26.1	1.0	00	1.0	Collection, Storage,
	sludge for		MT/mon		MT/mon	Transportation for recovery of
	Hg		th		th	mercury
	recovery					
34.	Aluminum	26.1	2.6	00	2.6	Collection, Storage,
	Ash		MT/mon		MT/mon	Transportation, Disposal at
			th		th	own TSDF OR send to
						cement industry for co-
						processing OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
35.	N.B.	26.1	5	00	5	Collection, Storage,
	Tar/ODCB		MT/mon		MT/mon	Transportation, Disposal by
	Tar		th		th	Incineration at own
						Incinerator OR co-processing
						at RSPL, Panoli OR co-
						processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
						common facility at BEIL
<u></u>					I	Taning at Beile

36.	ONT Tar	26.1	15	00	15	Collection, Storage,
30.	OIVI Tai	20.1	MT/mon	00	MT/mon	Transportation, Disposal by
						1
			th		th	Incineration at own
						Incinerator OR co-processing
						at RSPL, Panoli OR co-
						processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
						common facility at BEIL
37.	Copper	26.1	40	00	40	Collection, storage,
	Hydroxide		MT/mon		MT/mon	Transportation and sale to
	Wet cake		th		th	authorized industry having
			•••		•••	permission under Rule-9 of
						Hazardous & other wastes
						(Management &
						Transboundary Movement)
00	0 1 1	00.4			20	Rule, 2016
38.	Cu sludge	26.1	0	38	38	Recover as Cu(OH) ₂
				MT/mo	MT/mon	
				nth	th	
39.	Process	26.1	0	1.0	1.0	Collection, Storage,
	Waste			MT/mo	MT/mon	Transportation, Disposal at
				nth	th	own TSDF OR send to
						cement industry for co-
						processing OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
40.	Dust	26.2	0.001	00	0.001	Collection, Storage,
+∪.	fro	۷٠.۷	MT/mon		MT/mon	Transportation for
						· .
	m Air		th		th	reprocessing and reusing
	Filtration					
	System					
41.	Spent Acid	26.3,	4400	1404	5804	Collection, storage,
		29.6, C2	MT/mon	MT/mo	MT/mon	transportation and sell to
			th	nth	th	authorized industry having
						permission under Rule-9 of
						Hazardous & other Wastes
						(Management &
						Transboundary Movement)
						Rule-2016 Or sell to: M/s.
						Shree Cement Ltd., located
						· ·
						at Village: Ras, Jaitaran Dist:
						Pali & at Bangurnagar,
						Beawar Dist: Ajmer,
						Rajasthan

42.	Spent	26.4,	24.75	100	124.75	Collection, storage,
	Organic	28.6	MT/mon	MT/mo	MT/mon	Transportation and sale to
	solvent	29.4	th	nth	th	authorized industry having
						permission under Rule-9 of
						Hazardous & other wastes
						(Management &
						Transboundary Movement)
						Rule, 2016
43.	Waste	28.1	2	00	2	Collection, Storage,
	Residue		MT/mon		MT/mon	Transportation, Disposal by
	(Phin)		th		th	Incineration at own
						Incinerator OR co-processing
						at RSPL, Panoli OR co-
						processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
						common facility at BEIL
44.	DCDPS	28.1	30	00	30	Collection, Storage,
	waste		MT/mon		MT/mon	Transportation, Disposal by
			th		th	Incineration at own
						Incinerator OR selling to
						actual user OR co-processing
						at RSPL, Panoli OR co-
						processing at cement
						industry OR co-processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
						common facility at BEIL
45.	Waste	28.1	28.97	00	28.97	Collection, Storage,
	fro		MT/mon		MT/mon	Transportation, Disposal by
	m Pharma		th		th	Incineration at own
	intermedia					Incinerator OR co-processing
	tes					at RSPL, Panoli OR co-
						processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
						common facility at BEIL
46.	Process	28.1	0	132	132	Collection, Storage,
	Residue			MT/mo	MT/mon	Transportation, Disposal by
	Waste			nth	th	Incineration at own
	(Isomers &					Incinerator OR selling to
	distillation					actual user OR co-processing
	residue)					at RSPL, Panoli OR co-
						processing at cement
						industry OR co-processing at
						SEPPL OR co-processing at
		<u> </u>	I	1	I	

						GGEPIL OR disposal at
						common facility.
47.	Spent	28.2	0.250	00	0.250	Collection, Storage,
	Carbon		MT/mon		MT/mon	Transportation, Disposal by
	catalyst		th		th	Incineration at own
						Incinerator OR co-processing
						at RSPL, Panoli OR co-
						processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
						common facility at BEIL
48.	Spent	28.3	40	23.247	63.2475	Collection, Storage,
	carbon		MT/mon	5	MT/mon	Transportation, Disposal by
			th	MT/mo	th	Incineration at own
				nth		Incinerator OR co-processing
						at RSPL, Panoli OR co-
						processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
						common facility at BEIL
49.	Date	28.5	0.08	00	0.08	Collection, Storage,
	expired,		MT/mon		MT/mon	Transportation, Disposal by
	Discarded		th		th	Incineration at own
	and off-					Incinerator OR co-processing
	specificati					at RSPL, Panoli OR co-
	on product					processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
F0	Cnant	20.6	19.75	00	19.75	common facility at BEIL
50.	Spent Mother	28.6	KL/mont	00	KL/mont	Collection, Storage, Transportation for recovery
			h		h	'
51.	liquor Spent	28.6	19.75	00	19.75	and reusing Collection, Storage,
51.	solvent	20.0	KL/mont	00	KL/mont	Transportation for recovery
	Solvent		h		h	Transportation for recovery
52.	Still/Other	29.1	83.43	205.84	289.27	Collection, Storage,
J2.	residue	۵.۱	MT/mon	MT/mo	MT/mon	Transportation, Disposal by
	Pyridine		th	nth	th	Incineration at own
	based		(63.66+			Incinerator OR co-processing
	insecticide		3.62+			at RSPL, Panoli OR co-
	S		14.27+			processing at cement
	&		1.28+			industry OR co- processing at
	herbicides		0.6)			SEPPL OR co-processing at
	(Darco/Filt		3.5,			GGEPIL OR disposal at
	(Daroon iii					JOET IE OR GIOPOSAI AL

	er aid					common facility at BEIL
	Sludge)					Common facility at DEIL
	Sulfonyl Urea					
	(Residue)					
	Triazole					
	based					
	Fungicides					
	(Residue)					
	Pyrethroid					
	es					
	(Residue)					
53.	Dust (Agro	29.1	3.0	00	3.0	Collection, Storage,
	plant)		MT/mon		MT/mon	Transportation, Disposal at
			th		th	own TSDF OR send to
						cement industry for co-
						processing OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
54.	Hyflo	29.1	15.75	137.71	153.461	Collection, storage,
			MT/mon	17	7	Transportation, disposal at
			th	MT/mo	MT/mon	OWN TSDF OR disposal at
				nth	th	common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
55.	Process	29.1	0	79.227	79.2275	Collection, storage,
	Waste			5		Transportation, disposal at
	(Filtration)					OWN TSDF OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
56.	Lime	29.1	0	40.525	40.525	Collection, storage,
	sludge					Transportation, disposal at
						OWN TSDF OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
57.	Dust from	29.2	0.008	00	0.008	Collection, Storage,
	Air		MT/mon		MT/mon	Transportation, Disposal by
	Filtration		th		th	Incineration at own
	System					Incinerator OR co-processing
						at RSPL, Panoli OR co-
						processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
		<u> </u>				OCE IE OIL GISPOSAI AL

						common facility at BEIL
58.	Liners/Bag	33.1	9500	16500	26000	Collection, Storage,
	s, NOs		nos./	nos./	nos./	Transportation and sell after
			month	month	month	decontamination OR
59.	Drums/HD	33.1	250	450	700	Collection, Storage,
	PE		nos./	nos./	nos./	Transportation and sell to
	Carboys		month	month	month	authorized party/vendor OR
						Reuse after decontamination
60.	Chemical	34.1	0.08	00	0.08	Collection, Storage,
	containing		MT/mon		MT/mon	Transportation, Disposal by
	residue		th		th	Incineration at own
	from					Incinerator.
	decontami					
	nation and					
61.	disposal Flue gas	35.1	0.008	00	0.008	Collection, Storage,
01.	Flue gas cleaning	33.1	MT/mon	00	MT/mon	Collection, Storage, Transportation, Disposal at
	residue		th		th	own TSDF OR send to
	residue		ti i		LI I	cement industry for co-
						processing OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
62.	Toxic	35.2	0.001	00	0.001	Collection, Storage,
	metal		MT/mon		MT/mon	Transportation, Disposal at
	containing		th		th	own TSDF OR send to
	residue					cement industry for co-
	from used-					processing OR disposal at
	ion					common TSDF at SEPPL OR
	exchange					disposal at common TSDF at
	material; in					BEIL
	water					
00	purification	05.0	4070.00	000	5070.00	O. W. office
63.	Sludge	35.3	4978.66	900	5878.66	Collection, storage,
	from ETP,		MT/mon	MT/mo	MT/mon	Transportation, disposal at
	Gypsum from ETD		th	nth	th	OWN TSDF OR send to
	from ETP, Chemical					cement industry for co-
						processing OR disposal at common TSDF at SEPPL OR
	Gypsum, Sludge					disposal at common TSDF at
	from waste					BEIL
	water					DEIL
	treatment					
64.	MEA	36.1	1.667	00	1.667	Collection, Storage,
5 +.	distillation	30.1	MT/mon		MT/mon	Transportation, Disposal by
	residue		th		th	Incineration at own
						Incinerator OR co-processing

				<u> </u>		of DCDL Devel OD
						at RSPL, Panoli OR co-
						processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
						common facility at BEIL
65.	Spent	36.2	0.002	00	0.002	Collection, Storage,
	Catalyst		MT/mon		MT/mon	Transportation, Disposal at
			th		th	own TSDF OR send to
						cement industry for co-
						processing OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
66.	Sludge	37.1	0.02	00	0.02	Collection, Storage,
	fro		MT/mon		MT/mon	Transportation, Disposal at
	m wet		th		th	own TSDF OR send to
	scrubber					cement industry for co-
						processing OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
67.	Incineratio	37.2	4.62	00*	4.62	Collection, Storage,
	n ash		MT/mon		MT/mon	' ' '
			th		th	own TSDF OR send to
						cement industry for co-
						processing OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
	_					BEIL
68.	Salt from	37.3	1678.71	223.14	1901.85	, , ,
	MEE		MT/mon	MT/mo	MT/mon	' '
			th	nth	th	OWN TSDF OR selling to
						actual reuser OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL
69.	Dilute	B15	50	00	50	Collection, Storage,
	MnSO ₄		MT/day		MT/day	Transportation, Disposal at
						M/s Atul Limited, Plot No.
						297, GIDC Estate,
						Ankleshwar, Bharuch
70.	2,6		94.355	00	94.355	Collection, storage,
	Dichloro		MT/mon		MT/mon	' ' '
	phenol		th		th	selling to actual reuser OR
						co- processing at RSPL,
						Panoli OR co- processing at

	1					coment industry OD co
						cement industry OR co-
						processing at SEPPL OR co-
						processing at GGEPIL OR
						disposal at common facility at
						BEIL
71.	2,4,6	20.3	45.925	00	45.925	Collection, storage,
	Trichloro		MT/mon		MT/mon	Transportation, disposal by
	phenol		th		th	selling to actual reuser OR
						co- processing at RSPL,
						Panoli OR co- processing at
						cement industry OR co-
						processing at SEPPL OR co-
						processing at GGEPIL OR
						disposal at common facility at
						BEIL
72.	p-	28.1	127	00	127	Collection, storage,
	CBSA/Na-		MT/mon		MT/mon	' ' '
	Salt		th		th	selling to actual reuser OR
						co- processing at RSPL,
						Panoli OR co- processing at
						cement industry OR co-
						processing at SEPPL OR co-
						processing at GGEPIL OR
						disposal at common facility at
						BEIL
73.	High TDS/		100	00	100	Collection, storage,
	High COD		KLD		KLD	Transportation, disposal to
	effluent					our own MEE/Incinerator
						and/or at common GPCB
						approved facility
74.	KCI		0	500	500	Collection, Storage,
				MT/mo	MT/mon	Transportation, Disposal at
				nth	th	own TSDF OR send to
						cement industry for co-
						processing OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at
						BEIL BEIL
75.	Distillation	20.3	0	1246.3	1246.3	Sell to Actual users
	Residue			MT/mo	MT/mon	
	(Aromatic			nth	th	
	High Boiler					
	Waste)					
76.	CaCl ₂		0	945.4	945.4	Collection, Storage,
				MT/mo	MT/mon	Transportation, Disposal at
				nth	th	own TSDF OR selling to
						actual user OR send to
			I .	l		

						coment industry for so
						cement industry for co- processing OR disposal at
						common TSDF at SEPPL OR disposal at common TSDF at BEIL
77.	Sodium		0	1385.9	1385.9	Collection, Storage,
	Sulphate			MT/mo	MT/mon	1
				nth	th	own TSDF OR selling to
						actual user OR send to
						cement industry for co-
						processing OR disposal at
						common TSDF at SEPPL OR
						disposal at common TSDF at BEIL
78.	Tula resin		0	30	30	Collection, storage,
				MT/mo	MT/mon	Transportation, disposal by
				nth	th	selling to actual reuser OR
						co- processing at RSPL, Panoli OR co-processing at
						cement industry OR co-
						processing at SEPPL OR co-
						processing at GGEPIL OR
						disposal at common facility at
						BEIL
79.	Ammoniu		0	407	407	Collection, storage, reuse in
	M Lludrovido			MT/mo	MT/mon	in-house production or sell to
	Hydroxide (5%)			nth	th	actual user
80.	Ammonia		0			
	Solution					
81.	(25%) Aq.	20.2	0	67.3	67.3	Collection, Storage,
	Methanol	-0.2	J	MT/mo	MT/mon	Transportation for recovery
				nth	th	Or disposal by selling to
						actual reuser OR co-
						processing at RSPL, Panoli
						OR co- processing at cement
						industry OR co- processing at
						SEPPL OR co-processing at
						GGEPIL OR disposal at
82.	Spakler	23.1	0	36	36	common facility at BEIL Collection, Storage,
J2.	filter pad	20.1	J	nos./	nos./	Transportation, Disposal by
	I			month	month	Incineration at own
						Incinerator OR co-processing
						at RSPL, Panoli OR co-
						processing at cement

83.	ACP tar low boiler	23.1	0	93.15 MT/mo nth	93.15 MT/mon th	industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL Collection, Storage, Transportation for recovery Or disposal by selling to actual reuser OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL
Soli	d Waste					
1.	Ash from		16400	0.0	16400	Sale to cement industry/ brick
	Boiler		MT/mon		MT/mon	manufacturers/at own brick
			th		th	manufacturing plant

Deliberations in the EAC:

The EAC, constituted under the provision of the EIA Notification, 2006 comprising Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in desired format along with EIA/EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of his knowledge and belief and no information has been suppressed in the EIA/EMP report. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee noted that the EIA/EMP reports are in compliance of the ToR issued for the project, considering the present environmental status and the projected scenario for all the environmental components. The Committee found the baseline data and incremental GLC due to the proposed project within the NAAQ standards. The Committee also deliberated on the activities/action plans and found them addressing to the issues in the public hearing. The Committee suggested that the storage of toxic/explosive raw materials shall be in bare minimum quantity and inventory. The Committee appreciated the greenbelt development in the unit complex and suggested PP to develop greenbelt in other areas and involve forest department/villages in this regard. The Committee pointed out that the effluent quantity to be discharged shall be within the prescribed limit as per the CRZ clearance and any increase in the effluent load or changes in pipeline attracts the provisions of the CRZ Notification, 2011. The Committee also noted that Ministry had issued EC earlier vide letter dated 11th February, 2019 to the existing projects. The certified Compliance Report of existing EC forwarded by the Ministry's IRO, Bhopal vide letter dated 09.03.2020 was found to be satisfactory.

The Committee noted that, in response to the Committee's observations, the project proponent vide letter dated 31st May, 2021 has submitted detailed action plan to dense and develop the greenbelt in the complex and adjoining areas. Further the PP shall take plantation activities in the Parnera hill and other areas. The Action plan submitted for controlling the particulate emissions in the factory and preventive action to control accidents were found to be satisfactory. The project proponent informed that the current permitted effluent discharge to the Par river is 20514 KLD as per earlier EC and CTO. The Committee noted that CRZ clearance was granted on 17th January, 1998 for laying a 4-km long pipeline for effluent discharge. The project proponent submitted an undertaking that the effluent quantity mentioned in the CRZ clearance application and the NIO report was 23790 KLD, and the total discharge quantity shall not exceed 20514 KLD. The Committee found the additional information submitted by the project proponent to be satisfactory and addressing to the concerns of the Committee.

The EAC deliberated on the proposal with due diligence in the process as notified under the provisions of the EIA Notification, 2006, as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC found the proposal in order and recommended for grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its subsequent amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time, from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, <u>subject to comments of the CRZ Sector on the requirement of fresh CRZ clearance, if any, for the pipeline</u>, and <u>subject to the compliance of terms and conditions</u> as under, and general terms and conditions given in the Annexure:-

- (i). No banned pesticides/chemicals shall be manufactured by the project proponent. No banned raw materials shall be used in the unit. The project proponent shall adhere to the notifications/guidelines of the Government in this regard.
- (ii). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the EIA/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
- (iii). The treated effluent of 20514 KLD proposed to discharge to the estuary of Par river through pipeline, shall conform to the standards prescribed under the Environment

- (Protection) Act, 1986. The project proponent shall explore possibilities for recycling and reusing of treated water in the unit to reduce the fresh water demand and waste disposal.
- (iv). Continuous online (24x7) monitoring system for stack emissions shall be installed for the measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB servers. For online continuous monitoring of effluent, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises.
- (v). The storage of toxic/hazardous raw material shall be bare minimum with respect to their quantity and inventory. Quantity and days of storage shall be submitted to the Regional Office of Ministry and SPCB along with the compliance report.
- (vi). Occupational health centre for surveillance of the workers' health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/mask for personal protection.
- (vii). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall also be provided to employees.
- (viii). The unit shall make arrangement for the prevention and protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms. Action plan proposed shall be implemented in letter and spirit.
- (ix). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space specified with all safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valve to prevent losses. (f) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.
- (x). The Action plan submitted for controlling the particulate emissions in the factory shall be satisfactorily implemented.
- (xi). Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled up to 99.99% with effective chillers/modern technology.
- (xii). Total fresh water requirement, proposed to be met from Par River shall not exceed 18050 cum/day, Prior permission in this regard shall be obtained from the concerned regulatory authority.
- (xiii). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.

- (xiv). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of byproducts from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.
- (xv). The green belt of at least 5-10 m width shall be developed/strengthened over nearly 33% of the total project area, mainly along the plant periphery/adjacent areas. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing. Trees have to be planted with spacing of 2m x 2m and number of trees has to be increased accordingly. The plant species can be selected that will give better carbon sequestration. The action plan proposed in this regard shall be implemented.
- (xvi). As proposed, the project proponent shall undertake plantation activities (10,000 plant) in the Parnera hill and other areas with the support of State Forest Department/Village Administration.
- (xvii). As committed, at least Rs 5 lakhs shall be allocated for conservation of Schedule I species. The implementation report shall be submitted to the IRO, MoEFCC.
- (xviii). The activities and the action plan proposed by the project proponent to address the socio-economic/public concern and issues raised during public hearing in the study area shall be completed as per the schedule presented before the Committee and as described in the EMP report in letter and spirit.
- (xix). A separate Environmental Management Cell (having qualified persons with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Agenda No. 11.2

Setting up of API manufacturing unit of capacity 177 MTPM by M/s SVG Life Sciences located at Plot No. F - 40 / 1, F - 40 / 2, MIDC Chincholi, Taluka Mohol, District Solapur, Maharashtra- Environmental Clearance - reg.

[Proposal No. IA/MH/IND2/204779/2021, File No. J-11011/218/2021-IA II (I)]

The project proponent and the Accredited Consultant M/s.Equinox Environments (I) Pvt. Ltd. made a detailed presentation on the salient features of the project and informed that:

The proposal is for Environmental Clearance to the project proposed for Setting up of API manufacturing unit of capacity 177 MTPM by M/s SVG Life Sciences located at Plot No. F-40/1, F-40/2, MIDC Chincholi, Taluka Mohol, District Solapur, Maharashtra.

The details of products and capacity as under:

No	Product	Quantity (MT/M)	CAS No.	Chemical Formula
1.	Domperidone	15	57808-66-9	$C_{22}H_{24}CIN_5O_2$
2.	Omeprazole	15	73590-58-6	$C_{17}H_{19}N_3O_3S$
3.	Albendazole	25	54965-21-8	$C_{12}H_{15}N_3O_2S$
4.	Febendazole	5	43210-67-9	$C_{15}H_{13}N_3O_2S$
5.	Triclabendazole	5	68786-66-3	C ₁₀ H ₇ N ₃ S
6.	Pantoprazole Sodium	5	138786-67-1	C ₁₆ H ₁₄ F ₂ N ₃ NaO ₄ S
7.	Clorsulon	3	60200-06-8	$C_8H_8CI_3N_3O_4S_2$
8.	Febantel	2	58306-30-2	$C_{20}H_{22}N_4O_6S$
9.	Mebendazole	5	31431-39-7	C ₁₆ H ₁₃ N ₃ O ₃
10.	Ricobendazole	3	54029-12-8	C ₁₂ H ₁₅ N ₃ O ₃ S
11.	Cyproheptadine	2	129-03-3	C ₂₁ H ₂₁ N
12.	Loperamide	1	34552-83-5	$C_{29}H_{33}CIN_2O_2$
13.	Amitriptyline	5	549-18-8	C ₂₀ H ₂₃ N
14.	Nortritptline	5	72-69-5	C ₁₉ H ₂₁ N
15.	Aceclofenac	30	89796-99-6	C ₁₆ H ₁₃ Cl ₂ NO ₄
16.	Loratadine	5	79794-75-5	$C_{22}H_{23}CIN_2O_2$
17.	Telmisartan	10	144701-48-4	$C_{33}H_{30}N_4O_2$
18.	Valsartan	5	137862-53-4	$C_{24}H_{29}N_5O_3$
19.	Oxyclozanide	25	2277-92-1	C ₁₃ H ₆ Cl ₅ NO ₃
20.	Haloperidol	1	52-86-8	C ₂₁ H ₂₃ CIFNO ₂
21.	Esomeprazole	5	161796-78-7	$C_{17}H_{19}N_3O_3S$
	Total	177		

The project is covered under Category B2 of item 5(f) 'Synthetic, Organic Chemicals Industry' of the Environment Impact Assessment (EIA) Notification, 2006 & its amendment dated 27.03.2020 and 15.10.2020. Due to applicability of general condition (presence of GIB sanctuary within 5 Km from Project Site in MIDC), the project requires appraisal at Central level by the Sectoral Expert Appraisal Committee (EAC) in the Ministry.

The Proposed Project Site in MIDC Chincholi is located 2.41 Km from the boundary of GIB Sanctuary. Further, ESZ for GIB is finalized vide notification No. 596 dated 11/02/2020. Project Site is 2.13 Km from Notified ESZ. River Sina is at a distance of 7 Km on South West from the project site. It was informed that no litigation is pending against the proposal.

Total plot land area is 22,000 m² and built-up area is 3031 m². Industry will develop Green Belt in an area of 7261.89 m² (33% out of total plot area). The estimated proposed establishment project cost is Rs.8 Crores. Total capital cost earmarked towards environmental pollution control measures under proposed project is Rs.3.55 Crores and the

Recurring cost (operation and maintenance) will be about Rs.0.41 Crores per annum. Total Employment under proposed project would be 40 persons (as direct). Industry proposes to allocate Rs.29 Lakh towards Corporate Social Responsibility.

Total water requirement for proposed project will be 168 CMD of which fresh water will be sourced from MIDC Water supply scheme at Ujani Dam on Bhima river. ETP & STP treated effluent will be recycled thereby reducing fresh water demand. Effluent of 76 m³/day will be generated and same will be segregated as strong and weak streams and treated through two separate ETP streams. The treated effluent will be recycled thereby achieving Zero Liquid Discharge. STP will be provided for treating domestic effluent of 2.5 CMD. Treated water will be recycled for flushing.

Power requirement for proposed project will be 250 KW and taken from MSEDCL. One DG set of 250 KVA capacity will be installed as standby during power failure. Stack of height 8m AGL will be provided as per CPCB norms to the DG sets. For steam requirement, Industry will install 4 TPH boiler and Thermopack of 10 Lakhs Kcal/Hr. Fuel Briquettes/Coal will be used for same. MDC followed by Bag Filter with a stack of height of 30 M will be installed for controlling the particulate emissions within the statutory limit of 115 mg/Nm³for the proposed boiler.

Details of Process emissions generation and its management:

Process emissions in the form of acidic, alkaline and solvent vapours will be generated from the process. The emissions from the process would be taken care through 05 Nos. Scrubbers and scrubbed material will be forwarded to ETP for treatment.

Table: Details of Scrubber with Disposal Facility

No	Attached to Process Plant	Dia. (M)	Ht. (M)	Packing Material	Mode of regeneration of the packing material	Scrubbing Media	Disposal/ Recycle/ Reuse
1	lfg. Block (Acidic	0.4	10	PP Poll	Not	Water/NaOH	To ETP
2	/ solvent	0.4	10	Rings	Applicable	Water	
3	vapours)	0.3	10			Water	
4	Warehouse,	0.3	10			Water/NaOH	
5	QA & QC block	0.2	10			Water	
	Acidic / solvent						
	vapours)						

Table: Process Emissions Quantification & Treatment Details

S.No Emissions Qty. (kg / Day)			Treatment Method				
1	H ₂	16.05	iffused by using Nitrogen through Flame Arrestor				
2	O ₂	341.70	ispersed into the Atmosphere				

3	N ₂	25.29	ispersed into the Atmosphere
4	CO ₂	612.96	ispersed into the Atmosphere
5	SO ₂	666.79	crubbed by using Water Media
6	NH ₃	235.81	crubbed by using Chilled Water Media
7	HCI	555.03	crubbed by using C.S. Lye Solution
8	HBr	7.10	crubbed by using C.S. Lye Solution
9	CH₃CI	107.92	crubbed by using Water Media

Details of Solid waste/ Hazardous waste generation and its management:

Details of Solid Waste Generation & its Management

No	Description	G	Quantity	Disposal		
		MT/M	Kg/Day			
1	Boiler Ash	60	2400	Sale to Brick		
				manufacture		
2	Plastic, Glass, Ferrous,	10	400	Sale to Authorized		
	Wooden, Metal Scrap			Recyclers		
3	Packing Material	30	1200			
4	Battery Waste	2	80			
5	E-Waste	1	40			
6	Empty Containers &	1000 Nos./M	40 Nos./D			
	Drums					

Details of Hazardous Waste Generation & its Management

No	Description	Cat.	Qua	antity	Disposal Facility			
			MT/M	Kg/Day				
1	Used / Spent Oil	5.1	100 Lit./M	4.00 Lit./D	Authorized Party / Recycler			
					/ CHWTSDF			
2	Distillation Residues	20.3	25	1000	CHWTSDF			
3	Process Residue &	28.1	60	2400	CHWTSDF			
	wastes							
4	Spent Catalyst	28.2	0.50	20	CHWTSDF / Co processing			
					/ Authorized Re-processor /			
					Recycler			
5	Spent Carbon	28.3	2	80	CHWTSDF / Co processing			
					/ Authorized Re-processor /			
					Recycler			
6	Off-specification	28.4	5	200	CHWTSDF / Reprocessing			
	products							
7	Date-expired products	28.5	5	200	CHWTSDF			
8	Spent Solvents	28.6	10	400	Authorized Party / Recycler			
					/ Co processing /			
					CHWTSDF			

No	Description	Cat.	Qua	antity	Disposal Facility
			MT/M	Kg/Day	
9	Empty Barrels/	33.1	40 Nos. /	1.60 Nos. /	Authorized Party / Recycler
	containers/ liners		M	D	/ Re-processor /
	contaminated with				CHWTSDF
	Hazardous Chemicals				
	/ Waste				
10	Chemical Sludge from	35.3	25	1000	Authorized Party /
	Waste Water				CHWTSDF / Co processing
	Treatment				
11	Sludge from wet	37.1	50	2000	Authorized Party /
	scrubber				CHWTSDF / Co processing
12	Sludge from MEE	37.3	100	4000	Authorized Party /
	system				CHWTSDF / Co processing

The Committee was informed that the Ministry has recently issued an Office Memorandum dated 28.01.2021 which inter-alia request EAC to clearly recommend the permissible pollution load i.e., quantity and quality, including composition of emissions, discharge and solid waste generation. In compliance this OM, PP has submitted the following pollution load information and the EAC deliberated on the issue. PP also requested that EC may include the name of products also otherwise PP will face difficulty in obtaining the CTE/CTO from concerned SPCB.

Quantification of Pollutants' Load w.r.t. Effluent Generation:

Pollutants	Conc. of Pollutants generated	Qty. of Pollutants generated								
Waste	(Mass / Volume)	(Mass / Day)								
Water	(mg / lit)	(kg / Day)								
	Stream - I (High COD & High TDS Effluent) Raw Effluent - 66 CMD									
pН	6 - 7.5									
BOD	5000 - 7000	462								
COD	13000 - 15000	990								
TDS	23000 - 25000	1650								
	Stream - II (Low COD & Low TDS Eff	luent) Raw Effluent - 10 CMD								
pН	5 - 9									
BOD	400 - 600	6								
COD	800 - 1000	10								
TDS	2000 - 2500	25								

Quantification of Pollutants' Load wrt Hazardous Waste Generation

Kg / Day									
Organic SW	Inorganic SW	Spent Carbon	Distillation Residue						
820	7000	80	3400						

Quantification of Pollutants' Load wrt Process Emissions

Kg / Day							
Process Emission	Fugitive Emission						
2568.65	300						

Kg / Day										
H ₂ O ₂ N ₂ CO ₂ SO ₂ NH ₃ HCI HBr CH								CH₃CI		
16.05	341.70	25.29	612.96	666.79	235.81	555.03	7.10	107.92		

Summary of Pollution Load

	Kg / Day													
			Е	ffluent	Water					Solid	Wast	te		
Water Input	Effluents	Inorganics in Effluent	Organics in Effluent	TDS	COD	HTDS	LTDS	Total Effluent	Organic SW	Inorganic SW	Spent Carbon	Distillation / Process Residue	Process Emission	Fugitive Emission
168000	78500	1675	468	1675	1000	1650	25	1675	820	7000	80	3400	2568.65	500

Deliberations by the EAC:

The EAC, constituted under the provision of the EIA Notification, 2006 comprising Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in the desired format along with PFR & EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of their knowledge and belief and no information has been suppressed in the PFR & EMP reports. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee was further informed that the Ministry has recently issued an Office Memorandum dated 28.01.2021 and inter-alia requested that EAC shall clearly recommend the permissible pollution load i.e. quantity and quality, including composition, of emissions, discharge and solid waste generation. In compliance of this OM, PP has submitted the pollution load. The EAC also deliberated on the pollution load as estimated by the PP/Consultant.

The Committee noted that the PFR/EMP reports reflect the present environmental status and the projected scenario for all the environmental components. The Committee

deliberated on the action plan and budget allocation for green belt development and suggested to complete plantation with-in one year. The Committee deliberated on the proposed mitigation measure towards Air, Water, Noise and Soil pollutions. The Committee suggested to use coal having ash content less than 15% only during the rainy season when the Biomass Briquettes may not be available. The Committee also suggested that the storage of toxic/explosive raw materials/products shall be undertaken with utmost precautions and following the safety norms and best practices. The Committee suggested for increase in the use percentage of recycled water.

The EAC deliberated on the proposal with due diligence using the process as notified under the provisions of the EIA Notification, 2006, as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC also found the proposal in order and recommended for the grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time, from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, and <u>subject to compliance of terms and conditions</u> as under, and general terms and conditions in the the Annexure:-

- (i). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the PFR/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
- (ii). Fugitive emissions shall be controlled at 99.98% with effective chillers. Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled at 99.997% with effective chillers/modern technology. Regular VOCs monitoring should be carried out.
- (iii). Occupational health centre for surveillance of the worker's health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/mask for personal protection.
- (iv). As already committed by the project proponent, Zero Liquid Discharge (ZLD) shall be ensured and no waste/treated water shall be discharged outside the premises. Treated effluent shall be reused in the process/utilities. Treated Industrial effluent shall not be used for gardening/greenbelt development/horticulture purpose.

- (v). The unit shall make the arrangement for the prevention and protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms. Mock drill shall be conducted regularly.
- (vi). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall be provided to employees.
- (vii). Total fresh water requirement shall not exceed 168 CMD and shall be sourced from MIDC Water supply scheme at Ujani Dam on Bhima river. Prior permission in this regard shall be obtained from the concerned regulatory authority.
- (viii). As committed by the PP, coal having ash content less than 15% is to be used as fuel only during the rainy season when the Biomass Briquettes may not be available and during all other seasons only biomass briquettes shall be used.
- (ix). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.
- (x). Continuous online (24x7) monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For ZLD, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises (if applicable).
- (xi). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space provided with all safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valves to prevent losses. (f) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.
- (xii). Process organic residue and spent carbon, if any, shall be sent or other Cement other suitable industries for its incinerations. ETP sludge, process inorganic & evaporation salt shall be disposed of to the TSDF. There shall be commitment from the brick manufacturer to take the fly ash from the plant. The Unit is to be started after getting the commitment from the brick manufacturer / cement plant.
- (xiii). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of byproducts from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.

- (xiv). The green belt of at least 5-10 m width shall be developed in at least 33% of the total project area, mainly along the plant periphery/ additional land. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing map. Trees have to be planted with spacing of 2m x 2m and the number of trees has to be increased accordingly. The plant species can be selected that will give better carbon sequestration. All trees must be planted within first year.
- (xv). The activities and the action plan proposed by the project proponent to address the socio-economic issues in the study area, shall be completed as per the schedule presented before the Committee and as described in the EMP report in letter and spirit. All the commitments made shall be satisfactorily implemented.
- (xvi). A separate Environmental Management Cell (having qualified person with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Agenda No. 11.3

Setting up of API manufacturing unit 840 TPA capacity by M/s Svan Chemicals Pvt Ltd located at Plot No. F-30, MIDC Chincholi, Taluka: Mohol, District Solapur, Maharashtra - Environment Clearance – reg.

[Proposal No. IA/MH/IND2/206460/2021, File No. J-11011/220/2021-IA II (I)]

The Project Proponent and the accredited Consultant M/s. Enviro Resources, made a detailed presentation on the salient features of the project and informed that:

The proposal is for environmental clearance to the project for setting up of API manufacturing unit of 840 TPA capacity by M/s Svan Chemicals Pvt Ltd located at Plot No. F-30, MIDC Chincholi, Taluka: Mohol, District Solapur, Maharashtra.

The details of products and capacity as under:

S. No.	Products	Proposed Quantity (TPA)	Total Quantity (TPA)
1	Losartan Potassium	360	360
2	Telmisartan	120	120
3	Gabapentin	120	120
4	Meteprolol Succinate	120	120
5	Paroxetine	60	60
6	Pregabilin	60	60
	Total	840	840
7	By-Product (Trityl Alcohol)	235.2	235.2

The project is covered under Category B2 of item 5(f) 'Synthetic, Organic Chemicals Industry' of the Environment Impact Assessment (EIA) Notification, 2006 & its amendment dated 27.03.2020 and 15.10.2020. Due to applicability of general condition (presence of GIB

sanctuary within 5 km distance from the project site, the project requires appraisal at Central level by the Sectoral Expert Appraisal Committee (EAC) in the Ministry. No Litigation Pending against the proposal.

Total land area of project is 10,528 m². Industry will develop greenbelt in an area of 33.05% i.e., 3,479.05 m² out of total area of the project. The estimated project cost is Rs.9.55 Cr. Total capital cost earmarked towards environmental pollution control measures is Rs.2.79 Cr and the Recurring cost (operation and maintenance) will be about Rs.1.5843 Cr per annum. Total Employment will be of 50 persons as direct. Industry proposes to allocate Rs.19.10 Lakh towards Corporate Social Responsibility.

The Great Indian Bustard Wildlife Sanctuary is within 5 km distance from the project site. Sina River is flowing at a distance of 6.8 km in SW direction.

Total water requirement is 236.6 m³/day of which fresh water of 138.88 m³/day will be met from MIDC Chincholi. Effluent of 83.2 m³/day quantity will be treated by segregating high COD & Low COD Streams, HCOD effluent will be treated by using Stripper MEE followed by ATFD; however low COD effluent will be treated in conventional ETP consist of Primary, Secondary and Tertiary treatment facility. The plant will be based on Zero Liquid discharge system.

Power requirement of proposed project will be 1000 kVA and will be met from Maharashtra State Electricity Distribution Company Limited (MSEDCL). Additionally 1x500 kVA DG set is used as standby during power failure. Stack (4.5 m above roof) will be provided as per CPCB norms to the proposed DG sets. 1 nos X 2.0 TPH & 4.0 TPH Boiler and 1 nos X Thermic Fluid Heater of 2 Lac Kcal per Hour will be installed. Multi Cyclone Separator followed by Bag Filter with a stack of height of 32 m will be installed for controlling the particulate emissions within the statutory limit of 115 mg/Nm³ for the proposed boilers.

Details of Process emissions generation and its management: The process emission from process activity will be subject to Acid/Alkali Scrubber of 3 nos x 1000 CFM capacities.

Details of Solid waste/ Hazardous waste generation and its management are as follows:

Non-Hazardous Waste

S.No	WASTE	QUANTITY	DISPOSAL
1	Dry Garbage	2 Kg/day	Hand over to authorized recyclers
2	Wet Garbage	2 Kg/day	Vermi Composting (off-site)
3	Ash	2.57 TPD	Sold to Brick Manufacturers

Hazardous Waste

CAT.	TYPE OF	SOURCE	QTY.	METHOD OF
	WASTE			DISPOSAL
35.3 Sch – I	ETP Sludge	Primary &	22 MTA	CHWTSDF @
		Secondary		Ranjangaon
		Treatment		

5.1 Sch – I	Used	Plant &	1 KL/A	CHWTSDF @
	Lubricants	Machineries		Ranjangaon
33.1 Sch – I	Used	Raw Material	17895	Decontamination &
	Containers	Storage	(Nos/A)	Re-use or sell
	(Metal &			
	Plastic)			
	HDPE/ LDTE/	Raw Material	5880 (Nos/A)	Decontamination &
	Gunny Bags	Storage		Re-use or sell
37.3 Sch – I	MEE Residue	Effluent	10.5 MTD	CHWTSDF @
		Evaporation		Ranjangaon
28.1 Sch – I	Process	Reactor Waste	510.11 MTA	CHWTSDF @
	Residue &			Ranjangaon
	Waste			
36.1 Sch-I	Distillation	Solvent	988.6 MTA	CHWTSDF @
	Residue	Distillation		Ranjangaon
36.2 Sch-I	Spent Carbon	Waste Carbon in	73.2 MTA	CHWTSDF @
		Reactor		Ranjangaon
28.6 Sch – I	Organic	Stripper MEE	40%	Authorized Recyclers
	Distillate		concentrate	
			- 4.08 KLD	
28.6 Sch – I	Organic	Recovered Mix	1.13 KLD	Authorized Recyclers
	Distillate	solvent from		
		chillers		

The Committee was informed that the Ministry has recently issued an Office Memorandum dated 28.01.2021 which inter-alia request EAC to clearly recommend the permissible pollution load i.e., quantity and quality, including composition of emissions, discharge and solid waste generation. In compliance this OM, PP has submitted the following pollution load information and the EAC deliberated on the issue. PP also requested that EC may include the name of products also otherwise PP will face difficulty in obtaining the CTE/CTO from concerned SPCB.

	Kg Per Day												
		Е	FFLUE	NT WA	TER			S	OLID	WAS	STE		
Water Input	Effluent Water	Inorganics In Effluent	Organics In Effluent	TDS	HTDS	LTDS	Total Effluent	Organic Solid waste	i≓ is	Spent Carbon	Distillation Residue	Process emissions	Fugitive loss

236600

HAZARDOUS SOLID WASTE DETAILS

Kg Per Day							
	SOLID WASTE						
Organic Solid	Inorganic Solid	Spent Carbon	Distillation Residue				
1773.3	10469.3	244	3295.2				

EMISSION DETAILS

Kg Per Day				
Process Emissions	Fugitive Emissions			
1646.6	526			

	Kg Per Day					
VOC	CO ₂	N ₂	HCI	O ₂	SO ₂	
					From Coal consumption in Boiler	
1126	225.2	107	144.6	43.2	206.08	

Deliberations by the EAC:

The EAC, constituted under the provision of the EIA Notification, 2006 comprising of Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in desired format along with PFR & EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of their knowledge and belief and no information has been suppressed in the PFR & EMP reports. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee was further informed that the Ministry has recently issued an Office Memorandum dated 28.01.2021 and inter-alia requested that EAC shall clearly recommend the permissible pollution load i.e. quantity and quality, including composition, of emissions, discharge and solid waste generation. In compliance of this OM, PP has submitted the pollution load and the EAC also deliberated on the pollution load as estimated by the PP/Consultant.

The Committee noted that the PFR/EMP reports reflect the present environmental concerns and the projected scenario for all the environmental components. The Committee

deliberated on the action plan and budget allocation for green belt development and suggested to complete plantation in one year. The Committee deliberated on the proposed mitigation measure towards Air, Water, Noise and Soil pollutions. The Committee suggested to use coal having ash content less than 15% only during the rainy season when the Biomass Briquettes may not be available. The Committee also suggested that the storage of toxic/explosive raw materials/products shall be undertaken with utmost precautions and following the safety norms and best practices. The Committee suggested increase in use percentage of the recycled water and also proper mitigation of VOCs.

The EAC deliberated on the proposal with due diligence using the process as notified under the provisions of the EIA Notification, 2006, as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC also found the proposal in order and recommended for the grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time, from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, and <u>subject to compliance of terms and conditions</u> as under, and general terms and conditions given in Annexure:-

- (i). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the PFR/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
- (ii). Fugitive emissions shall be controlled at 99.98% with effective chillers. Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled at 99.997% with effective chillers/modern technology. Regular VOCs monitoring should be carried out.
- (iii). Occupational health centre for surveillance of the worker's health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/mask for personal protection.
- (iv). As already committed by the project proponent, Zero Liquid Discharge (ZLD) shall be ensured and no waste/treated water shall be discharged outside the premises. Treated effluent shall be reused in the process/utilities. Treated Industrial effluent shall not be used for gardening/greenbelt development/horticulture purpose.

- (v). The unit shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms. Mock drill shall be conducted regularly.
- (vi). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall be provided to employees.
- (vii). Total fresh water requirement shall not exceed 138.88 m³/day and shall be sourced from MIDC Chincholi. Prior permission in this regard shall be obtained from the concerned regulatory authority.
- (viii). As committed by the PP, coal having ash content less than 15% shall be used as fuel only during the rainy season when the Biomass Briquettes may not be available and during all other seasons only biomass briquettes shall be used.
- (ix). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.
- (x). Continuous online (24x7) monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For ZLD, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises (if applicable).
- (xi). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space provided with all safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valves to prevent losses. (f) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.
- (xii). Process organic residue and spent carbon, if any, shall be sent to Cement or other suitable industries for incinerations. ETP sludge, process inorganic & evaporation salt shall be disposed of to the TSDF. There shall be commitment from the brick manufacturer to take the fly ash from the plant. The Unit is to be started after getting the commitment from the brick manufacturer / cement plant.
- (xiii). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of byproducts from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.

- (xiv). The green belt of at least 5-10 m width shall be developed in at least 33% of the total project area, mainly along the plant periphery/ additional land. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing map. Trees have to be planted with spacing of 2m x 2m and number of trees have to be increased accordingly. The plant species can be selected that will give better carbon sequestration. All trees must be planted within the first year.
- (xv). The activities and the action plan proposed by the project proponent to address the socio-economic issues in the study area, shall be completed as per the schedule presented before the Committee and as described in the EMP report in letter and spirit. All the commitments made shall be satisfactorily implemented.
- (xvi). A separate Environmental Management Cell (having qualified person with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Agenda No. 11.4

Setting up of API manufacturing unit of capacity 2184 MTPA by M/s PBL Lifecare Pvt. Ltd. located at Plot No: F-27 at MIDC Chincholi, Village Chincholi, Taluka Mohol, District Solapur, Maharashtra- Environment Clearance – reg.

[Proposal No. IA/MH/IND2/206367/2021, File No. J-11011/210/2021-IA II (I)]

The Project Proponent and the accredited Consultant M/s Enviro Analyst and Engineers Pvt. Ltd, made a detailed presentation on the salient features of the project and informed that:

The proposal is for the environmental clearance to the project for setting up of API manufacturing unit of capacity 2184 MTPA by M/s. PBL Lifecare Pvt. Ltd. located at Plot No: F-27 at MIDC Chincholi, Village Chincholi, Taluka Mohol, District Solapur, Maharashtra.

The project is covered under Category B2 of item 5(f) 'Synthetic, Organic Chemicals Industry' of the Environment Impact Assessment (EIA) Notification, 2006 & its amendment dated 27.03.2020 and 15.10.2020. Due to applicability of general condition (presence of GIB sanctuary within 5 Km from Project Site in MIDC), the project requires appraisal at Central level by the Sectoral Expert Appraisal Committee (EAC) in the Ministry. The Great Indian Bustard Sanctuaries within 1.8 km from the project location.

Total land area is 12012 m². Industry will develop greenbelt in an area of 33 % i.e., 3964 m² out of total area of the project. The estimated project cost is Rs.16.92Cr. Total capital cost earmarked towards environmental pollution control measures is Rs.1.5 Cr. and the Recurring cost (operation and maintenance) will be about Rs.0.53 Cr. per annum. Total Employment will be of 50 persons. Industry proposes to allocate Rs.0.33 crores towards Corporate Environmental Responsibility within 2 years of completion of project.

The Great Indian Bustard Sanctuary is located within a distance 5 km. ESZ of the Great

Indian Bustard Sanctuary is located within a distance 1.8 km. Sina River is flowing at a distance of about 7.0 km in SW direction.

Total water requirement is 122 m³/day of which fresh water requirement is 100 m³/day and will be met from MIDC Chincholi. Effluent of 73 m³/day quantity will be treated through ETP on site and will be sent to CETP MIDC Chincholi for final disposal. Sewage will treated in STP and will be reused for gardening.

Power requirement will be 500 kVA and will be met from Maharashtra State Electricity Distribution Company Limited (MSEDCL). Unit has proposed 1 D.G. sets of 250 kVA capacity, will be used as standby during power failure. 18 m tall Stack will be provided meeting CPCB norms for DG sets. Unit has proposed one 2.0 TPH FO fired boiler. Multi cyclone separator followed by bag filter with a stack of height of 30 m will be installed for controlling the particulate emissions within the statutory limit of 115 mg/Nm³ for the proposed boilers.

Details of Process emissions generation and its management:

The process emission from process activity will be subjected to Acid/Alkali Scrubber of 03 Nos of 7000 CFM will be installed to mitigate process emissions

Details of Solid waste/ Hazardous waste generation and its management:

S. No. **WASTE DISPOSAL** QUANTITY 1. Dry Garbage 10 Kg/day Handover to authorized recyclers Wet Garbage 10 Kg/day 2. Vermi Composting Sold to Brick Manufacturers Ash 5 kg/d 3. HDPE/LDTE/ 4. 25 per ay Re- use or sell to Scrap vendors **Gunny Bags**

Non-Hazardous Solid Waste

Hazardous Waste

CAT.	TYPEOFWASTE	QTY.	METHOD OFDISPOSAL
35.3 Sch – I	ETP Sludge	25Kg/D	CHWTSDF @ Ranjangaon
5.1 Sch – I	Used Lubricants	one drum per	Authorized recyclers
33.1 Sch – I	Used Containers	25 Nos.	Decontamination & Re- use or
	(Metal & Plastic)		sell to Scrap vendors
37.3 Sch – I	MEE Residue	few kgs/d	CHWTSDF @ Ranjangaon
28.1 Sch – I	Process Residue	50Kg/D	CHWTSDF @ Ranjangaon
36.1 Sch-I	Distillation	25 Kg/D	CHWTSDF @ Ranjangaon
36.2 Sch-I	Spent Carbon	50 Kg/D	CHWTSDF @ Ranjangaon

Deliberations by the EAC:

The Committee expressed their disappointment on the PFR/EMP reports submitted to the Ministry by the PP/Consultant. The Committee noted large variation in data which the consultant was unable to justify the change in the values of the report. **The**

Committee noted that the distance of the GIB mentioned different at various report, as 7.34 km East direction (in Form-I), 1.8 km in brief, and 2.0 km in presentation. The distance of GIB Sanctuary is the sole criteria to appraise the project at Central Level or State Level. PP could not explain and tried to mislead the EAC with incorrect information. The EMP report is very weak and is not addressing the concerns of the Committee as per provisions of the EIA Notification, 2006.

After detailed deliberations by the Committee members, the consultant agreed the errors/mistakes as identified by the experts in water balance, waste water treatment scheme amongst others. The Committee took a serious note on the discrepancies and desired that an apology letter may be submitted to the EAC and recommended to issue a show cause notice to the consultant [M/s Enviro Analyst and Engineers Pvt. Ltd.] for their casual approach in preparation of PFR/EMP report and presentations.

The committee, accordingly, <u>returned</u> the proposal in the present form and suggested to submit revised proposal with updated Form-I/PFR/EMP reports.

Agenda No. 11.5

Proposed expansion project for manufacturing of various Dyes, Dye intermediates, Polymers and Pharmaceutical Products by M/s. S. V. Dychem Pvt. Ltd. at Survey No. 389, Village: Neja, Vaduchi Mata Mandir Road, Taluka: Khambhat, Dist: Anand, Gujarat- Consideration of Environment Clearance

[Proposal No. IA/GJ/IND3/192834/2019, File No.IA-J-11011/965/2007-IA-II(I)]

The project proponent and the accredited Consultant M/s San Envirotech Pvt. Ltd., made a detailed presentation on the salient features of the project and informed that:

The proposal is for Environmental Clearance to the project for manufacturing various Dyes, Dye Intermediates, Polymers and Pharmaceutical Products @ 160.5 TPM at Survey No. 389, Village Neja, Vaduchi Mata Mandir Road, Taluka Khambhat, District Anand, Gujarat by M/s. S. V. Dychem Pvt. Ltd.

The details of products and capacity are as under:

Sr.	Name of Products	Qty. (MT/month)			
No.		Existing	Proposed	Total	
		as per CCA			
Α	Base				
1	Fast Blue B Base	20	-10	10	
2	Fast Red B Base	0.0	30	30	
3	Fast Scarlet G Base				
4	Fast Bordeaux GP Base				
5	Fast MNPT Base				
В	Naphthols				

	N	0.0		00
1	Naphthol AS	0.0	30	30
2	Naphthol ASG			
3	Naphthol ASBS			
4	Naphthol ASBO			
5	Naphthol ASOL			
С	Carbomers Series			
1	Acrylic Acid Homopolymers	0.0	40	40
2	Acrylic Acid Copolymers			
3	Acrylic Acid Interpolymers			
4	Methacrylic Co-Polymer Type-A			
5	Methacrylic Co-Polymer Type-B			
6	Methacrylic Co-Polymer Type-C			
7	Methacrylic Acid Co-Polymer Aqueous			
D	Pharmaceutical Products			
1	Lidocaine Base/HCI	0.0	50.0	50.0
2	Bupivacaine HCI			
3	L-Bupivacaine			
4	Rupivacaine			
5	Prilocaine			
6	Meloxicam			
7	BisPhenol			
8	Bisacodyl			
9	Sodium Picosulfate			
10	Diclofeniac Sodium			
11	Diclofeniac Dietylamine			
12	Aceclofenac			
13	Pentoxyfylline			
14	Pentaprazole Sodium			
15	Glibenclamide			
16	Pyroxicam			
17	Mesalamine			
18	Carvedilol			
19	Clotrimazole			
20	Ketoconazole			
21	Fluconazole			
22	Bezocaine			
23	R&D products	0.0	0.5	0.5
	Total	20	+140.5	160.5
				1

The project/activities are covered under category A of item 5(f) 'Synthetic organic chemicals industry' of the Schedule to the Environment Impact Assessment Notification, 2006, and requires appraisal at central level by the sectoral Expert Appraisal Committee (EAC) in the Ministry.

The standard ToR has been issued by Ministry vide letter No. IA-J-11011/965/2007-IA-II (I); dated 22/01/2020. Public Hearing for the expansion project has been conducted by the Gujarat Pollution Control Board on 06.10.2020. The main issues raised during public hearing are related to employment to local people and upliftment of surrounding area. No Litigation is pending against the proposal

The Ministry had issued EC earlier vide letter no. IA-J-11011/965/2007-IA-II(I), dated 20.08.2008 to the existing project in favour of M/s. S. V. Dychem Pvt. Ltd. Certified Compliance Report of EC is obtained from GPCB vide letter no. GPCB/CCA-AND-87(3)/ID-12735/588074, dated 08.04.2021.

Existing land area is 4350 m². No additional land will be required for proposed expansion. Expansion will be done within the existing unit. Industry has already developed greenbelt in an area of 770 m² and after expansion it will be 1435 m² (33%) of the total area of the project. The estimated project cost is Rs. 3.75 Crore including existing investment of Rs. 0.75 Crore. Total capital cost earmarked towards environmental pollution control measures is Rs. 0.94 Crore and the Recurring cost (operation and maintenance) will be about Rs. 1.21 Crore per annum. Total employment will be of 40 persons. Industry proposes to allocate Rs. 4.5 Lakhs towards Corporate Environmental Responsibility.

There are no National Parks, Wildlife Sanctuaries, Biosphere Reserves, Tiger/Elephant Reserves, Wildlife Corridors etc. within 10 km distance of the project site. Pond of Lunej Village is at a distance of 1.7 km in NW direction from project site.

Ambient air quality monitoring was carried out at 8 locations during December, 2019 to February, 2020 and the baseline data indicates the ranges of concentration as: PM_{10} (66.4 – 76.1 $\mu g/m^3$), $PM_{2.5}$ (37.7 - 46.7 $\mu g/m^3$), SO_2 (13.4 - 16.8 $\mu g/m^3$), NOx (17.4 - 20.2 $\mu g/m^3$). AAQ modeling study for point source emission indicated that the maximum incremental GLCs after the proposed project would be 1.685 $\mu g/m^3$, 0.721 $\mu g/m^3$, 0.463 $\mu g/m^3$, and 0.042 $\mu g/m^3$ with respect to PM_{10} , SO_2 , NOx and HCI. The resultant concentrations are within the national ambient air quality standards (NAAQS).

Total water requirement is 69.0 m³/day of which fresh water requirement of 42.0 m³/day will be met from Ground Water Source – Bore well. 27.0 m³/day will be recycled/treated water. Total industrial effluent (38.5 KLD) will be taken into ETP, after primary treatment entire effluent passed through RO. RO permeate (37.0 KLD) will be reused within premises and RO reject (11.5 KLD) will be spray dried into in-house spray dryer. Thus, unit proposed to achieve Zero Liquid Discharge (ZLD). Sewage (4.0 KLD) will be disposed into soak pit though septic tank.

Power requirement after expansion will be 200 kVA including existing 100 kVA, which will be sourced from Madhya Gujarat Vij Company Limited (MGVCL). Unit proposed to install one D.G. Set of 250 kVA capacity for the power backup. Stack height of 11 m will be provided as per CPCB norms to the proposed DG set.

Existing unit has Agro Briquettes fired one Boiler (0.5 TPH) and one Hot Air Generator. After expansion, there will be addition of one Agro Briquettes fired Boiler (1.0 TPH). Cyclone and

Bag filter with a stack of height of 30 m will be installed for controlling the particulate emissions within the statutory limit of 150 mg/Nm³ for the proposed utilities.

At present, process emission generation will be from vent attached with Spray Dryer (for effluent). Cyclone separator followed by wet scrubber is installed as APCM on Spray Dryer. After expansion, 2 vents will be added – one vent of Reaction Vessel and one vent of Fluid Bed Dryer (200 kg/hr.). Water & Alkali Scrubber will be provided as APCM for Reaction Vessel and in built bag filter will be provided as APCM for Fluid Bed Dryer.

Details of Solid waste/Hazardous waste generation and its management.

Sr	Type of	Category	Qua	Quantity (MT/Month)		Method of Disposal
	Waste	as per Haz	Existin	Propose	Total	
No.		waste	g	d	After	
		rules, 2016			Expansio	
					n	
1.	ETP Waste	35.3	1.5	48.5	50.0	Collection, Storage,
						Transportation,
						disposal at TSDF Site
2.	Salt of	35.3	2.0	13.0	15.0	Collection, Storage,
	Spray Dryer					Transportation,
						disposal at TSDF Site
3.	Used Oil	5.1	8.0		8.0	Collection, storage,
			MTPA		MTPA	transportation & use
						within premises as a
						lubricant/sell to
						registered recycler.
4.	Discarded	33.1	100	500	600	Collection, Storage,
	Containers		Nos/	Nos/	Nos/	reuse for packing, in
	&		Month	Month	Month	case of excess, it will be
	Bags/Liners		0.5	0.5	0.5	sold to approved
			MTP	MTPM	MTPM	recycler or traders.
			M			
5.	Distillation	20.3	0.0	20.0	20.0	Collection, Storage,
	Residue					Transportation,
						Disposal at CHWIF or
						Co-processing in
						cement plant.
6.	Used	28.3	0.0	2.5	2.5	Collection, Storage,
	Carbon					Transportation,
	/Hyflow					Disposal at CHWIF or
						Co-processing in
						cement plant.
7	Sport	26.2	0.0	140	140	Sold to actual usars as
7.	Spent Sulphuric	26.3	0.0	140	140	Sold to actual users as per Rule-9 of HAZ
	Acid					per Rule-9 of HAZ Rules.
	ACIU					Rules.

	(60-65 %)					
8.	Acetic Acid	26.3	0.0	14.0	14.0	Captive use for our
	(90 to 98%)					other products
						manufacturing; and
						Sold to actual users as
						per Rule-9 of HAZ
						Rules in case of excess.
9.	HCI	26.3	0.0	25.0	25.0	Captive use for our
	(20-25%)					other products
						manufacturing; and
						Sold to actual users as
						per Rule-9 of HAZ
						Rules in case of excess.
10	Sodium		0.0	14.0	14.0	Sold to actual users as
	Bromide					per Rule-9 of HAZ
						Rules.
11	Sodium		0.0	125.0	125.0	Sold to actual users as
	Acetate					per Rule-9 of HAZ
						Rules.
12	Off	28.4	0.0	Whatev	Whatev	Collection, Storage,
	specificatio			er	er	Transportation,
	n			generat	generat	Disposal by Incineration
	products			ed	ed	at CHWIF or Co-
13	Date-	28.5				processing.
	expired					
	products					

Deliberations in the EAC:

The EAC, constituted under the provision of the EIA Notification, 2006 comprising Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in the desired format along with EIA/EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of his knowledge and belief and no information has been suppressed in the EIA/EMP reports. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee noted that the EIA/EMP reports are in order and compliance of the ToR issued for the project, reflecting the present environmental status and the projected scenario for all the environmental components. The Committee found the baseline data and incremental GLC due to the proposed project. The Committee deliberated the action plan on mitigation measures on various impacts due to project. The Committee also deliberated on the activities/action plans and found to be addressing the public hearing issues. The Committee suggested that the storage of toxic/explosive raw materials shall be bare

minimum in quantity and inventory. The Committee also suggested the PP to increase the greenbelt density and improve the rainwater harvesting system. The Committee noted that the PP submitted an undertaking to provide greenbelt in 33% area. The Committee noted that Ministry had issued EC dated 20.08.2008 to the existing project. The project proponent submitted the certified Compliance Report issued by the Gujarat PCB vide letter no. GPCB/CCA-AND-87(3)/ID-12735/588074, dated 08.04.2021. The Committee deliberated on the certified compliance report and the additional details submitted by the PP and found the same in order.

The EAC deliberated on the proposal with due diligence in the process as notified under the provisions of the EIA Notification, 2006, as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC found the proposal in order and recommended for grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time, from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, and <u>subject to compliance of terms and conditions</u> as under, and general terms and conditions given in Annexure:-

- (i). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the EIA/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
- (ii). As already committed by the project proponent, Zero Liquid Discharge shall be ensured and no waste/treated water shall be discharged outside the premises. Treated effluent shall be reused in the process/utilities. Treated Industrial effluent shall not be used for gardening/greenbelt development/horticulture.
- (iii). Continuous online (24x7) monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For online continuous monitoring of effluent, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises.
- (iv). The storage of toxic/hazardous raw material shall be bare minimum with respect to quantity and inventory. Quantity and days of storage shall be submitted to the Regional Office of Ministry and SPCB along with the compliance report.

- (v). Occupational health centre for surveillance of the worker's health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/masks for personal protection.
- (vi). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall be provided to employees. The project proponent shall ensure safety awareness programme for employees and nearby villagers.
- (vii). The unit shall make the arrangements for the prevention and protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms.
- (viii). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pumps shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space specified safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valve to prevent losses. (f) All the solvent storage tanks shall be connected vent condensers with chilled brine circulation.
- (ix). Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled at 99.996% with effective chillers/modern technology.
- (x). Total fresh water requirement shall not exceed 42 cum/day, proposed to be met from borewell. Prior permission in this regard shall be obtained from the concerned regulatory authority/CGWA and renewed from time to time.
- (xi). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.
- (xii). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of byproducts from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.
- (xiii). The green belt of at least 5-10 m width shall be developed over nearly 33% of the total project area, mainly along the plant periphery/adjacent areas. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing map. Trees have to be planted with spacing of 2m x 2m and the number of trees shall have to be increased accordingly. The plant species can be selected that will give better carbon sequestration. All trees must be planted within first year.

- (xiv). As proposed, at least Rs 2 lakhs shall be allocated for the conservation plan for Schedule- I species.
- (xv). The activities and the action plan proposed by the project proponent to address the socio-economic and public hearing issues in the study area, shall be completed as per the schedule presented before the Committee and as described in the EMP report in letter and spirit.
- (xvi). A separate Environmental Management Cell (having qualified person with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Agenda No. 11.6

Proposed expansion of the manufacture of Agrochemical & Agrochemical Intermediate Products in existing Unit (From 1265 MTPM To 2350 MTPM To 1802 MTPM) located at Plot No. 43/1 & 43/3, GIDC Dahej, Taluka: Vagra, Dist. – Bharuch, Gujarat by M/s. Tagros Chemicals India Pvt. Ltd. - Consideration of Environmental Clearance

[Proposal No. IA/GJ/IND2/52237/2016, File No. J-11011/122/2016- IA II(I)]

The Project Proponent and the accredited Consultant M/s. Aqua-Air Environmental Engineers Pvt. Ltd. made a detailed presentation on the salient features of the project and informed that:

The proposal is for environmental clearance to the project for Expansion of Agrochemical & Agrochemical Intermediate Products from 1265 TPM to 1802 TPM at Plot No. 43/1 & 43/3, GIDC Dahej, Taluka Vagra, District Bharuch, Gujarat by M/s Tagros Chemicals India Pvt. Ltd.

The details of products and capacity as under:

S. No.	Product Name	Existing (MT/MONT	**Existing (MT/MONT	TOTAL PROPOSD	CAS NOS.	LD ₅₀ (mg/kg)
		H)	H)	(MT/MONT		
PEST	 	 DES INTERM	EDIATES	H)		
1		200	250		52314-	4123
1	DV Acid Chloride				67-7	0
		100	100		122836-	>2855
2	Sulfentrazone			751	35-5	
	Meta Phenoxy	200	250		39515-	1222
3	Benzaldehyde				51-0	
4	Meta Phenoxy	100	100		13826-	2040

	Benzyl Alcohol				35-2	
	,	30	30	<u>-</u>	59042-	>2000
5	RRCMA				50-8	
		75	100	-	52645-	430 to
6	Permethrin Tech.				53-1	4000
	Thiamethoxam	50	100	-	153719-	>2000
7					23-4	
		50	100	-	26225-	>8743
8	Ethofumesate				79-6	
		150			1 0 0	Oral -
	Cypermethrin		200	200	52315-	>355
	Tech.				07-8	Dermal
						- >2000
9	OR					7 2000
3	J I		0	431	447399-	>5000
	Phoenix			101	55-5	70000
	THOCHIA	50			000	Oral -
	Alphamethrin	00	75	75	67375-	>400
10	Tech.		70	70	30-8	Dermal
10	10011.					- >2000
		50	500	100	1918-00-	>2740
11	Dicamba	00		100	9	72140
' '	Deltamethrin	10	30	30	52918-	>2000
12	Tech.	10	30	30	63-5	/2000
12	10011.	100	150	50	128621-	>4000
13	Carfentrazone	100	130	30	72-7	>4000
10	Carteritiazone	100	150	150	41394-	>4000
14	Metamitron	100	130	130	05-2	>4000
15	Bio Pesticides		215	215	03-2	
15	TOTAL	1265	2350	1802	-	-
INIOD	GANIC PRODUCTS				ATION 2006	<u> </u>
INON	PAC/AICI ₃	572.50	656.75	2114.18	1327-41-	2000
15	FAO/AICI3	372.30	030.73	2114.10	9	2000
13	Sodium Sulphite	560.7	747.6	694.68	7757-83-	820
16	Powder	500.7	747.0	034.00	7	020
10	NH ₄ Cl Powder	162.7	216.6	492.15	12125-	1300
17	INI 14CI FOWGEI	102.7	210.0	492.13	02-9	1300
17	KCI Powder	124.4	137.5	629.6	7447-40-	2020
18	KCi Powdei	124.4	137.5	029.0	7447-40-	3020
10	TOTAL	1420.3	1758.45	3930.61	<u>'</u>	
DV D		1420.3	1756.45	3930.01		
DIP	RODUCTS:	606.51	606 F1	1622.2	7647.04	220 277
1	HCI Solution	เ ช.ฮบบ	606.51	1022.2	7647-01-	238-277
	Cu (OH)- Davidar	2.40	0.60	7.00		200
2	Cu (OH) ₂ Powder	2.10	2.63	7.89	20427-	200
	Chant Asid	2000 7	7040	40700.04	59-2	
3	Spent Acid	3333.7	7618	12783.34	7664-93-	2440
					9	

101AL 3942.31 0221.14 14413.43	TOTAL	3942.31	8227.14	14413.43		
--------------------------------	-------	---------	---------	----------	--	--

** - Environmental Clearance granted by the Ministry vide letter dated 25th February, 2019 vide letter no. J-11011/122/2016–IA II (I) 25th February, 2019 and its amendment obtained vide letter no. J-11011/122/2016–IA II (I) dated 25th February, 2020 & again its amendment vide letter no. J-11011/122/2016–IA II (I) dated 11th December, 2020

The project/activities are covered under category 'A' of item 5(b) 'Pesticides industry and pesticide specific intermediates' of the Schedule to the Environment Impact Assessment Notification, 2006, and requires appraisal at central level by the sectoral Expert Appraisal Committee (EAC) in the Ministry.

The Standard ToR has been issued by Ministry vide letter dated 16th April 2021. Unit is located in Notified Industrial estate. Hence, Public hearing is exempted. There is no litigation pending against the proposal.

The Ministry had issued EC earlier vide letter no. J-11011/122/2016–IA II (I) Dated 25th February, 2019 for Expansion of Agrochemical and Agrochemical Intermediates to the existing project in favor of M/s Tagros Chemicals India Ltd. EC amendment obtained vide letter dated 25th February, 2020 & amendment vide letter dated 11th December, 2020. Unit have obtained EC for expansion from 1265 MTPM to 2350 MTPM but have not yet implemented that EC and now proposed expansion from 1265 MTPM to 2350 MTPM to 1802 MTPM. Final Production quantity required after proposed expansion will be 1802 MTPM. PP obtained Certified Compliance Report from RO, MoEFCC Bhopal vide letter dated 27/11/2017.

Existing land area is 102126.81 m², no additional land will be used for proposed expansion. Industry will develop Greenbelt in an area of 33% i.e., 33937 m² out of 102126.81 m² of area of the project. Ultimately overall green belt will be 33% i.e. 33937 m² out of 102126.81 m² total area of the project. The estimated project cost is Rs. 378.41 Crores including existing investment of Rs. 171.41 Crores. Total capital cost earmarked towards environmental pollution control measures is Rs. 60.07 Crores and the Recurring cost (operation and maintenance) will be about Rs. 49.3 Crores per annum. Total Employment will be 345 persons as direct 300 persons indirect after expansion. Industry proposes to allocate Rs. 1.55 Crores (approx.) in next 4 years towards Corporate Environment Responsibility There are No national parks, wildlife sanctuaries, Biosphere Reserves, Tiger/Elephant Reserves, Wildlife Corridors etc. lies within 10 km distance from the project site. River/ waterbody Narmada is flowing at distance of 5.30 Km in South direction.

Ambient air quality monitoring was carried out at 8 locations during October, 2020 to December, 2020 and the baseline data indicates the ranges of concentrations as: PM10 $(74.42-78.12~\mu g/m3)$, PM2.5 $(43.35-46.68~\mu g/m3)$, SO2 $(15.59-17.72~\mu g/m3)$ and NO2 $(16.76-19.48~\mu g/m3)$ respectively. AAQ modeling study for point source emissions indicates that the maximum incremental GLCs after the proposed project would be $1.49~\mu g/m3$, $2.43~\mu g/m3$ and $0.76~\mu g/m3$ with respect to PM, SOx and NOx. The resultant concentrations are within the National Ambient Air Quality Standards (NAAQS).

Total water requirement is 2353 m3/day and will be met from GIDC Water Supply. The wastewater generation after proposed expansion will be 1474 KL/day. Effluent generated

shall be treated in ETP consisting of primary, secondary and tertiary treatment facility followed by MEE Unit. Total treated wastewater generated i.e. 1474 KL/day shall be sent to GIDC effluent pipeline for final disposal into deep sea.

Power requirement after expansion will be 9 MW including existing 5.5 MW and will be met from Dakshin Gujarat Vij Company Limited (DGVCL). Additionally, 6 Nos. DG sets 1010 KVA x 3 Nos. & 2250 KVA x 3 Nos. capacity are used as standby during power failure. Stack (height 10 m & 30 m) will be provided as per CPCB norms to the proposed DG sets.

Additionally, 3 Nos. of 16 TPH & 2 Nos. of 30 TPH Boilers, 2 Nos. of Thermopack, 9 Nos. of Spin Flash Dryers, 6 Nos. of DG Sets & 9 Nos. of Process Vents will be installed. Adequate Stack Height with a stack of height of 45 m, 30 m, 16 m & 10 m will be installed for controlling the particulate emissions within the statutory limit of 150 mg/Nm3 for the proposed boilers.

Details of Process emissions generation and its management.

Flue Gas Stack

S. NO.	STACKS ATTACHED TO	HEIGHT FROM GROUND LEVEL (m)	CONSUMPT ION OF FUEL (KL/hr)	DIAMETE R (m)	EXPECTED POLLUTANTS
1.	Boiler-1, 2 & 3 (Capacity 16 TPH each)	45*	Coal	1.5	SPM, SO ₂ , NO _X
	Boiler- 4 & 5 (Capacity 30 TPH each)	45*			
2.	Thermopack – 1, 2 Nos.	30	Bio Mass (Briquettes)	0.90	SPM, SO ₂ , NO _X
3.	D.G. Set-1, 2 & 3. (1010 KVA)	10	HSD	0.20	SPM, SO ₂ , NO _X
4.	D.G. Set-4, 5 &6 Nos. (2250 KVA)	30	HSD	0.30	SPM, SO ₂ , NO _X
5.	Spin Flash Dryer (9 Nos.)	16			PM

Process Stack

S. NO.	PROCESS STACK ATTACHED TO	HEIGHT FROM GROUND (m)	DIAMET ER (mm)	AIR POLLUTION CONTROL SYSTEM	EXPECTED POLLUTANT S
1	Multipurpose Plant-1	15	100	Two stage water scrubber followed by alkali scrubber	SO ₂ , HCI, HBr, Cl ₂
2	Multipurpose Plant-2	15	100	Two stage water scrubber followed by alkali scrubber	SO ₂ , HCI, HBr, Cl ₂
3	Multipurpose	15	100	Two stage water scrubber	SO ₂ , HCI,

	Plant-3			followed by alkali scrubber	HBr, Cl ₂
4	Multipurpose	15	100	Two stage water scrubber	SO ₂ , HCI,
	Plant-4			followed by alkali scrubber	HBr, Cl ₂
5	Multipurpose	15	100	Two stage water scrubber	SO ₂ , HCI,
	Plant-5			followed by alkali	HBr, Cl ₂
				scrubber	
6	Multipurpose	15	100	Two stage water scrubber	SO ₂ , HCI,
	Plant-6			followed by alkali	HBr, Cl ₂
				scrubber	
7	Multipurpose	15	100	Two stage water scrubber	SO ₂ , HCI,
	Plant-7			followed by alkali	HBr, Cl ₂
				scrubber	
8	Multipurpose	15	100	Two stage water scrubber	SO ₂ , HCI,
	Plant-8			followed by alkali	HBr, Cl ₂
				scrubber	
9	Multipurpose	15	100	Two stage water scrubber	SO ₂ , HCI,
	Plant-9			followed by alkali	HBr, Cl ₂
				scrubber	

Details of Solid waste/ Hazardous waste generation and its management. 13 Categories of Hazardous/Solid Wastes shall be generated from this Unit.

- (i). Used Lube Oil @ 670.8 Liters/month which shall be Collected, Stored, Transported & Disposed by sale to GPCB authorized Recyclers.
- (ii). Discarded Drums & containers @ 40 MTPM & Discarded liners & cardboards @ 6 MTPM which shall be Collected, Stored, decontaminated, recycled/Reused & transported back to the supplier for reuse or sold to GPCB authorized vendor.
- (iii). Cotton wastes/ raw dust / bag filters containing pesticides @ 0.2 MTPM which shall be Collected, Stored, Transported for co-processing at cement industry or common incineration facility.
- (iv). Date expired pesticides @ 0.357 MTPM which shall be Collected, Stored, Transported & send back for regeneration or return to suppliers.
- (v). Spent catalyst (Reney Nickel Catalyst) @ 97.28 MTPM which shall be Collected, Stored, Transported & send back for regeneration or return to suppliers or sold to authorized vendors.
- (vi). Process/ Distillation Residue @ 225 MTPM & MEE Stripper Solvent/ Residual Waste After Process Waste Treatment @ 165 MTPM which shall be Collected, Stored, Transported & disposed by co-processing at AFR cement industries or sent to common incineration facility
- (vii). ETP Sludge @ 639.3 MTPM which shall be Collected, Stored & Transported to authorized TSDF for land filling/ Send to NPK Fertilizer manufacturers.
- (viii). MEE Salt @ 2400 MTPM, Spent Carbon from ETP @ 250 MTPM & Sludge from wet scrubber @ 2 MTPM which shall be Collected, Stored & Transported to authorized TSDF for land filling.
- (ix). Spent Ion Exchange Resins @ 0.184 MTPM which shall be Collected, Stored, Transported, disposed by giving for regeneration or return back to supplier.

- (x). Spent Solvent @ 300 MTPM which shall be Collected, Stored, transported & recovered within premises or recovery at other solvent recovery unit or sell to other authorized industry.
- (xi). Fly ash (Coal Ash) @ 600 MTPM which shall be Collected, Stored, Transported and Final Disposal at bricks manufacturers or land filling or disposal at common TSDF site.

Deliberations in the EAC:

The EAC, constituted under the provision of the EIA Notification, 2006 comprising Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in desired format along with EIA/EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of his knowledge and belief and no information has been suppressed in the EIA/EMP report. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee noted that the EIA/EMP reports are in compliance of the ToR issued for the project, considering the present environmental status and the projected scenario for all the environmental components. The Committee found the baseline data and incremental GLC due to the proposed project within NAAQ standards. The Committee also deliberated on the activities/action plans and found to be addressing the issues in the study area. The Committee suggested that the storage of toxic/explosive raw material shall be bare minimum in quantity and inventory. The Committee suggested that the greenbelt development shall be taken up actively by the PP and at least 8500 trees shall be planted at the intervals of 2m x 2m. The PP informed that the greenbelt was destroyed due to fire accident in the unit earlier. The Committee also suggested PP to implement recycling of water and utilize 40 KLD of domestic water after treatment in STP for greenbelt development. It was also suggested to reduce the effluent quantity upto 30% within a span of five years and to reduce fresh water accordingly. Considering the critical nature of the area, the Committee suggested PP to use natural gas/briquette in place of coal and only during exigency imported coal (Sulphur < 0.5%) shall be used. The Committee also noted that Ministry had issued EC earlier dated 11th December, 2020 for expansion from 1265 TPM to 2350 TPM but the same has not been implemented. The certified Compliance Report of existing operation EC forwarded by the Ministry's RO, Bhopal vide letter dated 27/11/2017 was found to be satisfactory.

The EAC deliberated on the proposal with due diligence in the process as notified under the provisions of the EIA Notification, 2006, and as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC found the proposal in order and recommended for grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its subsequent amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time, from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, and <u>subject to compliance of terms and conditions</u> as under, and general terms and conditions given in Annexure:-

- (i). No banned pesticides/chemicals shall be manufactured by the project proponent. No banned raw materials shall be used in the unit. The project proponent shall adhere to the notifications/guidelines of the Government in this regard.
- (ii). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the EIA/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
- (iii). The treated effluent of 1474 cum/day proposed to send to GIDC effluent pipeline for final disposal into deep sea, shall conform to the standards prescribed under the Environment (Protection) Act, 1986. The project proponent shall achieve improvement in recycle and reuse of the treated water in the unit to reduce the fresh water demand and waste disposal, and there shall be at least 30% reduction in the effluent discharge within five years.
- (iv). Domestic effluent of 40 KLD shall be treated in the STP and used for greenbelt development.
- (v). Continuous online (24x7) monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For online continuous monitoring of effluent, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises.
- (vi). The storage of toxic/hazardous raw material shall be bare minimum with respect to quantity and inventory. Quantity and days of storage shall be submitted to the Regional Office of Ministry and SPCB along with the compliance report.
- (vii). Occupational health centre for surveillance of the worker's health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/mask for personal protection.
- (viii). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall be provided to employees.

- (ix). The unit shall make necessary arrangement for the prevention and protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms.
- (x). Necessary precautions shall be taken to avoid accidents and action plan shall be implemented for avoiding accidents.
- (xi). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space specified with all safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valve to prevent losses. (f) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.
- (xii). Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled at 99.996% with effective chillers/modern technology.
- (xiii). Natural gas/briquette shall be used in place of coal, and only during emergency imported coal with sulphur content less than 0.5% shall be used.
- (xiv). Total fresh water requirement shall not exceed 2353 cum/day, proposed to be met from GIDC water supply. Prior permission in this regard shall be obtained from the concerned regulatory authority. The PP shall achieve improvement in recycle and reuse of water every year and over a period of 5 years, PP shall increase recycled quantum to 30% of total water consumption. After 5 years, only 30 % of the present fresh water requirement shall be used.
- (xv). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.
- (xvi). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of byproducts from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.
- (xvii). The green belt of at least 5-10 m width shall be developed in nearly 33% of the total project area (at least 8500 trees), mainly along the plant periphery/adjacent areas. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing map. Trees have to be planted with spacing of 2m x 2m and number of trees shall have to be increased accordingly. The plant species can be selected that will

give better carbon sequestration and plantation shall be started from first year onwards.

- (xviii). The activities and the action plan proposed by the project proponent to address the socio-economic issues in the study area, shall be completed as per the schedule presented before the Committee and as described in the EMP report in letter and spirit.
- (xix). A separate Environmental Management Cell (having qualified person with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Agenda No. 11.7

Setting up of Active Pharmaceutical Ingredients API manufacturing unit of capacity 51 TPM by M/s Jet Life Sciences located at Plot No's. 15, 16 & 25, Kadechur Industrial Area, Yadagir Taluk & District, Karnataka- Environment Clearance - reg.

[Proposal No. IA/KA/IND2/206828/2021, File No. J-11011/221/2021-IA II (I)]

The project proponent and the accredited consultant M/s. AM Enviro Engineers, made a detailed presentation on the salient features of the project and informed that:

The proposal is for grant of environmental clearance (EC) to the proposed project for setting up of Active Pharmaceutical Ingredients API manufacturing unit of capacity 51 TPM by M/s Jet Life Sciences located at Plot No's. 15, 16 & 25, Kadechur Industrial Area, Yadagir Taluk & District, Karnataka.

The details of products and capacity as under:

S. No	Products	Qty. in TPM	CAS No.	Therapeutic Use
1	Anastrozole	3	120511-73-1	To treat breast cancer
2	Atorvastatin Calcium	5	134523-03-8	To treat cholesterol
3	Bicalutamide	1	90357-06-5	To treat metastatic prostate cancer
4	Bortezomib	1	179324-69-7	Multiple myeloma
5	Busulfan	1	55-98-1	Chronic myelogenous leukemia
6	Clopidogrel Bisulphate	5	120202-66-6	To treat the symptoms of acute coronary syndrome
7	Dolutegravir Sodium	2	1051375-19-9	Anti retroviral (ARV) for treatment of HIV infection
8	Domperidone	3	57808-66-9	Anti-sickness
9	Famotidine	3	76824-35-6	To treat gastritis
10	Gefitinib	2	184475-35-2	Anti cancer (lung cancer)

11	Gemcitabine HCI	2	122111-03-9	Anti cancer
12	Irinotecan HCI	1	136-572-09-3	Topoisomerase I inhibitors
13	Itraconazole	5	84625-61-6	Anti fungus
14	Ivabradine HCI	2	148849-67-6	To treat heart disease
15	Lacosamide	2	175481-36-4	To prevent and control seizures
16	Lenalidomide	1	191732-72-6	To treat anemia
17	Linagliptin	5	668270-12-0	Anti diabetic
18	Linezolid	5		Antibiotic
19	Montelukast Sodium	2	151767-02-1	To prevent wheezing
20	Myrtecaine	5	7712-50-7	Muscle strains, Tendinitis or ligament sprains and Joint pain
21	Nebivolol HCI	5	152520-56-4	To treat high blood pressure
22	Olmesartan	3	144689-63-4	To treat high blood pressure
23	Omeprazole	8	73590-58-6	Indigestion and heartburn and acid reflux
24	Ondansetron HCL Dihydrate	4	103639-04-9	To prevent nausea and vomiting
25	Pantoprazole Sodium	8	138786-67-1	To treat gastritis
26	Rabeprazole Sodium	3	117976-90-6	To treat gastritis
27	Rosuvastatin Calcium	4	147098-20-2	To manage cholesterol
28	Saquinavir Mesylate	1	149845-06-7	HIV medications
29	Sitagliptin Phosphate	2	654671-77-9	To control high blood sugar
30	Sorafenib	1	284461-73-0	To treat cancer
31	Sparfloxacin	3	110871-86-8	Antibiotic
32	Stavudine	1	3056-17-5	Nucleoside reverse transcriptase inhibitors
33	Tadalafil	2	171596-29-5	To treat erection problems
34	Telmisartan	5	144701-48-4	Anti hypertensive
35	Temozolomide	1	85622-93-1	Alkylating agents- To treat brain tumor
36	Thalidomide	1	50-35-1	To treat a skin condition and cancer
37	Topiramate	10	97240-79-4	To prevent migraine headaches
38	Vildagliptin	2	274901-16-5	Antidiabetic
39	Voriconazole	2	137234-62-9	Anti fungus
40	Zoledronic acid	1	165800-06-6	To treat high levels of calcium
	Total	123		
	Total (8 Products)	51 TPM		

LIST OF BY-PRODUCTS AND ITS QUANTITIES

S. No	Product	By-Product	Quantity (Kgs/Day)
1	Famotidine	Potassium chloride	53.14
2	Dentenrazala Cadium	Potassium Sulphate	60
2	Pantoprazole Sodium	Ammonium Phosphate	35

		Sodium Acetate	110				
		Ammonium Chloride	72.25				
3	Rosuvastatin calcium	Triphenyl phosphine oxide	100.04				
4	Telmisartan	Sodium phosphate	150.56				
5	Topiramate	Pyridine hydrochloride	130.96				
N	Note: The quantity of By-products based on respective products being manufactured.						

The project/activity is covered under Category 'B2' of item 5 (f) 'Synthetic, Organic Chemicals Industry' of the schedule to the Environment Impact Assessment (EIA) Notification, 2006 and its amendment dated 27.03.2020 and 15.10.2020. Due to applicability of general conditions (interstate boundary within 5 km), the project requires appraisal at central level by the sectoral Expert Appraisal Committee (EAC) in the Ministry.

The proposed project will be established in a land area of 4.5 Acres (18,207 Sqm). Industry will develop greenbelt in an area of 6,020 Sqm which is 33% out of the total project area. The proposed project cost is about Rs.10 Crores. Total capital cost earmarked towards environmental pollution control measures is Rs.105 Lakhs and the recurring cost (operation and maintenance) will be about Rs.28 lakhs per annum. Total Employment under proposed project will be of 120 persons. Industry proposes to allocate 8 Lakhs towards Corporate Environmental Responsibility.

There are no National parks, Wildlife sanctuaries, Biosphere Reserves, Tiger/ Elephant Reserves, Wildlife Corridors etc. lies within 10 km distance. Kadechur lake is flowing at a distance of 1.2 km in the North-East direction.

Total water requirement is 187.1 KLD and will be met from KIADB. Generated effluent of 85.7 KLD will be treated through Common Effluent Treatment Plant CETP, Kadechur.

Power requirement of project will be 750 kVA and will be met from GESCOM. The unit is proposed to install 1X250 KVA & 1X500 KVA of DG Set with stack height of 4 & 5m respectively will be provided as per CPCB norms. The unit has proposed to install 1X2TPH & 1X3TPH Briquettes/Coal fired boiler with stack of height 30 m. Multi Cyclone separator will be installed for the boiler for controlling the particulate emissions-(within statutory limit of 115 mg/ Nm³).

Details of Process emissions generation and its management.

S. No	Name of the	Quantity in	Treatment	Disposal Method after			
O. Ho	Gas	Kg/Day	Method	treatment			
1	Hydrogen chloride	192.78	Scrubbed by	Generated Dil. HCl will be reused within the industry			
2	Ammonia	63.47	using water media	Generated NH ₄ OH will be reused within the industry			
3	Sulfur dioxide	144.84	Scrubbed by using C.S. Lye	Residues from the reaction will be sent to TSDF			
4	Hydrogen Bromide	53.56	solution	Residues from the reaction will be sent to TSDF			

5	Oxygen	30.91	Diaparaed into	-
6	Carbon dioxide	347.83	Dispersed into atmosphere	-
7	Nitrogen	5.42	attilospilete	-
8	Hydrogen	17.66	Dispersed into atmosphere through flame arrester	-
9	Pentane	9.199	Dispersed into atmosphere through Nitrogen	-

Details of Solid waste & Hazardous waste generation and its management.

S. No	Category of the HW	Hazardous Waste	Quantity	Disposal Method						
Hazardous waste generation from plant										
1	5.1	Waste oils & Grease/ Used Mineral oil	0.4 KL/Annum	Agencies authorized by KSPCB						
2	5.2	Oil Soaked Cotton	2 Kgs/month	KSPCB authorized Vendor						
3	20.3	Distillation Residue	671 kgs/day	Store in secured manner and hand over to authorized cement industry for Co-processing						
4	28.1	Process Residues & Waste	3190 kg/day	Store in secured manner and hand over to authorized cement industry for Co- processing/TSDF						
5	28.2	Spent Catalyst	77.2 Kgs/day	Store in secured manner and hand over to authorized recycler						
6	28.3	Spent Carbon	217 Kgs/Day	Store in secured manner and hand over to authorized cement industry for Co-processing						
7	28.4	Off Specification Products	1 TPM	Store in secured manner and hand over to authorized cement industry for Coprocessing/TSDF						
8	28.5	Date expired products	700 Kgs/Month	Store in secured manner and hand over to authorized cement industry for Co- processing/TSDF						
9	33.1	Detoxified-Container & Container Liners of	500 No's/Month	After complete detoxification,						

		Hazardous Chemicals and Wastes		shall be disposed to the outside agencies.							
10	33.2	Contaminated cotton rags or other cleaning materials	50Kgs/month	Store in secured manner and hand over to KSPCB Authorized Vendor							
11	A1160	Used Lead Acid batteries	5No's/Annum	Returned back to dealer/ Supplier							
	Other & Miscellaneous Solid Wastes										
12		Coal ash	2000 kgs/day	Sent to Brick Manufacturers							
13		Briquette ash	4200 kgs/day	Sent to Fertilizer industries							
14		Residue from scrubber	272 kgs/day	Shall be stored in secured manner & handed over to TSDF.							
15		Used PPE	10 Kgs/ Month	Sent to authorized vendor							
16		E- Waste	150 Kgs/ Annum	Authorized recyclers							
17		Plastic Waste	200 Kgs/ Annum	Authorized recyclers							
18		Metal Scrap	5 TPA	Sale to outside agencies/ recyclers							
19		Used Filters (HEPA filters, Oil Filters etc.)	50 Nos /year	Sent to TSDF							
20		Used / Discarded RO Membranes	0.3 TPA	Sent to TSDF							

The Committee was informed that the Ministry has recently issued an Office Memorandum dated 28.01.2021 which inter-alia request EAC to clearly recommend the permissible pollution load i.e., quantity and quality, including composition of emissions, discharge and solid waste generation. In compliance this OM, PP has submitted the following pollution load information and the EAC deliberated on the issue. PP also requested that EC may include the name of products also otherwise PP will face difficulty in obtaining the CTE/CTO from concerned SPCB.

Kg per day														
EFFLUENT WATER						SOLID WASTE								
Water in put	Water in Effluent	Organics in effluents	SQL	COD	HTDS	LTDS	Total Effluent	Organic	In Organic	Spent	Spent	Process	Emission	residue

48995.6	49711.95	90.606	2037	1472.82	37963.9	5604.49	43568.44	2378.55	810.98	216.56	77.16	592.05	671	
---------	----------	--------	------	---------	---------	---------	----------	---------	--------	--------	-------	--------	-----	--

HAZARDOUS SOLID WASTE DETAILS

Organic solid waste	Inorganic solid waste	Spent Carbon	Distillation Residue
Kg/day	Kg/day	Kg/day	Kg/day
2378.55	810.98	216.56	671

EMISSION DETAILS

Kg/day								
HCI	CO ₂	H ₂	NH ₃	HBr	N ₂	SO ₂	O ₂	C ₅ H ₁₂
192.78	347.83	17.66	63.47	53.56	5.42	144.84	30.91	9.2

Deliberations by the EAC:

The EAC, constituted under the provision of the EIA Notification, 2006 comprising of Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in the desired format along with PFR & EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of their knowledge and belief and no information has been suppressed in the PFR & EMP reports. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee was further informed that the Ministry has recently issued an Office Memorandum dated 28.01.2021 and inter-alia requested that EAC shall clearly recommend the permissible pollution load i.e. quantity and quality, including composition, of emissions, discharge and solid waste generation. In compliance of this OM, PP has submitted the pollution load and the EAC also deliberated on the pollution load as estimated by the PP/Consultant.

The Committee noted that the PFR/EMP reports reflect the present environmental status and the projected scenario for all the environmental components. The Committee deliberated on the action plan and budget allocation for green belt development and suggested to complete plantation in one year. The Committee deliberated on the proposed mitigation measure towards Air, Water, Noise and Soil pollutions. The Committee suggested use of coal having ash content less than 15% only during the rainy season when the Biomass Briquettes may not be available. The Committee also suggested that the storage of toxic/explosive raw materials/products shall be undertaken with utmost precautions and

following the safety norms and best practices. The Committee suggested increase in the use percentage of recycled water and effective mitigation of VOCs.

The EAC deliberated on the proposal with due diligence using the process as notified under the provisions of the EIA Notification, 2006, as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC also found the proposal in order and recommended for the grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its subsequent amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time, from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, and <u>subject to compliance of terms and conditions</u> as under, and general terms and conditions given in Annexure:-

- (i). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the PFR/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
- (ii). Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled at 99.997% with effective chillers/modern technology. Regular monitoring of VOCs shall be carried out.
- (iii). Occupational health centre for surveillance of the worker's health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/mask for personal protection.
- (iv). Treated effluent shall be reused in the process/utilities. Treated Industrial effluent shall not be used for gardening/greenbelt development/horticulture purpose.
- (v). The unit shall make the arrangement for the prevention and protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms. Mock drill shall be conducted regularly.
- (vi). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall be provided to employees.
- (vii). Total fresh water requirement, sourced from KIADB, shall not exceed 187.1 KLD. Prior permission in this regard shall be obtained from the concerned regulatory authority.

- (viii). As committed by the PP, coal having ash content less than 15% is to be used as fuel only during the rainy season when the Biomass Briquettes may not be available and during all other seasons only biomass briquettes shall be used.
- (ix). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.
- (x). Continuous online (24x7) monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For ZLD, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises (if applicable).
- (xi). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space provided with all safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valves to prevent losses. (f) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.
- (xii). Process organic residue and spent carbon, if any, shall be sent to Cement or other suitable industries for its incinerations. ETP sludge, process inorganic & evaporation salt shall be disposed of to the TSDF. There shall be commitment from the brick manufacturer to take the fly ash from the plant. The Unit is to be started after getting the commitment from the brick manufacturer / cement plant.
- (xiii). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of byproducts from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.
- (xiv). The green belt of at least 5-10 m width shall be developed in at least 33% of the total project area, mainly along the plant periphery/ additional land. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing map. Trees have to be planted with spacing of 2m x 2m and number of trees have to be increased accordingly. The plant species can be selected that will give better carbon sequestration. All trees must be planted within first year.
- (xv). The activities and the action plan proposed by the project proponent to address the socio-economic issues in the study area, shall be completed as per the schedule

- presented before the Committee and as described in the EMP report in letter and spirit. All the commitments made shall be satisfactorily implemented.
- (xvi). A separate Environmental Management Cell (having qualified person with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Re-Consideration of Environmental Clearance

Agenda No. 11.8

Proposed Modernization of Synthetic Organic Chemicals Manufacturing Unit (173.88 TPA) by M/s Kothari Phytochemicals International (Division of Kothari Phytochemicals & Industries Limited) at villages Nagari and Thiruvalavayanallur, Taluk Vadipatti District Madurai (Tamil Nadu) -Re-Consideration of Environment Clearance

[IA/TN/IND2/122790/1991, IA-J-11011/180/2018-IA-II(I)]

The proposal was earlier considered by the EAC (Industry-2) in its meeting held on 14th April, 2020 and 17th September, 2021. The requisite information desired by the Committee and response submitted by the PP are as under:

1. This is modernization case and as per TOR, PP needs to submit the certified compliance report of CTO from SPCB. However, PP has not submitted the same.

PP have requested TNPCB to issue the Certified Compliance report on 26-05-2020. After continuous follow up at the SPCB, Certified Compliance Report to the CTO has been issued vide Letter No. T4/TNPCN/F-00035MDU.RL/2021 dated 08-04-2021.

2. Revised prediction of GLC was not adequate and the Committee is of the view that PP/Consultant is not serious and has no done proper prediction of GLC. PP need to resubmit with mitigation measures.

Existing 3 TPH will be operated by replacing the fuel from Furnace Oil (FO) to LSHS (Low Sulphur Heavy Stock - Bio Fuel) fired boiler which has less than 0.5% Sulphur content. The analysis report of LSHS (Bio Fuel) provided by the supplier is enclosed as attachment for your kind reference. Revised GLCs are predicted and the same are submitted.

3. The EAC, during deliberations, noted that the Consultant is not serious for preparation of the EIA/EMP Report.

Response from the Consultant:

Consultant have been following all the guidelines for preparation of the EIA/EMP and are trying our best to respond to all the ToRs. We were attending a Video Conference meeting for the first time and due to the disturbance in the bandwidth, we could not communicate certain points. The GLCs were prepared based on the Fuel Quality provided by the Proponent, which we should have restrained from. We offer our apologies to the Hon'ble Committee for not being up to their expectations and assure you that we will certainly try our best to live up to your expectations and give the priority to the environment than to the client. We humbly request the Hon'ble EAC Committee to pardon us for the same.

The point we wanted to communicate was that the proponent has not proposed any new Boiler and the Existing Boiler is used with Furnace Oil as Fuel, which may kindly be considered by the Hon'ble committee. However, owing to certain internet connectivity issues, we could not communicate the same. We once again regret the same.

Response from M/s.Kothari Phytochemicals:

PP regret, that based on our insistence, our consultants have submitted the report the revised GLCs with reduced sulphur content in fuel. The Consultants were reluctant to present the case based on our request and have insisted us and on various occasions have informed that Sulphur content in Furnace Oil can never be less than 3.5%. The Consultants are at no fault on this matter and we take the responsibility of the same.

The Project Proponent and the accredited Consultant M/s. KKB Envirocare Consultants Pvt. Ltd made a detailed presentation on the salient features of the project and informed that:

The proposal is for Environmental Clearance to the project for Modernization of Synthetic Organic Chemicals manufacturing unit located at SF No. 3/1A, 3/1B, 3/2, 4/1, 5/1A, 5/1B, 5/2, Nagari & 12/1A, 12/1B, Thiruvalavayanallur Village, Vadipatti Taluk and Madurai District,

Tamil Nadu by M/s. Kothari Phytochemicals International (Division of Kothari Phytochemicals & Industries Limited).

The details of products and capacity as under:

S.	Product	Existing	Proposed	Total
No.		(TPA)	(TPA)	(TPA)
1.	Tolbutamide	840	(-759)	42.0
2.	Chloropropamide		(Reduced)	39.0
3.	Calcium Sennoside	24	16.6	40.6
4.	Sennosides	-	8.6	8.6
5.	Total Alkaloids	24	-	-
6.	Brucine	-	10.8	10.8
7.	Strychnine	-	28.8	28.8
8.	Colchicine	-	2.04	2.04
9.	Thiocolchicoside	-	2.04	2.04
Total		888	(714.12)*	173.88
			(Reduced)	(Reduced)
* Red	uced quantity			

The project/activities are covered under category A of item 5(f) 'Synthetic organic chemicals industry' of the Schedule to the Environment Impact Assessment Notification, 2006, and requires appraisal at central level by the sectoral Expert Appraisal Committee (EAC) in the Ministry.

The Standard ToR was issued by MoEFCC vide Letter No. IA- J-11011/180/2018-IA-II (I) on 23-06-2018. Public hearing for the proposed modernization project has been conducted by the State Pollution Control Board on 21-08-2019. The main issues raised during the public hearing are related to Greenbelt along the Roads and in the plant, more employment to locals and control the pollution by operating the control equipment. No litigation is Pending against the proposal.

Industry is established in 1976 prior to EIA Notification 27-01-1994, hence Environmental Clearance is not applicable for this industry. Consent order for Operation was issued in favour of M/s Kothari Phytochemicals International by TNPCB in 1991 for manufacturing APIs & phytochemicals with a production capacity of 4488 TPA i.e. prior to the EIA Notification 1994. Since, then industry is manufacturing same products with reduced production capacity to 888 TPA. Copy of Consent to Operate dated 16-9-1991, 06-08-2000, 19-05-2004, 28-07-2005, 31-01-2006, 18-10-2006, 18-11-2009, 26-11-2015, 22-02-2017, 22-05-2017, 24-07-2018, 01-08-2019,01-07-2020 and latest consent 27-11-2020 valid upto 31-03-2021. Renewal for

consent to operate is under at TNPCB. Certified Compliance report to the Consent to Operate was issued by TNPCB vide Letter No. T4/TNPCB/F.00035MDU/RL/2021 dated 08-04-2021.

Existing land area is 11.748 Ha (117480.23 m²). No additional land will be used for proposed modernization project. Industry has already developed greenbelt in an area of 34.5% i.e. 40468.56m² out of total area of the project. The estimated project cost is Rs.14.64 crores including existing investment of Rs. 10.64 crores. Total capital cost earmarked towards environmental pollution control measures is Rs. 3.81crores including existing investment of Rs. 3.14 crores and the Recurring cost (Operation and maintenance) will be about Rs.0.84 crores per annum. Total Employment is 50 persons as direct & 20 persons indirect. No additional employees proposed in modernization. Industry proposes to allocate Rs.5 lakhs towards Corporate Environment Responsibility.

There are No National parks, Wildlife Sanctuaries, Biosphere Reserves, Tiger/ Elephant Reserves, Wildlife Corridors etc. within 10 km distance from the project site. River Vaigai is flowing at a distance of 2.9 km in SW direction and Periyar main canal is flowing at a distance of 3.6 km (N). Water bodies viz., Tenkarai Kamma (Pond near Vikkiramangalam) – 7 km in WSW direction; Thiruvalavayanallur Pond– 0.1km in S direction.

Ambient air quality monitoring was carried out at 9 locations during March to May 2018 and the baseline data indicates that ranges of concentrations as: PM_{10} (31.9 - $60.6\mu g/m^3$), $PM_{2.5}$ (16.1 – $30.2\mu g/m^3$), SO_2 (5.7 – $16.6\mu g/m^3$) and NO_2 (13.7- $33.4\mu g/m^3$). AAQ modeling study for point source emissions indicate that the maximum incremental GLCs after the proposed modernization project would be $0.0518~\mu g/m^3$, $0.117\mu g/m^3$ and $0.342~\mu g/m^3$ with respect to PM_{10} , SOx and NOx. Existing Utilities are meeting the proposed modernization. There is no change in utilities. The resultant concentrations are within the National Ambient Air Quality Standards (NAAQS).

Total water requirement is 58m³/day of which 32 m³/day will be from STP Plant of Madurai Corporation STP Plant and remaining from the recycled water. Effluent of 23 m³/day quantity (Trade effluent) in continued to be treated through Effluent Treatment plant–ZLD. The plant will be based on Zero Liquid Discharge system. There is no addition of Effluent quantity and Domestic wastewater in proposed expansion project.

Power requirement after expansion is same as existing 400 KVA and met from Tamil Nadu State Power Distribution Corporation Limited(TNSPDCL). No additional power requirement for the proposal. Existing unit has 3 DG sets i.e. 125 KVA and 2 nos. of 380 KVA capacity,

no additional DG sets are proposed. DG sets are used as standby during power failure. Stack (height 5 m) is provided as per CPCB norms to the DG sets.

Existing unit has 3 TPH Furnace oil fired boiler. Low Sulphur Heavy Stock (LSHS - Bio fuel) will be used as fuel instead of Furnace Oil. No additional boiler is proposed.

Stack of height of 35mis provided for controlling the Particulate emissions within statutory limit of 115 mg/Nm³ for the boiler.

Details of process emissions generation and its management are given below.

SI. No.	Process Emission	Maximum Quantity on various combinations (kg/day)	Treatment
1.	NH₃	15.9	Scrubbed by using Chilled water &dilute
2.	CO ₂	41.9	H ₂ SO ₄ solution in 2-stage scrubber.
Total 57.8		57.8	Remaining CO ₂ will be dispersed into atmosphere

Details of solid waste/ hazardous waste generation and its management is given below:

SI.	Description	Proposed	Stream	Handling	Disposal
No.		Quantity		Method	
		(TPD)			
1.	Organic residue	0.2	28.1 of	HDPE	Sent to Tamil Nadu
	from Process		Schedule -I	Drums	Waste Management
					Limited (TNWML),
					Gummidipoondi,
					Tamil Nadu for
					Incineration
2.	Spent carbon	0.001	28.3 of		
			Schedule -I		
3.	Inorganic &	0.292	28.1 of	HDPE Bags	Sent to TNWML,
	Evaporation salt		Schedule -I		Gummidipoondi,
	(Process)				Tamil Nadu for land
					fill
4.	Evaporation salt	0.1	35.3 of		
	(Non-Process)		Schedule -I		
5.	ETP Sludge	0.1	35.3 of		
			Schedule -I		
6	Waste pulp after	14.28		HDPE Bags	Give to the farmers for
	extraction from				use in agricultural
	process				fields as manure

Othe	er Hazardous / Solid Wa	ste generatio	n from the P	lant	
7.	a) Detoxified Container / Liners drums, HDPE Carboys, Fiber Drums, b) PP Bags	15 Nos./ month 3 Kg/month	33.1 of Schedule-I	Designated covered area	Disposed to SPCB Authorized agencies after complete detoxification
8.	Spent solvents (85.1 KLD + 0.3 KLD water)	85.4 KLD	28.6 of Schedule -I	Tanks / Drums	Recovered within the premises for reuse / sold
9.	Waste oils & Grease	0.5 TPA	5.1 of Schedule -I	MS Drums	Sent to SPCB Authorized agencies for reprocessing
10.	Used Lead acid Batteries	30 Nos. / annum	A1160 of Schedule-III	Stored in Covered shed	Sent to suppliers on buy-back basis.
11.	Misc. Waste (spill control waste)	Lumpsum (LS)		Stored in Drums	TNWML, Gummidipoondi,
12.	Rejects	LS			Tamil Nadu
13.	E- waste	LS		Designated covered area	Authorized re-processor or TNWML, Gummidipoondi, Tamil Nadu
14.	Waste papers & other types of packing scrap	LS			Sold to scrap vendors
15.	Canteen waste	LS		HDPE bags	Composted on-site, if any and reused for greenbelt
16.	Bio Medical Waste	LS		Color coded containers	Sent to SPCB authorized Biomedical waste incinerator

Deliberations in the EAC:

The EAC, constituted under the provision of the EIA Notification, 2006 comprising Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in desired format along with EIA/EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of his knowledge and belief and no information has been suppressed in the EIA/EMP reports. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee noted that the EIA/EMP reports are in order and compliance of the ToR issued for the project, reflecting the present environmental status and the projected scenario for all the environmental components. The Committee found the baseline data and incremental GLC due to the proposed project. The Committee deliberated the action plan on mitigation measures on various impacts due to project. The Committee also deliberated on the activities/action plans and found to be addressing the public hearing issues. The Committee suggested that the storage of toxic/explosive raw materials shall be bare minimum in quantity and inventory. The Committee suggested the PP to increase the greenbelt density and improve the rainwater harvesting system. The Committee noted that the Industry is reported to be established in the year 1976. The PP was operating the unit with the consent to operate from the SPCB and has not increased the unit production after the year 2006. Certified Compliance report was issued by Tamil Nadu PCB vide Letter No. T4/TNPCB/F.00035MDU/RL/2021 dated 08-04-2021. The Committee deliberated on the certified compliance report and the additional details submitted by the PP and found the same in order and satisfactory.

The EAC deliberated on the proposal with due diligence in the process as notified under the provisions of the EIA Notification, 2006, as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC found the proposal in order and recommended for grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its subsequent amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time, from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, and <u>subject to compliance of terms and conditions</u> as under, and general terms and conditions given in Annexure:-

- (i). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the EIA/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
- (ii). As already committed by the project proponent, Zero Liquid Discharge shall be ensured and no waste/treated water shall be discharged outside the premises. Treated effluent shall be reused in the process/utilities. Treated Industrial effluent shall not be used for gardening/greenbelt development/horticulture.

- (iii). Continuous online (24x7) monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For online continuous monitoring of effluent, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises.
- (iv). The storage of toxic/hazardous raw material shall be bare minimum with respect to quantity and inventory. Quantity and days of storage shall be submitted to the Regional Office of Ministry and SPCB along with the compliance report.
- (v). Occupational health centre for surveillance of the worker's health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/masks for personal protection.
- (vi). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall be provided to employees. The project proponent shall ensure safety awareness programme for employees and nearby villagers.
- (vii). The unit shall make the arrangement for the prevention and protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms.
- (viii). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pumps shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space specified safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valve to prevent losses. (f) All the solvent storage tanks shall be connected vent condensers with chilled brine circulation.
- (ix). Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled at 99.996% with effective chillers/modern technology.
- (x). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.
- (xi). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of byproducts from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.

- (xii). The green belt of at least 5-10 m width shall be developed over nearly 33% of the total project area, mainly along the plant periphery/adjacent areas. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing map. Trees have to be planted with spacing of 2m x 2m and the number of trees shall have to be increased accordingly. The plant species can be selected that will give better carbon sequestration.
- (xiii). The activities and the action plan proposed by the project proponent to address the socio-economic and public hearing issues in the study area, shall be completed as per the schedule presented before the Committee and as described in the EMP report in letter and spirit.
- (xiv). A separate Environmental Management Cell (having qualified person with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Consideration of Amendment in Environmental Clearance

Agenda No. 11.9

Manufacturing of Synthetic Organic Chemicals by M/s. Shree Vallabh Chemical (Unit li) at Survey No. 703/P/1, Village: Kanera, Taluka: Kheda, District: Kheda, Gujarat-Consideration of amendment in Environment Clearance

[Proposal No. IA/GJ/IND3/197153/2021, File No. IA-J-11011/181/2019-IA-II(I)]

The proposal is for amendment in the Environmental Clearance granted by the Ministry vide letter IA-J-11011/181/2019-IA-II(I) dated 11th August 2020 for Setting up Synthetic organic chemical manufacturing unit by M/s. Shree Vallabh Chemical Unit – II, located at Survey No. 703/P/1, Village: Kanera, Tal.: Kheda, Dist.: Kheda, Gujarat.

The project proponent has requested for amendment in the EC with the details are as under;

Sr/No.	Para of EC	Details as per	To be revised/	Justification/
	issued by	the EC	read as	reasons
	MoEF & CC			
1.		To,	To,	Amendment is applied
		M/s.Shree Vallabh	M/s.Shree	for addition of Survey
		Chemical (Unit – II),	Vallabh Chemical	no. 686 to increase
		Survey No. 703/P/1,	(Unit – II),	the plant area for
		Village – Kanera,	Survey No.	better arrangement of
		Taluka – Kheda,	703/P/1+ 686,	equipments &
		District Kheda	Village – Kanera,	machineries and for
		(Gujarat)	Taluka – Kheda,	providing good
				working space.

			District Kheda	
			(Gujarat)	
2.	Subject	Survey No. 703/P/1	Survey No.	Amendment is
	Cabjoot	Garrey 110. 7 00/1 / 1	703/P/1+ 686	applied for addition of
			100,1711	Survey no. 686 to
				increase the plant
				area for better
				arrangement of
				equipments &
				machineries and for
				providing good
				working space.
3.	2	Survey No. 703/P/1	Survey No.	Amendment is
J.		Survey No. 703/171	703/P/1+ 686	applied for addition of
			703/1717 000	Survey no. 686 to
				increase the plant
				area for better
				arrangement of
				equipments &
				machineries and 4.for
				providing good
				working space.
4.	4	The land area	The land area	Amendment is
٦.	-	available for project	available for	
		is 5240.74 sq.m.	project is	Survey no. 686 to
		Industry will	9087.74 sq.m.	increase the plant
		develop greenbelt	Industry will	area for better
		in an area of	develop	arrangement of
		30.16% i.e. 1580.74	'	
		sq.m. out of total	area of 30.65%	' '
		area 5240.74 sq.m	i.e. 2786 sq.m.	
		of the project. The	· '	
		estimated project	9087.74 sq.m of	Working opaco.
		cost is Rs. 8 crores.	the project. The	
			estimated project	
			cost is Rs. 8.5	
			crores.	
5.	13	Survey No. 703/P/1	Survey No.	Amendment is applied
		,	703/P/1+ 686	for addition of Survey
				no. 686 to increase
				the plant area for
				better arrangement of
				equipments &
				machineries and for
				providing good
				working space.
	1	<u> </u>		

Deliberations in the EAC:

The EAC made detailed deliberations on the proposal. The Committee noted that the amendment is sought by the PP to add additional land which is having area almost equal to the existing land. The PP proposes to rearrange various utilities with the addition of land area, leading to changes in lay out plan and its different mitigation measures. The Committee opined that the present case cannot be considered under amendment category and requires appraisal in totality for EC. Based on the request of the PP, the Committee recommended to exempt requirement of fresh public hearing, if the revised EIA/EMP report is submitted within three years of the date of earlier public hearing.

The proposal is accordingly <u>returned</u> in its present form for submission of revised proposal for EC.

Agenda No. 11.10

Manufacturing of various insecticides for veterinary animal health and household use by M/s Synergia Sciences Pvt. Ltd at Plot No. 18, Survey No. 300, Village Indrad, Taluka Kadi, District Mehsana, Gujarat- Consideration of amendment in Environment Clearance

[Proposal No. IA/GJ/IND3/202465/2021, File No. IA-J-11011/197/2019-IA-II(I)]

The proposal is for amendment in the Environmental Clearance granted by the Ministry vide letter F.No. IA-J-11011/197/2019-IA II(I) dated 01/12/2020 for the project for manufacturing of various Insecticides for veterinary animal health & household use (757.2 TPA) located at Plot No. 18, Survey No. 300, Village Indrad, Taluka Kadi, District Mehsana, Gujarat in favour of M/s Synergia Sciences Pvt. Ltd.

The project proponent has requested for amendment in the EC with the details as under:

Sr.	Reference	Details as per the	To be revised /	Justification / Reasons
No.	of EC	EC	read as	
	issued by			
	MoEF&CC			
1.	Specific	As already	There will be	We already became a
	Condition	committed by the	generation of 68.5	member of CEMSPL which
	A (ii) at	project proponent,	KLD effluent from	is located at a distance of
	Page 2 of	zero liquid	proposed project. It	only 800 m from our project
	7	discharge shall be	will be treated	site, moreover, CEMSPL
		ensured and no	through Primary,	has obtained valid
		waste/treated	Secondary &	permissions i.e. CTE/NOC
		water shall be	Tertiary ETP	and CC&A/ CTO from
	discharge outside		followed by RO.	Gujarat Pollution Control
		the premises.	During initial phase	Board (GPCB) to receive
		Treated effluent	of the project till the	primary treated high
		shall be reused in	high concentration	concentrated effluent from

the process/utilizes. Treated industrial effluent shall not be used for gardening/greenbe It development/hortic ulture.	will be sent for Common Spray Drying at Chhatral Enviro Management System Pvt. Ltd. (CEMSPL) by tanker. As the project gradually advances and high concentration effluent generation increases beyond 15 KLD, unit will switch over to inhouse spray dryer and MEE for effluent	member industrial units for the disposal by Spray Drying to achieve Zero Liquid Discharge. Copy of Membership certificate and copy of CTE & CTO/CCA of CEMSPL is already submitted to your office.
	and MEE for effluent treatment and will achieve Zero Liquid Discharge.	

Deliberations in the EAC:

The EAC made detailed deliberations on the proposal. The Committee noted that the amendment is proposed for changing the effluent treatment systems from 'Zero Liquid Discharge' to 'discharge to the Common Spray Drying at Chhatral Enviro Management System Pvt. Ltd. (CEMSPL)'. The Committee found no merit in consideration of the instant proposal as there is no proper justification submitted by the project proponent. The Committee is of the view that recycle/reuse of treated water shall be encouraged, and desired that the PP shall submit a detailed techno-economic feasibility report on the viability of the effluent treatment system.

The proposal was accordingly <u>returned</u> in its present form for submission of revised proposal.

Day 1 Meeting ended with thanks to the Chair.

DAY 2 - 1st JUNE, 2021 (TUESDAY)

Agenda No. 11.11

Proposed Pesticide Manufacturing Project by M/s MG Organics Pvt. Ltd., located at Plot No. Q-2/6&7, UPSIDC Industrial Area, Kosi Kotwan Extension -2 District- Mathura, Uttar Pradesh - Consideration of Environment Clearance

[Proposal No. IA/UP/IND2/183990/2020, File No. IA-J-11011/289/2020-IA-II(I)]

The Project Proponent and the accredited Consultant M/s. EQMS India Pvt. Ltd. made a detailed presentation on the salient features of the project and informed that:

The proposal is for environmental clearance to the project for Setting up Pesticide Manufacturing Unit at Plot No. Q-2/6&7, UPSIDC Industrial Area, Kosi Kotwan Extension - 2 District- Mathura, Uttar Pradesh by M/s. M G Organics Pvt. Ltd.

The details of products and capacity as under:

S.	Name of Product	Capacity	CAS No.				
No.		(TPM)					
	INSECTICIDE GROUP						
1	Diafenthiuron	200	80060-09-9				
2	Spiromesifen		283594-90-1				
3	Novaluron		116714-46-6				
4	Pyriproxyfen		95737-68-1				
5	Acetamiprid		135410-20-7				
6	Dinotefuran		165252-70-0				
7	Nitenpyram		150824-47-8				
8	Thiamethoxam		153719-23-4				
9	Pymetrozine		123312-89-0				
10	Lamda-Cyhalothrin		68085-85-8				
11	Bifenthrin		82657-04-3				
12	Profenophos		41198-08-7				
13	Chlorantraniliprole		500008-45-7				
14	Flubendiamide		272451-65-7				
	FUNGICIDE	GROUP					
15	Thifluzamide	100	130000-40-7				
16	Azoxistrobin		131860-33-8				
17	Pyraclostrobin		175013-18-0				
18	Tebuconazole		107534-96-3				
19	Difenoconazole		119446-68-3				
	HERBICIDE	GROUP					
20	Bensulfuron	100	83055-99-6				
21	Pyrazosulfuron		93697-74-6				
22	Penoxsulam		219714-96-2				

23	Giulosiliale		11102-02-2
24	Glyphosate		1071-83-6
25	Pretilachlor		51218-49-6
26	Clodinafop		105512-06-9
27	Quizalofop		100646-51-3
28	Clomazone		81777-89-1
29	Metribuzin		21087-64-9
30	Ethopen		16672-87-0
	ADVANCED PESTICIDE SPE	CIFIC INTER	MEDIATES
31	1,2, 4 Triazole	100	288-88-0
32	2- Chloro 5- Chloromethyl Pyridine		70258-18-3
	(CCMP)		
33	2- Nitroaminoimidazoline (NII)		5465-96-3
34	2- Chloro 5- ChloromethylThiazole		105827-91-6
	(CCMT)		
35	3-Methyl-4-nitroiminoperhydro-		153719-38-1
	1,3,5-oxadiazine		
36	(R)-(+)-2-(4-Hydroxyphenoxy)		94050-90-5
	propionic acid		
37	1,1-Di ChloroPinacolin		22591-21-5
38	4-Amino-6-(tert-butyl)-3-mercapto-		33509-43-2
	1,2,4-triazin-5(4H)-one		
39	Research & Development Based	200	
	Products		
	TOTAL	700	
40	Formulations	300	
			· · · · · · · · · · · · · · · · · · ·

23

Glufosinate

The project/activities are covered under category 'A' of item 5(b) 'Pesticides industry and pesticide specific intermediates' and 5(f) 'Synthetic organic chemicals industry' of the Schedule to the Environment Impact Assessment Notification, 2006, and requires appraisal at central level by the sectoral Expert Appraisal Committee (EAC) in the Ministry.

The project proposal was submitted for grant of TOR and subsequently Standard Terms of Reference (TOR) was issued by MoEF&CC vide letter no. IA-J-11011/289/2020-IA-II(I) dated 27.11.2020. As the site falls in approved industrial area, hence public hearing/public consultation is exempted for the proposal. No litigation is pending against the proposal.

Land area of 10067.15 m² has been proposed for the project. Industry will develop greenbelt in an area of 33.28 % i.e., 3350 m² out of total area of the project. The estimated project cost is Rs 12.93 Crores. Total capital cost earmarked towards environmental pollution control measures is Rs 196 Lakhs and the Recurring cost (operation and maintenance) will be about Rs 50 Lakhs per annum. Total Employment will be 90 persons as direct & indirect employment. Industry proposes to allocate Rs. 20 Lakhs towards Corporate Environmental Responsibility.

There are no National Park, Wildlife Sanctuary, Biosphere Reserves, Elephant / Tiger Reserve, wildlife corridors etc. present within 10 Km radius of plant site. Distributary of Kosi

77182-82-2

is flowing at distance of 2.18 km in SE direction, Distributary of Nandgaon is flowing at a distance of 2.29 km in NW direction, Agra canal is flowing at a distance of 1.90 km in E direction and Shergarh Distributary is flowing at a distance of 6.87 km in NE direction.

Ambient air quality monitoring was carried out at 8 locations during 1st October 2020 to 31st December 2020 and the baseline data indicates the ranges of concentrations as: PM₁₀ (52-135 μ g/m³), PM_{2.5} (24-66 μ g/m³), SO₂ (6.1-17.3 μ g/m³) and NO₂ (12.7-43.7 μ g/m³). AAQ modeling study for point source emissions indicates that the maximum incremental GLCs after the proposed project would be 0.78 μ g/m³, 0.64 μ g/m³, 1.61 μ g/m³ and 3.43 μ g/m³ with respect to PM₁₀, PM_{2.5}, NO_x & SO₂. All parameter concentrations are within the National Ambient Air Quality Standards (NAAQS) except PM₁₀ and PM_{2.5} at two locations (Nabipur and Kosi Kalan Industrial Area). The Committee found the detailed action plan proposed by the PP to be satisfactory and the emission from the unit shall be controlled with modern pollution technologies.

The total water requirement for the project will be 140 KLD of which fresh water requirement of 95 KLD will be met from borewell.

Effluent will be 47 KLD (including domestic sewage). 4 KLD domestic sewage will be treated in Sewage Treatment Plant of capacity 10 KLD. 37 KLD (36 KLD Process Effluent + 1 KLD DM Plant Effluent) will be treated in MEE (Capacity 75 KLD) of which, 4 KLD distillate along with rest of 6 KLD industrial effluent will be treated in ETP followed by RO (Capacity- 50 KLD) treatment. The project will be a "Zero-liquid Discharge" Project.

Power requirement of the plant will be 1000 kVA which will be met from Uttar Pradesh Power Corporation Limited (UPPCL). DG sets of capacity 1x250 kVA and 1x500 kVA will be installed as stand by during power failure. Stack (height 25 m) will be provided as per CPCB norms to the proposed DG sets.

1 x 2 TPH and 1 x 3 TPH agro-waste briquette fired boiler will be installed in the plant. ESP with the stack of height of 32 m will be installed for controlling the particulate emissions within the statutory limit of 115 mg/Nm3 for the proposed boiler.

Details of Process emissions generation and its management is mentioned below:

Table 1: Details of Process Emissions and their management

Stack	Stack	Stack	Fuel Used	APCS	Expected	
No.	Attached to	Height			Pollutants	
1	Steam Boiler	32	Agro-waste	ESP System	PM, SO ₂ &	
	(2 TPH, 3		Briquette		NO _x	
	TPH)					
2	DG Set	25	HSD	-	PM, CO	
	(1x250 kVA,				SO ₂ & NO _x	
	1x500 kVA)					
Process Stacks / Vents						

3	Process	32	-	Two stage water	HCI
	Reactor			scrubbers	
	Vents				
4	Process	32	-	Two stage water	HBr
	Reactor			scrubbers	
	Vents				
5	Process	32	-	Two stage Alkali Scrubber	HCI &
	Reactor			(1st Stage- Water & 2nd	SO ₂
	Vents			Stage- Alkali)	
6	Process	32	-	Two stage Alkali Scrubber	HCl & Cl ₂
	Reactor			(1st Stage- Water & 2nd	
	Vents			Stage- Alkali)	

Details of Solid Waste/hazardous waste generation and its management is as mentioned below:

Table 2: Details of Hazardous/Non-Hazardous Waste Generation

Sr. No	Type of waste	Category (As per Schedule I	Quantity (Per Annum)	Mode of Treatment & Disposal Method
		& II, 2016)	In Waste	
4		Hazardou		O. H. office Ottom
1	Chemical Sludge from	35.3	350MT	Collection, Storage,
	wastewater Treatment			Transportation, and disposal
	(ETP sludge + Waste left			at Nearest common TSDF
_	after Evaporation)			site
2	Concentration &	37.3	100MT	Collection, Storage,
	evaporation Residue.			Transportation, and disposal
				at Nearest common TSDF
				site
3	Discarded	33.1	6000 Nos	Collection, Storage,
	Containers/barrel/liners/c			Transportation, and disposal
	ontaminated with			at Nearest common TSDF
	wastes/chemicals			site
4	Used/spent oil	5.1	0.5MT	Collection, Storage,
				Transportation, and disposal
				at Nearest common TSDF
				site
5	Carton/liners	33.1	4000 Nos	Collection, Storage,
	contaminated with			Transportation, and disposal
	hazardous chemicals &			at Nearest common TSDF
	waste			site
		Non-Hazardo	us/Industrial	
6	Ash from coal Based	-	100 MT	Collection, Storage,
	boiler			Transportation, and disposal

				at Nearest common TSDF
				site
7	Empty barrels (used for	-	8000 Nos	Collection, Storage,
	non-hazardous material)			Transportation, and disposal
				at Nearest common TSDF
				site
8	Scrap metals	-	20MT	Collection, Storage,
				Transportation, and disposal
				at Nearest common TSDF
				site
		Process		1 -
9.	Spent Solvents	5.1	80MT	Collection, Storage,
				Transportation, and disposal
				at Nearest common TSDF
				site
	I	Municipa	ı	1
10.	The municipal solid waste	-	50 kg/day	Will be Segregated in
				biodegradable waste and
				recyclable waste.
				Recyclable waste will be
				sold off to authorized
				vendors and Biodegradable
				waste will be disposed off in
				MSW disposal pit to get
				converted to manure for
				horticulture purposes.

Deliberations in the EAC:

The EAC, constituted under the provision of the EIA Notification, 2006 comprising Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in desired format along with EIA/EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of his knowledge and belief and no information has been suppressed in the EIA/EMP reports. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee noted that the EIA/EMP report are in compliance of the ToR issued for the project, considering the present environmental concerns and the projected scenario for all the environmental components. The Committee found the baseline data and incremental GLC due to the proposed project within NAAQ standards except PM₁₀ and PM_{2.5} at certain sites in the study area. The action plan proposed and the pollution control measures proposed by the PP were found to be satisfactory. The Committee also deliberated on the activities/action plans and found to be addressing to the issues in the study area. The

Committee suggested that the storage of toxic/explosive raw material shall be bare minimum in quantity and inventory. The Committee suggested that the greenbelt development shall be taken up actively by the PP and trees shall be planted considered 2m x 2m ratio. The PP informed the Committee that the project site is not located in the Critically Polluted Area. The CPA is restricted to Mathura Industrial area only and the existing site is located at about 48 km from it. However, in Form 2, PP mentioned that the site is in CPA.

The Committee suggested that the ash shall be used as manure/soil conditioner. The PP in coordination with State Forest Department shall make efforts for the development for reserve forest in the study area. The Committee pointed out that the PP proposed to manufacture certain products which is banned or proposed (draft notification issued) to be banned by the Government of India. The Committee noted that the project proponent submitted an undertaking stating that greenbelt intensity shall be increased (838 tree @2500 trees/ha) and plantation as per working plan of the reserve forest shall be made. It is also stated that the greenbelt shall be developed to 40%.

The EAC deliberated on the proposal with due diligence in the process as notified under the provisions of the EIA Notification, 2006, as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC found the proposal in order and recommended for grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its subsequent amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time, from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, <u>subject to compliance of terms and conditions</u> as under, and general terms and conditions in Annexure:-

- (i). No banned pesticides/chemicals shall be manufactured by the project proponent. No banned raw materials shall be used in the unit. The project proponent shall adhere to the notifications/guidelines of the Government in this regard.
- (ii). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the EIA/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
- (iii). As already committed by the project proponent, Zero Liquid Discharge shall be ensured and no waste/treated water shall be discharged outside the premises.

Treated effluent shall be reused in the process/utilities. Treated Industrial effluent shall not be used for gardening/greenbelt development/horticulture. Domestic effluent shall be treated in STP and used for greenbelt development.

- (iv). Continuous online (24x7) monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For online continuous monitoring of effluent, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises.
- (v). The storage of toxic/hazardous raw material shall be bare minimum with respect to quantity and inventory. Quantity and days of storage shall be submitted to the Regional Office of Ministry and SPCB along with the compliance report.
- (vi). Occupational health centre for surveillance of the worker's health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/mask for personal protection.
- (vii). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall be provided to employees.
- (viii). The unit shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms.
- (ix). Necessary precautions shall be taken to avoid accidents and action plan shall be implemented for avoiding accidents.
- (x). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space specified with all safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valve to prevent losses. (f) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.
- (xi). Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled at 99.996% with effective chillers/modern technology.
- (xii). Total fresh water requirement shall not exceed 95 cum/day, proposed to be met from ground water. Prior permission in this regard shall be obtained from the concerned regulatory authority/CGWA.
- (xiii). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.

- (xiv). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of byproducts from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.
- (xv). The green belt of at least 5-10 m width shall be developed in nearly 40% of the total project area, mainly along the plant periphery/adjacent areas. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing map. Trees have to be planted with spacing of 2m x 2m and number of trees have to be increased accordingly. The plant species can be selected that will give better carbon sequestration and plantation shall be started from first year onwards.
- (xvi). The activities and the action plan proposed by the project proponent to address the socio-economic issues in the study area, shall be completed as per the schedule presented before the Committee and as described in the EMP report in letter and spirit.
- (xvii). As proposed, at least Rs. 9.6 Lakhs shall be earmarked for conservation plan and shall be implemented in coordination with State Forest & Wildlife Department/Local Village Administration.
- (xviii). A separate Environmental Management Cell (having qualified person with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Agenda No. 11.12

Proposed Expansion for the Manufacturing of Pesticide Intermediates, Fungicides, Herbicides, Insecticides by M/s Heranba Industries Limited at Plot No:-2817/1, Chemical Zone, Near Sandhya Chemical, Notified Industrial Area, GIDC Sarigam, Tal:-Umbergaon, Dist.:- Valsad, Gujarat- Consideration of Environment Clearance

[Proposal No. IA/GJ/IND3/210024/2020, File No. IA-J-11011/270//2020-IA-II(I)]

The Project Proponent and the accredited Consultant M/s. Eco Chem Sales & Services (ECSS), made a detailed presentation on the salient features of the project and informed that:

The proposal is for environmental clearance to the project for Expansion of Pesticide Intermediates, Fungicides, Herbicides, Insecticides Manufacturing at Plot No. – 2817/1,

Chemical Zone, Near sandhya chemical, Notified Industrial Area, GIDC Sarigam, Taluka Umbergaon, District Valsad, Gujarat by M/s. Heranba Industries Limited.

The details of products and capacity as under:

Existing:

Sr. No.	Product	Quantity per Annum
1.	Formulation & packing of various liquid pesticide (EC, SL, GEL, RTU, ULV & SC)	24000 KL
2.	Formulation & packing of various Powder pesticide (WP, WDP, SP, SG, WDG, GR, CG, Tablet & WG)	9000 MT
3.	Formulation & packing of various Granules pesticide	12000 MT

Proposed:

S.	Product	Capacit	CAS	End use of the product
No		y TPA	Number	
Inse	ecticides			
1.	Diafenthiuron	2500	80060-09-9	Control of insects and mites resistant to major chemical classes such as ops or Pyrotheroids
2.	Profenofos		41198-08-7	used on a variety of crops including cotton and vegetables such as maize, potato, soybean, and sugar beet
.3.	Lambda- Cyhalothrin		91465-08-6	Used to control a wide range of pests
4.	Bifenthrin		82657-04-3	Used against malaria and filarial vector mosquitoes
5.	Cyphenothrin		39515-40-7	Is a synthetic pyrotheroids insecticide and is effective against cockroaches
6.	Fenpropathrin		64257-84-7	Widely used Pyrethroids insecticide in agricu Iture and household.
7.	Zeta- Cypermethrin		1315501-18-8	Used to control a broad spectrum of chewing, sucking and flying insects
8.	Transfluthrin		118712-89-3	It is a repellent insecticide, generally used for the control of mosquitoes in the household. It is also the primary insecticide in certain products for killing wasps and hornets, including their nests.

9.	Pymetrozine		123312-89-0	Control of aphids and whiteflies in vegetables, ornamentals, cotton, field crops, deciduous and citrus fruit; control of plant hoppers in rice.
10.	Nitenpyram		150824-47-8	Used to treat flea infestations in cats and dogs
11.	Acetamiprid		135410-20-7	Used to protect plants against sucking insects
12.	Chlorantraniliprol e		500008-45-7	Insecticide, Ryanodine Receptor Activator is used to control a wide variety of crops including Corn, Cotton, Grapes, Rise& Potatoes.
13.	Cyantraniliprole		736994-63-1	Insecticides for controlling insects with mandibulate as well as piercing-sucking mouthparts. Specially use in Vegetables, Bush Berries, Turf & Oilseeds Crops.
14.	Flubendiamide		272451-65-7	Insecticides for controlling insects in Corn, Tobacco, Pome & Stone Fruit. Tree Nut Crops, Grapes & Vegetable Crops (Including Cucurbit Vegetables, Fruiting.)
15.	Dinotefuran		165252-70-0	A Broad Spectrum Insecticides for leafy vegetables(except Brassica) (Group-4) and for Professional Turf management, professional Ornamental Production & Residential Indoor, Pet Lawn & Garden Market. It control of insect pest Such as Aphids, whiteflies, thrips, leafhoppers, leafminers, sawflies etc.
Fun	gicides			
16.	Difenoconazole	1200	119446-68-3	Controls a broad spectrum of foliar, seed and soil-borne diseases caused by Ascomycetes, Basidiomycetes and Deuteromycetes in cereals, soya, rice, grapes, pome fruit, stone fruit, potatoes, sugar beet and several vegetable and ornamental crops.
17.	Hexaconazole		79983-71-4	Can be used on fruit trees
18.	Propiconazole		60207-90-1	Used agriculturally as a systemic fungicide on turf grasses
19.	Tebuconazole		107534-96-3	Used agriculturally to treat plant pathogenic fungi.
20.	Cyproconazole		94361-06-5	Use on greenhouse- and field-grown roses and as a wood preservative.

21.	Epoxiconazole		133855-98-8	Control of Black Sigatoka (Mycosphaerella fijiensis) and Yellow Sigatoka (Mycosphaerella musicola) in bananas and Coffee Rus
22.	Metalaxyl		57837-19-1	Is applied by foliar spray, as a soil drench, soil spread with incorporation, or by dipping plants before planting
23.	Thiophanate- methyl		23564-05-8	Is a systemic fungicide used on a variety of tree, vine, and root crops, as well as on canola and wheat.
24.	Azoxystrobin		131860-33-8	Is widely used in farming, particularly in wheat farming and provides protection against many types of diseases, including: Wheat septoria
25.	Pyraclostrobin		175013-18-0	Use on the Residential and recreational turfgrass sites and golf course turf.
26.	Picoxystrobin		117428-22-5	Use for control of various fungal diseases including leaf rust, stripe rust, powdery mildew, net blotch, scald and speckled leaf blotch.
27.	Trifloxystrobin		141517-21-7	Used as agricultural fungicide
28.	Kresoxim-methyl		143390-89-0	To control powdery mildew on the greenhouse-grown ornamental crops
29.	Thiabendazole		148-79-8	Used primarily to control mold, blight, and other fungal diseases in fruits and vegetables
30.	Fenhexamid		126833-17-8	Used primarily to control grey mold (Botrytis Cinereal), Monilinia Fructigena, Monilinia Laxa and other fungal diseases in fruits and vegetables
31.	Captan		133-06-2	Used primarily to control Scrab, Brown Rot, Downey Mildew, Early & Late Blight, and other fungal diseases in fruits and vegetables
Herl	oicides			
32.	Bispyribac- Sodium		125401-92-5	For the control of wide range of weeds
33.	Imazethapyr		81335-77-5	For control of wide variety of broad leaf weed species
34.	Quizalofop-ethyl	1200	76578-14-8	Used to control annual and perennial grass weeds in potatoes, soybeans, sugar beets, peanuts vegetables, cotton and flax

35.	Fenoxaprop-		66441-23-4	A herbicide which is selective against
	ethyl			perennial and annual grass weeds in
				many crops.
36.	Carfentrazone		128639-02-1	Is a broad spectrum herbicide
37.	Sulfentrazone		122836-35-5	Herbicide to control broadleaf and grass weed species in soybeans, sugarcane, tobacco, and several species of turfgrass.
38.	Aclonifen		74070-46-5	Herbicide to control broadleaf and grass weed species in Carrot.
39.	Mesotrione		104206-82-8	Used as a Selective Herbicide specially in Maize, also used to control broadleaf weeds.
40.	Clomazone		81777-89-1	Herbicide to control broadleaf and annual grass in cotton, peas, pumpkins, soybeans, sweet potatoes, tobacco, winter squash and fallow wheat fields.
41.	Pinoxaden		243973-20	Herbicide to control Grass weeds in Cereal crops.
42.	Tembotrione		335104-84-2	Used as a Post-Emergence Herbicide to control wide range of Broad Leaved and Grassy Weeds in Corn and other Crops.
43.	Sulcotrione		99105-77-8	Herbicide commonly used in Corn production as well as on Maize cultivar wax.
44.	Prosulfocarb		52888-80-9	Used as a Selective Herbicide to control annual Ryegrass and Toad Rush in Barley and Wheat.
45.	Propanil		709-98-8	Used as a Herbicide to control numerous grasses and Broad Leaved weeds in Rice, Potatoes and Wheat.
Pest	ticides Intermediat	es		
46.	Cypermethric acid chloride (CMAC)	3000	52314-67-7	Used in the manufacture of Parathyroid class of Pesticides like Cypermethrin, Alphamethrin, Permethrin and Deltamethrin.
47.	Diethyl thiophosphoryl chloride (DETC)	15000	1470-61-7	Used in the preparation of various organophosphorus insecticide
48.	Bifenthrin alcohol	1000	76350-90-8	Pyrethroid insecticide
49.	Lambda-acid	1000	72748-35-7	Used to control a wide range of pests
	Total	24900		

The project/activities are covered under category 'A' of item 5(b) 'Pesticides industry and pesticide specific intermediates' of the Schedule to the Environment Impact Assessment Notification, 2006, and requires appraisal at central level by the sectoral Expert Appraisal Committee (EAC) in the Ministry.

The ToR has been issued by Ministry vide letter No. IA-J-11011/270//2020-IA-II(I); dated 07th November 2020. Unit is located in Notified Industrial estate of GIDC. Hence, Public hearing is exempted. There is no litigation pending against the proposal.

Unit has started with valid CTO which was obtained from Gujarat Pollution Control Board and Unit has obtained Certified CCA Compliance from Gujarat Pollution Control Board vide letter No.: GPCB/RO-SARI/ID-68997/1150 on dated 19th April 2021.

All Products are listed at S.N. 5(b) of Schedule of Environment Impact Assessment (EIA) Notification under category 'A' and are appraised at Central Level by Expert Appraisal Committee (EAC).

Existing land area is 55000 m², no additional land will be used for proposed expansion. Industry has already developed 5500 m² greenbelt and 12650 m² will develop greenbelt in an area of 33 % i.e., 18650 m² out of total area of the project. The estimated project cost is Rs. 110 Crores including existing investment of Rs.20 Crores. Total capital cost earmarked towards environmental pollution control measures is Rs. 596 Lakhs and the Recurring cost (operation and maintenance) will be about Rs. 2117.64 Lakhs per annum. Total Employment will be 170 persons as direct & 100 persons indirect after expansion. Industry proposes to allocate Rs. 90 Lakhs towards Corporate Environment Responsibility.

There are no national parks, wildlife sanctuaries, Biosphere reserves, Tiger/Elephant reserves, Wildlife Corridors etc. within 10 km distance from the project site. River Darotha is flowing at a distance of 2.9 km in East direction.

Ambient air quality monitoring was carried out at 8 locations during 1st October 2020 to 31st December 2020 and the baseline data indicates the ranges of concentrations as: PM₁₀ (60.3 – 84.3 μ g/m³), PM_{2.5} (31.3 – 43.2 μ g/m³), SO₂ (8.1 – 19.5 μ g/m³) and NOx (13.2 – 24.6 μ g/m³). AAQ modeling study for point source emissions indicates that the maximum incremental GLCs after the proposed project would be 0.104 μ g/m³, 0.349 μ g/m³ and 0.103 μ g/m³ with respect to PM₁₀, SOx and NOx. The resultant concentrations are within the National Ambient Air Quality Standards (NAAQS).

Total water requirement is 605 KLD of which fresh water requirement of 538 KLD will be met from GIDC water supply department, Sarigam. Effluent (Industrial) of 396.8 KLD quantity will be treated in solvent stripper followed by MEE and ATFD, RO Plant and Effluent Treatment Plant. Total Industrial Waste water generation will be 394 KLD generated from process, scrubber, cooling tower blow down, boiler blow down, D M rejection and container washing etc. Out of 394 KLD of industrial effluent, 319 KLD of process effluent will be segregated and will be detoxified with hypochlorite solution and treated in solvent stripper followed by MEE and ATFD. 373.8 KLD of Condensate from MEE will be taken to ETP for treatment. 25 KLD from cooling tower, 10 KLD from D M rejection, 10 KLD from boiler blow down, 15 KLD from floor/container washing and 15 KLD from secondary scrubber attached to reactor and wet

scrubber attached to boiler. Thus total 75 KLD of said normal effluent will be detoxified with hypochlorite solution and treated in RO plant. 52 KLD of RO permeate will be recycled in process. Balance 23 KLD of RO rejection will be treated in ETP along with MEE condensate. Thus total 396.8 KLD of normal industrial effluent will be treated in proposed primary, secondary and tertiary ETP and finally discharge into CETP of M/S Sarigam Clean Initiative, GIDC Sarigam through closed underground pipe line for further treatment and disposal into Arabian Sea. Domestic waste water (15 KLD) will be treated in STP and treated waste water will be recycled for plantation.

Power requirement after expansion will be 3000 KVA and will be met from Dakshin Gujarat Vij Co. Ltd. (DGVCL). Unit has proposed One DG set of 1000 KVA capacity. DG set are used as standby during power failure. Stack (height 11.0 m) will be provided as per CPCB norms to the proposed DG set.

Existing unit has No Boiler. Unit has proposed 15 TPH of Imported coal fired Steam Boiler. ESP followed Wet scrubber with stack height of 30 m will be installed for controlling the particulate emissions within the statutory limit of 115 mg/Nm³ for the proposed boilers.

Details of Process emissions generation and its management:

At existing scenario, there is a generation PM and organic vapours, which is control by adequate capacity of wet scrubber followed by activated carbon bed and Bag filter. 11 meters height of vent is provided. For the proposed expansion plant, three numbers of two stage water followed by alkali scrubbers will be provided to scrub Hydro chloric acid gas, bromine gas and chlorine gas and three numbers of two stage alkali scrubbers will be provided to scrub Sulphur dioxide and one number of two stage alkali scrubber will be provided to scrub, hydrogen sulphide gas generated from the various product process. Separate 11 meters height of vent will be provided. Two stage alkali scrubber with 11 m height of vent will be provided to scrub acid mist generated from Acid Storage tanks.

The unit proposes to install natural gas fired incinerator having capacity of (250 kg/h of solid and 100 kg/h liquid) and 140 SCM/h of natural gas will be used. Adequate Dryer, cyclone and ventury scrubber along with 30 meters height of chimney will be provided.

Details of Solid waste/ Hazardous waste generation and its management:

N	Type of	Schedu	Source	Qty. MT/ Annum		Treatme	Disposal
0	waste	le and		Existi	Total	nt	
		Catego		ng	after		
		ry			Expansi		
					on		
Haz	zardous Was	te					
1	ETP waste	Sch:I/35	Neutralizati	5.0	3888	Dried,	Dispose off into
		.3	on of			packed	TSDF of M/S
			effluent			in bags	Detox India Pvt.
							Limited, Kutch

2	Salt from	Sch:I/37	Evaporation	0	12480	Dried,	Dispose off into
	MEE	.3	of effluent			packed	TSDF of M/S
						in bags	Detox India Pvt.
						2 9 -	Limited, Kutch
3	Mixed	Sch:I/29	From	0	65	Pack in	Sell to authorized
	spent	.4	solvent	Ū		Drums	distillator
	solvent		stripper			Braine	diotiliator
4	Distillation	Sch:I/29	Distillation	0.1	1477.88	Pack in	Sent for co-
•	residue	.1	process	0.1	1111.00	Drums	processing to
	and	.,	process			Diamo	cement
	process						industries or
	waste						incinerate in our
	Wasic						own incinerator
							or sent to CHWIF
							of M/S BEIL
							Ankleshwar
5	Used Oil	Sch:I/5.	Gear box	0.01	0.05	Packed	Incinerated into
	Osed Oil	1	and D G set	0.01	0.03	in	own Incineration
		'	and D G set				
6	Discarded	Sch:I/33	Empty	54	74	carboys De-	system Sell to authorized
0	containers	.1	Empty containers	34	74	contami	
	containers	. 1	of raw				recycler
			materials			nated, stored	
7	Incineratio	Sch:I/37	incinerator	0	140	Packed	Sell to brick
'	n ash	.2	incinerator	U	140		manufacturer
8	Used	Sch:I/X-	Production	0	2	in bags Packed	Incinerated into
	rubber	08	plant	U	۷	in	own Incineration
		00	piant			drums/b	
	hand gloves/pipe						system
	s etc					ags	
9	Inorganic	Sch:I/29	Process	0	18030	Tanker	Sell to actual
	Acid	.6	FIUCESS	U	10030	TallKei	users having
	(Hydro	.0					Rule 9
	Chloric						permission
	acid (30-						permission
	32%)						
1	Inorganic	Sch:I/29	Process	0	5802	Tanker	Sell to actual
0	Acid	.6	1 100033	U	3002	IUIINGI	users having
	(sulphuric						Rule 9
	acid (60%)						permission
11	Spent	Sch:I/29	Process	0	4380	Storage	Recycled in
'	solvent	.4		J	.000	tank	process after in-
	20170110					COLIN	house distillation
1	Date	Sch:I/29	Process	0.4	5.0	Packed	Incinerated into
2	expired	.3		J. r	5.5	in	own Incineration
_	and off					drums/b	system
	and on					ags	95.5111
						495	

	specificatio n pesticide						
1 3	Contaminat ed cotton rags and other cleaning materials	Sch:I/33 .2	Manufacturi ng Plant	0.5	1.0	Packed in drums/b ags	Incinerated into own Incineration system
1 4	Recovered Catalyst	Sch- /28.1	Process	0	2.424	Packed in drums/b ags	Collection, Storage, Transportation & Disposal by selling to authorized end user registered under Rule-9.
1 5	Recovered Aniline	Sch- /28.1	Process	0	4.8	Packed in drums/b ags	Collection, Storage, Transportation & Disposal by selling to authorized end user registered under Rule-9.
1 6	Sodium bi sulphite powder (80%)	Sch:I/29 .1	Process	0	308	Packed in bags	Collection, Storage, Transportation & Disposal by selling to authorized end user registered under Rule-9.
1 7	Sodium sulfide (80%)	Sch:I/29 .1	Process	0	859	Packed in bags	Collection, Storage, Transportation & Disposal by selling to authorized end user registered under Rule-9.
1 8	Ammonium chloride Powder (85%)	Sch:I/29 .1	Process	0	1794	Packed in bags	Collection, Storage, Transportation & Disposal by selling to authorized end

							user registered	
				_			under Rule-9.	
1	Sodium	Sch:I/29	Process	0	5166	Packed	Collection,	
9	sulphate	.1				in bags	Storage,	
	powder						Transportation &	
	(80%)						Disposal by	
							selling to	
							authorized end	
							user registered	
							under Rule-9.	
2	Sodium	Sch:I/29	Process	0	6718	Packed	Collection,	
0	sulphite	.1				in bags	Storage,	
	powder						Transportation &	
	(80%)						Disposal by	
							selling to	
							authorized end	
							user registered	
							under Rule-9.	
Sol	Solid Waste							
2	Fly ash	-	Boiler	0	1592	Stored	Sell to brick	
1						in silo	manufacturer	

Deliberations in the EAC:

The EAC, constituted under the provision of the EIA Notification, 2006 comprising Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in desired format along with EIA/EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of his knowledge and belief and no information has been suppressed in the EIA/EMP reports. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee noted that the EIA/EMP reports are in compliance of the ToR issued for the project, considering the present environmental concerns and the projected scenario for all the environmental components. The Committee found the baseline data and incremental GLC due to the proposed project within the NAAQ standards. The Committee also deliberated on the activities/action plans and found to be addressing the issues in the study area. The Committee suggested that the storage of toxic/explosive raw material shall be bare minimum in quantity and inventory. The Committee suggested that the greenbelt development shall be taken up actively by the PP and trees shall be planted considered 2m x 2m ratio. Considering the critical nature of the project site, Committee suggested to use briquette in place of coal and only during emergency imported coal shall be used. The Committee also suggested PP to reduce the fresh water requirement and increase the

recycle water quantity to 30 % in a span of five years, and also improve rain water harvesting to utilize water in process/utilities. The Committee also opined that the pesticide industries shall undertake studies on the impact of pesticides on the ecology and soil characteristics. The Committee noted that the unit is in operation with valid CTO from Gujarat Pollution Control Board and Certified CCA Compliance issued by Gujarat PCB vide letter No.: GPCB/RO-SARI/ID-68997/1150 dated 19th April 2021 found to be satisfactory.

The Committee noted that the PP submitted an undertaking stating that banned pesticides shall not be manufactured, incinerator shall be installed as per CPCB guidelines and maintain gaseous parameters as prescribed by CPCB/GPCB, briquettes shall be used as fuel and only during non-availability of briquettes, imported coal will be utilized as a fuel and shall increase the recycle water quantity up to 25-30% in coming 5 years, during the operation phase of the plant.

The EAC deliberated on the proposal with due diligence in the process as notified under the provisions of the EIA Notification, 2006, as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC found the proposal in order and recommended for grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its subsequent amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time, from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, <u>subject to compliance of terms and conditions</u> as under, and general terms and conditions in Annexure:-

- (i). No banned pesticides/chemicals shall be manufactured by the project proponent. No banned raw materials shall be used in the unit. The project proponent shall adhere to the notifications/guidelines of the Government in this regard.
- (ii). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the EIA/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
- (iii). The treated effluent of 396.8 cum/day proposed to send to CETP of M/S Sarigam Clean Initiative, through closed underground pipe line for further treatment and disposal into Sea, shall conform to the standards prescribed under the Environment (Protection) Act, 1986. The project proponent shall achieve improvement in recycle

and reuse of the treated water in the unit to reduce the fresh water demand and waste disposal, and there shall be at least 30% reduction in the effluent discharge within five years.

- (iv). Domestic effluent of shall be treated in STP and used for greenbelt development.
- (v). Briquette/natural gas shall be used in place of coal, and only during emergency imported coal with sulphur content less than 0.5% shall be used.
- (vi). Continuous online (24x7) monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For online continuous monitoring of effluent, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises.
- (vii). The storage of toxic/hazardous raw material shall be bare minimum with respect to quantity and inventory. Quantity and days of storage shall be submitted to the Regional Office of Ministry and SPCB along with the compliance report.
- (viii). Occupational health centre for surveillance of the worker's health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/mask for personal protection.
- (ix). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall be provided to employees.
- (x). The unit shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms.
- (xi). Necessary precautions shall be taken to avoid accidents and action plan shall be implemented for avoiding accidents.
- (xii). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space specified with all safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valve to prevent losses. (f) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.
- (xiii). Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled at 99.996% with effective chillers/modern technology.
- (xiv). Total fresh water requirement shall not exceed 538 cum/day, proposed to be met from GIDC water supply. Prior permission in this regard shall be obtained from the concerned regulatory authority. The PP shall achieve improvement in recycle and reuse of water every year and over a period of 5 years, PP shall increase recycled quantum to 30% of total water consumption. After 5 years, only 30 % of the present fresh water requirement shall be used.

- (xv). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.
- (xvi). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of byproducts from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.
- (xvii). The green belt of at least 5-10 m width shall be developed in nearly 33% of the total project area, mainly along the plant periphery/adjacent areas. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing map. Trees have to be planted with spacing of 2m x 2m and number of trees have to be increased accordingly. The plant species can be selected that will give better carbon sequestration and plantation shall be started from first year onwards.
- (xviii). The activities and the action plan proposed by the project proponent to address the socio-economic issues in the study area, shall be completed as per the schedule presented before the Committee and as described in the EMP report in letter and spirit.
- (xix). As proposed, at least Rs. 1.5 Lakhs shall be earmarked for conservation plan and shall be implemented in coordination with State Forest & Wildlife Department.
- (xx). A separate Environmental Management Cell (having qualified person with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Agenda No. 11.13

Setting up of Active Pharmaceutical Ingredients manufacturing unit of capacity 40 TPM by Ms Swara Labs Private Limited at Plot No. 99, Kadechur Industrial Area, Yadagir Taluk & District, Karnataka- Environment Clearance- reg.

[Proposal No. IA/KA/IND2/206916/2021, File No. J-11011/222/2021-IA II (I)]

The project proponent and the accredited consultant M/s. AM Enviro Engineers, made a detailed presentation on the salient features of the project and informed that:

The proposal is for grant of environmental clearance (EC) to the proposed project for setting up of Active Pharmaceutical Ingredients manufacturing unit of capacity 40 TPM by M/s

Swara Labs Private Limited at Plot No. 99, Kadechur Industrial Area, Yadagir Taluk & District, Karnataka.

The details of products and capacity as under:

S. No	Product	Qty. in TPM	CAS No.	Therapeutic Use
1	Apixaban	2	503612-47-3	Antiretroviral
2	Dabigatran Etexilate Mesylate	8	872728-81-9	Anticoagulant Used to prevent strokes in those with atrial fibrillation
3	Deferasirox	2	201530-41-8	To treat high levels of iron
4	Duloxetine HCI	8	136434-34-9	Antidepressant
5	Ezetimibe	2	163222-33-1	Anti hyperlipidemic
6	Lacosamide	4	175481-36-4	To prevent and control seizures
7	Montelukast Sodium	2	151767-02-1	Anti-allergic & Asthma
8	Olmesartan	8	144689-63-4	To treat high blood pressure
9	Oseltamivir Phosphate	3	204255-11-8	Anti retroviral (ARV) Used to treat influenza A and influenza B (flu), and to prevent flu after exposure.
10	Pirfenidone	4	53179-13-8	Antiviral
11	Rivaroxaban	2	366789-02-8	Platelet Inhibitor
12	Solifenacin Succinate	4	242478-38-2	Antispasmodic Agent
13	Tapentadol HCl	8	175591-09-0	Pain relieve
14	Terbinafine HCI	8	78628-80-5	Antifungal
15	Ticagrelor	2	274693-27-5	Platelet Inhibitor
	R & D products	0.1		
	Total	67 TPM		
	Total (5 Products)	40 TPM		

LIST OF BY-PRODUCTS AND ITS QUANTITIES

S .No	Product	By-Product	Quantity in Kgs/Day		
1	Rivaroxaban	Triethylamine Hydrochloride	50.34		
2	Apixaban	Triethylamine Hydrochloride	21.89		
Note: The quantity of By-products based on respective products being manufactured.					

The project/activity is covered under Category 'B2' of item 5 (f) 'Synthetic, Organic Chemicals Industry' of the schedule to the Environment Impact Assessment (EIA) Notification, 2006 and its subsequent amendment dated 27.03.2020 and 15.10.2020. Due to applicability of general conditions (interstate boundary within 5 km), the project requires appraisal at central level by the sectoral Expert Appraisal Committee (EAC) in the Ministry.

The proposed project will be established in a land area of 2 Acres (8093.7 Sqm). Industry will develop greenbelt in an area of 2710.7 Sqm which is 33.5% out of the total project area. The proposed project cost is about Rs.6.5 Crores. Total capital cost earmarked towards environmental pollution control measures is Rs.75 Lakhs and the recurring cost (operation and maintenance) will be about Rs.17 lakhs per annum. Total Employment under proposed project will be of 50 persons. Industry proposes to allocate 5 Lakhs towards Corporate Environmental Responsibility.

There are no National parks, Wildlife sanctuaries, Biosphere Reserves, Tiger/ Elephant Reserves, Wildlife Corridors etc. lies within 10 km distance. Kadechur lake is flowing at a distance of 1.9 km in the North-East direction.

The total water requirement is 121.7 KLD and will be met from KIADB. Generated effluent of 62.1 KLD will be treated through Common Effluent Treatment Plant CETP, Kadechur.

Power requirement of project will be 500 kVA and will be met from GESCOM. The unit is proposed to install 1X250 KVA of DG Set with stack height of 4 m will be provided as per CPCB norms. The unit has proposed to install 1X4TPH Briquettes/Coal fired boiler with stack of height 30 m. Multi Cyclone separator will be installed for the boiler for controlling the particulate emissions-(within statutory limit of 115 mg/ Nm³).

Details of Process emissions generation and its management.

S. No	Gas	Quantity in Kg/Day	Treatment Method	Disposal Method after treatment
1	Hydrogen chloride	126.94	Scrubbed by	Generated Dil. HCl will be reused within the industry
2	Ammonia	6.11	using water media	Generated NH ₄ OH will be reused within the industry
3	Sulfur dioxide	90.58		Residues from the reaction will be sent to TSDF
4	Hydrogen Bromide	74.67	Scrubbed by using C.S. Lye	Residues from the reaction will be sent to TSDF
5	Hydrogen Iodide	44.24	solution	Residues from the reaction will be sent to TSDF
6	Methyl Chloride	42.24		Generated Methanol will be reused within the industry
7	Oxygen	39.4	Dispersed into	-
8	Carbon dioxide	91.47	atmosphere	-
9	Hydrogen	87.79	Dispersed into atmosphere through flame arrester	-
10	Ethane	38.67	Dispersed into	-
11	Propane	8.71	atmosphere through Nitrogen	

Details of Solid waste & Hazardous waste generation and its management.

S. No	Category of the HW	Hazardous Waste	Quantity	Disposal Method
		Hazardous waste	generation from	plant
1	5.1	Waste oils & Grease/ Used Mineral oil	0.2 KL/Annum	Agencies authorized by KSPCB
2	5.2	Oil Soaked Cotton	2 Kgs/month	KSPCB authorized Vendor
3	20.3	Distillation Residue	568 kgs/day	Store in secured manner and hand over to authorized cement industry for Coprocessing
4	28.1	Process Residues & Waste	2013 kg/day	Store in secured manner and hand over to authorized cement industry for Coprocessing/TSDF
5	28.2	Spent Catalyst	20.67 Kgs/day	Store in secured manner and hand over to authorized recycler
6	28.3	Spent Carbon	70.7 Kgs/Day	Store in secured manner and hand over to authorized cement industry for Coprocessing
7	28.4	Off Specification Products	1 TPM	Store in secured manner and hand over to authorized cement industry for Coprocessing/TSDF
8	28.5	Date expired products	500 Kgs/Month	Store in secured manner and hand over to authorized cement industry for Coprocessing/TSDF
9	33.1	Detoxified-Container & Container Liners of Hazardous Chemicals and Wastes	250 No's/Month	After complete detoxification, shall be disposed to the outside agencies.
10	33.2	Contaminated cotton rags or other cleaning materials	25Kgs/month	Store in secured manner and hand over to KSPCB Authorized Vendor
11	A1160	Used Lead Acid batteries	2No's/Annum	Returned back to dealer/ Supplier
		Other & Miscella	neous Solid Wa	stes
12		Coal ash	1600 kgs/day	Sent to Brick Manufacturers
13		Briquette ash	3500 kgs/day	Sent to Fertilizer industries
14		Residue from scrubber	209 kgs/day	Shall be stored in secured manner & handed over to TSDF.
15		Used PPE	5 Kgs/ Month	Sent to authorized vendor

16	 E- Waste	150 Kgs/ Annum	Authorized recyclers
17	 Plastic Waste	200 Kgs/ Annum	Authorized recyclers
18	 Metal Scrap	3 TPA	Sale to outside agencies/ recyclers
19	 Used Filters (HEPA filters, Oil Filters etc.)	25 Nos /year	Sent to TSDF
20	 Used / Discarded RO Membranes	0.2 TPA	Sent to TSDF

The Committee was informed that the Ministry has recently issued an Office Memorandum dated 28.01.2021 which inter-alia request EAC to clearly recommend the permissible pollution load i.e., quantity and quality, including composition of emissions, discharge and solid waste generation. In compliance this OM, PP has submitted the following pollution load information and the EAC deliberated on the issue. PP also requested that EC may include the name of products also otherwise PP will face difficulty in obtaining the CTE/CTO from concerned SPCB.

						Kg per	day						
		EFFL	UENT	WAT	ER				5	SOLID	WAS	ΓΕ	
Water in put	Water in Effluent	Organics in effluents	TDS	COD	HTDS	LTDS	Total Effluent	Organic	In Organic	Spent	Spent Catalyst	Process	Distillation
32636.67	32694.18	571	2491.94	1216.22	32334.65	3054.65	35389.3	1603.95	408.7	70.67	20.67	488.48	568

HAZARDOUS SOLID WASTE DETAILS

Organic solid waste	Inorganic solid Waste	Spent Carbon	Distillation Residue
Kg/day	Kg/day	Kg/day	Kg/day
1603.95	408.7	70.67	568

EMISSION DETAILS

	Kg/day								
HCI	HCI CO ₂ H ₂ NH ₃ HBr HI CH ₃ CI SO ₂ O ₂ C ₆ H ₆ C ₃ H ₈								
126.94	126.94 91.47 87.79 6.11 74.67 44.24 42.24 90.58 39.4 38.67 8.71								

Deliberations in the EAC:

The EAC, constituted under the provision of the EIA Notification, 2006 comprising of Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in desired format along with PFR & EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of their knowledge and belief and no information has been suppressed in the PFR & EMP reports. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee was further informed that the Ministry has recently issued an Office Memorandum dated 28.01.2021 and inter-alia requested that EAC shall clearly recommend the permissible pollution load i.e. quantity and quality, including composition, of emissions, discharge and solid waste generation. In compliance of this OM, PP has submitted the pollution load and the EAC also deliberated on the pollution load as estimated by the PP/Consultant.

The Committee noted that the PFR/EMP reports reflect the present environmental concerns and the projected scenario for all the environmental components. The Committee deliberated on the action plan and budget allocation for green belt development and suggested to complete plantation in one year. The Committee deliberated on the proposed mitigation measure towards Air, Water, Noise and Soil pollutions. The Committee suggested to use coal having ash content less than 15% only during the rainy season when the Biomass Briquettes may not be available. The Committee also suggested that the storage of toxic/explosive raw materials/products shall be undertaken with utmost precautions and following the safety norms and best practices. The Committee suggested to increase the percentage use of recycled water and mitigate VOCs.

The EAC deliberated on the proposal with due diligence using the process as notified under the provisions of the EIA Notification, 2006, as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC also found the proposal in order and recommended for the grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time, from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, <u>subject to compliance of terms and conditions</u> as under, and general terms and conditions in Annexure:-

- (i). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the PFR/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
- (ii). Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled at 99.996% with effective chillers/modern technology. Regular VOCs monitoring should be carried out.
- (iii). Occupational health centre for surveillance of the worker's health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/mask for personal protection.
- (iv). Treated effluent shall be reused in the process/utilities. Treated Industrial effluent shall not be used for gardening/greenbelt development/horticulture purpose.
- (v). The unit shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms. Mock drill shall be conducted regularly.
- (vi). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall be provided to employees.
- (vii). Total fresh water requirement shall not exceed 121.7 KLD and will be met from KIADB. Prior permission in this regard shall be obtained from the concerned regulatory authority.
- (viii). As committed by the PP, coal having ash content less than 15% is to be used as fuel only during the rainy season when the Biomass Briquettes may not be available and during all other seasons only biomass briquettes shall be used.
 - (ix). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.
 - (x). Continuous online (24x7) monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For ZLD, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises (if applicable).
 - (xi). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space provided with all safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be

flame proof. The solvent storage tanks shall be provided with breather valves to prevent losses. (f) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.

- (xii). Process organic residue and spent carbon, if any, shall be sent to Cement or other suitable industries for its incinerations. ETP sludge, process inorganic & evaporation salt shall be disposed of to the TSDF. There shall be commitment from the brick manufacturer to take the fly ash from the plant. The Unit is to be started after getting the commitment from the brick manufacturer / cement plant.
- (xiii). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of byproducts from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.
- (xiv). The green belt of at least 5-10 m width shall be developed in at least 33% of the total project area, mainly along the plant periphery/ additional land. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing map. Trees have to be planted with spacing of 2m x 2m and number of trees have to be increased accordingly. The plant species can be selected that will give better carbon sequestration. All trees must be planted within first year.
- (xv). The activities and the action plan proposed by the project proponent to address the socio-economic issues in the study area, shall be completed as per the schedule presented before the Committee and as described in the EMP report in letter and spirit. All the commitments made shall be satisfactorily implemented.
- (xvi). A separate Environmental Management Cell (having qualified person with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Agenda No. 11.14

Expansion of the Active Pharmaceutical Ingredients (API) manufacturing unit, Pharma Intermediates, Job Work, R&D Chemicals and other Specialty Chemicals of capacity 35 TPM by M/s Crown Chemicals Private Limited located at E-87, E-88/1, & E-88/2, MIDC, Tarapur Industrial Area, Boisar Taluk, District Thane, Maharashtra- Environment Clearance - reg.

[Proposal No. IA/MH/IND2/207393/2021, File No. J-11011/225/2021-IA II (I)]

The Project Proponent and the accredited Consultant M/s Envision Enviro Technologies Pvt. Ltd. made a detailed presentation on the salient features of the project and informed that:

The proposal is for Environmental Clearance to the project for expansion of Active Pharmaceutical Ingredients (API) manufacturing unit, Pharma Intermediates, Job Work, R&D Chemicals and other Specialty Chemicals of capacity 35 TPM by M/s Crown Chemicals Private Limited located at E-87, E-88/1, & E-88/2, MIDC, Tarapur Industrial Area, Boisar Taluk, District Thane, Maharashtra.

The project is covered under Category B2 of item 5(f) 'Synthetic, Organic Chemicals Industry' of the Environment Impact Assessment (EIA) Notification, 2006 & its amendment dated 27.03.2020 and 15.10.2020. Due to applicability of general condition (Critically polluted Area as notified by CPCB), the project requires appraisal at Central level by the Sectoral Expert Appraisal Committee (EAC) in the Ministry. It was informed that no litigation is pending against the proposal.

Maharashtra Pollution Control board had issued CTO earlier vide letter dated 13.01.2021 to the existing project (Manufacturing of Perfumery Aldehydes (such as Piperonal) – 22 TPM in favour of M/s Crown chemicals Pvt. Ltd. PP committed to stop the production of existing product and only API will be manufactured. PP submitted inspection report issued by Maharashtra Pollution Control board. The Committee deliberated the report.

Existing land area is 3150 m². No additional land will be required for proposed expansion. Industry has already developed greenbelt in an area of 33 % (i.e.1039 m²) out of total area of the project. The total estimated project cost is Rs.10 Crores including existing investment such as building and other facilities etc., Total capital cost earmarked towards environmental pollution control measures is Rs.70 Lakhs and the Recurring cost (operation and maintenance) will be about Rs.20 Lakhs per annum. Total Employment will be 94 persons as direct & 60 persons indirect after expansion. Industry proposes to allocate Rs. 25 Lakhs towards Corporate Social Responsibility.

There are No National parks, wildlife sanctuaries, Biosphere Reserves, Tiger/Elephant Reserves, Wildlife Corridors etc. within 10 km distance from the project site. Bangana River at a distance of 2.41 km in West direction.

Ambient air quality monitoring was carried out at project site during 06.01.2021 to 07.01.2021 and the baseline data indicates the ranges of concentrations as: (PM_{10} -54.6 $\mu g/m^3$), ($PM_{2.5}$ -34.4 $\mu g/m^3$), ($PM_{2.5}$ -44.4 $\mu g/m^3$), (

Total water requirement is 117 m³/day which will be met from Tarapur MIDC. Industrial Effluent Generation will be 22 KLD which will be treated through ETP capacity of 25 KLD (up to secondary clarifier). Treated effluent will disposed to CETP line. The plant will be based on CETP discharge system.

Power requirement after expansion will be 1000 KW including existing and will be met from MSEBL. Existing unit has DG sets of 400 kVA capacity, additionally 600 kVA will be increased. So, total Proposed Manufacturing Unit DG set capacity of 1000 kVA used as standby during power failure. Stack (height 30 M) will be provided as per CPCB norms to the proposed DG sets.

Existing unit has boilers of 2.3 TPH (3 Nos. 0.6, 0.85, 0.85 TPH) steam boiler. Existing boilers will be removed and Proposed Boiler-(2 Nos. (2 TPH)) will be installed. Multi cyclone separator/ bag filter with a stack of height of 46.5 m will be installed for controlling the particulate emissions within the statutory limit of 115 mg/Nm³.

Details of Process emissions generation and its management: Air pollution Control/Measures

S. No	Stack attached to	Type of Fuel Used & quantity per day	Stack Height	Air pollution control equipment
01	Process Reactor (5 Nos-6.5 KL) (5 Nos-4.0 KL)		30 m	3 Nos of Alkali Scrubber
02	Boiler- (2 Nos (2000 kg/hr)) (standby: 1 No-2000 kg/hr)	FO: 500 kg/hr	46.5 m Stack	Stack
03	Thermic Fluid Heaters- (2.Nos (15,00,000 kcal/hr)) (standby: 1 No- 15,00,000 kg/hr)	FO: 345 kg/hr	46.5 m Stack	Stack
04	DG Sets 1200 KVA	HSD: 162 lit/day	30 m Stack from ground level	Acoustic enclosure & stack

Process emissions generation and its management

S.No	Gas	Quantity in Kg/day	Treatment Method
1	Carbon dioxide	260	Dispersed into the atmosphere
2	Ammonia	49	Scrubbed by using chilled water media
3	Hydrogen chloride	190	Scrubbed by using chilled water media
4	Sulphur dioxide	102	Scrubbed by using C. S. Lye Solution
5	NOx	28	Scrubbed by using C. S. Lye Solution
6	Respirable Particulate matter	2.88	Scrubbed by using chilled water media

DG sets Emission details

S.No	Dg sets	Gas flow	Temp	NO2	SO2	PM	CO	Velocity	Diameter
	capacity	rate	С	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(m/sec)	in (m)
		(m3/min)							
1.	1200	220	536	1.64	0.272	0.123	0.18	25	0.412
	kVA								

Details of Solid waste/ Hazardous waste generation and its management:

S. No.	Hazardous waste category no.	Description	Quantity Tons /Annum	Disposal
1	5.1	Used / spent Oil	5	Sale to Authorized party
2	35.3	Chemical sludge from ETP	360	CHWSTDF/co-processing in cement klin
3	33.1	Discarded containers / barrels	12	Sale to Authorized party
		Discarded Liners/Bags	6	Sale to Authorized party
4	33.2	Contaminated Cotton rags or other cleaning materials	1.2	CHWSTDF/co-processing in cement klin
5	28.1	Process residues and waste	100	Sale to Authorized party/ CHWSTDF/co-processing in cement klin
6	28.2	Spent catalyst	15	Sale to Authorized party/ CHWSTDF
7	28.3	Spent carbon	15	CHWSTDF/co-processing in cement klin
8	20.3	Distillation Residue	120	Sale to Authorized party/ CHWSTDF/co-processing in cement klin
9	20.2	Spent Solvent	20	Sale to Authorized party/ CHWSTDF
10	37.3	Evaporation Solids	480	CHWSTDF/co-processing in cement klin
11	35.2	Spent Ion Exchange Resin	0.5	CHWSTDF

	Hazardous Solid waste (kg/day)						
Organic	Inorganic	Spent	Distillation	Process	Evaporation solids		
solid waste	solid waste solid waste carbon residues Residues						
30.6	1256	50	400	333.33	1600		

Non-hazardous waste will be disposed to local authorized party.

S.No	Waste	Quantity MT/ Annum	Disposal
1	Packing Materials (Paper, Plastic & Wood etc.) and stationary waste	60	Sale to Authorized Party
2	Insulation Material	5	Sale to Authorized Party
3	Metallic Scrap	60	Sale to Authorized Party
4	Non metallic Scrap	20	Sale to Authorized Party

The Committee was informed that the Ministry has recently issued an Office Memorandum dated 28.01.2021 which inter-alia request EAC to clearly recommend the permissible pollution load i.e., quantity and quality, including composition of emissions, discharge and solid waste generation. In compliance this OM, PP has submitted the following pollution load information and the EAC deliberated on the issue. PP also requested that EC may include the name of products also otherwise PP will face difficulty in obtaining the CTE/CTO from concerned SPCB.

	Kg Per Day													
			EFFLUI	ENT	WAT	ER			,	SOLII	D WA	ASTE		
Water Input	Effluent Water	Inorganics In Effluent	Organics In Effluent	TDS	СОР	HTDS	LTDS	Total Effluent	Organic Solid waste	Inorganic Solid waste	Spent Carbon	Distillation Residue	Process emissions	Fugitive loss
268	22	183	5.0	120	110	180	80	393	30.6	1256	50	400	333	1600

HAZARDOUS SOLID WASTE DETAILS

Kg Per Day										
SOLID WASTE										
Organic solid	Inorganic solid	Spent Carbon	Distillation Residue							
30.6	1256	50	400							

EMISSION DETAILS

Kg Per Day								
Process emissions	Fugitive emissions							
489	97.8							

	Kg Per Day										
CO2 H2 NH3 O2 N2 HCI SO2											
236	2.5	36	8.0	41.25	170	45					

Deliberations by the EAC:

The project proponent clarified that they submitted application on 24.03.2021 but there was some technical glitch on Parivesh portal and PP withdrew the project for its revision of application on portal. Therefore, the proposal was again submitted by PP on 31.03.2021. PP informed that they were not aware of the last date of application and requested the EAC to consider the same. The Member Secretary informed to the Committee that as per the

notification dated 15.10.2020, the last date was 30th March 2021 for consideration of API as B2 category project. After detailed deliberations, the Committee in the national interest for API considered the date of application as 24.03.3021 and accepted the request of PP.

The EAC, constituted under the provision of the EIA Notification, 2006 comprising of Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in desired format along with PFR & EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of their knowledge and belief and no information has been suppressed in the PFR & EMP reports. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee was further informed that the Ministry has recently issued an Office Memorandum dated 28.01.2021 and inter-alia requested that EAC shall clearly recommend the permissible pollution load i.e. quantity and quality, including composition, of emissions, discharge and solid waste generation. In compliance of this OM, the PP has submitted the pollution load. The EAC also deliberated on the pollution load as estimated by the PP/Consultant.

The Committee noted that the PFR/EMP reports reflect the present environmental status and the projected scenario for all the environmental components. The Committee deliberated on the action plan and budget allocation for green belt development and suggested to increase the plantation as mentioned in the condition and complete plantation in one year. The Committee deliberated on the proposed mitigation measure towards Air, Water, Noise and Soil pollutions. The Committee suggested to use coal having ash content less than 15% only during the rainy season when the Biomass Briquettes may not be available. The Committee also suggested that the storage of toxic/explosive raw materials/products shall be undertaken with utmost precautions and following the safety norms and best practices. The Committee suggested to increase the percentage use of recycled water and use bio-fuel/LSHS/LDO (cleaner fuel).

The EAC deliberated on the proposal with due diligence using the process as notified under the provisions of the EIA Notification, 2006, as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC also found the proposal in order and recommended for the grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its subsequent amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time,

from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, <u>subject to compliance of terms and conditions</u> as under, and general terms and conditions in Annexure:-

- (i). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the PFR/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
- (ii). Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled at 99.996% with effective chillers/modern technology. Regular VOCs monitoring should be carried out.
- (iii). Occupational health centre for surveillance of the worker's health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/mask for personal protection.
- (iv). Treated effluent shall be reused in the process/utilities. Treated Industrial effluent shall not be used for gardening/greenbelt development/horticulture purpose.
- (v). The unit shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms. Mock drill shall be conducted regularly.
- (vi). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall be provided to employees.
- (vii). Total fresh water requirement shall not exceed 117 m³/day which will be met from Tarapur MIDC. Prior permission in this regard shall be obtained from the concerned regulatory authority.
- (viii). As committed by the PP, coal having ash content less than 15% is to be used as fuel only during the rainy season when the Biomass Briquettes may not be available and during all other seasons only biomass briquettes shall be used.
- (ix). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.
- (x). Continuous online (24x7) monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For ZLD, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises (if applicable).

- (xi). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space provided with all safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valves to prevent losses. (f) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.
- (xii). Process organic residue and spent carbon, if any, shall be sent to Cement other suitable industries for its incinerations. ETP sludge, process inorganic & evaporation salt shall be disposed of to the TSDF. There shall be commitment from the brick manufacturer to take the fly ash from the plant. The Unit is to be started after getting the commitment from the brick manufacturer / cement plant.
- (xiii). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of byproducts from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.
- (xiv). The green belt of at least 5-10 m width shall be developed in at least 33% of the total project area, mainly along the plant periphery/ additional land. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing map. Trees have to be planted with spacing of 2m x 2m and number of trees have to be increased accordingly. The plant species can be selected that will give better carbon sequestration. All trees must be planted within first year.
- (xv). The activities and the action plan proposed by the project proponent to address the socio-economic issues in the study area, shall be completed as per the schedule presented before the Committee and as described in the EMP report in letter and spirit. All the commitments made shall be satisfactorily implemented.
- (xvi). A separate Environmental Management Cell (having qualified person with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Agenda No. 11.15

Setting up of Active Pharmaceutical Ingredients (API's) manufacturing unit of capacity 140 TPM by M/s Formel Labs Pvt. Ltd located at Plot No. 306, 307, 308 & 309, Kadechur Industrial Area, Yadagir Taluk & District, Karnataka. - Environment Clearance – reg.

[Proposal No. IA/KA/IND2/204892/2021, File No. J-11011/226/2021-IA II (I)]

The project proponent and the accredited consultant M/s AM Enviro Engineers, made a detailed presentation on the salient features of the project and informed that:

The proposal is for grant of environmental clearance (EC) to the proposed project for setting up of Active Pharmaceutical Ingredients (API's) manufacturing unit of capacity 140 TPM by M/s. Formel Labs Pvt. Ltd located at Plot No. 306, 307, 308 & 309, Kadechur Industrial Area, Yadagir Taluk & District, Karnataka.

The details of products and capacity as under:

S. No	Products	Quantity in TPM	CAS No	Therapeutic use
1.	Abacavir sulfate	10	136470-78-5	To treat HIV infection
2.	Adefovir	2	142340-99-6	To treat chronic (long-term)
				hepatitis B infection
3.	Amlodipine Besylate	10	111470-99-6	To treat high blood pressure
4.	Avobenzone	10	70356-09-1	To prevent sunburn and premature aging
5.	Azacyclonol	10	115-46-8	To treat mental disorder
6.	Canagliflozin	5	842133-18-0	Used along with diet
7.	Capecitabine	5	154361-50-9	Anti-cancer ("antineoplastic" or
				"cytotoxic") chemotherapy drug
8.	Carprofen	5	53716-49-7	Analgesic, Anti pyretic
9.	Cetirizine DiHCI	10	83881-52-1	Antihistamine
10.	Ciprofloxacin HCI	5	86393-32-0	Antibiotic
11.	Chlorphenesin	10	104-29-0	Muscle relaxant
12.	Dapagliflozin	2	461432-26-8	Anti diabetic
13.	Dolutegravir	2	1051375-19-	Anti retroviral (ARV) for treatment
	Sodium		9	of HIV infection
14.	Donepezil HCI	10	120011-70-3	To treat dementia
15.	Dorzolamide HCI	5	130693-82-2	Ophthalmology
16.	Empagliflozin	2	864070-44-0	Anti diabetic
17.	Enzalutamide	2	915087-33-1	Anti cancer (prostate cancer)
18.	Etoricoxib	15	202409-33-4	Anti inflammatory
19.	Famciclovir	5	104227-87-4	Anti herpes
20.	Febuxostat	5	144060-53-7	Xanthine oxidase inhibitors
21.	Fexofenadine HCI	10	153439-40-8	Anti-histamine
22.	Gabapentin	15	60142-96-3	Anticonvulsant
23.	Gefitinib	2	184475-35-2	Anti cancer (lung cancer)
24.	Gemcitabine HCI	2	122111-03-9	Anti cancer
25.	Imatinib mesylate	5	152459-95-5	Anti cancer
26.	Itraconazole	5	84625-61-6	Anti fungus
27.	Ivabradine HCI	2	148849-67-6	To treat heart disease
28.	Ivacaftor	2	873054-44-5	To treat cystic fibrosis

29.	Lacosamide	2	175481-36-4	To prevent and control seizures
30.	Levetiracetam	10	102767-28-2	Epilepsy
31.	Linagliptin	5	668270-12-0	Anti diabetic
32.	Linezolid	5	165800-03-3	Antibiotic
33.	Losartan	20	124750-99-8	Antihypertensive
	potassium			,,
34.	Mesalamine	10	89-57-6	Ulcerative colitis
35.	Metformin HCI	5	1115-70-4	Antidiabetic
36.	Moxifloxacin HCI	10	186826-86-8	To treat pneumonia
37.	Myrtecaine	5	7712-50-7	Muscle strains, tendinitis or
				ligament sprains and joint pain
38.	Nebivolol HCI	5	152520-56-4	To treat high blood pressure
39.	Nizatidine	10	76963-41-2	Ulcers
40.	Olanzapine	10	132539-06-1	Antipsychotic
41.	Omeprazole	20	73590-58-6	Indigestion
				and heartburn and acid reflux
42.	Pirfenidone	2	53179-13-8	Antiviral
43.	Piroctone	5	68890-66-4	Antifungal
	Olamine			
44.	Pregabalin	15	148553-50-8	Neuropathic pain
45.	Ramipril	5	87333-19-5	To treat high blood pressure
46.	Ranolazine	15	95635-55-5	To treat chronic angina
47.	Rebamipide	2	90098-04-7	Peptic ulcer
48.	Rifaximin	5	80621-81-4	Hepatic encephalopathy
49.	Risperidone	2	106266-06-2	Schizophrenia
50.	Ritonavir	2	155213-67-5	Anti HIV
51.	Ropinirole HCI	2	91374-20-8	To treat restless legs syndrome
52.	Sacubitril	2	149709-62-6	Chronic heart failure and reduced
				ejection fraction
53.	Sitagliptin	5	654671-77-9	Controlling high blood sugar helps
	Phosphate			prevent kidney damage,
				blindness, nerve problems, loss of
				limbs, and sexual function
54.	Sorafenib	2	284461-73-0	problems. To treat cancer
55.		5	110871-86-8	Antibiotic
56.	Sparfloxacin Tadalafil	5 5	171596-29-5	To treat erection problems
57.	Tamsulosin	1	106463-17-6	To treat Benign Prostatic
37.	hydrochloride	I	100403-17-0	Hyperplasia (BPH)
58.	Temozolomide	2	85622-93-1	Anti-cancer ("antineoplastic" or
30.	Temozolomiae	2	00022 00 1	"cytotoxic") chemotherapy drug
59.	Valganciclovir	5	175865-59-5	Anti cytomegalovirus
	HCI	J	1.0000 00 0	, and sylomogalovinus
60.	Valsartan	5	137862-53-4	Antihypertension
	Total	377		
	Total	140		
	(10 products)			
	(

LIST OF BY-PRODUCTS AND ITS QUANTITIES

S .No	Product	By-Product	Quantity in Kgs/Day						
1	Capecitabine	Peridine Hydrochloride	59.69						
2	Cetirizine Dihydrochloride	Spent HCI	1998						
		Sulfuric acid	699.3						
		Methoxy Ethanol	43.29						
3	Donepezil Hydrochloride	Dimethyl Sulfide	17.31						
4	Piroctone Olamine	Aluminium hydroxide solution	1452.5						
5	Pregabalin	Ammonium chloride	1875						
6	Ritonavir	4-Nitro phenol	15						
Note: T	Note: The quantity of By-products based on respective products being manufactured.								

The project/activity is covered under Category 'B2' of item 5 (f) 'Synthetic, Organic Chemicals Industry' of the schedule to the Environment Impact Assessment (EIA) Notification, 2006 and its amendment dated 27.03.2020 and 15.10.2020. Due to applicability of general conditions (interstate boundary within 5 km), the project requires appraisal at central level by the sectoral Expert Appraisal Committee (EAC) in the Ministry.

The proposed project will be established in a land area of 20 Acres (80784 Sqm). Industry will develop greenbelt in an area of 27100 Sqm which is 33.55% out of the total project area. The proposed project cost is about Rs.100 Crores. Total capital cost earmarked towards environmental pollution control measures is Rs.320 Lakhs and the recurring cost (operation and maintenance) will be about Rs.65 lakhs per annum. Total Employment under proposed project will be of 220 persons. Industry proposes to allocate 20 Lakhs towards Corporate Environmental Responsibility.

There are no National parks, Wildlife sanctuaries, Biosphere Reserves, Tiger/ Elephant Reserves, Wildlife Corridors etc. lies within 10 km distance. Kadechur lake is at a distance of 2.0 km in the East direction.

Total water requirement is 445.5 KLD and will be met from KIADB. Generated effluent of 219.8 KLD will be treated through Common Effluent Treatment Plant CETP, Kadechur.

Power requirement of project will be 2000 kVA and met from GESCOM. The unit is proposed to install 2X500 kVA & 1X1000 kVA of DG Set, Stack height of 5 & 7 m will be provided as per CPCB norms. The unit has proposed to install 1X10TPH & 1X5TPH (Stand by) Briquettes/Coal fired boiler with stack of height 30 m. Multi Cyclone separator will be installed for the boiler for controlling the particulate emissions–(within statutory limit of 115 mg/ Nm³). The unit has proposed to install 2,00,000 Kcal/Hr of Thermic Fluid Heater with stack of height 15 m.

Details of Process emissions generation and its management:

S. No	Gas	Quantity in Kg/Day	Treatment Method	Disposal Method after treatment		
1	Hydrogen chloride	811.62	Scrubbed by using water media	Generated Dil. HCl will be reused within the industry		

2	Ammonia	93.02		Generated NH ₄ OH will be reused within the industry
3	Sulfur dioxide	280.14		Residues from the reaction will be sent to TSDF
4	Hydrogen Bromide	634.77	Scrubbed by	Residues from the reaction will be sent to TSDF
5	Hydrogen Iodide	19.89	using C.S. Lye solution	Residues from the reaction will be sent to TSDF
6	Hydrogen Fluoride	3.32		Residues from the reaction will be sent to TSDF
7	Oxygen	598.97	Dispersed into	-
8	Carbon dioxide	2330.86	atmosphere	-
9	Hydrogen	52.63	Dispersed into atmosphere through flame arrester	-
10	Nitrogen	46.93	Dispersed into atmosphere	-

Details of Solid waste & Hazardous waste generation and its management:

S. No	Category of the HW	Hazardous Waste	Quantity	Disposal Method								
	Hazardous waste generation from plant											
1	5.1	Waste oils & Grease/ Used Mineral oil	1 KL/Annum	Agencies authorized by KSPCB								
2	5.2	Oil Soaked Cotton	3 Kgs/month	KSPCB authorized Vendor								
3	20.3	Distillation Residue	2300 kgs/day	Store in secured manner and hand over to authorized cement industry for Co- processing								
4	28.1	Process Residues & Waste	9405 kg/day	Store in secured manner and hand over to authorized cement industry for Co- processing/TSDF								
5	28.2	Spent Catalyst	80.11 Kgs/day	Store in secured manner and hand over to authorized recycler								
6	28.3	Spent Carbon +	541.8 Kgs/Day	Store in secured manner								

hand over to rized cement		
stry for Co-		
rocessing		
secured manner		
hand over to		
rized cement		
stry for Co-		
essing/TSDF		
secured manner		
hand over to		
rized cement		
stry for Co-		
essing/TSDF		
-		
er complete		
oxification,		
disposed to the		
de agencies.		
_		
Store in secured manner		
hand over to		
B Authorized		
Vendor		
d back to dealer/		
Supplier		
Sent to Brick		
nufacturers		
Sent to Fertilizer		
ndustries		
be stored in		
ed manner &		
l over to TSDF.		
to authorized		
vendor		
rized recyclers		
rized recyclers		
e to outside		
cies/ recyclers		
_		
Sent to TSDF		
nt to TSDF		

The Committee was informed that the Ministry has recently issued an Office Memorandum

dated 28.01.2021 which inter-alia request EAC to clearly recommend the permissible pollution load i.e., quantity and quality, including composition of emissions, discharge and solid waste generation. In compliance this OM, PP has submitted the following pollution load information and the EAC deliberated on the issue. PP also requested that EC may include the name of products also otherwise PP will face difficulty in obtaining the CTE/CTO from concerned SPCB.

	Kg per day												
		EFFL	UENT	WAT	ER				9	SOLID	WAST	Έ	
Water in put	Water in Effluent	Organics in effluents	TDS	COD	HTDS	LTDS	Total Effluent	Organic	In Organic	Spent	Spent Catalyst	Process Emission	Distillation residue
129296.88	134131.38	2463.5	9750.33	4278.45	127869.31	11820.6	139690.09	6344.38	3060.59	463.38	80.11	3357.73	2300

HAZARDOUS SOLID WASTE DETAILS

Organic solid waste	Inorganic solid Waste	Spent Carbon	Distillation Residue	
Kg/day	Kg/day	Kg/day	Kg/day	
6344.38	3060.59	463.38	2300	

EMISSION DETAILS

	Kg/day								
HCI	HCI CO ₂ H ₂ NH ₃ HBr HI HF SO ₂ O ₂ N ₂								
811.62	2330.86	52.63	93.02	634.77	19.89	3.32	280.14	598.97	46.93

Deliberations by the EAC:

The EAC, constituted under the provision of the EIA Notification, 2006 comprising of Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in desired format along with PFR & EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of their knowledge and belief and no information has been suppressed in the PFR & EMP reports. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee was further informed that the Ministry has recently issued an Office Memorandum dated 28.01.2021 and inter-alia requested that EAC shall clearly recommend

the permissible pollution load i.e. quantity and quality, including composition, of emissions, discharge and solid waste generation. In compliance of this OM, PP has submitted the pollution load and the EAC also deliberated on the pollution load as estimated by the PP/Consultant.

The Committee noted that the PFR/EMP reports reflect the present environmental concerns and the projected scenario for all the environmental components. The Committee deliberated on the action plan and budget allocation for green belt development and suggested to complete plantation in one year. The Committee deliberated on the proposed mitigation measure towards Air, Water, Noise and Soil pollutions. The Committee suggested to use coal having ash content less than 15% only during the rainy season when the Biomass Briquettes may not be available. The Committee also suggested that the storage of toxic/explosive raw materials/products shall be undertaken with utmost precautions and following the safety norms and best practices. The Committee suggested to increase the percentage use of recycled water and mitigate VOCs.

The EAC deliberated on the proposal with due diligence using the process as notified under the provisions of the EIA Notification, 2006, as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC also found the proposal in order and recommended for the grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time, from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, <u>subject to compliance of terms and conditions</u> as under, and general terms and conditions in Annexure:-

- (i). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the PFR/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
- (ii). Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled at 99.996% with effective chillers/modern technology. Regular VOCs monitoring should be carried out.
- (iii). Occupational health centre for surveillance of the worker's health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/mask for personal protection.

- (iv). Treated effluent shall be reused in the process/utilities. Treated Industrial effluent shall not be used for gardening/greenbelt development/horticulture purpose.
- (v). The unit shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms. Mock drill shall be conducted regularly.
- (vi). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall be provided to employees.
- (vii). Total fresh water requirement shall not exceed 445.5 KLD and will be met from KIADB. Prior permission in this regard shall be obtained from the concerned regulatory authority.
- (viii). As committed by the PP, coal having ash content less than 15% is to be used as fuel only during the rainy season when the Biomass Briquettes may not be available and during all other seasons only biomass briquettes shall be used.
- (ix). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.
- (x). Continuous online (24x7) monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For ZLD, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises (if applicable).
- (xi). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space provided with all safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valves to prevent losses. (f) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.
- (xii). Process organic residue and spent carbon, if any, shall be sent to Cement other suitable industries for its incinerations. ETP sludge, process inorganic & evaporation salt shall be disposed of to the TSDF. There shall be commitment from the brick manufacturer to take the fly ash from the plant. The Unit is to be started after getting the commitment from the brick manufacturer / cement plant.
- (xiii). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of byproducts from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed

- system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.
- (xiv). The green belt of at least 5-10 m width shall be developed in at least 33% of the total project area, mainly along the plant periphery/ additional land. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing map. Trees have to be planted with spacing of 2m x 2m and number of trees have to be increased accordingly. The plant species can be selected that will give better carbon sequestration. All trees must be planted within first year.
- (xv). The activities and the action plan proposed by the project proponent to address the socio-economic issues in the study area, shall be completed as per the schedule presented before the Committee and as described in the EMP report in letter and spirit. All the commitments made shall be satisfactorily implemented.
- (xvi). A separate Environmental Management Cell (having qualified person with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Agenda No. 11.16

Setting up of Active Pharmaceutical Ingredients (API's) manufacturing unit of capacity 25 TPM by M/s Tetrachem Labs located at Plot No. 64, Kadechur Industrial Area, Yadagir Taluk & District, Karnataka- Environment Clearance – reg.

[Proposal No. IA/KA/IND2/204262/2021, File No. J-11011/227/2021-IA II (I)]

The project proponent and the accredited consultant M/s AM Enviro Engineers, made a detailed presentation on the salient features of the project and informed that:

The proposal is for grant of environmental clearance (EC) to the proposed project for setting up of Active Pharmaceutical Ingredients (API's) manufacturing unit of capacity 25 TPM by M/s. Tetrachem Labs located at Plot No. 64, Kadechur Industrial Area, Yadagir Taluk & District, Karnataka.

The details of products and capacity as under:

S. No	Product	Qty in TPM	CAS Number	Therapeutic Use			
1	Anastrozole	3	120511-73-1	To treat breast cancer			
2	Bendamustine HCI	1	3543-75-7	To treat chronic lymphocytic leukemia			
3	Bicalutamide	1	90357-06-5	To treat metastatic prostate cancer			
4	Bortezomib	5	179324-69-7	Multiple myeloma			

5	Busulfan	1	55-98-1	Chronic myelogenous leukemia
6	Cisplatin	1	15663-27-1	Chemotherapy drug
7	Cyclophosphamide	1	50-18-0	To treat cancer
8	Darunavir Amorphous	3	206361-99-1	Antiretrovirals
9	Darunavir Ethanolate	3	635728-49-3	HIV medications
10	Docetaxel	3	114977-28-5	To treat cancer
11	Emtricitabine	4	143491-57-0	To treat HIV infection
12	Erlotinib HCl	1	183319-69-9	Chemotherapy medication
13	Gefitinib	1	184475-35-2	Kinase inhibitors
14	Gemcitabine HCI	5	122111-03-9	To treat cancer
15	Ibrutinib	1	936563-96-1	Kinase inhibitors
16	Imatinib Mesylate	1	220127-57-1	To treat cancer
17	Irinotecan HCI	1	136-572-09-3	Topoisomerase I inhibitors
18	Lenalidomide	1	191732-72-6	To treat anemia
19	Letrozole	4	112809-51-5	To treat breast cancer
20	Melphalan	1	148-82-3	Alkylating agents – To treat ovarian cancer
21	Oxaliplatin	1	61825-94-3	To prevent colon cancer
22	Paclitaxel	0.5	33069-62-4	Chemotherapy medication
23	Pazopanib HCI	1	635702-64-6	To treat kidney cancer
24	Saquinavir Mesylate	1	149845-06-7	HIV medications
25	Sorafenib	1	284461-73-0	To treat cancer
26	Stavudine	1	3056-17-5	Nucleoside reverse transcriptase inhibitors
27	Temozolomide	1	85622-93-1	Alkylating agents- To treat brain tumor
28	Thalidomide	4	50-35-1	To treat a skin condition and cancer
29	Zidovudine	3	30516-87-1	To treat HIV infection
30	Zoledronic acid	1	165800-06-6	To treat high levels of calcium
	R & D Products	0.1		
	Total	56.5 TPM		
	Total (6 products)	25 TPM		

LIST OF BY-PRODUCTS AND ITS QUANTITIES

S. No	Product	By-Product	Qty in kg/day
1	Zidovudine	Triethyl amine hydrochloride	103.25
ı	Zidovudine	Trityl alcohol	100
2	Melphalan	O-Pthalamide	42
3	Erlotinib HCI	L-Menthol	116

Note: The quantity of By-products based on respective products being manufactured.

The project/activity is covered under Category 'B2' of item 5 (f) 'Synthetic, Organic Chemicals Industry' of the schedule to the Environment Impact Assessment (EIA) Notification, 2006 and its amendment dated 27.03.2020 and 15.10.2020. Due to applicability of general conditions (interstate boundary within 5 km), the project requires appraisal at central level by the sectoral Expert Appraisal Committee (EAC) in the Ministry.

The proposed project will be established in a land area of 2 Acres (8089.8 Sqm). Industry will develop greenbelt in an area of 2694.3 Sqm which is 33.3% out of the total project area. The proposed project cost is about Rs.6.5 Crores. Total capital cost earmarked towards environmental pollution control measures is Rs.74 Lakhs and the recurring cost (operation and maintenance) will be about Rs.16 lakhs per annum. Total Employment under proposed project will be of 50 persons. Industry proposes to allocate 5 Lakhs towards Corporate Environmental Responsibility.

There are no National parks, Wildlife sanctuaries, Biosphere Reserves, Tiger/ Elephant Reserves, Wildlife Corridors etc. lies within 10 km distance. Kadechur lake is at a distance of 1.6 km in the North-East direction.

Total water requirement is 110.1 KLD and will be met from KIADB. Generated effluent of 63.4 KLD will be treated through Common Effluent Treatment Plant CETP, Kadechur.

Power requirement of project will be 500 kVA and will be met from GESCOM. The unit is proposed to install 1X250 kVA of DG Set with stack height of 4 m will be provided as per CPCB norms. The unit has proposed to install 1X4TPH Briquettes/Coal fired boiler with stack of height 30 m. Multi Cyclone separator will be installed for the boiler for controlling the particulate emissions-(within statutory limit of 115 mg/ Nm³).

Details of Process emissions generation and its management:

S. No	Gas	Quantity in Kg/Day	Treatment Method	Disposal Method after treatment
1	Hydrogen chloride	108.14	Scrubbed by	Generated Dil. HCl will be reused within the industry
2	Ammonia	26.45	using water media	Generated NH ₄ OH will be reused within the industry
3	Sulfur dioxide	67.56	Scrubbed by using C.S. Lye solution	Residues from the reaction will be sent to TSDF
4	Oxygen	17.24	Dispersed into	-
5	Carbon dioxide	106.18	atmosphere	-
6	Hydrogen	8.93	Dispersed into atmosphere through flame arrester	-
7	Pentane	67.56	Dispersed into atmosphere through Nitrogen	-

Details of Solid waste & Hazardous waste generation and its management:

S.	Category	Sie & Hazaidous wasie į		
No	of the HW	Hazardous Waste	Quantity	Disposal Method
		Hazardous waste ge	eneration from	plant
1	5.1	Waste oils & Grease/ Used Mineral oil	0.2 KL/Annum	Agencies authorized by KSPCB
2	5.2	Oil Soaked Cotton	2 Kgs/month	KSPCB authorized Vendor
3	20.3	Distillation Residue	550 kgs/day	Store in secured manner and hand over to authorized cement industry for Co-processing
4	28.1	Process Residues & Waste	3509.2 kg/day	Store in secured manner and hand over to authorized cement industry for Co-processing/TSDF
5	28.2	Spent Catalyst	7 Kgs/day	Store in secured manner and hand over to authorized recycler
6	28.3	Spent Carbon + Hyflow	210.8 Kgs/Day	Store in secured manner and hand over to authorized cement industry for Co-processing
7	28.4	Off Specification Products	1 TPM	Store in secured manner and hand over to authorized cement industry for Co-processing/TSDF
8	28.5	Date expired products	500 Kgs/Month	Store in secured manner and hand over to authorized cement industry for Co-processing/TSDF
9	33.1	Detoxified-Container & Container Liners of Hazardous Chemicals and Wastes	250 No's/Month	After complete detoxification, shall be disposed to the outside agencies.
10	33.2	Contaminated cotton rags or other cleaning materials	25Kgs/month	Store in secured manner and hand over to KSPCB Authorized Vendor
11	A1160	Used Lead Acid batteries	2No's/Annum	Returned back to dealer/ Supplier
		Other & Miscellan	eous Solid Was	stes
12		Coal ash	1600 kgs/day	Sent to Brick Manufacturers
13		Briquette ash	3500 kgs/day	Sent to Fertilizer industries
14		Residue from scrubber	101 kgs/day	Shall be stored in secured manner & handed over to TSDF.

15	 Used PPE	5 Kgs/ Month	Sent to authorized vendor
16	 E- Waste	150 Kgs/ Annum	Authorized recyclers
17	 Plastic Waste	200 Kgs/ Annum	Authorized recyclers
18	 Metal Scrap	3 TPA	Sale to outside agencies/ recyclers
19	 Used Filters (HEPA filters, Oil Filters etc.)	25 Nos /year	Sent to TSDF
20	 Used / Discarded RO Membranes	0.2 TPA	Sent to TSDF

The Committee was informed that the Ministry has recently issued an Office Memorandum dated 28.01.2021 which inter-alia request EAC to clearly recommend the permissible pollution load i.e., quantity and quality, including composition of emissions, discharge and solid waste generation. In compliance this OM, PP has submitted the following pollution load information and the EAC deliberated on the issue. PP also requested that EC may include the name of products also otherwise PP will face difficulty in obtaining the CTE/CTO from concerned SPCB.

	Kg per day												
		EFFL	UENT	WAT	ER					SOLID	WAST	ΓΕ	
Water in put	Water in Effluent	Organics in effluents	TDS	COD	HTDS	LTDS	Total Effluent	Organic	In Organic	Spent carbon	Spent Catalyst	Process Emission	Distillation residue
33710	34076.61	544.12	2108.4	906.48	23335.6	12236.9	35572.48	1228.67	2280.55	210.8	7	300.95	550

HAZARDOUS SOLID WASTE DETAILS

Organic solid waste	Inorganic solid waste	Spent Carbon	Distillation Residue	
Kg/day	Kg/day	Kg/day	Kg/day	
1228.67	2280.55	210.8	550	

EMISSION DETAILS

	Kg/day									
HCI	HCI CO ₂ H ₂ NH ₃ SO ₂ O ₂ C ₅ H ₁₂									
108.14	106.18	8.93	26.45	67.56	17.24	67.56				

Deliberations by the EAC:

The EAC, constituted under the provision of the EIA Notification, 2006 comprising of Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in desired format along with PFR & EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of their knowledge and belief and no information has been suppressed in the PFR & EMP reports. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee was further informed that the Ministry has recently issued an Office Memorandum dated 28.01.2021 and inter-alia requested that EAC shall clearly recommend the permissible pollution load i.e. quantity and quality, including composition, of emissions, discharge and solid waste generation. In compliance of this OM, PP has submitted the pollution load and the EAC also deliberated on the pollution load as estimated by the PP/Consultant.

The Committee noted that the PFR/EMP reports reflect the present environmental concerns and the projected scenario for all the environmental components. The Committee deliberated on the action plan and budget allocation for green belt development and suggested to complete plantation in one year. The Committee deliberated on the proposed mitigation measure towards Air, Water, Noise and Soil pollutions. The Committee suggested to use coal having ash content less than 15% only during the rainy season when the Biomass Briquettes may not be available. The Committee also suggested that the storage of toxic/explosive raw materials/products shall be undertaken with utmost precautions and following the safety norms and best practices. The Committee suggested to increase the percentage use of recycled water and mitigate VOCs.

The EAC deliberated on the proposal with due diligence using the process as notified under the provisions of the EIA Notification, 2006, as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC also found the proposal in order and recommended for the grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the

Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time, from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, and <u>subject to compliance of terms and conditions</u> as under, and general terms of conditions at Annexure:-

- (i). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the PFR/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
 - (ii). Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled at 99.996% with effective chillers/modern technology. Regular VOCs monitoring should be carried out.
- (iii). Occupational health centre for surveillance of the worker's health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/mask for personal protection.
- (iv). Treated effluent shall be reused in the process/utilities. Treated Industrial effluent shall not be used for gardening/greenbelt development/horticulture purpose.
- (v). The unit shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms. Mock drill shall be conducted regularly.
- (vi). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall be provided to employees.
- (vii). Total fresh water requirement shall not exceed 445.5 KLD and will be met from KIADB. Prior permission in this regard shall be obtained from the concerned regulatory authority.
- (viii). As committed by the PP, coal having ash content less than 15% is to be used as fuel only during the rainy season when the Biomass Briquettes may not be available and during all other seasons only biomass briquettes shall be used.
 - (ix). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.
 - (x). Continuous online (24x7) monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For ZLD, the unit shall install

- web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises (if applicable).
- (xi). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space provided with all safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valves to prevent losses. (f) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.
- (xii). Process organic residue and spent carbon, if any, shall be sent to Cement other suitable industries for its incinerations. ETP sludge, process inorganic & evaporation salt shall be disposed of to the TSDF. There shall be commitment from the brick manufacturer to take the fly ash from the plant. The Unit is to be started after getting the commitment from the brick manufacturer / cement plant.
- (xiii). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of byproducts from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.
- (xiv). The green belt of at least 5-10 m width shall be developed in at least 33% of the total project area, mainly along the plant periphery/ additional land. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing map. Trees have to be planted with spacing of 2m x 2m and number of trees have to be increased accordingly. The plant species can be selected that will give better carbon sequestration. All trees must be planted within first year.
- (xv). The activities and the action plan proposed by the project proponent to address the socio-economic issues in the study area, shall be completed as per the schedule presented before the Committee and as described in the EMP report in letter and spirit. All the commitments made shall be satisfactorily implemented.
- (xvi). A separate Environmental Management Cell (having qualified person with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Agenda No. 11.17

Expansion of Sulphuric Acid Plant, Speciality Chemicals, Metallic Sulphates, Fertilizer and Agri Manufacturing Plant by M/s Khaitan Chemicals & Fertilizers Ltd., located at Khasra No. 393, 394, 395, 396/1, 396/2, 404/1,405,403/1,403/2, Village Nimrani, District Khargone, Madhya Pradesh - Consideration of Environment Clearance

[Proposal No. IA/MP/IND2/166948/2020, File No. J-11011/172/2020-IA-II(I)]

The Project Proponent and the accredited Consultant M/s. EQMS India Pvt. Ltd. made a detailed presentation on the salient features of the project and informed that:

The proposal is for environmental clearance to the project on Expansion of Sulphuric Acid Plant, Specialty Chemicals, Metallic Sulphates, Fertilizer and Agri Manufacturing Plant at Khasra No. 393, 394, 395, 396/1, 396/2, 404/1,405,403/1,403/2, Village Nimrani, District Khargone, Madhya Pradesh.

The details of products and capacity below:

S.	Particulars	CAS	Unit	Capacity			
No.		No.					
				Existing	Proposed	Total	
A.	FERTILIZER/SOIL CONDITION						
1.	SSP/Zn SSP/B SSP powder	-	TPD	1200	0	1200	
2.	Granulated SSP(GSSP)/	8011-	TPD	150	600	750	
	Granulated Boronated SSP/	76-5					
	Granulated Zincated SSP						
3.	Granulated Phospho	10101-	TPD	0	100	100	
	Gypsum	41-4					
4.	Bentonite Sulphur Powder	7704-	TPD	0	50	50	
	90%/ Zincated & Boronated	34-9					
	Bentonite Sulphur Powder						
	90%						
5.	Bentonite Sulphur	7704-	TPD	0	50	50	
	Granulated 90%/ Zincated &	34-9					
	Boronated Bentonite						
	Sulphur Granulated 90%						
В.	SPECIALITY CHEMICALS						
6.	Chloro Sulphuric Acid (CSA)	-	TPD	0	100	100	
7.	Oleum 23%/65%/liquid SO3	7790-	TPD	25 TPD	0	25 TPD	
		94-5		as liquid		as liquid	
				SO3 or		SO3 or	
				equivalent		equivalent	
				50 TPD		50 TPD	
				65%		65%	
				Oleum		Oleum	
8.	Sulphamic Acid	5329-	TPD	0	60	60	
		14-6					
9.	Boric acid and its salts	10043-	TPD	0	20	20	
		35-3					
10.	Di Methyl Sulphate	77-78-	TPD	0	50	50	
		1					
11.	Sulphuric acid	-	TPD	350	100	450	

12.	Linear alkyl benzene	-	TPD	50	0	50
	sulphonic acid (LABSA)					
C.	METALLIC SULPHATES					
1.	Zinc Sulphate	7446-	TPD	0	50	50
	(Heptahydrate/monohydrate)	20-0				
2.	Sulphate of Potash (SOP)	7778-	TPD	0	40	40
		80-5				
3.	Any other metallic sulphates	7778-	TPD	0	50	50
	like copper, iron,	80-5				
	magnesium, manganese etc					

The project/activities are covered under category A of item 5(a) 'Chemical fertilizers' of the Schedule to the Environment Impact Assessment Notification, 2006, and requires appraisal at central level by the sectoral Expert Appraisal Committee (EAC) in the Ministry.

The project proposal was submitted for grant of TOR and subsequently Standard Terms of Reference (TOR) was issued by MoEF&CC vide. F.No. J-11011/172/2020-IA-II (I) dated 28th August 2020. Public Hearing of the proposed project has been conducted by State Pollution Control Board on 6th February,2021. The main issues raised during the public hearing were related to Possibility of Employment, Environment Pollution Control Measures, Benefits to nearby people, Safety Measures in plant etc. No litigation is pending against the proposal.

Since the project was established before EIA Notification (1994), Environmental Clearance was not applicable as well As per MOEF Circular dated 21/11/2006 point ii "Such projects for which NOCs issued before 14th September,2006 will not be required to take Environmental Clearance under the EIA Notification, 2006.". Any expansions post EIA Notification 1994 in the project were of inorganic chemicals and Environmental Clearance was not applicable due to non-inclusion of inorganic chemicals in the notification. Hence, Environmental Clearance for earlier expansions within the project was not applicable.

Self-certified compliance for Consent to Operate has been submitted. However, Certified Compliance Report by IRO, MPPCB is awaited.

Existing land area is 23.53 Ha. (2,35,300 m²), no additional land used will be used for proposed expansion. Proposed expansion of plant shall be developed on 7522.5 m² of vacant land within existing land area. Industry has developed greenbelt in an area of 34.89% i.e., 82,100 m² (8.21 Ha.) out of total area of the project. The estimated project cost is Rs. 117.81 Crores including existing investment of Rs. 70.81 Crores. Total capital cost earmarked towards environmental pollution control measures is Rs. 46.67 Lakhs and the Recurring Cost (operation and maintenance) will be about Rs. 5.10 Lakhs Per annum. Total Employment will be 391 no. as direct and indirect after expansion. Industry proposes to allocate Rs. 42 Lakhs towards Corporate Environmental Responsibility.

There are no environmentally sensitive components such as National Park, Wildlife Sanctuary, Elephant / Tiger Reserve, forest migratory routes of fauna and wet land present within 10 km radius of plant site except few forest blocks such as Jaloka Reserved forest at a distance of 7.86 km (NE); Laltalai Reserved Forest 5.26 km (S); Thikari Reserved Forest 8.78 km (SW), Dolani Reserved Forest 8.85 km (S). River Satak is flowing at 1.72 km in

North Direction, Narmada River is flowing at a distance of 2.33 km in North direction, Khuj River is flowing at a distance of 5.09 km in SW direction, Borar River is flowing at a distance of 6.62 km in SW direction, Karam River is flowing at a distance of 7.13 km in NE direction, Bhuti River is flowing at a distance of 7.25 km in NE direction and Phulka River is flowing at a distance of 8.67 km in NW direction.

Ambient air quality monitoring was carried out at 8 locations during 1st March 2019 to 31st May 2019 and the baseline data indicates the ranges of concentrations as: PM_{10} (39 - 91 $\mu g/m^3$), $PM_{2.5}$ (17 - 44 $\mu g/m^3$), SO_2 (5.2 - 10.5 $\mu g/m^3$) and NO_x (10.5 - 20.3 $\mu g/m^3$). AAQ modeling study for point source emissions indicates that the maximum incremental GLCs after the proposed expansion project would be 1.96 $\mu g/m^3$ for PM_{10} , 1.76 $\mu g/m^3$ for $PM_{2.5}$, 6.91 $\mu g/m^3$ for SO_2 , 3.79 $\mu g/m^3$ for NO_x , 0.192 $\mu g/m^3$ for CI and 0.48 $\mu g/m^3$ for Acid Mist. The resultant Concentration of all parameters are within the National Ambient Air Quality Standards (NAAQS).

The total water requirement will be 1830 KLD of which freshwater requirement of 1648 KLD will be met from Narmada river through pipeline. Industrial effluent of 161 KLD will be sent to collection pit and re-circulated completely to be reused in SSP-I/II for production of Single Super Phosphate fertilizer. 22 KLD of domestic sewage will be treated through Sewage Treatment Plant of capacity 25 KLD. 21 KLD treated wastewater will sent to SSP-I/II for reuse as process water. The plant will be based on Zero liquid Discharge System.

Power requirement after expansion will be 3810 kW including existing 2850 kW and will be met from Madhya Pradesh Poorv Kshetra Vidyut Vitaran Company Ltd (MPPKYVC) and industry's own Captive Power Plant. Existing unit has 1 no. DG set of 250 kVA capacity used as standby during power failure. There will be no additional DG set for the proposed expansion. Stack Height of 30 m has been provided as per CPCB norms.

Existing Unit has 10 TPH and 7.5 TPH of Waste Heat Recovery Boiler. Additionally, no boiler will be installed. No Air pollution control device is required as the boilers use excess waste heat from Sulphuric Acid Plants and fuel combustion leading to particulate emission is carried out.

Details of Process emissions generation and its management is mentioned below:

Table 1 : Details of Emission Generation and its management

Area	Stack	Flow Rate	Emission		Control	Control			
	Height		Parameters		Measures	Efficiency			
	in M	NM3/Hr	Parameter	Value					
	Existing								
SSP I & II rock	30	SSP-I 30000&	PM	50 mg/Nm3	-On line PM monitoring	99.7%			
grinding		SSP-II-		ilig/ivilis	system				
		30000			-Dust				
		NM3/Hr			collector				
					bags				

SSP I & II acidulation	40	SSP-I 36000 &	PM	50 mg/Nm3	-4 stage wet scrubbing system: 2 venturi & 2	99.7%
		SSP-II- 36000 NM3/Hr	F	20 mg/Nm3	cyclonic separator -Online F (fluoride) monitoring system	
SAPI	50	15000 NM3/Hr	SO2	2.0 kg/ton Sul Acid, 950 mg/Nm3	 Alkali scrubber Demister pad Candle filters Acid concentration 	99.7%
SAP II	50	20000 NM3/Hr	Acid mist	50 mg/Nm3	 analyzer Data logger/process Interlocking On line SO2 monitoring system Mist eliminators 	
GSSP	35	Dryer fan 14200 CFM Cooler fan 13000 CFM	PM	50 mg/Nm3	-Multi cyclones -Online PM monitoring system	99.7%
		<u>L</u>	Р	roposed	<u> </u>	
CSA	50	10000 m3/hr	Acid mist CI	50 mg/Nm3 20 mg/Nm3	-Alkali scrubber -Demister pads -On line Cl ₂ monitoring system	99.7%
SOP	50	5000 m3/hr	Acid mist CI PM	50 mg/Nm3 20 mg/Nm3 50 mg/Nm3	-Alkali scrubber -Demister pads -On line Cl ₂ monitoring system	99.7%
GSSP/Zn SSP/B GSSP	35	40000	PM	50 mg/Nm3	-Cyclones and multi clones -On line PM monitoring system -Dust collector bags/Bag Filters	99.7%
Phospho gypsum	35	40000	PM	50 mg/Nm3	-Cyclones and multi clones -On line PM monitoring system	99.7%
HAG (Wet Granulated SSP Drying)	35	47000 m3/hr	PM, SO2, NOx, CO	150 mg/Nm3, 100 ppm, 50 ppm	-Cyclones and multi clones -Dust collector bags/Bag Filters	99.7%

The solid waste generation at the plant area is being segregated in biodegradable waste and recyclable waste. Recyclable waste is being sold off to recycler. Biodegradable waste is being disposed off in MSW disposal pit to get converted to manure for horticulture purposes. Details

of hazardous/non-hazardous waste generation and its managements are provided in Tables below:

Table 2: Details of Hazardous & Non-Hazardous Waste Management

Expected Solid/Hazardous waste	Category	Existing Annual Quantity (Approx.)	Total After Proposed Expansion Annual Quantity (Approx.)	Disposal Mode
Spent Catalyst	17.2	2.0 Ton/year	-	Disposed to MPWMB
Used Oil	5.1	0.40 Ton/year	0.6 Tons/Year	Pithampur
Process (Sulphur Sludge)	20.4	70 Ton/year	90 Ton/Year	Generated from SAP I/II plants is mixed in SSP plant along with rock phosphate for enrichment of sulphur in SSP fertilizer
Chemical sludge from ETP	35.3	60 Ton/year	70 Ton/Year	Generated on operation of ETP is used in SSP fertilizer for enrichment of Calcium
Oil and Grease skimming from ETP	35.4	1 MT/yr	1.5 MT/Year	Disposed to Authorized Agency
Empty barrels oil	33.1	10 nos/yr	15 nos./year	Disposed to Authorized Agency
Empty containers of chemicals used in processes	33.1	30 nos/yr	40 nos./Year	Disposed to Authorized Agency
Coal Ash	Non- Hazardous	0.4 TPD	-	As a filler, it will be reused in GSSP/SSP Plant. Coal ash generation from coal furnace from SOP plant is expected as 0.4 TPD from indirect heating (coal consumption 2 TPD having 20% ash=0.2*2= 0.4 TPD).
H ₂ SiF ₆	Non- Hazardous	2700 Mton/year	-	Generated from SSP plant are used in SSP plant process for acidulation of rock phosphate.
Gypsum (From Boric acid plant)	Non- Hazardous	-	4965 MT/year (16.55 TPD)	Use as filler in Boronated SSP fertilizer
E-waste	E-waste	E- waste :20 kg/yr	E- waste: 30 kg/yr	Sent to authorized e-waste recycler

		Used	Used	
		batteries: 4	batteries: 6	
		no. /yr	no's/yr	
Plastic and	Plastic	Cut/torn PP	Plastic	Sent to authorized recycler
Rubber Waste	and	bags plastic	waste:	
	Rubber	waste: 10	10.200	
	Waste	ton/yr	Ton/yr	
		Rubber waste:	Rubber	
		200 kg/yr	waste: 300	
			kg/yr	

Deliberations in the EAC:

The EAC, constituted under the provision of the EIA Notification, 2006 comprising Experts Members/domain experts in various fields, examined the proposal submitted by the Project Proponent in desired format along with EIA/EMP reports prepared and submitted by the Consultant accredited by the QCI/ NABET on behalf of the Project Proponent.

The EAC noted that the Project Proponent has given an undertaking that the data and information given in the application and enclosures are true to the best of his knowledge and belief and no information has been suppressed in the EIA/EMP reports. If any part of data/information submitted is found to be false/ misleading at any stage, the project will be rejected and Environmental Clearance given, if any, will be revoked at the risk and cost of the project proponent.

The Committee noted that the EIA/EMP report are in compliance of the ToR issued for the project, considering the present environmental concerns and the projected scenario for all the environmental components. The Committee found the baseline data and incremental GLC due to the proposed project within NAAQ standards. The Committee also deliberated on the activities/action plans and found to be addressing the public hearing issues in the study area. The Committee suggested that the storage of toxic/explosive raw material shall be bare minimum in quantity and inventory. The Committee suggested that the greenbelt development shall be taken up actively by the PP and trees shall be planted considered 2m x 2m ratio. The Committee opined that the industry shall undertake studies on the impact of fertilizers on the soil characteristics and ecology. The Committee noted that the unit is in operation with valid CTO from Madhya Pradesh Pollution Control Board and the project proponent has submitted a self-certified CTO Compliance report due to difficulty in getting the report from SPCB because of the prevailing situations, the report is found to be satisfactory. The Committee recommended that certified compliance report of earlier CTO by SPCB needs to be submitted within six months for further appraisal of the EAC.

The project proponent submitted and undertaking and informed to the Committee that the production of SSP is 1200 TPD out of which portion is used for production of GSSP and remaining is saleable SSP. It is also informed that the tree density shall be increased to 2500 trees/hectare. The PP also submitted a detailed fluorine recovery plan. The Committee found the additional details submitted by the PP to be satisfactory and addressing the concerns raised by the Committee.

The EAC deliberated on the proposal with due diligence in the process as notified under the provisions of the EIA Notification, 2006, as amended from time to time and accordingly made the recommendations to the proposal. The Experts Members of the EAC found the proposal in order and recommended for grant of environmental clearance.

Accordingly, the EAC recommended for the grant of environmental clearance to the proposal subject to following conditions:

The environmental clearance granted to the project/activity is strictly under the provisions of the EIA Notification 2006 and its amendments. It does not tantamount/construe to approvals/consent/permissions etc. required to be obtained or standards/conditions to be followed under any other Acts/ Rules/ Subordinate legislations, etc., as may be applicable to the project. The project proponent shall obtain necessary permission as mandated under the Water (Prevention and Control of Pollution) Act, 1974 and the Air (Prevention and Control of Pollution) Act, 1981, as applicable from time to time, from the State Pollution Control Board, prior to construction & operation of the project.

The EAC, after detailed deliberations, <u>recommended</u> the project for grant of environmental clearance, <u>subject to compliance of terms and conditions</u> as under, and general terms and conditions in Annexure:-

- (i). The Committee noted that the unit is in operation with valid CTO from Madhya Pradesh Pollution Control Board and the project proponent has submitted a self-certified CTO Compliance report due to difficulty in getting the report from SPCB because of the prevailing situations, the report is found to be satisfactory. The Committee recommended that certified compliance report of earlier CTO by SPCB needs to be submitted within six months for further appraisal of the EAC.
- (ii). The company shall comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the EIA/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.
- (iii). As already committed by the project proponent, Zero Liquid Discharge shall be ensured and no waste/treated water shall be discharged outside the premises. Treated effluent shall be reused in the process/utilities.
- (iv). Domestic effluent of shall be treated in STP and used for greenbelt development.
- (v). As committed, fluorine recovery plan shall be satisfactorily implemented.
- (vi). Continuous online (24x7) monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For online continuous monitoring of effluent, the unit shall install web camera with night vision capability and flow meters in the channel/drain carrying effluent within the premises.

- (vii). The storage of toxic/hazardous raw material shall be bare minimum with respect to quantity and inventory. Quantity and days of storage shall be submitted to the Regional Office of Ministry and SPCB along with the compliance report.
- (viii). Occupational health centre for surveillance of the worker's health shall be set up. The health data shall be used in deploying the duties of the workers. All workers & employees shall be provided with required safety kits/mask for personal protection.
- (ix). Training shall be imparted to all employees on safety and health aspects of chemicals handling. Safety and visual reality training shall be provided to employees.
- (x). The unit shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms.
- (xi). Necessary precautions shall be taken to avoid accidents and action plan shall be implemented for avoiding accidents.
- (xii). Solvent management shall be carried out as follows: (a) Reactor shall be connected to chilled brine condenser system. (b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages. (c) Solvents shall be stored in a separate space specified with all safety measures. (d) Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done. (e) Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valve to prevent losses. (f) All the solvent storage tanks shall be connected with vent condensers with chilled brine circulation.
- (xiii). Volatile organic compounds (VOCs)/Fugitive emissions shall be controlled at 99.996% with effective chillers/modern technology.
- (xiv). Total fresh water requirement shall not exceed 1648 cum/day, proposed to be met from Narmada river through pipeline. Prior permission in this regard shall be obtained from the concerned regulatory authority.
- (xv). Storm water from the roof top shall be channelized through pipes to the storage tank constructed for harvesting of rain water in the premises and harvested water shall be used for various industrial processes in the unit. No recharge shall be permitted within the premises. Process effluent/ any wastewater shall not be allowed to mix with storm water.
- (xvi). The company shall undertake waste minimization measures as below (a) Metering and control of quantities of active ingredients to minimize waste; (b) Reuse of by-products from the process as raw materials or as raw material substitutes in other processes. (c) Use of automated filling to minimize spillage. (d) Use of Close Feed system into batch reactors. (e) Venting equipment through vapour recovery system. (f) Use of high-pressure hoses for equipment clearing to reduce wastewater generation.
- (xvii). The green belt of at least 5-10 m width shall be developed in nearly 33% of the total project area (11000 Plant), mainly along the plant periphery/adjacent areas. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department. Records of tree canopy shall be monitored through remote sensing map.

Trees have to be planted with spacing of 2m x 2m and number of trees have to be increased accordingly (2500 trees/hectare). The plant species can be selected that will give better carbon sequestration and plantation shall be started from first year onwards.

- (xviii). The activities and the action plan proposed by the project proponent to address the socio-economic and public hearing issues in the study area, shall be completed as per the schedule presented before the Committee and as described in the EMP report in letter and spirit.
- (xix). The project proponent shall assist in development of rain water harvesting system in the adjoining villages/areas.
- (xx). As proposed, at least Rs. 18.6 Lakhs shall be earmarked for conservation plan and shall be implemented in coordination with State Forest & Wildlife Department/Local Administration.
- (xxi). A separate Environmental Management Cell (having qualified person with Environmental Science/Environmental Engineering/specialization in the project area) equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.

Consideration of Amendment in Environment Clearance

Agenda No. 11.18

Proposed amendment in existing EC letter for change in mode of disposal of industrial effluent stream and addition of new plot for M/s. Orgo Chem (Gujarat) Pvt. Ltd. at Plot No. 719, Road No. 7, Sachin GIDC, Taluka-Chorasi, District-Surat, Gujarat-Consideration of amendment in Environment Clearance

[Proposal No. IA/GJ/IND3/203883/2021, File No. J-11011/339/2019-IA-II(I)]

The proposal is for amendment in the Existing Environmental Clearance granted by the Ministry vide letter no. J-11011/339/2019-IA-II(I) dated 11th August 2020 for the project of synthetic organic chemicals (Dyes & Intermediates) manufacturing unit having capacity of 170.5 TPM located at Plot No. 719, Sachin GIDC, Surat, Gujarat in favour of M/s Orgo Chem (Guj.) Pvt. Ltd.

The project proponent has requested for amendment in the EC with the details are as under;

Sr.	Para of EC	Details as per	To be revised/	Justification/
No.	issued by	the EC	read as	reasons
	MoEF&CC			
1	Specific EC	As already	Total effluent generation	1. Already obtained
	Condition A -	committed by the	will be 30 m3/day (13.5	membership
	iii	project	m3/day from	certificate from
		proponent, Zero	Manufacturing process +	common MEE
		Liquid Discharge		facility.

	shall be ensured	16.5 m3/day from	
	and no	·	2. Proper handling and
	waste/treated	There shall be total two	management of
	waster shall be		concentrated
		0 0	
	discharged	based on the effluent	effluent in common
	outside the	characteristics.	facility with compare
	premises. All the	` • • • • • • • • • • • • • • • • • • •	to inhouse facility.
	wastewater to be	(10 m3/day) generated	
	collected and to	from manufacturing	3. Economic viability of
	be reused after	process shall be sent to	inhouse ETP
	treatment.	Common MEE facility of	consisting of MEE
		Globe Enviro Care	plant.
		Limited (GECL) after in-	
		house neutralization.	
		Stream 2 (High TDS)	
		(20 m3/day) generated	
		from manufacturing	
		process as well as from	
		boiler blow down, cooling	
		tower blow down,	
		washing and scrubber	
		shall be treated into in-	
		•	
		consisting of	
		Neutralization followed	
		by MEE plant, biological	
		treatment and RO plant.	
		Here, RO permeate will	
		be reused within plant	
		premises and RO reject	
		water will be again sent	
		back to MEE plant.	
		There shall be no	
		change in treatment of	
		domestic sewage.	
EC condition	Total water	There shall be no	Unit has proposed to
No. 6:	requirement will	change in total water	segregate two streams
	be 45 m3/day (22	•	from wastewater
	m3/day Fresh	•	generation. Stream 1
	water + 23	It will remain same as per	(High COD) (10
	m3/day Recycled	existing EC letter.	m3/day) generated
	water). Fresh	<u> </u>	from manufacturing
	water will be met	However, fresh water	process shall be sent to
	from Sachin	requirement will be	•
	Notified Area	changed to 27.2 m3/day	,
	Authority (Sachin	=	Limited (GECL) after
	, ,	' '	,
	GIDC). Industrial	amenument which was	in-nouse neutralization.

		Effluent of 30	earlier proposed as 22	Stream 2 (High TDS)
		m3/day quantity	m3/day.	(20 m3/day) generated
		from Process,	-	from manufacturing
		Boiler, cooling		process as well as from
		tower, washing		boiler blow down,
		and scrubber will		cooling tower blow
		be treated in		down, washing and
		inhouse MEE		scrubber shall be
		and ETP plant.		treated into in-house
		Effluent will be		ETP plant consisting of
		collected and		Neutralization followed
		neutralized. Then		by MEE plant,
		it will be sent to		biological treatment
		stripper followed		and RO plant. Here,
		by MEE plant.		RO permeate will be
		MEE condensate		reused within plant
		will be further		premises and RO reject
		treated in		water will be again sent
		biological		back to MEE plant.
		treatment and		•
		RO plant. RO		Thus, fresh water
		permeate of 23		requirement will be
		KLD will be		increased after
		reused within		proposed amendment.
		premises and RO		
		reject will be sent		
		back to MEE.		
		Thus, the plant		
		will be based on		
		entire Zero Liquid		
		Discharge		
		system.		
		Domestic		
		sewage of 5		
		m3/day will be		
		disposed through		
		septic tank/soak		
		pit system.		
2	EC	The Ministry of	Unit has purchased new	-
	Condition	Environment,	plot (plot no. 717, Sachin	
	No. 2:	Forest and	GIDC) having area of	
		Climate Change	2010 m2. Newly	
		has examined	purchased plot is located	
		the proposal for		
		setting up dye	plot no. 719 in Sachin	
		intermediates &	GIDC, Surat, Gujarat.	
		specialty	-	
		chemicals		
	ı	ı		

manufacturing unit of capacity 170.5 TPM by M/s. Orgo Chem (Gujarat) Pvt. Ltd. in an area of 2010 sqm. at plot no. 719, Road No. 7, Sachin GIDC, Taluka Chorasi, District Surat (Gujarat).

Unit proposes to add additional Plot no. 717 in their existing EC letter. Thus, total area of the project site will be 4020 m2 after proposed amendment.

EC Condition No. 4:

Total land area is estimated to be 2010 sqm. Greenbelt will be developed 40% i.e. 805 sqm. out of the total project area. The estimated project cost is Rs. 9.25 crores. Total capital cost earmarked towards environmental pollution control measures is Rs. 288 Lakhs and the recurring cost (operation maintenance) will be about Rs. 146.1 lakh per Annum. Total employment in the operation

phase will be 45

persons as direct

& indirect basis.

It is to note that, no additional production activity will be carried out on newly added plot. Effluent treatment plant, utility area, ware house, haz. and non-haz. waste storage area shall be located on this plot. Due to additional plot, unit will have now sufficed area for production and other activities to be carry out. Unit will also provide 1330 m2 area (which is 33.08 % of total plot area) for green belt development within own premises.

It is to note that, there shall be no change in existing product list or production capacity. It will remain same as per existing EC letter.

Total project cost shall be Rs. 11.55 Crores including existing project cost Rs. 9.25 Crores. Total capital cost earmarked towards environmental pollution control measures is Rs. 288 Lakhs and the recurring cost (operation & maintenance) will be about Rs. 426.1 lakh per Annum.

Tot	al employment	in the	
оре	eration phase v	will be	
45	persons as dir	rect &	
ind	rect basis. I	t will	
ren	nain same as	s per	
exi	sting EC letter.		

Deliberations in the EAC:

The Committee made detailed deliberations on the proposal. The Committee noted that the amendment sought is for change in the mode of effluent disposal and for addition of land. The Committee observed that the unit is small, located in the industrial area and ZLD is not viable...

The Committee, after detailed deliberations, **recommended** for change in mode of disposal to Common MEE, accordingly for increase fresh water requirement and also for addition of land, as proposed by the project proponent. All other terms and conditions shall remain unchanged.

Agenda No.11.19

Expansion of Fertiliser plant of M/s Smartchem Technologies Limited, located at Plot K1-K5, MIDC Industrial area, Taloja, District Raigad, Maharashtra- Amendment in Environmental Clearance

[Proposal No. IA/MH/IND3/209564/2021; File No. 11011/167/2016-IA II (1)]

The Project Proponent M/s Smartchem Technologies Limited made a presentation on the salient features of the project and informed that:

The Ministry has granted environmental clearance to the project for expansion of Fertiliser plant of M/s Deepak Fertilisers and Petrochemicals Corporation Limited at Plot K1-K5, MIDC Industrial area, Taloja, District Raigad, Maharashtra vide letter dated 02.09.2019. Further, the EC was transferred to M/s Smartchem Technologies Limited on 18.12.2020.

The project proponent has requested for amendment in the EC as below:

S.	EC condition	Amendment	Justification by PP
No.		sought	
1.	Condition No. 11 (d):	Consider green belt	Being single product ammonia came
	The green blet (GB)	developed in the	to existence in 1979 and subsequently
	of 5-10 m width shall	degraded forest	grew to multi- products premises (16
	be developed in	land.	Nos.). While expanding the best effort
	more than 33% of	Make green belt	to meet GB requirements. But despite
	the total project	from 33% to 31%	the efforts PP could make it only up
	area, mainly along		to 31% of the Project area. As the

	the plant periphery in downward wind direction and along roadside etc. Selection of the plant species shall be as per CPCB guidelines in consultation with state forest department.	green belt along the plant periphery.	premises is located on the side of the Taloja MIDC main road on north, east and west side and its south side is having Kasardi river next to our fence, due to these geographical limitations, PP could develop only about 5 m wide GB along the project periphery. Being a pre-existing factory premises PP do not have any more additional area for GB development. However, PP took degraded forest land of 50 acre of land near our plant (10 km) for tree plantation as environmental initiative due to limitation at our premise. It is fully grown and now under maintenance. Considering the above explanation, PP request MoEF authorities to kindly amend the EC suitably and help us to comply the recommendation.
2.	Condition No. 11 (I): At least 5% of the total cost of the project shall be embarked toward the enterprise social commitment (ESC) shall be used providing for laptop to school students through school management	Change ESC percent from 5% to 0.75% being we are brown field project with capital investment less that 500 crores.	PP started manufacturing multiple grade fertilizer call ammonium nitrophosphate (ANP) (3.25 LMTPA) with its various grades in 1994 and then subsequently added NPK (6 LMTPA) with its various grades in 2017 and now we are further expanding NPK capacity by (2 LMPTA) making total multiple grade fertilizer to 11.25 LMTPA, thus this is a brown field project. Notification F. No. 22-55/2017-IA.III, dated 01-May-18, mandates 0.75% of CER for all brown field projects with capital investment between 100-500 crores the project capital investment is only Rs 190 crore. Hence, PP request EAC to also recommend 0.75 % CER instead of 5%. Considering the above explanation, PP request EAC authorities to kindly amend the EC.

Deliberations by the EAC:

The committee deliberated the requests of the project proponent and recommended as below:

- (i) The Committee did not agree for reduction in the green belt area and reiterated that 33% of the total project area shall have to be allocated for green belt development and suggested to increase the density of plantation and accordingly resubmit the detailed green belt development program.
- (ii) The Committee was informed that the CER of 5% was imposed in the instant case by the earlier EAC, as committed by the project proponent and even at that point of time Ministry's OM dated 01.05.2018 regarding CER was available. The Committee was further informed that there is no provision of CER as on date and accordingly, the Committee suggested that PP needs to modify the proposal with proper justification as per the recent OM dated 30.09.2020.

The Committee therefore, did not accept the proposal for amendment and it was returned in the present form.

Agenda item No. 11.20: Any other item with the permission of the Chairman

11.20: Siting of Industries/developmental activities within the river flood plain

The Member Secretary informed to the Committee that the Policy Sector of IA Division, vide, OM dated 28.05.2021 requested EAC to provide their comments on the siting criteria for various industries. Accordingly, with the permission of the Chair the details of the agenda have been circulated to the EAC Members for deliberations during the meeting.

The Ministry of Environment, Forest and Climate Change have published Handbook of Environment Procedures and Guidelines inter-alia including siting criteria and areas to be avoided for setting up of the industry. As per the said guidelines, the following areas shall be avoided for setting up of industries:

- Ecologically sensitive areas: at least 25 km;
- Coastal areas: at least 1/2 km from High Tide Line
- Flood Plain of the Riverside Systems: at least 1/2 km
- Transport/Communication System: at least 1/2 km
- Major settlements (3,00,000 population): at least 25 km from the projected growth boundary of the settlement

Further, this siting criteria was only a guideline in nature. Pursuant to Handbook of Environment Procedures and Guidelines in 1994, several regulations were enacted viz. Ecosensitive Zone Notifications, The Wetlands (Conservation and Management) Rules, 2017, etc. Coastal Regulation Zone Notification was in place since 1991.

Recently, there were certain directions of the Hon'ble National Green Tribunal in the matter OA 22 of 2020, OA No. 6/2012, OA No. 200/2014 and OA No. 300/2013 regarding setting up/expansion of industries along the river flood plain. Thus, the Ministry is in process of adopting a procedure regarding projects in close proximity with the river (flood plains), as it not covered in any of the legislations in place.

The Committee was briefed on the issue and requested for their suggestion:

The Committee deliberated on the siting of developmental activities along river flood plain and suggested that there shall be demarcation of no development zone along the river depending on type of industries to be set up within the riverine ecosystem at a particular place. The Committee further desired that State Irrigation and water department officials must also be consulted before framing any guidelines to understand the exact ground situation.

"Industrial/ developmental project shall not be located in any form within the river floodplain corresponding to once in 25 years flood, as certified by competent authority of the concerned State. Competent authority should be of the level of District magistrate/ Executive Engineer from state water resource department and his/her certificate must be based on study/ analysis and long term data/ observations". Further type of Industries needs to be taken in the account for such consideration.

The Committee in general desired at-least 50 m to maximum 200 m shall be applied depending on category and type of industries proposed to set up. The Committee also of the view that the matter may be elaborately discussed further to arrive at an appropriate guidelines based on river flood plain data and categorization of industries.

There being no item left, the meeting ended with a vote of Thanks to the Chair.

GENERAL CONDITIONS

- (i) No further expansion or modifications in the plant, other than mentioned in the EIA Notification, 2006 and its amendments, shall be carried out without prior approval of the Ministry of Environment, Forest and Climate Change/SEIAA, as applicable. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry/SEIAA, as applicable, to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.
- (ii) The Project proponent shall strictly comply with the rules and guidelines issued under the Manufacture, Storage and Import of Hazardous Chemicals (MSIHC) Rules, 1989, as amended time to time, the Chemical Accidents (Emergency Planning, Preparedness and Response) Rules, 1996, and Hazardous and Other Wastes (Management and Trans-Boundary Movement) Rules, 2016 and other rules notified under various Acts.
- (iii) The energy source for lighting purpose shall be preferably LED based, or advanced having preference in energy conservation and environment betterment.
- (iv) The overall noise levels in and around the plant area shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels shall conform to the standards prescribed under the Environment (Protection) Act, 1986 Rules, 1989 viz. 75 dBA (day time) and 70 dBA (night time).
- (v) The company shall undertake all relevant measures for improving the socio-economic conditions of the surrounding area. The activities shall be undertaken by involving local villages and administration. The company shall undertake eco-developmental measures including community welfare measures in the project area for the overall improvement of the environment.
- (vi) The company shall earmark sufficient funds towards capital cost and recurring cost per annum to implement the conditions stipulated by the Ministry of Environment, Forest and Climate Change as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so earmarked for environment management/ pollution control measures shall not be diverted for any other purpose.
- (vii) A copy of the clearance letter shall be sent by the project proponent to concerned Panchayat, Zilla Parishad/Municipal Corporation, Urban local Body and the local NGO, if any, from whom suggestions/ representations, if any, were received while processing the proposal.
- (viii) The project proponent shall also submit six monthly reports on the status of compliance of the stipulated Environmental Clearance conditions including results of monitored data to the respective Regional Office of MoEF&CC, the respective Zonal Office of CPCB and SPCB. A copy of Environmental Clearance and six-monthly compliance status report shall be posted on the website of the company.
- (ix) The environmental statement for each financial year ending 31st March in Form-V as is mandated shall be submitted to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently,

- shall also be put on the website of the company along with the status of compliance of environmental clearance conditions and shall also be sent to the respective Regional Offices of MoEF&CC by e-mail.
- (x) The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB/Committee and may also be seen at Website of the Ministry and at https://parivesh.nic.in/. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the concerned Regional Office of the Ministry.
- (xi) The project authorities shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.
- (xii) This Environmental clearance is granted subject to final outcome of Hon'ble Supreme Court of India, Hon'ble High Court, Hon'ble NGT and any other Court of Law, if any, as may be applicable to this project.

List of the Expert Appraisal Committee (Industry-3) members participated during Video Conferencing (VC) meeting

S.	Name of	Designat
No.	Members	ion
1.	Prof. (Dr.) A.B. Pandit	Interim
	Vice Chancellor, Institute of Chemical Technology,	EAC
	Mumbai, Sir JC Bose Fellow, Government of India	Chairman
	Email: ab.pandit@ictmumbai.edu.in	
2.	Dr. Ashok Kumar Saxena, IFS	Member
	Bunglow No. 38, Sector-8A,	
	Gandhinagar, Gujarat – 382008	
	E-mail: ashoksaxena1159@gmail.com	
3.	Prof. (Dr.) S. N. Upadhyay	Member
	Research Professor (Hon.),	
	Department of Chemical Engineering &	
	Technology, Indian Institute of Technology	
	(Banaras Hindu University), Varanasi	
	E-mail: snupadhyay.che@iitbhu.ac.in	
4.	Shri Santosh Gondhalkar	Member
	'Shree' Apartment, Flat 401, Plot No. 22, Tukaram	
	Society, Santnagar, Pune- 411009	
	E-mail: santoshgo@gmail.com	
5.	Prof. (Dr.) Vijay S. Moholkar	Member
	Professor in Department of Chemical Engineering,	
	Block-K (Academic complex), Room No. 111, Inidia	
	Institute of Technology Gawahati, Gawahati – 781039	
	E-mail: vmoholkar@iitg.ac.in	
6.	Dr. Suresh Panwar	Member
	House No.4, Gayateri Green Society,	
	NH 58 Bypass,Kankerkhera, Meerut,	
	Uttar Pradesh Email-	
	spcppri@gmail.com	
7.	Shri Dinabandhu Gouda	Member
	Additional Director, DH IPC-I, Room No. 309A, Third	
	Floor, Central Pollution Control Board, Parivesh Bhawan,	
	East Arjun Nagar, Delhi – 110032, E-mail:	
	dinabandhu.cpcb@nic.in	
8.	Shri Tukaram M Karne	Member
	"SHREYAS ORNATE" F-1,	
	95-Tulasibagwale Colony, Sahakarnagar-2,	
	PUNE: 411 009, Maharashtra	
	E-mail: tmkarne@gmail.com	

9.	Shri Sanjay Bisht	Member
	Scientist 'E', Room No. 517, Office of the Director	
	General of Meteorology, Indian Meteorological	
	Department, Musam Bhawan, Lodhi Road, New Delhi	
	-110003	
	E-mail: sanjay.bist@imd.gov.in	
10.	Dr. Uma Kapoor	Member
	CGWA, 18/11, Jamnagar House, Mansingh Road, New	
	Delhi	
	E-mail: uma-cgwb@nic.in	
11.	Dr. R. B. Lal	Member
	Scientist 'E'/Additional Director	Secretary
	Ministry of Environment, Forest and Climate Change	
	Indira Paryavaran Bhawan, Room No. V-304, Vayu	
	Wing, Jor Bag Road, New Delhi-110003	
	Telefax: 011-24695362	
	E-mail: rb.lal@nic.in	

MoEFC	MoEFCC				
12.	Dr. Saranya P.	Scientist 'D'			
	Ministry of Environment, Forest and Climate Change,				
	Indira Paryavaran Bhawan, Jor Bag Road,				
	New Delhi-110003				
13.	Dr. E.P. Nobi	Research Officer			
	Ministry of Environment, Forest and Climate Change,				
	Indira Paryavaran Bhawan, Jor Bag Road,				
	New Delhi-110003				
14.	Mr. Ritin Raj	Research Assistant			
	Ministry of Environment, Forest and Climate Change,				
	Indira Paryavaran Bhawan, Jor Bag Road,				
	New Delhi-110003				

Approval of EAC Chairman

Email

Additional Director MoEFCC Dr R B LAL

Re: Zero Draft Minutes of the 11th EAC (Industry 3 Sector) meeting held during May 31, 2021 & June 1, 2021 (through Video Conferencing) for comments of the EAC and approval of the Chairman Sir.

From : ab pandit <ab.pandit@ictmumbai.edu.in>

Sat, Jun 05, 2021 05:26 PM

1 attachment

Subject : Re: Zero Draft Minutes of the 11th EAC

(Industry 3 Sector) meeting held during May 31, 2021 & June 1, 2021 (through Video Conferencing) for comments of the EAC and

approval of the Chairman Sir.

To: Additional Director MoEFCC Dr R B LAL

<rb.lal@nic.in>, snupadhyay che

<snupadhyay.che@iitbhu.ac.in>,

dwivedisuneet@rediffmail.com,

suneetdwivedi@gmail.com,

ashoksaxena1159@gmail.com,

santoshgo@gmail.com, pkmishra che

<pkmishra.che@itbhu.ac.in>,

drpkm18@gmail.com, spcppri@gmail.com,

Dinabandhu Gouda

<dinabandhu.cpcb@nic.in>, Sanjay Bist

<sanjay.bist@imd.gov.in>, Uma kapoor <uma-

cgwb@nic.in>, vmoholkar@iitg.ac.in,

tmkarne@gmail.com

Dear Dr. Lal,

Please find attached the MOM signed and approved. Nicely done and very thorough, Warm Regards

Prof A B Pandit Chairman

The MOM are approved

Dated 5th of June 2021

Rought
